
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Differential gene expression profiling of Listeria monocytogenes in Cacciatore and Felino salami
to reveal potential stress resistance biomarkers

Published version:

DOI:10.1016/j.fm.2014.09.003

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/151507 since 2016-07-13T09:17:14Z



	
  

1 

	
  

 

 

 

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It 
is posted here by agreement between Elsevier and the University of Turin. Changes 
resulting from the publishing process - such as editing, corrections, structural 
formatting, and other quality control mechanisms - may not be reflected in this 
version of the text. The definitive version of the text was subsequently published in  
Food Microbiology, Volume 46, April 2015, Pages 408-417, ISSN 0740-0020, 
doi:10.1016/j.fm.2014.09.003. 
 
 
You may download, copy and otherwise use the AAM for non-commercial purposes 
provided that your license is limited by the following restrictions: 
 
(1) You may use this AAM for non-commercial purposes only under the terms of the 
CC-BY-NC-ND license.  

(2) The integrity of the work and identification of the author, copyright owner, and 
publisher must be preserved in any copy.  

(3) You must attribute this AAM in the following format: Creative Commons BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), 

http://www.sciencedirect.com/science/article/pii/S0740002014002329 



	
  

2 

	
  

Differential gene expression profiling of Listeria monocytogenes in Cacciatore 

and Felino salami to reveal potential stress resistance biomarkers 

 

Mataragas M.1,2, Rovetto F.1, Bellio A.3, Alessandria V.1 , Rantsiou K.1 , Decastelli 

L.3, Cocolin L.1* 

 

1Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, 

Torino, Italy  

2Agriculture University of Athens, Department of Food Science and Technology, 

Laboratory of Food Quality Control and Hygiene, Athens, Greece 

3Istituto Zooprofilattico Sperimentale del Pimonte, Liguria e Valle d'Aosta. - S.C. 

Controllo Alimenti e Igiene delle Produzioni, Torino, Italy 

 

 

*Corresponding author: L. Cocolin, Università di Torino, Dipartimento di Scienze 

Agrarie, Forestali e Alimentari, Via Leonardo da Vinci 44, Grugliasco, 10095 Turin, 

Italy, phone: +39-011-6708553, fax: +39-011-6708549, e-mail: 

lucasimone.cocolin@unito.it 

 

 

 

 



	
  

3 

	
  

Abstract 

The current study reports a) the in situ transcriptional profiles of Listeria 

monocytogenes in response to fermented sausage stress and b) an approach in which  

in situ RT-qPCR data have been combined with advanced statistical techniques to 

discover potential stress resistance or cell viability biomarkers. Gene expression 

profiling of the pathogen has been investigated using RT-qPCR to understand how L. 

monocytogenes responds to the conditions encountered during the fermentation and 

ripening of sausages. A cocktail of five L. monocytogenes strains was inoculated into 

the batter of Cacciatore and Felino sausages. The RT-qPCR data showed that the 

acidic and osmotic stress-related genes were up-regulated. The transcripts of the 

lmo0669 gene increased during the fermentation and ripening of Cacciatore, whereas 

gbuA and lmo1421 were up-regulated during the ripening of Felino and Cacciatore, 

respectively. sigB expression was induced in both sausages throughout  the whole 

process. Finally, the virulence-related gene prfA was down-regulated during the 

fermentation of Cacciatore. The multivariate gene expression profiling analysis 

suggested that sigB and lmo1421 or sigB and gbuA could be used as different types of 

stress resistance biomarkers to track, for example, stress resistance or cell viability in 

fermented sausages with short (Cacciatore) or long (Felino) maturation times, 

respectively. 

 

Keywords: Fermented sausages, gene expression, L. monocytogenes, RT-qPCR, stress 

resistance biomarkers 
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1. Introduction 

The widespread  distribution of the food-borne pathogen L. monocytogenes and its  

adverse health effects  are well known (Kathariou, 2002). It has been shown that L. 

monocytogenes can survive in stressful environments, such as low temperature, and 

high acidity and salt contents (Cole et al., 1990; Shabala et al., 2001). This pathogen 

is of great importance for the food industry due to its ability to respond to such 

stresses, which are highly relevant for food processes (cold, acid and salt) (Kathariou, 

2002). 

The production of fermented foods is greatly relied on in the hurdle technology 

concept (Leistner, 2000). It uses combinations of different preservation factors or 

techniques (temperature, redox potential, pH, water activity, preservatives, etc.), 

which are named hurdles, to achieve the production of safe, stable, nutritious, tasty 

and economical food. Fermentation has an inhibitory effect not only on spoilage 

microorganisms, but also on pathogenic bacteria, which might initially be present 

(Adams & Mitchell, 2002). Although fermented foods are generally considered as 

safe foods, some notable outbreaks of food-borne illness associated with fermented 

food have occurred (Adams & Mitchell, 2002). Several outbreaks of illness have been 

attributed to the consumption of fermented sausages contaminated with 

Staphylococcus aureus and Salmonella spp., and other pathogens, such as Listeria 

monocytogenes and Escherichia coli O157:H7, have been identified as causative 

organisms in outbreaks involving fermented products such as sausages, cheeses, and 

yogurt (Warburton et al., 1987; Farber & Peterkin, 1991; Beumer, 1997; Nissen & 

Holck, 1998). Depending on the fermentation conditions, food-borne pathogens may 

survive at the end of the process. 
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Water activity and pH constitute significant preservation factors in fermented food 

(Lucke, 2000). L. monocytogenes can trigger changes in the expression of genes 

relevant to the environmental stresses commonly encountered during fermented 

sausage manufacturing, such as low pH and water activity (Garner et al., 2006; Olesen 

et al., 2009; Bae et al., 2012; Walacka-Zacharska et al., 2013). Nowadays, reverse 

transcription quantitative polymerase chain reaction (RT-qPCR) is considered the 

method of choice for quantifying the expression of specific genes (Nolan et al., 2006; 

Desriac et al., 2012). Transcriptomic analysis, combined with predictive microbiology 

and/or advanced statistical techniques, has been used for the identification of the 

potential biomarkers involved in bacterial survival, virulence or stress resistance (den 

Besten et al., 2009, 2010; Ceragioli et al., 2010; Desriac et al., 2012, 2013). 

