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Tolfenamic Acid (HTA) is a drug which is characterized by very poor water solubility (13.6 nM in acidic 

conditions) and moderate solubility in ethanol (0.17 M). A series of new multicomponent crystals have 

been obtained, by applying mechanochemical methods (i.e. kneading), to mixtures of HTA with sodium 

acetate, sodium carbonate, sodium hydroxide and imidazole. These reactions resulted in two salts 

(NaTA·0.5H2O and NaTA HT Form), a co-crystal of salts (NaTA·HTA·0.5NaAc·2H2O) and two salt 10 

co-crystals (NaTA·HTA·H2O/NaHCO3 and IMH-TA·HTA). Due to the lack of suitable crystals for 

single crystal X-ray diffraction analysis, the structural features of the samples have been characterized by 

solid-state NMR (1H MAS, 13C CPMAS, 1H-13C FSLG LG-CP HETCOR and 15N CPMAS), IR(ATR) 

and Raman spectroscopies, VT-XRPD and elemental analysis. The evaluation of thermal stability and 

dissolution behavior was performed using thermogravimetry, differential scanning calorimetry and 15 

dissolution kinetic tests. The new solid-state forms show better thermal stability than pure HTA and an 

improved dissolution rate, which is most pronounced in NaTA·HTA·H2O/NaHCO3, the NaTA HT 

Form and NaTA·0.5H2O. 

 

Introduction 20 

 Multicomponent crystal formation (salts and co-crystals) is an 

effective means with which to tune the properties of a molecule 

or, in the pharmaceutical field, of an active pharmaceutical 

ingredient (API) by changing its crystal packing.1 A co-crystal is 

a multicomponent molecular crystal; that is, a crystalline 25 

substance formed of two or more chemically different 

molecules.2 Thus solvates, hydrates and both stoichiometric and 

non-stoichiometric lattice inclusion compounds are included in 

this definition.3 With respect to the pure polymorphism 

phenomenon, co-crystal formation provides much more in terms 30 

of possibilities for modulating crystal packing and this is due to 

the choice of two parameters: the co-former and the type of weak 

interaction.4 The use of inorganic salts as co-formers has already 

been explored, by our group, as an effective method for 

producing ionic co-crystals and salt co-crystals of barbituric 35 

acid.5 The difference between ionic co-crystals and salt co-

crystals is found in the type of co-former. Ionic co-crystals are 

formed of an organic molecule and an ionic salt (i.e. alkali halide) 

in the same asymmetric unit, while salt co-crystals are formed of 

an organic molecule and one of its salts in the same asymmetric 40 

unit.6 

 Tolfenamic acid (HTA, 2-[(2-methyl-3-chlorophenyl) amino] 

benzoic acid – Scheme 1) is a drug which belongs to the fenamate 

family. It is a potent, well-tolerated non-steroidal anti-

inflammatory drug (NSAID) which displays low 45 

gastroulcerogenicity,7 low overall toxicity and high therapeutic 

indices as well as analgesic and antipyretic properties.8 Recent 

studies have revealed that it is a Cox-2 inhibitor.9 It is also 

extensively used in both human and veterinary medicine for its 

analgesic and antipyretic properties.10  50 

 A common property of fenamates is their general lack of 

solubility in water and in other common organic solvents 

(obviously their solubility is influenced by their polymorphic 

form)11 thus HTA belongs to class II of the Biopharmaceutics 

Classification System (high permeability in cells and low 55 

solubility in water).12 

 HTA is known to exist in at least five different polymorphic 

forms.13 The most prominent are anhydrous Form I and Form II 

which show very poor water solubility.14 In order to improve the 

water solubility and, thus the biopharmaceutical properties of 60 

HTA, we herein report a synthetic strategy for new HTA co-

crystal forms which is based on mechanochemical and solution 

reactions between HTA, inorganic reagents [NaOH, Na2CO3 and 

sodium acetate (NaAc)] and an organic compound such as 

imidazole (IM). IM is used as a precursor for many 65 

pharmaceutical compounds, but is toxic (LD50 in pig= 760 

mg/kg), and thus not therapeutically used.15 Nevertheless, we 

decided to use IM as model co-former in order to study the 

possibility of an interaction with the COOH group of HTA. 

 70 



 

2 

Table 1 Summary of the performed experiments involving HTA and additional components (k = kneading, h= heating). 

Components Preparation Class Formula/Name Ratio 

HTA NaOH Salification salt NaTA polymorphic mixture 1:1 

NaTA mixture k (1-BuOH, THF, DMF, H2O) salt NaTA·0.5 H2O -- 

HTA Na2CO3 k (EtOH/H2O 2:1) 
heterogeneous mixture with a 

salt co-crystal 
NaTA·HTA·H2O/NaHCO3 2:1 

HTA NaAc k (EtOH 99%) co-crystal of salts NaTA·HTA·0.5NaAc·2H2O 2:1.5 

NaTA·0.5H2O or NaTA·HTA 

2H2O/NaHCO3 
 

h (170-180°C) salt NaTA HT form  

HTA IM k (EtOH 99%) salt IMH-TA·HTA 2:1 
 

 

Experimental and methods 

 HTA (Tokyo Chemical Industry Company and Sigma 

Aldrich), Na2CO3, NaOH, IM and NaAc (all Sigma Aldrich) were 5 

used without further purification. 

 The HTA commercial batch was characterized by solid-state 

NMR analysis as pure Form I. HTA Form II was reproduced 

following the method reported in literature16 only for comparison. 

 All samples were obtained via mechanochemical [kneading 10 

with mortar and pestle i.e. grinding with catalytic amount (from 

50 to 150 µl, corresponding to two-six drops) of solvent] and 

solvent techniques.17,2 Experiments performed and products 

obtained are summarized in Table 1. 

 The NaTA polymorphic mixture was prepared by refluxing 15 

128 mg of HTA and 1 ml of NaOH 0.5 M (stoichiometric ratio 

1:1) in 5 ml of absolute EtOH for 3h. 

 NaTA·0.5H2O (salt): A white powder of this hemihydrated 

salt was quantitatively obtained by kneading (H2O; 50 µl) a 

NaTA polymorphic mixture at room temperature for 5 minutes. 20 

NaTA·0.5H2O was also obtained by directly kneading (H2O; 100 

µl) HTA with NaOH. However, this procedure did not allow for 

precise stoichiometric control because the hygroscopic nature of 

NaOH makes correct weighing difficult. [Elem. Anal. Calc. for 

C14H12N1O2.5Cl1Na1: C, 57.45; H, 4.13; N, 4.79; O, 13.67; Cl, 25 

12.11; Na, 7.85 %. Found: C, 57.26; H, 4.29; N, 4.88; O, 13.72; 

Cl, 12.08; Na, 7.77 %.] 

