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Highlights 

Plant microbiota - Similar to human microbiota, in plants, microbial communities thrive in 

tissues and on organ surfaces (e.g. in the rhizosphere and phyllosphere), cooperating in key 

metabolic processes and creating a network of mutual relationships. To date, most research on 

plant microbiota has focused on bacteria, identifying dominant communities of Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria. However, eukaryotes such as fungi, with lifestyles 

ranging from mutualism to parasitism and commensalism, also make up key components of the 

plant microbiota. 

Arbuscular mycorrhizae - Among plant-associated microbes, the widespread arbuscular 

mycorrhizal fungi play a key role in nutrient cycling and plant health due to their ability to 

improve plant mineral nutrition. These fungi belong to an ancient monophyletic phylum, the 

Glomeromycota, currently considered to be phylogenetically related to the Mucoromycotina. 

Unusually among fungi, Glomeromycota are obligate biotrophs, multinucleate, and apparently 

asexual. Analysis of the genome sequence of Rhizophagus irregularis revealed additional unique 

features, e.g. the absence of plant cell wall-degrading enzymes and the abundance of small, 

secreted proteins. 

 

Plant immunity - Plant immunity relies on cell-autonomous events with some similarity to the 

innate immune system in animals. Plants use extracellular receptors to recognize microbe-

associated molecular patterns (MAMPs, e.g. bacterial flagellin) as well as endogenous molecules 

(such as wall oligomers released during pathogen attack), activating MAMP-triggered immunity. 

A second level of perception drives effector-triggered immunity, which uses intracellular 



receptors to recognize pathogen-secreted molecules called effectors. The high variability and 

specificity of effectors feeds plant-pathogen co-evolution.  

Conservation of symbiotic signaling - In arbuscular mycorrhizal host plants, a conserved signal 

transduction pathway mediates the perception of fungal signals. The proteins characterized so far 

include a membrane receptor-like kinase, a mevalonate biosynthetic enzyme, nucleoporins, a 

cationic channel localized to the nuclear envelope, and a nuclear calcium/calmodulin-dependent 

kinase. In legumes, the same proteins also participate in the signal transduction pathway 

mediating the perception of the rhizobial Nod factor during nodulation, via a common symbiotic 

signaling pathway.  

 

 

 

Abstract 

Plants rely on their associated microbiota for crucial physiological activities; realization of this 

interaction drives research to understand inter-domain communication. This opinion report 

focuses on the arbuscular mycorrhizal (AM) symbiosis, which involves the Glomeromycota, 

fungi that can form a symbiosis with most plants. We examine the hypothesis that the molecules 

involved in inter-kingdom symbiotic signaling, such as strigolactones, cutin monomers, and 

chitin-related molecules, also have key roles in development, originally unrelated to symbiosis. 

Thus, their symbiotic roles rely on the co-evolved capacity of the AM partners to perceive and 

interpret these molecules as symbiotic signals.  

 

 

In cartoons, animals, plants, and mushrooms communicate with each other flawlessly. However, 

in real life, understanding how individuals belonging to different domains of life communicate, 

via ‘plantish’ or ‘fungish’, remains a hot topic in the field of plant-microbe interactions. Plants 

and microbes exchange signals that regulate each other’s metabolism and development, and 

ultimately condition their interactions. Several examples of inter-specific communications have 

been identified in the hidden world of plant-microbe interactions. One long-known example is 

the perception of Nod factor from rhizobial bacteria, by legumes; this perception ultimately leads 



to the generation of a novel symbiotic organ, the root nodule, where symbiotic bacteria fix 

atmospheric nitrogen into organic compounds (1). More recently, exciting new projects aim to 

introduce symbiotic nitrogen fixation in cereals (2; https://www.jic.ac.uk/news/2012/07/cereals-

self-fertilise/#), which requires a deep understanding of this inter-domain signal exchange.  

Plant-microbe communications rarely occur as one-to-one conversations, since plants host large 

and diverse microbiota, which offer beneficial ecological services to their green host. The 

association with microbiota also requires that plants modulate their immune system, in order to 

tolerate, stimulate, or counteract the activities of myriad soil microbes, each producing their own 

signal molecules (3).  