Therefore, the objective of this work was to investigate the mechanism by which L. 

monocytogenes survives in food products after contamination, in particular in 

fermented meats. Fermented sausages constitute a complex and dynamic environment 

due to the changes that take place in the extrinsic (e.g. fermentation temperature) and 

intrinsic (e.g. pH, water activity, redox potential and strong competition for nutrients 

with starters) factors. Hence, two Italian fermented sausages, characterized by 

different maturation times, were used in these experiments to examine the gene 

expression of L. monocytogenes under such stressful conditions in order to identify 

the genes that allow the pathogen to cope with this environment. Furthermore, the 

results of the present study (gene expression) have been combined with quantitative 

(inactivation) data from the study of Mataragas et al. (2014) (phenotype) to identify 

potential stress resistance or cell viability biomarkers using advanced statistical 

techniques. This can be considered an interesting challenge since biomarkers, 
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represented by specific genes, could be used to predict the impact of several stresses 

on bacterial survival. 

 

2. Materials and Methods 

2.1. Sausage manufacturing, L. monocytogenes inoculation and sampling 

The sausage manufacturing, L. monocytogenes inoculation and sampling procedures 

have  been presented in detail elsewhere (Mataragas et al., 2014). In short , the batter 

of each fermented sausage was inoculated with a cocktail of five L. monocytogenes 

strains (final concentration 105 to 106 CFU/ g) previously isolated from minced beef 

meat (#5, 4b), fresh salami (#19, 1/2b) and pork meat (#36, 1/2a). The remaining two  

were a human clinical isolate, from a sporadic case of listeriosis (V7, not serotyped) 

and the reference strain EGDe (1/2a). All the strains were taken from the culture 

collection of the Laboratory of Agricultural Microbiology (DISAFA, Università di 

Torino). Two independent trials (two different batches of sausages) were carried out 

for each product. Two sausage samples were collected from each batch on days 0, 2, 

5, 10 and 20 for Cacciatore (short maturation sausage), and on days 0, 3, 7, 10, 20, 40 

for Felino (long maturation sausage) after formulation. 

A 10-g sausage sample was weighed and placed into a sterile stomacher bag with 90 

ml of sterile Ringer solution (quarter-strength ringer solution tablets, Oxoid, Milan, 

Italy). The sample was homogenized in a stomacher (BagMixer, Interscience, France) 

for 2 min at normal speed at room temperature. From this 10-1 dilution, 1 ml was 

transferred to  an Eppendorf tube, centrifuged at 13,400 ×g for 1 min at 4°C 

(Eppendorf 5417R, Eppendorf, Milan, Italy) and 0.5 ml of RNAlater (Ambion, 

Applied Biosystems, Milan, Italy) was immediately added to the resulting pellet after 
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the rejection of the supernatant. Then, the samples were stored at -20oC for less than 

24 h until the RNA extraction. 

 

2.2. Optimization of the qPCR protocol 

Altogether eighteen genes were considered for quantification (Tables 1 and 2). One 

gene related to  general stress (sigB) and eleven genes relative to various stresses 

commonly encountered during fermented sausage production, such as acid (lmo0669 

and lmo2434 or gadD) (Sue et al., 2004; Kazmierczak et al., 2006) and osmotic 

(gbuA, gbuB, lmo1421, betL and opuCA) stress (Sue et al., 2003; Cetin et al., 2004; 

Bae et al., 2012), and competition for nutrients (lmo1038, lmo0442, lmo0115 and 

lmo0938 associated with the uptake of different sugars) (Bae et al., 2012) were taken 

into consideration. A virulence-related gene was also studied (prfA) (Kazmierczak et 

al., 2006). Finally, five housekeeping genes (rpoB, rplD, gap, bglA and tuf) (Tasara & 

Stephan, 2007; Bae et al., 2012) were included as reference genes. Primer sequences 

and quantitative PCR (qPCR) protocols were taken from the respective literature (Sue 

et al., 2003; Cetin et al., 2004; Sue et al., 2004; Kazmierczak et al., 2006; Tasara & 

Stephan, 2007; Bae et al., 2012). The specificity of the primers used in the qPCR 

protocols for the different genes was tested twice using DNA, extracted from pure 

cultures of all the bacterial strains, i.e. the inoculated L. monocytogenes strains and the 

lactic acid bacteria (LAB) and coagulase-negative cocci (CNC) used as starters for the 

production of sausages, as a template. Technological microbiota, isolated from the 

starter culture used for the sausage production (Mataragas et al., 2014), were used as 

representative of the LAB and CNC.  

 

2.3. DNA extraction 
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L. monocytogenes strains and starters were grown (1% inoculum, incubation at 30oC 

or 37oC for 24 or 48 hours) in Brain Heart Infusion (BHI) (Oxoid) and deMan, 

Rogosa and Sharpe (MRS) (Oxoid). After incubation, the bacterial cells were 

harvested at 13,400 ×g for 1 min at 4°C, washed with a sterile Ringer (Oxoid) 

solution and subjected to DNA extraction, as previously described (Cocolin et al., 

2005). DNA from the reference L. monocytogenes strain EGDe was also used to 

estimate  the PCR efficiency of each primer pair used in this study. 

 

2.4. RNA extraction 

The procedure described in Rantsiou et al. (2012a) was adopted. The collected 

Cacciatore and Felino samples were used to extract RNA for the relative 

quantification of L. monocytogenes gene expression. After thawing  the samples and 

rejection of the supernatant, the pellet was suspended in RNAlater (50 µl), and the 

suspension was treated with lysozyme (50 µl; 50 mg/ml solution) (Sigma, Milan, 

Italy) and proteinase K (50 µl; 25 mg/ml solution) (Sigma) for 20 min at 37°C. The 

MasterPure Complete DNA and RNA Purification kit (Epicentre, Madison, WI, USA) 

was then employed according to the manufacturer’s instructions. At the end of the 

procedure, Turbo DNase (Ambion) was used to eliminate the DNA through enzymatic 

digestion. Integrity of the extracts was checked using agarose gel (1.2%) 

electrophoresis, and their quantity and purity were determined using a Nanodrop ND-

1000 spectrophotometer (Celbio, Milan, Italy). 

 

2.5. Reverse transcription (cDNA synthesis) 

Reverse transcription (RT) was performed in the same way as in Rantsiou et al. 