 NaTA·HTA·H2O/NaHCO3: This is a heterogeneous mixture 

between NaTA·HTA and NaHCO3. It was not possible to 

determine whether H2O co-crystallizes with NaTA·HTA or 30 

NaHCO3. It occurs as a white powder and was obtained 

quantitatively by kneading (ethanol/water 2:1; 150 µl) HTA (200 

mg) and Na2CO3 (40.5 mg), stoichiometric ratio 2:1, at room 

temperature for 20 minutes. It was not possible to obtain pure 

NaTA·HTA without NaHCO3 using different starting material 35 

ratios either. The stoichiometric formula: 

NaTA·HTA·H2O/NaHCO3 was confirmed by solid-state NMR, 

thermal analysis and elemental analysis. [Elem. Anal. Calc. for 

C29H28N2O9Cl2Na2: C, 52.34; H, 4.24; N, 4.21; Na, 6.91 %. 

Found: C, 52.47; H, 4.29; N, 4.08; Na, 6.88 %.] 40 

 NaTA·HTA·0.5NaAc ·2H2O: This co-crystal of salts was 

obtained as a white powder and in maximal yield by kneading 

(EtOH 99%, 150 l) stoichiometric ratios (2:1.5) of HTA (200 

mg) and NaAc (90 mg) at room temperature for 20 minutes. 

Solid-state NMR, thermal analysis and elemental analysis 45 

indicated that the formula is NaTA·HTA·0.5NaAc·2H2O. [Elem. 

Anal. Calc. for C29H28.5N2O7Cl2Na2: C, 55.96; H, 4.62; N, 4.50; 

Na, 7.39 %. Found: C, 55.78; H, 4.56; N, 4.69; Na, 7.19 %.] 

 NaTA HT Form (salt): A white powder was obtained after 

heating NaTA·0.5H2O or NaTA·HTA·H2O/NaHCO3 at 170-50 

180°C in a muffle oven (ramp 5°C/min). [Elem. Anal. Calc. for 

C14H11N1O2Cl1Na1: C, 59.27; H, 3.91; N, 4.94; O, 11.28; Cl, 

12.50; Na, 8.10 %. Found: C, 59.07; H, 4.13; N, 4.70; O, 11.46; 

Cl, 12.46; Na, 8.18 %.] 

 IMH-TA·HTA (Salt co-crystal): This product (white powder) 55 

was obtained by kneading HTA (200 mg) and IM (26 mg) in a 

2:1 ratio for 15 minutes in the presence of absolute EtOH (50µl). 

[Elem. Anal. Calc. for C31H28N4O4Cl2: C, 62.95; H, 4.77; N, 9.47 

%. Found: C, 62.87; H, 4.66; N, 9.32 %.] 

Scheme 1 HTA structure with atom labelling. 60 

 All solid-state NMR spectra were recorded with a Bruker 

Avance II 400 instrument operating at 400.23, 100.65 and 40.55 

MHz for 1H, 13C and 15N nuclei, respectively. For 13C and 15N 

CPMAS (Cross Polarization Magic Angle Spinning) spectra, 

cylindrical 4 mm o.d. zirconia rotors with a sample volume of 80 65 

L were employed. Samples were spun at 12 and 9 kHz for 13C 

and 15N, respectively. A ramp cross-polarization pulse sequence 

was used with contact times of 3-5 (13C) or 4 ms (15N), a 1H 90° 

pulse of 3.8 s, recycle delays of 1-60 s and 48-4096 transients 

for 13C and 1598-5956 transients for 15N. Proton spin–lattice 70 

relaxation times, 1H T1, were obtained using the 13C-detected 

Inversion Recovery Cross Polarization technique [1H(180◦- -

90◦)-CP-13C(FID)], where one measures the 13C magnetization 

that appears through the CP process after the relaxation of 1H 

magnetization over time . 160-1024 transients were acquired and 75 

a variable delay list file (from 22ms to 42s) was used. 2D 13C-1H 

FSLG (Frequency Switched Lee Goldburg) on- and off-resonance 

HETCOR (Heteronuclear Correlation) spectra were measured 

according to the method developed by van Rossum et al.18 The 
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Fig.1 XRPD patterns of HTA and all multiple component crystals. 

MAS rate was set at 12 kHz. The proton rf field strength used 

during the t1 delay for FSLG decoupling and during the 

acquisition for TPPM (Two-Pulse Phase-Modulated) decoupling 5 

was 83 kHz. Two off-resonance pulses with opposite phases (i.e., 

+x, -x or +y, -y) used during the FSLG decoupling were set to 9.8 

μs. The contact time used was 100 μs. The magic angle (54.7°) 

pulse length for protons was set at 2.0 μs, while the recycle delay 

used was 15 s. Quadrature detection was achieved using the 10 

States-TPPI method. All data for 64 t1 increments with 140 scans 

were collected. A B1(
1H) field intensity for the CP of 75 kHz and 

a mixing period of 2.0 ms were used for FSLG off-resonance CP 

(LG-CP) HETCOR NMR. The 1H NMR chemical shift scale in 

the HETCOR  spectra was corrected by a scaling factor of 1/√3 15 

because the 1H NMR chemical-shift dispersion is scaled by a 

factor of 1/√3 during FSLG decoupling. 1H MAS experiments 

were performed on a 2.5 mm Bruker probe at a spinning speed of 

32 kHz. The 1H MAS spectra were acquired using the DEPTH 

sequence ( /2– – ) which suppresses the probe background 20 

signal.19 The 1H 90° pulse length was set to 2.50 s, the recycle 

delays to 1-40 s and 32-64 transients were averaged for all 

samples. 1H, 13C and 15N chemical shifts were referenced via the 

resonance of solid adamantane (1H signal at 1.87 ppm), HMB 

(13C methyl signal at 17.4 ppm) and (NH4)2SO4 (
15N signal at -25 

355.8 ppm with respect to CH3NO2), respectively. 

 IR and Raman spectra were only used to screen the products  

and to monitor reaction conversion. In order to discriminate 

between the different forms, particular attention was given to the 

regions from 3500 to 3300 cm-1 (NH and OH stretching), 3100 30 

and 3000 cm-1 (CH and CH2 stretching) and 1700-1600 cm-1 

(C=O stretching). All IR and Raman spectra are reported in 

Figures S1 and S2 in the Supporting Information. Fourier 

transform infrared (FTIR) spectra were collected directly on the 

sample using a Bruker IFS 25 spectrometer 35 

(BrukerAnalytischeMesstechnik GmbH, Ettlingen, Germany) 

connected to a Bruker IR microscope I (15x-Cassegrain-

objective). The samples were prepared on ZnSe-disks and 

measured in transmission mode (spectral range 4000-600 cm-1, 

resolution 4 cm-1, 32 interferograms per spectrum).20 Raman 40 

spectra were measured on a Bruker Vertex 70 spectrometer 

equipped with a RAM II using a 1064 nm Nd:YAG source and a 

Ge diode detector (laser power 10-50 mW, spectral resolution 4 

cm-1). 