  

A common question in the plant biology literature is: ‘How do plants identify microbes as 

friends or foes?’ (4). On this topic, the arbuscular mycorrhizal (AM) symbiosis is an excellent 

model to discuss the exchange of signaling molecules at the inter-kingdom level (5): AM fungi 

are the most widespread fungal component of the plant microbiota, and most land plants support 

an AM symbiosis, irrespective of their phylogenetic position (6), suggesting the existence of a 

conserved communication process.  

Here, we summarize the characteristics of the best-known plant and fungal molecules that trigger 

symbiotic responses in the corresponding AM partner. Interestingly, the signaling molecules 

characterized so far (strigolactones, cutin monomers, chitin-related molecules) appear to have 

well-established developmental roles, unrelated to symbiosis, in the organisms that produce them 

(Fig. 1). 

 

 

 

Host plant signals to AM fungi: ¿Hablas plantish? 

Strigolactones, terpenoid lactones that derive from carotenoid metabolism (Fig. 2), were first 

studied as root-exuded molecules that elicit the germination of parasitic plants (7); more 

recently, strigolactones returned to the limelight as bioactive molecules that stimulate the 

branching and metabolism of presymbiotic hyphae in AM fungi (8; 9). Finally, strigolactones 

emerged as key plant hormones that repress shoot branching by controlling axillary bud growth 

(10) through a well-characterized, receptor-mediated pathway that probably interacts with other 

plant hormones (11). Strigolactone production is conserved from Charales to Embryophytes, 



including the basal groups of liverworts and mosses (12). These discoveries have revolutionized 

our view of strigolactone signaling: their function in the rhizosphere suddenly appearing to be a 

secondary feature relying on their leakage from the roots into the soil (13). Thus, ten years after 

the seminal studies by the Akyama (8) and Bécard (9) groups, emerging data suggest that 

strigolactones function as conserved determinants of plant development that were recruited 

during the evolution of plant symbiotic and parasitic interactions.  

Despite this emerging interest, our knowledge of strigolactone perception by AM fungi remains 

very limited. Besserer et al (9;14) demonstrated that strigolactone perception boosts fungal 

metabolism, leading to increased ATP production and mitochondrial division. Preliminary data 

from RNA-seq of germinated spores of the AM fungus Gigaspora margarita treated with the 

synthetic strigolactone GR24 confirm the upregulation of mitochondrial genes (A. Salvioli, P. 

Bonfante et al unpublished results). Interestingly, strigolactone treatment also induced the 

proliferation of G. margarita endobacteria (15). Furthermore, by introducing the calcium sensor 

TAT-aequorin in the same fungus, Moscatiello et al (16) demonstrated that GR24 causes a rapid 

calcium transient in the fungal cytoplasm. Finally, GR24 treatment of G. margarita and 

Rhizophagus irregularis (17) increases the release of short chito-oligosaccharides, pre-symbiotic 

fungal signals, as discussed below.    

In short, recent data suggest that AM fungi perceive strigolactones through a calcium-mediated 

pathway and activate multiple responses involving fungal cell wall-related metabolism (hyphal 

branching and chito-oligosaccharide production), and mitochondrial and endobacterial activity.  

However, fungal strigolactone receptors remain unknown and analysis of the R. irregularis 

genome (18; 19) and G. margarita transcriptome (A. Salvioli, P. Bonfante et al., unpublished 

results) have not revealed the existence of fungal homologs of the known strigolactone receptors 

in plants (11). Thus, we can only conclude that fungal and plant strigolactone receptor proteins 

likely differ in structure, which opens the possibility that AM fungi independently evolved 

strigolactone perception mechanisms.  

Recent work identified cutin monomers as plant signals that have a key role in the AM dialogue 

(Fig. 2). These hydroxylated aliphatic acids are proposed to be released on the root surface as a 

necessary signal for hyphopodium differentiation from presymbiotic AM fungal hyphae (20; 21). 

Direct evidence showed that hyphopodium development requires the function of RAM2, a M. 

truncatula glycerol-3-phosphate acyl transferase involved in hydroxylated aliphatic acid 

biosynthesis, and is enhanced by the application of exogenous cutin monomers.  