(2012a). The total RNA extracted from the sausage samples was reverse transcribed. 
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RT-positive (RT+) and RT-negative (RT-) reactions, containing ca. 0.3 µg of RNA, 

were performed for each sample. The RT- control was used to evaluate the possibility 

of contamination of the RNA preparations with genomic DNA (gDNA). The reactions 

also contained random hexamer primers (Promega, Milan, Italy) and a reaction 

solution consisting of a 5X RT buffer (Promega), a mix of dNTPs (150 µM of dTTP 

and 0.7 mM of dATP, dCTP and dGTP) (Promega), an M-MLV Reverse 

Transcriptase enzyme (Promega) and an RNase ribonuclease inhibitor (Promega), 

according to the manufacturer’s instructions. The reverse transcriptase enzyme was 

omitted from the RT- control. The RT reactions were performed in a DNA Engine 

Peltier Thermal Cycler (BioRad, Hercules, CA, USA) using the following program: 

25°C for 10 min and 42°C for 50 min. The resulting cDNA was stored at -20oC until 

the qPCR analysis. 

 

2.6. qPCR analysis 

The RT+ and RT- samples were analyzed by means of qPCR using the Chromo4 real-

time PCR detection system (Bio-Rad). Samples were analyzed in a 96-well plate (Bio-

Rad) for each gene of interest. The reaction mixture (final volume, 20 µl) contained 

10 µl of SsoAdvanced SYBR Green Supermix (Bio-Rad), 0.8 µl of each primer (400 

nM final) (Sigma), 7.4 µl of water and 1 µl of cDNA. A no template control (NTC, 

blank) was included in each assay. The thermo-cycling program consisted of one hold 

at 95°C for 2 min, followed by 40 cycles of 15 s at 95°C, 1 min at 55°C (rpoB, rplD, 

gap, sigB, gbuA, gbuB, lmo1038, lmo0442, lmo0115, lmo0938) or 60°C (bglA, tuf, 

betL, opuCA, lmo1421, lmo0669, lmo2434, prfA) and 30 s at 72°C. In order to 

minimize the variance introduced by the instrument between the runs (inter-runs) and 
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avoid the need for an inter-plate calibrator (IPC), all the samples were assayed for 

each gene separately in the same plate. 

 

2.7. Efficiency determination of the primers 

The PCR efficiency (E) of each primer pair was determined by means of the dilution 

series method using DNA (Rantsiou et al., 2012b) extracted from the reference L. 

monocytogenes strain EGDe as a template (Table 2). The E values were calculated for 

each gene according to Pfaffl (2001). Samples of DNA were diluted (106, 53, 26, 5, 1 

and 0.26 ng/ml) and used to construct the standard curves. Dilutions were performed 

three times independently and loaded in single. The presence of outliers was assessed 

by means of the Grubbs test and linearity of the data by the CLSI EP6-A method 

(Anonymous, 2003) using GraphPad Prism 6.03 (GraphPad Software, Inc., San 

Diego, CA, USA) and Microsoft Excel 2007 (Microsoft, Redmond, WA, USA). 

 

2.8. Statistical analysis 

The threshold cycle (Ct) values from the RT-qPCR were exported to Excel for relative 

quantification. A pre-processing of the data (missing values and a test for outliers 

using  Grubb’s test) was performed to exclude any problematic gene and/or sample. 

Sometimes, amplification response curves never reach a threshold or a signal never 

reaches  the threshold, but this can be  due to the primer-dimer formation. In both  

cases the Ct values cannot be considered  reliable. Outliers can occur by chance in any 

distribution, but they are often indicative either of a measurement error or that the 

population has a heavy-tailed distribution (Kubista et al., 2007). In either case, 

missing values are generated since such measurements should be removed. In order to 

use parametric tests for gene expression analysis such as ANOVA, an option is to 
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replace off-scale data with fictive Ct values (Kubista et al., 2007). Fictive Ct values 

are set to the highest Ct observed for a truly positive sample, which is assumed to be 

the level of detection (LOD), plus 1. In the current study, the cutoff was set at 35 

cycles. This corresponds to assigning a concentration that is half of the LOD to the 

off-scale samples. This is no more erroneous than assigning a zero concentration to 

these samples, because there is no evidence that they are blank. It is only known that 

the amount of the target in these samples is lower than  the detection limit (Kubista et 

al., 2007). Missing values generated by outlier removal with Grubb’s test at 95% of 

confidence level can be replaced by the mean of the replicates, although  no outlier 

was detected in the current study. However, rows (samples) or columns (genes) 

containing a high percentage (above 50%) of missing values were removed from the 

gene expression matrix without further consideration. 

Finally, the genes rpoB, rplD, gap, bglA, sigB, gbuA, gbuB, lmo1421, lmo0669 and 

prfA, and the samples from day 0, 2, 10 and 20 were  selected for Cacciatore. The 

genes rpoB, rplD, gap, bglA, sigB, gbuA, lmo0669 and prfA, and the samples from 

days 0, 3, 10, 20 and 40 were selected for Felino for further analysis. Sample integrity 

of the remaining genes  was initially tested using the  BestKeeper software (Pfaffl et 

al., 2004). An intrinsic variance (InVar) of expression was calculated and strongly 

deviating samples (?over? more than/above a 3-fold over- or under-expression) were 

indicative of inefficient sample preparation, incomplete reverse transcription or 

sample degradation.  

The data, after PCR efficiency correction and normalization with total RNA, were 

converted to relative expression and log-values (fold change) (Kubista et al., 2007) for 

further analysis, that is, one- and two-way ANOVA, principal component analysis 

(PCA) and partial least square regression (PLSR). Since the objective of the work was 
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to measure the gene expression in response to the fermentation and ripening processes 

of both sausages, relative quantification was used instead of absolute quantification 

(with the standard curve method). Therefore, the level of gene expression of the target 

genes in the treated samples (during fermentation and ripening) was compared with 

the level of gene expression in the untreated samples (from day 0) .  