 Differential Scanning Calorimetry (DSC) was performed on a 45 

TA instrument Q200. Samples (5-10 mg) were placed in sealed 

alumina pans and heated at a rate of 10°C min-1 (temperature 

range: 30 to 400 °C). 

 Thermogravimetric (TGA) measurements were performed 

under N2 flow (heating rate: 10°Cmin-1) on a TA instrument 50 

Q600 SDT Simultaneous DSC-TGA heat flow analyzer. The 

samples (5-10 mg) were placed in alumina pans. All DSC and 

TGA thermograms are reported in Figures S3 in the Supporting 

Information.  

 X-ray powder diffraction (XRPD) patterns of the samples 55 

under investigation were collected on a PW3050/60 X’Pert PRO 

MPD diffractometer, from PANalytical, working in the Debye-

Scherrer geometry and using, as the source, a high-powered 

ceramic tube PW3373/10 LFF with a Cu anode equipped with a 

Ni filter to attenuate Kb which was focused by a PW3152/63 - 60 
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Scheme 2 Supramolecular Synthons and Hydrogen Bond motif of 

anhydrous HTA Form I and II. 

X ray mirror. Powdered samples were hosted inside a 0.8-mm 

boron silicate capillary and mounted on a rotating goniometer 5 

head.  

 Variable Temperature (VT) XRPD studies were carried out on 

an X-Pert Diffractometer (PANalytical, Cu Kα radiation) 

equipped with a hot-stage and an environmental chamber (Anton 

Paar XRK 900), to analyze the conversion of both NaTA·0.5H2O 10 

and NaTA·HTA·H2O/NaHCO3 to the NaTA HT Form. XRPD 

patterns of HTA Form I, Form II, and all multiple component 

crystals are reported in Figure 1, while XRPD patterns of used 

co-formers, VT-XRPD patterns, used ramps and technical details 

are reported in the Supporting Information (Figures S4 and in 15 

Schemes 1 and 2). 

 Dissolution kinetic tests (DKT) were performed in a pH 7.4 

buffer (0.2 M KH2PO4/0.2 M NaOH). 5 mg of HTA (as a pure 

compound or co-crystal and salt) were added to 150 cm3 of 

dissolution medium at 37°C in each experiment. The release test 20 

lasted 180 min. In these experiments, the solution was kept 

homogeneous using an impeller (rotational speed 200 rpm) and 

the determination of HTA concentration was performed using 

fibreoptic apparatus (HELLMA, Milano, Italy) connected to a 

spectrophotometer (ZEISS, Germany,).21 Measurement was 25 

performed at 286.9 nm (HTA maximum absorption, supporting 

information). Each sample was tested in triplicate. The mother 

solution was obtained by dissolving 100 mg HTA in 100 ml 

methanol. The concentration of the standard solutions obtained 

from the mother solution and the calibration curve are reported in 30 

Figures S5 in the Supporting Information. In this dissolution 

medium, the equilibrium solubility of pure HTA was 28.5 mg/l. 

Elemental analysis was performed on a CHN analyzer (CE 

Instruments, NA2100 Protein), and a Perkin Elmer 3030 flame 

atomic absorption spectrometer (FAAS) for sodium 35 

determination, to clarify the stoichiometry of compounds. The 

data confirm the stoichiometries deducted by solid-state NMR. 

Data are reported in the Experimental and methods section. 

Results and discussion 

 The two anhydrous forms of HTA are characterized by the 40 

presence of a dimer which is connected through the very robust 

(8) carboxylic acid homo-dimeric synthon (Scheme 2), as 

observed in the X-ray structures.22 Such a feature gives rise to a 

single COOH resonance around 175 ppm in the 13C CPMAS 

spectra (Figure 2a and 2b). This is an intermediate value between 45 

typical COOH and COO- chemical shifts ( 173 and 178 ppm, 

respectively).23 The strength of this interaction most likely 

explains the poor water solubility of HTA. Although one example 

of a HTA co-crystal,24 five metal-complexes25 and a calcium salt 

are reported in literature,26 the (8) carboxylic acid homo-50 

dimeric synthon is strong enough to prevent the formation of 

other co-crystals in which the COOH group must be accessible. 

Indeed, the NH group is not particularly suitable for hydrogen 

bond interaction as both the steric hindrance of the methyl and 

COOH groups and the formation of an intramolecular hydrogen 55 

bond with the COOH moiety hamper it. This is probably the main 

reason why it does not form classic organic co-crystals with 

malonic acid, succinic acid, sodium malonate, glycine, L-alanine, 

aspartic acid, sodium glycinate, sodium acetate (NaAc), adenine, 

thymine, guanine and resorcinol. The ionic co-crystal approach,27 60 

using inorganic salts (KI, KF, KBr, NaCl, KBr, KHCO3, K2CO3, 

NaHCO3, AlCl3 e FeCl3,) was also unsuccessful. For this reason 

we decided to use co-formers which are either able to react 

quantitatively with HTA, to form the corresponding salt, or to 

partially salify HTA and form a salt co-crystal such as salts and 65 

bases: NaOH, Na2CO3, NaAc and IM. 

 All samples were obtained via simple kneading. Crystallization 

with different solvents resulted in either a NaTA polymorphic 

mixture or pure HTA Form I or II. Different forms are present in 

the NaTA polymorphic mixture, as shown by the 13C CPMAS 70 

spectrum (Figure S6 in the Supporting Information). Several 

attempts to promote the selective crystallization of single forms 

using various solvents (EtOH, 1- BuOH, THF, DMSO, DMF, 

H2O or CH3CN) failed. Thus, in this case, mechanochemistry 

allowed us to obtain pure compounds. The chemical shifts of the 75 

solid-state NMR spectra of all crystal forms are listed, with 

assignments, in Table 2. 

 
Fig. 2 13C (100 MHz) CPMAS spectra with main the assignments of HTA 

Form I and II, NaTA·0.5H2O, NaTA·HTA·H2O/NaHCO3, 80 

NaTA·HTA·0.5NaAc·2H2O, NaTA HT Form and IMH·TA·HTA 

recorded at 12 kHz. 



 

5 

 
Fig. 3 1H (400 MHz) MAS spectra of HTA Form I and II, NaTA·0.5H2O, 

NaTA·HTA·H2O/NaHCO3, NaTA·HTA·0.5NaAc·2H2O, NaTA HT 

Form and IMH-TA·HTA recorded at 32 kHz. 