Cutin polymer is the major component of the cuticle, the waxy coating of aerial organs in land 

plants: cutin also has a well-known role as a signal to pathogenic fungi that attack leaves, stems 

and fruits (22). A novel role for this hydrophobic molecule in a hydrated, underground 

environment such as the root surface may sound surprising. On the one hand, this suggests the 

existence of unpredicted similarities between symbiotic and pathogenic interactions, independent 

of the target organ (23); on the other hand, the fact that all plant clades that produce cutin (from 

liverworts to angiosperms) also develop AM interactions (6) is a suggestive coincidence. So far, 

however, no evidence points to a direct relationship between hyphopodium development and the 

presence of cutin monomers on the root epidermis wall (24), nor to the perception of cutin by 

AM hyphae: in other words, we cannot exclude the possibility that cutin monomers act upstream 

of a cascade of plant responses controlling hyphopodium development through other, 

unidentified signals. 

 

Fungal signals to AM host plants: Parlez-vous fungish? 

Navazio and colleagues (25) provided the first evidence of diffusible signals in the exudates of 

germinated glomeromycotan spores (GSE), showing that treating soybean cultured cells with 

concentrated GSE induced - within minutes - a transient increase in cytosolic calcium 

concentration with a characteristic profile. They also showed that GSE did not trigger the 

production of reactive oxygen species, a typical response to exudates from pathogenic fungi. 

Also, nitric oxide accumulates in the first minutes after GSE application to M. truncatula roots 

(26) and GSE triggers nuclear Ca²⁺ spiking with the same timing (27). The first analyses of plant 

gene regulation showed that Enod11, a M. truncatula nodulin expressed in legume roots during 

early nodulation, was also upregulated in response to diffusible fungal signals (28). In this case, 

the experimental setup did not allow a precise timing of this response, but in a later work, 

Maillet and coworkers (29) showed that 30 h treatment with GSE triggered Enod11 expression. 

On a longer time frame, the perception of diffusible fungal signals induces reallocation of sugars 

within the plant, with the accumulation of starch in the root system (30). The most recent studies 

identified secreted molecules that are supposed to play a role in fungal signaling to the host 

plant. These include (Fig. 2), lipo-chito-oligosaccharides (LCOs; 29) andchito-oligosaccharides 

(COs; 17). These molecules trigger GSE-like responses in the host roots, including Ca²⁺ spiking 

(17), and the regulation of symbiosis-related genes (29; 31). 



An interesting aspect of fungal signaling is that LCOs and COs both have structures closely 

related to chitin. This raises the question of whether the production of such molecules occurs as a 

direct by-product of fungal cell wall biosynthesis or evolved from it via the generation of 

specific metabolic pathways. In either case, molecules related to fungal cell wall biogenesis play 

a role as inter-kingdom messengers that only AM host plants recognize as symbiotic signals 

(17). 

 The idea that AM fungal signaling is based on chitin oligomers raises a critical specificity issue: 

since all fungi produce N-acetyl-glucosamine chains of various lengths, how can plants identify 

each fungus and raise the appropriate response, discriminating between a symbiont and a 

pathogen? As a further complication, the major rhizobial signals, the Nod factors, have a striking 

structural similarity to LCOs, including the same N-acetyl- glucosamine backbone (32). Indeed, 

plants have large families of receptors and receptor-like proteins that are predicted to bind chitin-

based molecules, including the bacterial Nod factors (33). They all possess conserved lectin-like, 

chitin-binding LysM domains, but the specificity of each receptor for each chitin oligomer in 

native conditions remains to be fully understood. Overall, the picture will likely remain obscure 

until we understand how these receptor proteins act, either alone or within complexes, in 

different plants and in the presence of different combinations of ligands (34). At any rate, such a 

massive deployment of plant genomic resources, deriving from extensive gene duplication and 

neo-functionalization (35) can indicate a diversified perception system, acting upstream of 

MAMP-triggered immunity and symbiotic responses, and representing a possible key to plant 

recognition of each interacting microbe. 

 

Dr. Dolittle in the rhizosphere? Plants and AM fungi speak to each other 

Although our knowledge of symbiotic signal exchanges in AM remains limited, an intriguing 

speculation appears reasonable: during their long co-evolution, glomeromycetes and their host 

plants seem to have developed the ability to intercept structural or hormonal molecules from 

their respective partner and interpret them as symbiotic messengers. Along this line, the 

similarity of strigolactone and abiotic stress-induced Ca2+ transients recorded in G. margarita 

(16) suggests that fungi first perceived the plantish strigolactones as natural xenobiotic 

compounds. It will be extremely interesting to understand whether other plant-interacting fungi 

(including pathogens) have analogous responses. 