PCA was run for the samples (log-transformed data were mean-centered) and for the 

genes (log-transformed data were auto-scaled) (Kubista et al., 2007). PLSR was run 

on auto-scaled log-transformed gene expression data, and L. monocytogenes 

inactivation (log CFU/g) (Mataragas et al., 2014) was used as the response (Y-

variable). The significance of linear correlation between gene expression and L. 

monocytogenes survival was evaluated using the Pearson correlation coefficient (r) at 

P < 0.05. Statistical analysis was performed using the  Microsoft Excel 2007, SPSS 

v15.0  (SPSS, Inc., Chicago, Ill., USA), GraphPad Prism 6.03 and Unscrambler X 

10.0.1 (Camo Software AS, Oslo, Norway) programs. The stability of the reference 

genes and total RNA was assessed after PCR efficiency correction using the 

NormFinder and geNorm applications for Microsoft Excel 2007 (Vandesompele et al., 

2002; Andersen et al., 2004). It was assumed that all the RT-qPCR gene expression 

measurements were comparable since the same reaction conditions were used for 

reverse transcription and the samples contained the same total amount of RNA 

(Stahlberg et al., 2004; Duquenne et al., 2010). 

 

3. Results 

3.1. Microbiological and physicochemical changes 

L. monocytogenes survived well in both sausages (inactivation less than 1 log cfu/g) 

(Mataragas et al., 2014). LAB increased by 2.3-2.8 and 1.6-1.9 log cfu/g within the 
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first days of fermentation of Cacciatore and Felino, respectively (approximately from 

6.5 to 9.0 log cfu/g) and then remained unchanged. CNC showed a slight decrease 

over the first two days of fermentation of Cacciatore (from 6.4 to 6.0-6.1 log cfu/g) 

and then remained constant. However, CNC increased slightly on the third day of 

fermentation of Felino (from 6.1-6.4 to 6.6-6.7 log cfu/g) and then remained 

unchanged (Mataragas et al., 2014). 

A rapid decrease in the pH was observed during the first days of fermentation for 

Cacciatore, from 5.7 to 4.9-4.8 on the second day of fermentation, and then it 

remained almost constant.	
  Slower fermentation was observed in Felino, from 5.8-5.9 

to 5.2 after three days of fermentation, and then it approached its maximum decrease 

(5.1) at the end of fermentation (day 7), while a slight increase (5.3) was observed at 

the end of the process (day 40)  (Mataragas et al., 2014). Both sausages presented 

slow ripening. The water activity decreased constantly from 0.976-0.978 to 0.922-

0.923 in Cacciatore, while the water activity in Felino started to fall from day 10 after 

formulation (from 0.964-0.971 to 0.928-0.936) (Mataragas et al., 2014). 

 

3.2. RNA extraction from fermented sausages, primer efficiency and quality of RT-

qPCR data 

In order to quantify the gene expression of L. monocytogenes during the 

manufacturing of Cacciatore and Felino, the total RNA was extracted from the 

respective samples. The RNA extraction yield from all the samples (N = 44) was on 

average 67.9 ± 38.0 ng/µl. Agarose gel electrophoresis showed that the RNA 

extracted from the samples was intact (i.e. the 16S and 23S subunits were clearly 

visible without signs of degradation, as described by Cocolin and Rantsiou, 2014). 

Initially, eighteen genes were considered, five as references and thirteen as targets.  
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However, after determination of the specificity, twelve genes were  selected (four as 

references and eight as targets) (Table 1).  The E values,  estimated from the slope of 

the linear regression plot of Ct = f(logDNA) (Fig. 1), are also shown in Table 2. No 

outliers were detected in the data obtained for the primer efficiency determination, 

and the regression line was found to be linear over the tested range of the DNA 

concentrations . After pre-processing, no outliers were found in the gene expression 

data. The InVar calculation showed that all the samples were below 3-fold over- or 

under-expression, thus indicating that sample integrity was within an acceptable range 

(Table 3). Therefore, the gene expression data were considered suitable for further 

statistical analysis. 

 

3.3. L. monocytogenes genes considered during sausage production 

The batter of the sausages was inoculated with the cocktail of five L. monocytogenes 

strains. Therefore, the transcriptional profiles of the multiple L. monocytogenes strains 

are reported in response to the various stresses commonly encountered during sausage 

production. Although the different L. monocytogenes strains inoculated may behave 

differently, the cumulative result obtained in this study can be considered a good 

indicator to describe the behavior of L. monocytogenes during the manufacturing  of  

sausages. Stress-related genes were taken into account since the objective was to 

investigate how L. monocytogenes copes with the highly stressful environment of a 

fermented sausage. The only virulence-related gene studied was prfA, which regulates 

the expression of many other virulence genes, and its expression could indicate the 

potential expression of genes associated with virulence. An optimization of the qPCR 

protocol was carried out to verify the specificity of the assay that included the LAB 
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and CNC strains used as starters in the sausage production. An amplification signal 

was only obtained for L. monocytogenes. 

 

3.4. Selection of normalizers 

The expression stability of four potential reference genes was investigated throughout 

the manufacturing process of both sausages. On the basis of the NormFinder and 

geNorm results, potential normalizers were found for the Felino sausage, but not for 

the Cacciatore one, where the results between NormFinder and geNorm did not 

coincide (data not shown). geNorm indicated that the transcriptional stability of the 

reference genes may differ substantially, since the M-value of the best pair of genes 

was above the limit of 1.5. According to Vandesompele et al. (2002), M-values below 

1.5 mean that these genes present good expression stability. Therefore, normalization 

with the reference genes was compared to normalization with the total RNA. The 

results showed that normalization with the total RNA was the best choice. For 

samples with good quality RNA, normalization with the total amount of RNA is often 

as good as normalizing with a single reference gene (Kubista et al., 2006; Bergkvist et 

al., 2008). Hence, when the detection of appropriate reference genes for normalization 

purposes is difficult, the choice of using the total RNA of good quality as a normalizer 

can be considered a sound alternative. 