 NaTA·0.5H2O, prepared in a pure form by kneading 5 

stoichiometric amounts of HTA and NaOH, shows the splitting of 

almost all resonances in the 13C CPMAS spectrum (Figure 2c), 

indicating the presence of two independent molecules in the unit 

cell. The splitting is especially marked for atoms C3, C8 and C14. 

Salification was confirmed by the shift of the carboxylic 10 

resonance from 175.3 ppm (typical of the cyclic dimerization of 

the COOH moieties in pure HTA) to 178.3 ppm, which is 

characteristic of the COO- group. The possible formation of a 

50:50 mixture between two polymorphs was ruled out by 1H T1 

measurements which provided the same value for all 1H atoms. 15 

Indeed, according to a simplified but reliable approach,28 the spin 

diffusion process averages 1H T1 when protons belong to the 

same phase or in the case of homogeneous samples on a 

nanometer scale.29 On the other hand, protons with different 

relaxation times belong to different domains with an average 20 

linear dimension of greater than about 100 Å and vice versa.30 In 

this case all resonances possess the same T1 values, thus, two 

molecules are present in the asymmetric unit. The presence of 

half a water molecule in the structure has been predicted by 

combining data from TGA (see Figures S3 in the Supporting 25 

Information) and integral values of the 1H MAS spectrum (Figure 

3c). This value agrees with the elemental analysis. The NH 

proton chemical shift suggests the presence of the NH···COO- 

intramolecular interaction that characterizes both HTA Form I 

and II and all the crystal forms presented in this paper. 30 

 NaTA·HTA·H2O/NaHCO3 was obtained by kneading HTA 

and Na2CO3 (2:1) with an EtOH/H2O (2:1) mixture used as the 

mediating solvent. This heterogeneous mixture consists of a salt 

co-crystal (concomitant presence of both neutral HTA molecule 

and NaTA salt; NaTA·HTA) and an inorganic salt (NaHCO3) in a 35 

different domain. Any other attempt to change either the 

stoichiometric ratio or grinding conditions yielded a 

heterogeneous mixture of components. The 13C CPMAS 

spectrum (Figure 2d) shows two sets of signals which indicate the 

presence of a HTA and a NaTA molecule in the unit cell. The 40 

carboxylic region of the spectrum is characterized by three peaks 

at 179.3, 170.1 and 164.5 ppm. The two former signals are 

attributed to the COO- (179.3 ppm, NaTA) and COOH (170.1 

ppm, HTA) groups. The latter peak (at 164.5 ppm) is assigned to 

the bicarbonate formed during the reaction. Interestingly, 1H T1 45 

measurements indicate that HTA and TA- signals belong to the 

same phase, which is in agreement with the formation of a salt 

co-crystal, while the NaHCO3 resonance belongs to a different 

domain.30 The 1H MAS spectrum (Figure 3d) is characterized by 

two signals in the hydrogen bond region (14.0 and 12.8 ppm, 50 

integral ratio 1:2) which are attributed to the COOH of HTA and 

NH of HTA and TA-. TGA and 1H integral values suggest the 

presence of one molecule of H2O which is in agreement with the 

elemental analysis. However, it was not possible to establish 

whether the water is associated with the salt co-crystal or 55 

NaHCO3. 

 NaTA·HTA·0.5NaAc·2H2O was obtained as a pure compound 

via kneading (EtOH 99%) HTA with NaAc. The 

carboxylic/carboxylate region of the 13C solid-state NMR 

spectrum (Figure 2e) reveals the number of independent 60 

molecules in the unit cell and revealed the presence of one HTA 

(δCOOH= 175.9 ppm), one NaTA (δCOO-= 179.0 ppm) and one 

NaAc (δCOO-= 184.7 ppm) in a 1:1:0.5 ratio. The signals due to 

the NaAc are only slightly shifted from the pure compound 

values, indicating a weak interaction with NaTA·HTA (184.7 and 65 

22.8 ppm in NaTA·HTA·0.5NaAc·2H2O with respect to 183.5 

and 26.7 ppm in pure NaAc). The 1H MAS spectrum (Figure 3e) 

shows two resonances in the weak hydrogen bond region at 10.8 

and 8.6 ppm (ratio 2:1), which are assigned to COOH and NH 

proton and to the other NH proton (overlapped with aromatic 70 

resonances), respectively. By evaluating the 1H integration, we 

can assume the presence of two molecules of water in the 

structure, as confirmed by TGA and elemental analysis. The final 

composition is: NaTA·HTA·0.5NaAc·2H2O. The same 1H-T1 

value for all the protons confirms that the best definition for 75 

describing such structure is a co-crystal of salts 

(NaTA·HTA·0.5NaAc·2H2O), because the solid is composed of 

a salt co-crystal (NaTA·HTA) and a salt (NaAc).  1H-13C FSLG 

on- and off-resonance CP HETCOR experiments were performed 

in order to obtain a deeper understanding of the spatial 80 

proximities and to complete the assignment of the strongly 

overlapped 1H resonances. The spectra are reported in Figures S7 

(Supporting Information) and Figure 4, respectively. These 

experiments allow intra- and intermolecular heteronuclear 

correlations to be obtained.31,18 By acquiring 2D experiments 85 

with short or long contact times (100 and 2000 µs, respectively), 

it is possible to discriminate between short- (single bond) and 

long-range spatial proximities, respectively. In particular, the use 

of off-resonance CP (LG-CP) allows for a more detailed analysis  
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Table 21H, 13C and 15N chemical shifts with assignments for all obtained compounds and pure IM and HTA Form I and II. 