We can construct similar speculations about fungish signals: fungi produce chitin for a structural 



function, but the host plant interprets chitin as a signal. Moreover, a more complex picture 

surfaces in this case. First, AM fungi possess several chitin synthases (according to Tisserant et 

al, 18), possibly related to the different arrangement of chitin chains in the thick, layered wall of 

spores or the thin, loose walls of arbuscule branches (37; 38). Which of these enzymes are 

responsible for CO and LCO biosynthesis? Can we compare the long-chain chitin fibrils present 

in fungal walls with the short (probably diffusible) COs that are recognized as MAMPs by LysM 

receptors (39)? How can chitin-based molecules elicit both symbiotic (e.g. nuclear calcium 

spiking) and defense responses (e.g. expression of pathogenesis-related proteins) as expected in 

the innate immune response (40)? Replies to these questions are expected from the ongoing 

characterization of the plant receptor and receptor-like protein families, which are predicted to 

bind chitin-based molecules (41), and from a deeper biochemical characterization of fungal and 

plant bioactive molecules (42). 

At present, a simplistic view suggests that plants interpret short-chain chitin-derived molecules 

(CO4-CO5; LCOs) as symbiotic signals, while longer molecules (e.g. CO8) elicit defense 

responses; nevertheless, early responses based on transcriptomic (Giovannetti et al., 

unpublished), cellular, and physiological analyses (43) indicate a partial overlap between 

symbiotic and pathogenic signaling. For example, root treatments with 10-8 M CO4 trigger 

symbiotic Ca²⁺ spiking in AM host plants like M. truncatula or D. carota, whereas 10-8 M CO8 

does not (17). Nevertheless, at 10-5 M, both molecules activate the symbiotic response in tomato 

and rice (43), suggesting that such high concentrations can compromise specificity of perception, 

possibly depending on the plant host (e.g. legumes vs. non-legumes) and on the degree of 

crosstalk within the LysM receptor family. 

Another crucial point is to understand if the chitin-based fungish words we have discussed so far 

are associated with other powerful signals such as fungal effectors, i.e. small secreted proteins. 

Pathogenic fungi use effectors to interact with their hosts, in some cases targeting the host 

nucleus and interfering with plant gene expression. We still do not know whether effectors are as 

important in mycorrhizal as in pathogenic fungi; although the Rhizophagus genome contains 

many small, secreted proteins (18), most remain to be characterized (44). Altogether, it is 

intriguing to think of chitin - chemically spelled in shorter or longer versions - as the fungish 

word for "hi", a common, non-committing signal making the first connection, with just a hint of 

the beneficial or pathogenic attitude of the visitor. Specificity might rather rely on the action of 

effectors, reaching the nucleus and going deeper inside the plant cell mechanisms to drive the 

major responses, in a process reminiscent of the well established zig-zag model of plant-

pathogen interactions (45). 



We are tempted to conclude that fungi speak fungish, and plants speak plantish, but members of 

the opposite kingdom interpret their chemical words with a different meaning - a picture far from 

the dialogues between the cartoon characters of our childhood. Nevertheless, pre-symbiotic 

signal exchanges in AM symbiosis seem to bring some light: the perception of strigolactone by 

germinated spores of R. irregularis or G. margarita causes an increase in the production of short 

chain COs, which in turn trigger a stronger Ca²⁺ spiking response in the root epidermis (17). This 

chemical dialogue proves that, at this point in their long co-evolution, plants and 

glomeromycetes have learnt to understand each other.  
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Figure captions 

Figure 1. Our current view of the signaling between arbuscular mycorrhizal fungi and their host 

plants suggests that molecules with a developmental role in each organism have been intercepted 

by the respective partner and re-interpreted as symbiotic signals. 

Figure 2. Plantish and fungish signals. The establishment of the arbuscular mycorrhizal 

symbiosis culminates in the development of arbuscules (central panel), where the fungal and 

plant cells intertwine to create a symbiotic structure in its truest sense. Similarly, the chemical 

dialogue between the two symbionts is based on an exchange of plantish and fungish words that 

get a novel meaning in the context of the symbiosis, as compared to the structural (cutin, chitin) 

or hormonal (strigolactone) roles that the same - or closely related - molecules play in the 

producing organism. 
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