 

3.5. Differential gene expression of L. monocytogenes in fermented sausages 

The differential gene expression of the food-borne pathogen L. monocytogenes was 

studied in response to the stress conditions that prevailed during the manufacturing of 

Cacciatore and Felino. The results from the RT-qPCR revealed that the genes related 

to acidic and osmotic stresses were up-regulated during the process (Fig. 2). The 
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graph shows the changes in expression of each gene throughout the different process 

stages (fermentation, ripening and the end of the process) relative to the control (day 

0, start of the process). Only the genes for which good quality Ct values were 

obtained, during the RT-qPCR experiments, were analyzed and are displayed in the 

graph. No Ct values were obtained  for the  lmo1038 and lmo0442 genes in Cacciatore 

or Felino, while  a few sporadic Ct values were obtained in Felino for the  gbuB and 

lmo1421genes. Thus, the aforementioned genes in the respective sausages were 

excluded from the analysis. During fermented sausage production, significant changes 

were observed in the expression for the  sigB (in both sausages), gbuA (Felino), 

lmo0669, lmo1421 and prfA (Cacciatore) genes. 

One-way ANOVA was employed to compare the gene expression of each process 

stage against the control condition in order to reveal which changes were significant. 

The corrected P-value of 0.01 was used as the limit of significance because of the 

multiple testing, i.e. multiple genes were compared simultaneously. For the 

Cacciatore samples, the sigB, lmo0669, prfA and lmo1421 genes showed significant 

expression differences  (P < 0.01). The sigB gene was up-regulated in all the 

Cacciatore manufacturing stages. Up-regulation was also observed for the lmo1421 

gene, at the end of the process, and for lmo0669 during the fermentation and ripening 

processes. Down-regulation of the prfA gene occurred during the fermentation process 

(Fig. 2a). Significant differences were found for the sigB and gbuA genes for the 

Felino samples. Both genes were up-regulated (P < 0.01). A significant increase in the 

expression of sigB and gbuA was observed during the manufacturing of Felino (all 

stages) and late ripening (end of process), respectively (Fig. 2b). 

Two-way ANOVA was run to investigate whether the gene expression between the 

two types of sausages was different due to the different maturation times (factor A, 
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referred to as time) or to the product composition/technology (factor B, referred to as 

product). Only the genes common to both sausages, i.e. sigB, gbuA, lmo0669 and 

prfA, were investigated. The results showed that, for the sigB and gbuA genes, there 

was a significant effect of time and product (P < 0.01), as well as a significant 

interaction (time × product) between these two variables (P < 0.01). The interaction 

effect indicated that maturation time had a different effect on gene expression, 

depending on the product composition and fermentation technology. The sigB gene 

was over-expressed during the manufacturing of Cacciatore and Felino, but the gene 

depicted higher fold change values in Cacciatore, especially during fermentation and 

ripening (Fig. 2). The gbuA gene increased its expression along the Felino 

manufacturing process and displayed higher fold change values compared to the 

Cacciatore samples (Fig. 2). There was only a significant effect (P < 0.01) of time for 

the lmo0669 gene, which means that the expression of the gene increased over time, 

primarily during fermentation and secondarily during ripening, irrespective of the 

product type (product composition or fermentation technology) (Fig. 2). Finally, time 

and product displayed a significant effect (P < 0.01) on prfA expression. By ignoring 

the main effect of the product, the prfA expression appeared to be altered during the 

manufacturing of sausages, and a decrease in its expression was mainly depicted at 

the fermentation stage. By ignoring the main effect of time, the prfA expression 

appeared to be different in Cacciatore and Felino (Fig. 2). 

 

3.6. Multivariate gene expression profiling of L. monocytogenes in fermented 

sausages 

On the basis of the PCA results, the first two and three PCs were extracted for 

Cacciatore and Felino, respectively. The expression of gbuA, lmo0669, sigB and 
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lmo1421 seemed to be important during the fermentation and ripening (samples from 

day 2, 3, 10 and 20) of Cacciatore (gbuA, lmo0669, sigB and lmo1421) and Felino 

(sigB and lmo0669), since both the samples and the genes displayed positive PC1 

(Fig. 3) or PC3 (Fig. 4) values. In other words, lmo0669 and gbuA were mainly 

expressed during the fermentation of Cacciatore (day 2) (positive PC2 values), while 

sigB and lmo1421 were mainly associated with Cacciatore samples from day 10 

(ripening) and day 20 (end of process) (negative PC2 values). In the case of Felino, 

gbuA was mainly expressed at the end of the process (day 40) (both had positive PC1 

and negative PC3 values). The  gbuB and prfA genes were negatively correlated to the  

Cacciatore samples taken during the process stage (after day 0, i.e. 2, 10 and 20), thus 

indicating that the expression of these genes was suppressed or remained unchanged. 

The prfA expression in the Felino samples also seemed to be suppressed or to remain 

unchanged (samples from day 0 and prfA had negative PC1 and PC3 values). 

The L. monocytogenes gene expression (X-variables) was combined with its 

inactivation (Y-variable) to identify potential biomarkers. On the basis of the PLSR 

results, L. monocytogenes survival appeared to be highly related to a) sigB, lmo1421, 

lmo0669 and prfA in the Cacciatore samples (Fig. 5a), but also to b) sigB, gbuA and 

prfA in the Felino samples (Fig. 5b). The gbuA and gbuB genes in Cacciatore, and 

lmo0669 in Felino showed insignificant responses, thus indicating no substantial 

contribution to the model and no correlation to L. monocytogenes survival. On the 

basis of the Pearson correlation results, the expression patterns of sigB (r = 0.51, P = 

0.044 for Cacciatore; r = 0.63, P = 0.003 for Felino), lmo1421 (r = 0.57, P = 0.020 for 

Cacciatore) and gbuA (r = 0.70, P = 0.001 for Felino) were linearly correlated to 

bacterial resistance, but those of lmo0669 (r = 0.01, P = 0.986 for Cacciatore) and 

prfA (r = 0.49, P = 0.055 for Cacciatore; r = -0.13, P = 0.584 for Felino) were  not. 
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4. Discussion 

4.1. Differential gene expression profiling of L. monocytogenes in fermented sausages 

Fermented sausages constitute a highly stressful environment for any pathogen 

present in the matrix, because of changes in the extrinsic (e.g. fermentation 

temperature) and intrinsic (e.g. pH, aw and competitive microbiota) factors. Such 

changes are a signal of the activation of general and/or stress-specific genes, which 

allow the pathogen to adapt to the fermented sausage environment. The main hurdles 

encountered in fermented sausages are the pH and aw reduction, and the presence of 

competitive microbiota. Thus, general (sigB) and stress-specific genes (gbuA, gbuB, 

lmo1421, lmo0669, betL, opuCA, lmo2434, lmo1038, lmo0442, lmo0115 and 

lmo0938) have been considered. The master gene, prfA, which regulates the 

expression of many virulence-related genes, was also studied to investigate the 

possibility of the modulation of the expression levels of virulence genes due to stress. 