Note 
HTA 

Form I 

HTA 

Form II 

NaTA 

·0.5 

H2O 

NaTA·HTA 

·H2O/NaHCO3 

NaTA·HTA·0.5

NaAc·2H2O 

NaTA HT 

Form 

IMH-

TA·HTA 
IM 

13C CPMAS 

C1 175.4 175.5 178.3 179.3 179.0 178.9 175.7 -- 

   170.1 175.9  174.3  

C2 109.4 108.2 118.4 114.2 114.0 111.7 113.4 -- 

   111.4   112.2  

CHAr/CHIM 136.2 132.8sh 134.6 136.3 133.3 133.4 133.9 137.0 

135.0 125.0 127.0 132.5 128.0 132.5 133.1 127.3 

130.1 123.6 125.4 130.5 117.1 128.4 131.3 115.7 

129.4 122.9 122.8 120.2 116.7 127.9 127.4  

127.8 117.8 120.2 117.9  127.1 126.1  

116.6 116.6  115.7  125.4 117.6  

112.1 111.9    121.9 115.8  

     120.2   

     118.7   

C9 133.6 125.9 131.3 134.0 130.4 128.4 124.0 -- 

   127.7  or 127.1 120.6  

C10 137.0 136.3 137.8 139.4; 136.2; 134.7 139.9 -- 

136.1   138.2 135.5  136.2  

C3 150.4 146.9 147.3 150.5 151.7sh 147.0 148.8 -- 

  145.6  151.1  146.9  

C8 138.9 138.7 141.9 147.5 142.4sh 140.5 141.4 -- 

  140.5  141.9    

C14 15.6 14.6 15.4 16.4 19.3 14.7 14.7 -- 

  13.4 15.6 16.0  13.9  

      13.2  

Ca 
-- -- -- 164.5b 184.7c -- -- -- 

    22.8   

15N CPMAS 

NH 66.5 -- 72.2 66.1 -- 64.6 71.7 -- 

  70.8 60.4   67.6  

      62.5  

      59.1sh  

NH+
IM/NIM 

NHIM 
-- -- -- -- -- -- 153.2d 220.5e 

NHIM -- -- -- -- -- -- 145.5 149.2 
1H MAS 

COOH 12.8 12.9 -- 14.0 10.8 -- 15.4 -- 

   12.8     

NH 8.8sh 8.9sh 9.3 14.0 10.8 9.8 10.4 -- 

   12.8 8.6sh    

CHAr/CHIM 7.1 7.0 7.5 6.6 7.5 6.4 8.5 7.2 

 6.0 6.7 6.4  6.7  6.5  

CH3 1.4 1.6 1.7 1.5 1.3 

1.2 

0.9 

1.7 1.4 -- 

H2O -- -- 4.2 6.7 1.3 -- -- 2.8 

NH+
IM -- -- -- -- -- -- 20.2 

19.5 

-- 

NHIM -- -- -- -- -- -- 15.4 14.7 
  

aCarbon atoms of either molecules in other phases or of solvents or of co-former molecules. b NaHCO3. 
c NaAc. d NH+

IM. e NIM. 
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Fig. 4 1H-13C FSLG LG-CP HETCOR spectrum of 

NaTA·HTA·0.5NaAc·2H2O acquired with a contact time of 

2000 µs with relevant assignments. Intramolecular and 

intermolecular correlations are indicated in red and light blue, 

respectively. 5 

 

of long range spatial 1H-13C contacts. This is achieved using a 

Lee-Goldburg (LG) spin-lock (LG-CP) which efficiently 

suppresses unwanted 1H–1H spin exchange which leads to fake 

correlation peaks that reflect 1H-1H homonuclear rather than 1H-10 

13C heteronuclear dipolar couplings.32,18 All 1H-13C proximities 

are depicted in Scheme 3. The 1H-13C FSLG LG-CP HETCOR 

experiment (Figure 4), allowed us to establish the presence of an 

intramolecular NH O-C hydrogen bond in the NaTA molecule  

15 

Scheme 3 1H-13C correlations between HTA, NaTA and NaAc in 

NaTA·HTA·0.5NaAc·2H2O as deduced from 1H-13C FSLG LG-
CP HETCOR. 

 

(correlation between the 1H NH signal at 8.6 ppm and the 13C 20 

COO- at 179 ppm). The lack of a similar correlation between 

signals assigned to the HTA molecule points to a non-planar 

conformation of the two rings for this molecule. On the other 

hand, the HTA OH proton (10.8 ppm) correlates with the COO- 

carbon of NaTA (179.0 ppm), indicating that the two groups are 25 

involved in a O-H O hydrogen bond. Other correlations were 

found for the NH hydrogen of NaTA (8.6 ppm) with the NaAc 

methyl and carboxylate carbons (22.8 and 184.7 ppm, 

respectively). Finally, polarization transfer is observed from the 
1H HTA OH (10.8 ppm) to the NaAc methyl (22.8 ppm). 30 

 NaTA HT Form - It is possible to obtain an anhydrous high 

temperature form, called the NaTA HT Form which is also 

stable at room temperature, via heating both NaTA·0.5H2O and 

NaTA·HTA·H2O/NaHCO3 in a oven at around 180°C. However, 

heating NaTA·HTA·0.5NaAc·2H2O results in a mixture of 35 

phases, as observed by 13C CPMAS NMR (see Figure S8 in the 

Supporting Information). The formation of the new form (NaTA 

HT Form) involves the dehydration of NaTA·0.5H2O (release of 

water and formation of NaTA) and the complete salification of 

the HTA molecule in NaTA·HTA·H2O/NaHCO3 after the 40 

bicarbonate decomposes to CO2 and H2O. A combination of 13C 

and 15N CPMAS data made it possible to reveal the presence of 

only one NaTA molecule in the unit cell. The shift to 178.9 ppm 

in the 13C spectrum (Figure 2f) confirms the presence of COO- 

groups, while the small NH shift (from 66.5, HTA, to 64.6 ppm, 45 

NaTA) indicates a slight rearrangement of the weak 

intramolecular hydrogen bond which involves the NH. This is in 

agreement with the 1H MAS spectrum (Figure 3f) where the NH 

group falls at 9.8 ppm. 

 The solid-state conversions of NaTA·0.5H2O and 50 

NaTA·HTA·H2O/NaHCO3 to NaTA HT Form were also 

followed by VT-XRPD (Figure S4, Schemes 1 and 2). The 5-40° 

2  range was used to evaluate the most significant changes in the 

patterns. In particular, NaTA·0.5H2O is characterized by five 

principal reflections at 9.58, 12.57, 29.76°, which all disappear at 55 

60°C, and at 15.77 and 19.45°, which vanish at 190°C. The 

appearance of three principal new reflections at 14.70, 17.63 and 

20.51°, at the same temperature, points to the formation of the 

NaTA HT Form. On the other hand, NaTA·HTA·H2O/NaHCO3 

is characterized by reflections at 12.42, 17.38 and 18.34°, plus the 60 

signals attributed to NaHCO3 (at 30.43 and 34.39°). Upon 

increasing the temperature to 190°C, the reflection at 17.38° 

decreases in intensity while all the others disappear, giving the 

characteristic signals of the NaTA HT Form. The disappearance 

of the NaHCO3 signals agrees with the salification of HTA by the 65 

bicarbonate.  

 IMH-TA·HTA was obtained by kneading (EtOH 99%) HTA 

and IM in a 2:1 ratio. Two TA- and two HTA independent 

molecules are present in the unit cell as shown by the 13C 

CPMAS spectrum (Figure 2g), which is characterized by the 70 

splitting of the C1 (175.7 and 174.3 ppm in 3:1 ratio) and C14 

(14.7, 13.9 and 13.2 ppm in 1:2:1 ratio) signals. This is also 

confirmed by 15N CPMAS (Figure 5) where four peaks, caused 

by the NH group (71.7, 67.6, 62.6 and 59.1sh ppm), are clearly 

observable. The number of IM molecules is determined, in this 75 

case, by 15N CPMAS because the IM 13C resonances fall under 

the aromatic CH of the TA-/HTA molecules. The estimated 

number of independent IM molecules is two (15N δNH=153.2 and 

145.5 ppm). The observed shifts for the IM NH resonances (from 

220.5 and 149.2 ppm to 153.2 and 145.5 for N and NH, 80 
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Fig. 5 15N (40.56 Hz) CPMAS of HTA Form I, IMH-TA·HTA 

and pure IM recorded at 9kHz. 

