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We compute one-loop threshold corrections to non-abelian gauge couplings in four-dimensional heterotic 
vacua with spontaneously broken N = 2 → N = 0 supersymmetry, obtained as Scherk–Schwarz 
reductions of six-dimensional K3 compactifications. As expected, the gauge thresholds are no-longer 
BPS protected, and receive contributions also from the excitations of the RNS sector. Remarkably, the 
difference of thresholds for non-abelian gauge couplings is BPS saturated and exhibits a universal 
behaviour independently of the orbifold realisation of K3. Moreover, the thresholds and their difference 
develop infra-red logarithmic singularities whenever charged BPS-like states, originating from the twisted 
RNS sector, become massless at special loci in the classical moduli space.
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1. Introduction

In the last decades we have witnessed a tremendous progress 
in understanding the structure of supersymmetric vacua in String 
Theory and M/F-theory. Several semi-realistic vacua that incorpo-
rate the salient features of the MSSM have been constructed and 
analysed to a remarkable extent. Their low-energy effective action 
with N = 1 supersymmetry has been fully reconstructed at tree-
level, and the incorporation of quantum and α′ corrections is still 
a subject of intense study. Despite these successful endeavours, su-
persymmetry breaking in String Theory remains a compelling open 
problem that string phenomenology aspires to address.

A fully-fledged approach to spontaneous supersymmetry break-
ing in String Theory, that admits an exactly solvable world-sheet 
description, is the stringy realisation [1–4] of the Scherk–Schwarz 
mechanism [5,6], via special freely-acting orbifolds. In this class of 
vacua, the supersymmetry breaking scale is tied to the size of com-
pact dimensions, while the exponential growth of string states may 
destabilise the classical vacuum due to the emergence of tachy-
onic excitations. This is closely related to the Hagedorn problem 
of String Thermodynamics [7] and can be circumvented in special 
constructions [8–10]. Moreover, it has been recently argued that 
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closed string tachyons emerging from twisted orbifold sectors of 
a class of heterotic vacua with explicitly broken supersymmetry 
can actually acquire a mass by blowing-up the orbifold singulari-
ties [11].

In all those cases where supersymmetry is (spontaneously) bro-
ken but the vacuum is classically stable, it is meaningful and im-
portant to study one-loop radiative corrections to couplings in the 
low-energy effective action. The emergence of one-loop tadpoles 
for massless states does not impinge on the validity of the one-
loop analysis, although it makes the incorporation of higher loops 
problematic, unless the back-reaction on the classical vacuum is 
properly taken into account [12,13].

For this reason, we address in this letter the problem of com-
puting one-loop threshold corrections to gauge couplings in a 
class of four-dimensional heterotic vacua with spontaneously bro-
ken supersymmetry, that can be built as K3 reductions of the 
SO(16) ×SO(16) construction of [14] in terms of freely-acting orbi-
folds. In contrast to heterotic vacua with unbroken supersymmetry, 
where the moduli dependence of the one-loop corrected gauge 
couplings arises from the BPS sector, in the case of spontaneously 
broken supersymmetry the amplitude receives contributions from 
the full tower of charged string states, and is no-longer topological. 
Nevertheless, we find that the difference between gauge thresholds 
exhibits a remarkable universal structure akin to the N = 2 super-
symmetric case, due to highly non-trivial cancellations induced by 
an MSDS spectral flow [15–17] in the bosonic right-moving sector 
of the heterotic string.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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The striking signature of spontaneous supersymmetry breaking 
is the emergence of logarithmic singularities at special points of 
the classical moduli space. These are ascribed to charged BPS-like 
states that become massless at points of gauge symmetry enhance-
ment, and survive in the difference of gauge thresholds.

The paper is structured as follows: in Section 2 we define the 
freely-acting orbifold responsible for the spontaneous breaking of 
supersymmetry and present the corresponding one-loop partition 
function. Section 3 is devoted to the evaluation of gauge thresh-
old corrections for the non-abelian gauge couplings and contains 
the main results of our investigation. Finally, in Section 4 we dis-
cuss the relevant decompactification limits and comment on their 
physical interpretation.

2. Heterotic vacuum with spontaneous supersymmetry breaking

The class of non-supersymmetric vacua that we shall focus on 
is obtained as a Scherk–Schwarz reduction of six-dimensional K3 
compactifications of the E8 × E8 heterotic string. They can also be 
viewed as K3 reductions of the Itoyama–Taylor vacuum [14], that 
corresponds to a lower-dimensional freely-acting implementation 
of the non-supersymmetric, non-tachyonic, SO(16) × SO(16) con-
struction [18,19].