The protocols developed by Rantsiou et al. (2012a) for the extraction of RNA have 

been used. As described in that study, the gene expression of L. monocytogenes did 

not change during sample preparation, thus allowing a detailed and reliable 

description to be obtained of its trascriptomic profile. As reported in Table 2, not all 

the primers selected from the literature could be used in the present study, due to the 

lack of specificity. In fact some of them also gave amplification signals for the LAB 

and CNC strains contained in the starter culture inoculated for the sausage 

fermentation. This could be related to the reaction conditions and the amplification 

cycles adopted in the study, which were not specific for L. monocytogenes, rather than 

to a lack of specificity of the primers described in the previous papers. 
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The qPCR results showed that the transcripts of sigB, associated with general stress, 

was up-regulated in both sausages throughout the manufacturing process, from early 

fermentation until late ripening (end of process). The data indicated that this stress 

regulator gene may be involved in the stress adaptation of L. monocytogenes, which is 

known to have contaminated fermented sausages. Sigma(B) regulon contains several 

stress response and virulence genes, as well as gene regulators (Kazmierczak et al., 

2003). The lmo0669 gene, which is related to acid-stress, was found to have increased 

transcripts, primarily during the fermentation of Cacciatore and secondly during its 

early ripening. Cacciatore belongs to the class of rapid fermentation sausages 

(fermentation lasts about 48-72 h) with a short maturation time (ripening lasts up to 

20 days). A dramatic (5.7 to 4.9-4.8) and rapid (0.43 units per day) decrease in pH 

was observed during its fermentation (Mataragas et al., 2014). These changes may 

trigger the expression of the gene. Sue et al. (2004) have demonstrated that lmo0669 

is up-regulated during acid stress conditions. Furthermore, the qPCR data showed that 

the expression of the prfA gene was suppressed during this stage. The expression of 

stress-related genes is probably enhanced and the transcription of other non stress-

related genes is repressed to facilitate L. monocytogenes survival in highly stressful 

environments.	
  Jiang et al. (2010) found that L. monocytogenes strains, after exposure 

to the conditions that prevail in the gastrointestinal tract, enhanced the expression of 

stress-related genes and decreased the transcription of an adhesion-related gene in 

order to survive in the diverse microenvironment. The vast majority of published 

works, which, in most of the cases, have indicated an up-regulation of the prfA gene, 

have been conducted in vitro with laboratory-based media. The long-term adaptation 

of L. monocytogenes strain 4140 to acidic stress using laboratory-based media 

induced the transcription of genes associated with a stress response and invasion, 
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including prfA, but the strain EGD-e showed no change in the expression of the prfA 

gene (Olesen et al., 2009). On the other hand, an overall reduction in virulence gene 

expression was noted in studies conducted in food matrices (Olesen et al. 2010; Rieu 

et al. 2010). Thus, significant differences can be observed in gene expression between 

in situ and in vitro experiments. Rantsiou et al. (2012b) stressed the need to perform 

gene expression experiments in real food samples instead of standard broth systems. 

The general trend that has emerged from published studies is that the relative 

transcription of certain virulence genes is higher in laboratory broths than in real food 

matrices (Palumbo et al., 2005; Duodu et al., 2010; Olesen et al. 2010; Rieu et al., 

2010). Furthermore, it has been suggested that a food matrix, in particular a meat-

based one, may influence the virulence potential of L. monocytogenes, possibly 

through the down-regulation of virulence genes (Mahoney and Henriksson 2003; 

Olesen et al. 2010). Finally, the ability of L. monocytogenes to adapt to osmotic stress, 

due to aw reduction during ripening, was found to be modulated by the expression 

levels of transporter genes such as lmo1421 (Cacciatore) and gbuA (Felino). Both 

genes have been found to increase transcripts during osmotic stress (Sue et al., 2003; 

Bae et al., 2012). It is worth mentioning that the genes that were up-regulated during 

acidic (lmo0669 in Cacciatore) and osmotic (lmo1421 and gbuA in Cacciatore and 

Felino, respectively) stress are sigma(B)-dependent (Sue et al., 2003, 2004; Cetin et 

al., 2004). gbuA is transcribed from dual promoters, one of which is sigma(B)-

dependent (Cetin et al., 2004). 

Two-way ANOVA showed that sigB expression was higher in Cacciatore than in 

Felino. This could be related to the intensiveness of the stress that prevailed  during 

the manufacturing  of the sausages. The fermentation and ripening processes were 

more intensive in Cacciatore than in Felino, and resulted in more abrupt pH (0.43 ± 
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0.01 vs. 0.22 ± 0.01 units per day, respectively) and aw (0.0030 ± 0.0001 vs. 0.0010 ± 

0.0001 units per day, respectively) reductions (Mataragas et al., 2014). The analysis 

also showed that the depicted lmo0669 gene increased transcripts, irrespective of the 

product type, although this increase was not found to be significant in Felino by 

means of one-way ANOVA. This result could be due to the milder conditions 

prevailing in Felino, in which the lmo0669 expression was significantly lower than 

that of Cacciatore, or other genes could be involved in acid stress adaptation such as 

the gadCB operon, which encodes a glutamate/gamma-aminobutyrate antiporter and a 

glutamate decarboxylase, respectively, or the lmo2434 or gadD gene, which encodes  

a putative glutamate decarboxylase (Wemekamp-Kamphuis et al., 2004), none of 

which were  studied in this work. The latter gene (lmo2434 or gadD) was excluded 

during the optimization of the qPCR protocol. In vitro reverse transcriptase PCR 

experiments have indicated that the transcription of all three known compatible solute 

uptake systems (opuC, betL and gbu), as well as a gene that is predicted to encode a 

compatible solute transporter subunit (lmo1421) is induced in response to elevated 

osmolarity (Fraser et al., 2003). 