 

respectively) suggest that the IM is present in the protonated form 

(imidazolium, IMH+) as has already been reported in literature.33 5 

This implies that the proton transfer occurs from one HTA 

(becoming TA-) to the IM (becoming IMH+). The similarity 

between COOH and COO- 13C chemical shifts may suggest that 

an interaction between two groups is able to delocalize the 

negative charge. It is possible to note, from 1H MAS (Figure 3g), 10 

that the IMH+ NH+ groups form very strong hydrogen bonds 

(20.2 and 19.5 ppm), while the IMH+ NH and the HTA COOH 

hydrogen atoms, both involved in hydrogen bonds, fall at the 

same chemical shift (15.4 ppm). For HTA, as in the 1H MAS 

spectra of the other samples, the NH hydrogen is located at 10.4 15 

ppm. 

Infrared and Raman Spectroscopy 

 The Raman and FT-IR spectra of all prepared samples are 

shown in Figures S1 and S2 in the Supporting Information. 

 The Raman spectra show clear differences in almost all 20 

spectral regions. The most important differences can be found in 

the COOH/COO- frequency range (1750-1550 cm-1), reflecting 

the differences in hydrogen bonding interactions and salt 

formation. In particular, COOH groups are characterized by  and 

 around 1680 and 890 cm-1, respectively. On the other hand, 25 

aCOO- and sCOO- are at about 1610 and 1385 cm-1, 

respectively. Other differences are found in the NH and aromatic 

CH stretching regions (3500-3050 and 3000-2800 cm-1, 

respectively). The frequencies of some characteristic bands of the 

solid-state MIR spectra of the polymorphs and multiple 30 

component crystals are listed in Table 3. 

Differential Scanning Calorimetry (DSC) and 

Thermogravimetric (TGA) Analysis 

 All compounds were investigated using TGA and DSC in 

order to characterize thermal behavior and to determine the water 35 

molecule ratios in the samples. Results are listed in Table 4, 

while all DSC and TGA figures are displayed in Figure S3 in the 

Supporting Information. 

 Heating both NaTA·0.5H2O and NaTA·HTA·H2O/NaHCO3 

in an oven at 180°C yielded the same polymorphic form (NaTA 40 

HT Form). In the case of NaTA·HTA·0.5NaAc·2H2O, water 

release (around 160 °C) is followed by the loss (sublimation) of 

one HTA molecule (at 182.6°C) that leads to mixtures of 

anhydrous phases of NaTA and NaAc, as confirmed by 13C 

CPMAS spectra (see Figure S7 in the Supporting Information). 45 

 It is worth noting that the melting and/or decomposition point 

of all samples, except IMH-TA·HTA, are found between 320-

339 °C (pure HTA sublimates around 212 °C followed by 

decomposition) indicating that multicomponent HTA crystals 

exhibit significantly improved thermal stability over single 50 

component forms of HTA. 

Table 3 Wavenumbers (cm-1) of characteristic MIR vibrations with assignments for all multiple component crystals and two HTA polymorphs. 

 
HTA 

FormI 

HTA 

FormII 
NaTA·0.5 H2O 

NaTA·HTA 

·H2O/NaHCO3  

NaTA·HTA·0.5N

aAc·2H2O 

NaTA 

HT Form 

IMH-

TA·HTA 

NH 3340,s 3326,s 
3343,3255 

broad 
3279,m 3312,s 

3367.5,s3243

.7, 

broad 

3290,s 

Ar-CH 
3083-2870 

w 

3078-2914 

w 

3078-2859 

w broad 

2676-2388 

w broad 

3075-2934 

w 
- 

3110-2586 

broad 

(CO)OH 
2736-2493 

w broad 

2733-2487 

w 
- - 

2740-2591 

w 
- - 

(CO)OH 900,s 886,m - - 884,m - - 

CO(OH) 1660,s 1668,s - 1689,s 1775w,1727vs - - 

aCO(O-) - - 1610,s 1611,s - 1608.4,s 1579.7,s 

sCO(O-) - - 1388,s 
1391,1378 

broad 
- 1379.2,s 1385.4,w 

CCl 778,751,m 743,m 756,m 758,m 750,m 752.8,m 752.1,m 
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Table 4 TGA and DSC data for all achieved samples. TH2O: dehydration 

temperature, Ttrans: transition temperature, Tfus: melting temperature, Tdec: 

decomposition temperature. 

Sample TH2O Ttrans Tfus Tdec 

HTA -- -- 210-214 

NaTA·0.5H2O 158.5 67.3, 92.3,191.4a 320.9 

NaTA·HTA 

·H2O/NaHCO3 
-- 136.6,160.6b 

247.

5 

339.

1 

NaTA·HTA 

·0.5NaAc·2H2O 
158.0 182.6c 334.1 

IMH-TA·HTA -- 109.7 181-213 
 

a solid-solid transitions (see Supporting Information). bCO2 and H2O 

release due to the HTA salification. c release of HTA. 5 

 

Dissolution kinetic tests (DKT) 

 In order to confirm that the co-crystallization process is a 

successful strategy for the improvement of the dissolution 

properties of HTA, the in vitro dissolution performance of pure 10 

HTA and various salts and co-crystals were evaluated. Due to its 

acidic character, the solubility of HTA depends on the pH of the 

aqueous medium. In fact, it is reported that the solubility of this 

drug in a pH 1.2 buffer is about 13.6 nM.34 It is very difficult to 

detect such extremely low concentrations of HTA using the UV 15 

method. Therefore, in the present study a pH 7.4 buffer (where 

HTA is more soluble) is used as a dissolution medium. The 

solubility profiles of pure HTA and selected composites are 

reported in Figure 6 (see Figure S9 in the Supporting information 

for the complete profile). 20 

 

 
Fig. 6 Dissolution rate profiles of the samples measured in the first 15 

minutes: HTA (red line with red circles), NaTA·0.5H2O (blue line with 

blue squares), NaTA HT Form (black line with yellow circles), IMH-25 

TA·HTA (green line with green triangles), NaTA·HTA·H2O/NaHCO3· 

(black line with black triangles) and NaTA·HTA·0.5NaAc·2H2O (black 

line with white circles). 

Table 5 Dissolution data: amount (mg/l) of dissolved or released HTA 

calculated after 1, 15 and 180 minutes with the respective percentage of 30 

solubilized sample. 