For concreteness, we shall consider the T 6/ZN × Z
′
2 compacti-

fication of the ten-dimensional E8 × E8 heterotic string, with fac-
torised T 6 = T 4 × T 2. The ZN , with N = 2, 3, 4, 6 rotates chrystal-
lographycally the complexified T 4 coordinates as

v: z1 → e2iπ/N z1, z2 → e−2iπ/N z2, (2.1)

and realises the singular limit of the K3 surface, preserving 8 su-
percharges. The Z′

2 is instead freely acting and is generated by

v ′ = (−1)Fst+F1+F2δ. (2.2)

Here, Fst is the space–time fermion number, responsible for the 
breaking of supersymmetry, F1 and F2 are the “fermion numbers” 
of the two original E8’s, whereas δ acts as an order-two shift along 
the remaining T 2. The combined action of δ and (−1)Fst is respon-
sible for the spontaneous breaking of the N = 2 supersymmetry 
down to N = 0, while the presence of (−1)F1+F2 guarantees the 
classical stability of the vacuum.1

The one-loop partition function reads

Z = 1

2

1∑
H,G=0

1

N

N−1∑
h,g=0

×
[

1

2

1∑
a,b=0

(−)a+bϑ
[

a/2
b/2

]2
ϑ
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a/2+h/N
b/2+g/N
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ϑ
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b/2−g/N

]]

×
[

1

2

1∑
k,�=0

ϑ̄
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k/2
�/2

]6
ϑ̄

[
k/2+h/N
�/2+g/N

]
ϑ̄

[
k/2−h/N
�/2−g/N

]]

×
[

1

2

1∑
r,s=0

ϑ̄
[

r/2
s/2

]8
]

× 1

η12η̄24
(−)H(b+�+s)+G(a+k+r)+HGΓ2,2

[
H
G

]
ΛK3

[
h
g

]
. (2.3)

Here, η is the Dedekind function and ϑ
[

α

β

]
are the standard Ja-

cobi theta constants with characteristics. The sum over of the spin 

1 This is no-longer true when Wilson lines are turned on, whereby all non-
supersymmetric heterotic vacua can be continuously connected [20,21]. In this note 
we shall always assume a trivial Wilson-line background.
structures a, b, k, �, r and s yield the ten-dimensional E8 × E8
heterotic-string spectrum, while (h, g) and (H, G) correspond to 
the ZN and Z′

2 orbifolds. The two-dimensional Narain lattice with 
characteristics is defined as

Γ2,2

[
H
G

]
= τ2

∑
�m,�n

eiπG(�λ1· �m+�λ2·�n)Γ �m+ H
2

�λ2,�n+ H
2

�λ1
(T , U ), (2.4)

with

Γ �m,�n(T , U )

= q
1

4T2U2
|m2−Um1+T̄ (n1+Un2)|2

q̄
1

4T2U2
|m2−Um1+T (n1+Un2)|2

, (2.5)

and depends on the Kähler and complex structure moduli T and U . 
As usual, momenta and windings are labeled by �m and �n, while 
the integral vectors �λ1 and �λ2 encode the freely-acting shift of Z′

2. 
Without loss of generality, we shall focus on the case �λ1 = (1, 0)

and �λ2 = (0, 0) corresponding to a momentum shift along the first 
T 2 direction. All other cases can be related to the former by suit-
able redefinitions of the T and U moduli.

Finally,

ΛK3
[

h
g

]
=

⎧⎪⎨
⎪⎩

Γ4,4 for (h, g) = (0,0),

k
[ h

g

]
|η|12

|ϑ
[ 1/2+h/N

1/2+g/N

]
ϑ

[ 1/2−h/N
1/2−g/N

]
|2

for (h, g) �= (0,0),
(2.6)

with Γ4,4 being the conventional Narain lattice associated to 
the T 4, k

[
0
g

]
= 16 sin4(π g/N) counting the number of twisted 

sectors of the ZN orbifold, and the remaining k
[

h
g

]
’s with h �= 0

being determined by modular invariance.
As a consequence of the Scherk–Schwarz mechanism, the two 

gravitini acquire a mass m3/2 = |U |/√T2U2, and supersymmetry 
is spontaneously broken at a generic point in the classical moduli 
space. The Z′

2 also breaks the E8 × E7 gauge group of the N = 2
theory down to SO(16) × SO(12), up to abelian factors. The full 
spectrum can be derived from (2.3) using standard techniques.

Notice that, as in the parent ten-dimensional SO(16) × SO(16)

non-supersymmetric theory [18,19], the spectrum is free of tachy-
onic excitations at a generic point of the (T , U ) moduli space. This 
can be verified by looking at the H �= 0, a = 0 contributions to 
(2.3).

3. One-loop thresholds for non-abelian gauge couplings

Although the vacuum configuration presented in the previous 
section is not supersymmetric, the absence of physical tachyons in 
the perturbative spectrum implies that it is classically stable. As a 
result, it is fully justified and important to study one-loop radiative 
corrections to couplings in the low-energy effective action, in con-
trast to higher-loop diagrams that diverge due to the emergence 
of one-loop tadpoles back-reacting on the vacuum [12,13]. This is 
still an open problem in String Theory, and has recently triggered 
a growing interest [22–24].