 

4.2. Multivariate gene expression profiling of L. monocytogenes in fermented 

sausages 

Although parametric tests, such as one- and two-way ANOVA, can provide an 

indication of what differences are significant between two or more conditions, when 

multiple samples, each containing the expression of multiple genes, are analyzed, the 

proper way is to use multivariate methods (Kubista et al., 2006; Bergkvist et al., 2008) 

since gene expressions tend to be correlated (violation of the parametric test 

assumption of independence). Multivariate gene expression profiling through PCA 
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was run to classify the samples and genes, and to investigate the relationships between 

the variables. PCA confirmed the ANOVA results, but also revealed that gbuA in 

Cacciatore and lmo0669 in Felino could play a role in the osmotic and acidic stress 

adaptation of L. monocytogenes, respectively. This was not identified by means of 

ANOVA. 

PLSR was used to combine gene expression with bacterial survival (phenotype) to 

identify potential biomarkers and/or for prediction purposes (Desriac et al., 2014). 

However, the objective of using PLSR in the present study was to identify any 

potential biomarkers of bacterial survival rather than to develop a predictive model.  

On the basis of the PCA results, although the gbuA gene seemed to contribute  to 

osmotic stress resistance during the fermentation of  Cacciatore, the expression of the 

lmo1421 gene was probably more important, as indicated by the PLSR analysis.  On 

the basis of the PLSR results, the gbuA gene explained less than 50% of the variation 

in the data and its correlation to L. monocytogenes inactivation was rather limited. 

Another finding of PCA was the potential role of  lmo0669 expression in L. 

monocytogenes acid resistance in both sausages. Although lmo0669 is significant, this 

gene did not show a linear correlation (Cacciatore) or even showed no correlation at 

all (Felino) to bacterial survival, according to PLSR. The gene depicted a transient up-

regulation of its expression at the early stages of sausage manufacturing in Cacciatore 

and then this expression  gradually reduced. Desriac et al. (2013) also found 

biomarkers that showed a transiently up-regulated gene expression  linked to 

increased resistance over time, which were  identified as long-acting biomarkers. The 

authors underlined the importance of also considering non-linear correlations , 

particularly when focusing on the  transcriptional level, in order to find relevant 

biomarkers. 
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The PLSR analysis showed that it is possible to track resistance (kmax = 0.04 ln 

CFU/g/day) (Mataragas et al., 2014) in rapid fermented sausages with a short 

maturation time (Cacciatore) (sigB and lmo1421) or higher resistance (kmax = 0.02 ln 

CFU/g/day) (Mataragas et al., 2014) in slow fermented sausages with a long 

maturation time (Felino) (sigB and gbuA). In both cases, the up-regulation of sigB, 

which is involved in the general stress response, was observed. This increase seems to 

be associated with an early stress response during the fermentation and maintenance 

of such an expression throughout the whole process.  A gene involved in osmotic 

stress adaptation (lmo1421 or gbuA), which was different for each product, was also 

identified. Furthermore, prfA down-regulation and lmo0669 up-regulation could be 

considered as additional biomarkers of cell viability in fermented sausages, as 

indicated by the multivariate gene expression profiling, but further studies should be 

performed to confirm this since the Pearson correlation showed no significant linear 

correlation between prfA or lmo0669 and L. monocytogenes survival. 

 

5. Conclusions 

The environmental conditions that prevail during sausage manufacturing may 

stimulate the expression of general and/or stress-specific genes and the intensiveness 

of these stresses may have an impact on their expression (fold change). The results of 

this study could help to extend the use of the identified biomarkers to other similar 

products and/or stresses, and rationalize a decision of developing a predictive model 

for bacterial resistance. In this context, further investigation using a larger number of 

target genes and/or other bacterial physiological states are required to accurately 

predict L. monocytogenes resistance, although the current work provides information 

that the most relevant genes that reflect specific bacterial resistance could be selected 
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and then combined for use as a predictive tool. Furthermore, additional studies will 

help to elucidate the role of the  lmo0669 and prfA genes as potential biomarkers, and 

also whether  other genes that are  parts of the glutamate decarboxylase acid 

resistance system (GAD) of L. monocytogenes are involved in the acid adaptation of 

the pathogen present in slow fermentation and long maturation time sausages. Finally, 

this study reports the in situ transcriptional profiles of L. monocytogenes in response 

to fermented sausage stress, and thus contributes to a better understanding of the 

stress adaptation of the pathogen. 
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Figure legends.   

Fig. 1. A representative standard curve of the  lmo0669 gene. The slope of the 

regression line (y = -3.3622x + 31.829) was used to determine the efficiency (E =   

10(-1/slope) = 98%) of each primer pair. The solid line is the regression line; the dashed 

lines are the 95% confidence bands of the regression line; the solid circles are the 

observed data. 

 

Fig. 2. Fold change of L. monocytogenes genes during the manufacturing  of a) 

Cacciatore and b) Felino sausages relative to the control (day 0, start of process and 

immediately after inoculation). White bar, fermentation; bar with squares, ripening; 

and bar with horizontal lines, end of process. The error bars represent the standard 

deviation. The asterisk indicates that expression is significantly (P < 0.01) different 

between that stage and the control. 

 

Fig. 3. PCA classification of the a) Cacciatore samples and b) L. monocytogenes 

genes for which their expression was measured. 

 

Fig. 4. PCA classification of the a) Felino samples and b) L. monocytogenes genes for 

which their expression was measured. 

 

Fig. 5. PLSR correlation loading plots based on the measured variables as predictors 

(X) and L. monocytogenes inactivation as the response variable (Y) for the a) 

Cacciatore and b) Felino sausages during their manufacturing . The outer and inner 

ellipses show 100% and 50% of the explained variance, respectively. 
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Table 1 

Function of the reference and target genes of L. monocytogenes considered in the 

challenge tests with Cacciatore and Felino sausages. 