Sample 
after 

1’ 
% 

after 

15’ 
% 

after 

180’ 
% 

HTA 0.0 0.0 7.3 21.8 28.5 85.4 

NaTA·0.5 H2O 33.0 98.9 33.3 99.8 33.4 100 

NaTA·HTA· 

H2O/NaHCO3 
26.1 78.4 32.3 96.8 33.3 100 

NaTA·HTA· 

0.5NaAc·2H2O 
3.7 11.4 19.7 59.1 25.7 77.2 

NaTA HT 
Form 

32.1 96.2 33.5 99.8 33.2 99.4 

IMH-TA·HTA 0.3 1 5.3 15.8 24.1 72.4 
 

 

 Pure HTA shows the typical dissolution profile of a poorly 

soluble drug: the amount of the drug solubilized remains very low 

in the first 30 minutes of analysis and increases linearly (due to 35 

the protonation phenomenon) in the following part of the 

dissolution test. Figure 6 shows that the dissolution profile of 

IMH-TA·HTA is very similar to the dissolution profile of pure 

 

Table 6 Concentration C (mg/l), AUC values (mg/l·h) and Frel of all the 40 

samples reported for 180, 70 and 15 minutes. 

Sample AUC0-180 S.D. Frel dFrel 

HTA 48.6 3.7 -- -- 

NaTA·0.5H2O 99.8 2.0 2.1 0.2 

NaTA·HTA·H2O/ 

NaHCO3 
98.6 3.0 2.0 0.5 

NaTA·HTA·0.5NaAc·2H2O 54.6 13.8 1.1 0.3 

NaTA HT Form 99.7 4.0 2.1 0.2 

IMH-TA·HTA 42.9 5.2 0.9 0.1 
 

 

HTA. Better results are obtained by NaTA·HTA·0.5NaAc·2H2O, 

especially in the first part of the analysis (up to 90 minutes), 

where HTA solubilizes in higher amounts. In the case of 45 

NaTA·0.5H2O and the NaTA HT Form, instantaneous HTA 

solubilization is observed. In fact, HTA solubilizes completely in 

the first minute of the dissolution test and high concentrations are 

maintained throughout. Moreover, no precipitation phenomenon 

is observed in the dissolution profiles of these forms. It is also 50 

worth noting that NaTA·HTA·H2O/NaHCO3 is completely 

dissolved in only 15 minutes of analysis, like the NaTA salts 

(Figure 6). Table 5 lists the data extrapolated after a dissolution 

time of 1 and 15 minutes. These data highlight how the active 

component is liberated from the multicomponent samples, and 55 

that this process is strongly accelerated not only in the salts but 

also in NaTA·HTA·H2O/NaHCO3. 

 Subsequently, FDA bioequivalence limits were adopted and 

used for the in vitro solubilization experiments in order to make a 

comparison between the performed samples. In more detail, FDA 60 

guidance suggests that two compounds/formulations can be 

considered bioequivalent if the ratio of their Area Under the 

Curve (AUC) is in the 0.80-1.25 interval.35 This evaluation 

parameter is proposed for in vivo studies, but it has been 

DKT

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

Time (min)

m
g

/l

HTA Form I

NaTA*H2O

NaTA*HTA Formulation

HTA CCS

NaTA HT Form

IMTA*HTA
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successfully applied to compare AUC values obtained from in 

vitro data.21. 

 For each sample (pure HTA Form I, HTA salts and HTA co-

crystals), AUC was calculated from time 0 to the last measured 

point (AUC0-180), using the classical trapezoidal method. The 5 

AUC of HTA was then used as the reference and indicated as 

AUCref. Furthermore, the ratio (indicated as Frel) between the 

AUC of each formulation (AUCsample) and AUCref was calculated, 

as follows: 

  (I) 10 

 The associated uncertainty (indicated as dFrel) for all Frel 

ratios was calculated using the classic formula for the relative 

error of a ratio:36 

 (II) 

 15 

 where dAUCsample and dAUCref indicate the S.D. of the 

AUCsample and AUCref values, respectively. The calculated Frel ± 

dFrel values are listed in Table 6. 

 It can be seen from Table 6 that IMH-TA·HTA and 

NaTA·HTA·0.5NaAc·2H2O are bioequivalent with pure HTA in 20 

vitro. The other products are probably more bioavailable than 

pure HTA (Table 6). These results confirm that co-crystallization 

is an efficient and innovative technique with which to improve 

the biopharmaceutical performance of poorly soluble drugs. 

Conclusions 25 

 Three new multicomponent crystals of tolfenamic acid 

(NaTA·HTA·H2O/NaHCO3, NaTA·HTA·0.5NaAc·2H2O and 

IMH-TA·HTA) and two sodium salts (NaTA·0.5H2O and NaTA 

HT Form) have been prepared using mechanochemical 

techniques (see Scheme 4). The stoichiometries of the samples 30 

were successfully elucidated using a combination of solid-state 

NMR and TGA data, due to a lack of single crystal XRD 

analysis. The results are consistent with elemental analysis data. 

This study thus highlights the great potential that solid-state 

NMR techniques possess when analyzing the composition and 35 

structural characteristics of complex multi-component crystals,37 

for which it may difficult or impossible to acquire single crystal 

structure data. Indeed, important structural information 

(asymmetric unit, salt or co-crystal formation, weak interactions, 

molecule proximities, hydration degree...) for the samples was 40 

provided by 1D and 2D solid-state NMR experiments. 

 
Scheme 4 Representation of the preparation paths. k = kneading,  = 

heating. 

 Mechanochemistry is a successful method for producing new 45 

solid-state forms. One big advantage that this technique provides 

is the fact that it gives pure products that do not require further 

purification. 

 The peculiarities of these HTA derivatives are the following: 

- Heating NaTA·0.5H2O and NaTA·HTA·H2O/NaHCO3 50 

results in the same NaTA HT Form, as confirmed by solid-state 

NMR and RAMAN spectroscopy as well as by VT-XRPD 

measurements. The transformation of the salt hydrate only 

involves a dehydration process while the transformation of the 

NaTA·HTA·H2O/NaHCO3· to the NaTA HT Form includes a 55 

salification reaction between the HTA of NaTA·HTA and 

NaHCO3, which releases CO2 and H2O. 

- NaTA·HTA·0.5NaAc·2H2O behaves differently upon heating 

and loses HTA to yield a NaTA + NaAc mixture, as characterized 

by solid-state NMR data. 60 

- All samples show increased thermal stability and improved 

solubility behavior (especially the NaTA HT Form, 

NaTA·HTA·H2O/NaHCO3· and NaTA·0.5H2O). All the 

samples showed this trend for the first ten minutes, while 

NaTA·HTA·0.5NaAc·2H2O and IMH-TA·HTA were found to 65 

be less soluble than pure HTA, but only after 180 minutes. 

 This investigation has also demonstrated that the Crystal 

Engineering approach makes it possible to change, and in these 

cases improve, the macroscopic properties (dissolution profile 

and thermal behavior) of an active pharmaceutical ingredient. 70 

Dissolution studies confirm that co-crystallization is an efficient 

and innovative technique with which to improve the 

biopharmaceutical performance of poorly soluble drugs. 
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Figures S1: Raman spectra of all prepared compounds. 

 
 

 
a) Raman spectrum of HTA Form I. 

 

 
b) Raman spectrum of HTA Form II. 



 
c) Raman spectrum of NaTA·0.5 H2O. 

 

 
d) Raman spectrum of NaTA HT Form 

 

 
e) Raman spectrum of NaTA·HTA·H2O/NaHCO3. 



 
f) Raman spectrum of NaTA·HTA·0.5NaAc·2H2O. 

 

 
g) Raman spectrum of IMH-TA·HTA. 

 
 

Figures S2: IR-ATR spectra of all prepared compounds 

 
a) IR (KBr) spectrum of HTA Form I. 



 
b) IR (KBr) spectrum of HTA Form II. 

 

 
c) IR (KBr) spectrum of NaTA·0.5H2O. 

 

d) IR (ATR) spectrum of NaTA HT Form. 



 
e) IR (KBr) spectrum of NaTA·HTA·H2O/NaHCO3. 

 

 
f) IR (KBr) spectrum of NaHCO3. 

 

 
g) IR (KBr) spectrum of NaTA·HTA·0.5NaAc·2H2O. 



 
h) IR (KBr) spectrum of IMH-TA·HTA. 

 
i) IR (KBr) spectrum of Imidazole (IM). 

 
 
 

  



Figures S3: Calorimetric and Thermogravimetric curves of all compounds 

 
a) DSC and TGA curves of HTA Form I (batch) 

 
b) DSC curve of HTA Form II (the Form I  Form II conversion reported in 

literature was not observed) 



 
c) DSC and TGA curves of NaTA·0.5H2O.The TGA curve of NaTA0.5H2O 

shows two steps attributed to adsorbed and stoichiometric H2O loss, 
respectively. The DSC is quite complex since presents solid-solid transitions 

at 67.3 and 92.3°C leading to polymorphic mixtures as observed by 13C 
CPMAS measurements (Figure S9) acquired on heated samples. On the 
other hand, the peak at 191.4 is assigned to the formation of NaTA HT 

Form. 

 
d) DSC and TGA curves of NaTA·HTA·H2O/NaHCO3. The two steps 

observed in the TGA curve are assigned to the release of CO2 and H2O, 
respectively. The high temperature regions (above 200°C) of TGA and DSC 



of NaTA·HTA·H2O/NaHCO3 is different from those of NaTA·0.5H2O even if 
they both lead to HTA HT Form (as confirmed by 13C CPMAS spectra). This 
is probably due to the different heating methods used or to the presence of 

small amount of impurities. 
.

 
e) DSC and TGA curves of NaTA·HTA·0.5NaAc·2H2O. 

 
f) DSC and TGA curves of IMH-TA·HTA. 



Figures S4: XRPD patterns of co-formers of HTA. 

 
a) Experimental pattern of NaHCO3. 

 

 

 

 
b) Experimental pattern of Sodium Acetate (NaAc). 

 

 



 
c) Experimental pattern of imidazole (IM). 

 
 
 
 

Scheme 1: Temperature ramp applied to NaTA·0.5 H2O 

 



 
k) VT XRPD patterns of NaTA·0.5 H2O from 25°C (r.t.) to 210 °C. 

 
Scheme 2: Temperature ramp applied to NaTA·HTA·H2O/NaHCO3 

 



 
l) VT XRPD patterns of NaTA·HTA·H2O/NaHCO3 from r.t. (25°C) to 225 °C. 

 
m) XRPD comparison between NaTA·HTA·H2O/NaHCO3 (after heating at 

225°C), NaTA·0.5 H2O (after heating at 210°C) and NaTA HT Form  



A Variable Temperature (VT) XRPD study was performed and reported in 
Figures S3-c and S3-d for NaTA·0.5 H2O and NaTA·HTA·H2O/NaHCO3, 
respectively). The ramp programs (Schemes 1 and 2) were set according to 
the most significant thermal transitions observed in the DSC and TGA data. 
The temperature was alternatively increased and decreased in order to 
check the irreversibility of the conversion processes. The VT XRPD analysis 
confirms the conversion of both NaTA·0.5 H2O and NaTA HTA 
H2O/NaHCO3 into the same NaTA HT Form, in agreement with the solid-
state NMR and RAMAN characterization. 

 
Figures S5: Dissolution kinetic tests (DKT) 

Table 1: Standard solutions of pure HTA for the calibration curve 

Solution Conc (mg/l) ABS 

1 4.00E-01 1.68E+00 

2 1.00E-01 4.63E-01 

3 1.00E-00 6.49E-02 

4 1.00E-01 2.01E-02 

5 1.00E-02 1.25E-02 

6 1.00E-03 2.08E-02 

 

UV absorption spectrum of Solution 2. 

 
Calibration Curve of HTA at 286.9 nm 



 
  



Figure S6: 13C CP MAS of NaTA polymorphs mixture. 13C CPMAS 
spectrum of NaTA polymorphic mixture obtained from HTA salification 

with NaOH; multiplicity and bandwidth of the signals highlight the co-
presence of different polymorphic forms of NaTA. 

 

 
 
 
 
 
 
 
 
 
 

Figure S7: 2D 1H-13C FSLG on-resonance HETCOR spectrum of 
NaTA·HTA·0.5NaAc·2H2O. 2D experiment acquired with a short contact 

times (100 µs) for highlighting only the short- (single bond) spatial 
proximities. 

 

 
 
 
 
 

  



Figure S8: 13C CPMAS of NaTA·HTA·0.5NaAc·2H2O after thermal 
treatment. 13C (100 MHz) CPMAS spectra of a) sodium acetate (batch of 

Sigma Aldrich), b) NaTA·HTA·0.5NaAc·2H2O, c) NaTA·HTA·0.5NaAc·2H2O 
heated at 150°C and d) NaTA·HTA·0.5NaAc·2H2O heated at 250°C 

recorded at 12 kHz. 
 

 
 

  



 
Figure S9: Dissolution rate profiles of the samples. HTA (red line with red 
circle), NaTA·0.5H2O (blue line with blue square), NaTA HT Form (black 

line with yellow circle), IMH-TA·HTA (green line with green triangle), 
NaTA·HTA·H2O/Na2CO3· (black line with black triangle) and 

NaTA·HTA·0.5NaAc·2H2O (black line with white circle respectively) 
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