Genes Function Stress related 
rpoBa DNA-directed RNA 

polymerase subunit beta 
Reference gene 

rplD 50S ribosomal protein L4 Reference gene 
Gap highly similar to 

glyceraldehyde-3-phosphate 
dehydrogenase 

Reference gene 

bglA 6-phospho-beta-glucosidase Reference gene 
Tuf highly similar to translation 

elongation factor EF-Tu 
Reference gene 

sigB 
 
gbuA 
 
 
gbuB 
 
lmo1421 
 
 
 
 
lmo0669 
prfA 
 
lmo1038 
 
 
 
lmo0442 
 
 
 
lmo0115 
 
 
 
lmo0938 
 
 
 
betL 
 

RNA polymerase sigma factor 
SigB 
very similar to glycine betaine 
ABC transporter (ATP-binding 
protein) 
very similar to glycine betaine 
ABC transporters (permease) 
similar to glycine 
betaine/carnitine/choline ABC 
transporter, ATP-binding 
protein 
 
similar to oxidoreductase 
listeriolysin positive regulatory 
protein 
PTS system encoding enzyme 
II cytoplasmic subunits for the 
transport of major carbon 
sources 
PTS system encoding enzyme 
II cytoplasmic subunits for the 
transport of major carbon 
sources 
PTS system encoding enzyme 
II cytoplasmic subunits for the 
transport of major carbon 
sources 
PTS system encoding enzyme 
II cytoplasmic subunits for the 
transport of major carbon 
sources 
glycine betaine transporter 
 

Regulation of virulence and stress-
response genes/Target gene 
Adaptation (osmotic stress)/Target 
gene 
 
Adaptation (osmotic stress)/Target 
gene 
Adaptation (osmotic stress)/Target 
gene 
 
 
 
Adaptation (acid stress)/Target gene 
Regulation of virulence genes/Target 
gene 
Glucose uptake/Target gene 
 
 
 
Fructose uptake/Target gene 
 
 
 
Mannose uptake/Target gene 
 
 
 
Cellobiose uptake/Target gene 
 
 
 
Adaptation (osmotic stress)/Target 
gene 
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opuCA 
 
 
lmo2434 
or gadD 

similar to glycine 
betaine/carnitine/choline ABC 
transporter (ATP-binding 
protein) 
highly similar to glutamate 
decarboxylases 

Adaptation (osmotic stress)/Target 
gene 
 
Adaptation (acid stress)/Target gene 

a  The genes in bold were selected for further analysis  on the basis of the results of 

the optimization of the qPCR protocol using L. monocytogenes strains, Lb. sakei and 

S. xylosus. 
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Table 2 

Primer pairs along with their efficiency values for the reference and target genes of L. 

monocytogenes considered in the challenge tests with Cacciatore and Felino sausages. 

Genes Primersa Reference Eb R2 
Housekeeping 
rpoB 

 
F:AATCGGGGACAATGACT 
R:GTGTGCGGAAACCTAC 

 
Tasara & 
Stephan, 2007 

 
84 

 
0.94 

rplD F:GTATTCGGCCCAACAC 
R:AGCACCTCCTCTACTT 

Tasara & 
Stephan, 2007 

97 0.95 

gap F:ACCAGTGTAAGCGTGAA 
R:TCACAGCGCAAGACAAA 

Tasara & 
Stephan, 2007 

99 0.94 

bglA F:GCCTACTTTTTATGGGGTGGAG 
R:CGATTAAATACGGTGCGGACATA 

Tasara & 
Stephan, 2007 

ND ND 

     
Target 
sigB 
 
gbuA 
 
gbuB 
 
lmo1421 
 
lmo0669 
 
prfA 
 
lmo1038 
 
lmo0442 
 

 
F:TCATCGGTGTCACGGAAGAA 
R:TGACGTTGGATTCTAGACAC 
F:TTGAAAAAGATGGTCCTCG 
R:ATCTTCGGTTACAGCAATCG 
F:TGGTATTTGGATGGCGAA 
R:CAATTACGACCATGGAAAGT 
F:CCACTGACAACTGGAACCATTTATA 
R:GAAAGAGCGCAATTTGTTGTAAAA 
F:TCAAGCTATCAAGGCGCTAATAAA 
R:CCGACCAATTCCGGAGTCT 
F:CAATGGGATCCACAAGAATATTGTAT 
R:AATAAAGCCAGACATTATAACGAAAGC 
F:GGCTTAGAAACCGTATCCTT 
R:CCTGCTTCTGCCTTAGTTAC 
F:GAAGAAATGGCAGAAATG 
R:GTCAGAATCAGTAATCGCCA 

 
Bae et al., 
2012 
Bae et al., 
2012 
Bae et al., 
2012 
Sue et al., 
2003 
Sue et al., 
2004 
Kazmierczak 
et al., 2006 
Bae et al., 
2012 
Bae et al., 
2012 

 
97 
 
96 
 
94 
 
93 
 
98 
 
92 
 
ND 
 
ND 
 

 
0.93 
 
0.92 
 
0.94 
 
0.90 
 
0.95 
 
0.93 
 
ND 
 
ND 
 

a F, forward; R, reverse 

b E, efficiency of the primer pair estimated from the standard curves using the  10(-

1/slope) equation. An E value equal to 1.84 means 84% PCR efficiency. The 

amplification efficiency was not determined  for the  bglA, lmo1038 and lmo0442 

genes because  no gene results were found for the  Cacciatore and/or Felino samples, 

i.e. no Ct values were obtained. 
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Table 3 

Calculation of the intrinsic variance (InVar) of expression of the remaining  genes. 

Trials InVar (± 3-fold)a     

 S0b S2b S3b S10b S20b S40b 

Cacciatore 
Trial #1 
Trial #2 
Trial #3 
Trial #4 
 
Felino 
Trial #1 
Trial #2 
Trial #3 
Trial #4 

 
0.13 
0.15 
0.13 
0.13 
 
 
0.01 
0.04 
0.01 
0.03 

 
0.02 
0.06 
0.04 
0.04 
 
 
 
 
 
 

 
 
 
 
 
 
 
0.14 
0.13 
0.12 
0.13 

 
0.02 
0.05 
0.26 
0.01 
 
 
0.01 
0.10 
0.05 
0.12 

 
0.24 
0.12 
0.04 
0.15 
 
 
0.25 
0.24 
0.24 
0.24 

 
 
 
 
 
 
 
0.24 
0.04 
0.10 
0.13 

 

a Strongly deviating samples ( more than a 3-fold over- or under-expression) are 

indicative of inefficient sample preparation, incomplete reverse transcription or 

sample degradation 

b Each symbol stands for the day for  which the samples were taken. The samples 

were taken at 0, 2, 10 and 20 days after formulation for Cacciatore and  at 0, 3, 10, 20 

and 40 days after formulation for Felino. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

a

b

 

 

 

 

 