To this end, we shall address here the question of quantum cor-
rections to the couplings of the non-abelian SO(16) ×SO(12) gauge 
factors, extending the analysis of [25] to non-supersymmetric 
vacua.

Threshold corrections ΔG associated to the group factor G ap-
pear in the relation between the running gauge coupling g2

G(μ) of 
the low-energy theory and the string coupling gs

16π2

g2 (μ)
= 16π2

g2
+ βG log

M2
s

μ2
+ ΔG, (3.1)
G s
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where, in the case at hand, the Kac–Moody algebra is realised at 
level one, and Ms sets the string scale. They encode the contribu-
tion of the infinite tower of massive string states to the one-loop 
diagram, and can be organised as

ΔG ≡ i

4π N
R.N.

∫
F
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N−1∑
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ΔG
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]
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∫
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. (3.2)

In this expression, dμ denotes the SL(2; R) invariant measure, 
while R.N. stands for the modular-invariant prescription of [28,29]
for regularising the infra-red divergences of the integral.

The quantity L
[

H, h
G, g

]
encodes the spin-structure sum over the 

integrated world-sheet correlators for the four-dimensional space–

time fields, whereas ΦG
[

H, h
G, g

]
encodes the contribution of the 

gauge sector with the relevant trace insertion. They are defined 
as

L
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≡ 1
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and
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(zG)|zG=0. (3.4)

In the latter equation, it is implied that the VEV zG is only inserted 
along the particular theta function corresponding to the Cartan 
charge whose group trace we are considering.

It is convenient to arrange the 4N2 sectors of the orbifold so as 
to distinguish the origin of the various contributions to the thresh-
olds. The (h, g) = (0, 0) sector corresponds to the Itoyama–Taylor 
construction [14] reduced to four-dimensions, and is proportional 
to the T 4 lattice ΛK3

[
0
0

]
, depending on the invariant T 4 moduli. 

Furthermore, since h = g = 0, one is effectively dealing with the 
SO(16) × SO(16) lattice. Hence, the group traces are independent 
of the choice of gauge group G , implying that the difference of 
thresholds is independent of the T 4 moduli.

An explicit calculation yields

ΔΛ = − 1

4N × 122
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(3.5)
where Ê2 is the weight-two quasi-holomorphic Eisenstein series.2

Notice that the second and third lines can be obtained from the 
first one upon acting with the SL(2; Z) generators S and T S , as 
demanded by modularity.

The remaining contributions can be organised as

1∑
H,G=0

N−1∑
h,g=0

(h,g) �=(0,0)

ΔG
[
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]
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G + Δ
(u−)

G + Δ
(t+)

G + Δ
(t−)

G , (3.6)

according to the sectors of the freely-acting orbifold. The first con-
tribution Δ

(u+)

G , corresponding to (H, G) = (0, 0), computes the 
gauge thresholds of the N = 2 heterotic string on the orbifold limit 
of K3. It is thus expected to be BPS saturated and the difference 
Δ

(u+)

G − Δ
(u+)

G′ to be universal and to depend only on the moduli 
of the T 2 torus3 [25]. The remaining terms, connected among each 
other by S and T S modular transformations, are inherently non-
BPS since the freely-acting orbifold acts non-trivially and breaks 
supersymmetry. This is reflected by the fact that the modular inte-
gral now involves genuinely non-holomorphic contributions.

For concreteness, we shall present explicitly the various contri-
butions in the case N = 2, where one finds

Δ
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48
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and
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, (3.9)
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4
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In these expressions E4 (E6) is the weight-four (-six) holomorphic 
Eisenstein series. Again, the remaining terms can be computed by 
the action of the generators S and T S of SL(2; Z) on the corre-
sponding Δ(u−) contributions.

As anticipated, Eqs. (3.7) and (3.9) compute the thresholds to 
the N = 2 supersymmetric E8 and E7 gauge factors. Eqs. (3.8) and 

2 Whenever the characteristics of the theta constants equal 0, 1/2 we employ the 
light notation in terms of the ϑα ’s.

3 The difference of gauge thresholds is indeed universal for the T 4/ZN orbifolds, 
though in more general constructions they may exhibit a non-universal structure 
[26,27].
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(3.10) involve contributions from BPS states whose masses are now 
deformed by the free action of the Z′

2 orbifold.
The BPS contributions to these amplitudes can be integrated 

over the SL(2; Z) fundamental domain F or, after partial unfold-
ing, over the fundamental domain F0[2] of the Γ0(2) congruence 
subgroup, following the procedure developed in [28–30]. The non-
BPS contributions can be shown to be exponentially suppressed 
[31] in the large T 2 volume limit, and are thus negligible at low-
energies. We shall not indulge here in the full computation of the 
thresholds, but rather focus on their difference. One finds

Δ
(u+)

SO(16) − Δ
(u+)

SO(12) = −36Γ2,2

[
0
0

]
, (3.11)

that reproduces the result of [25], and

Δ
(u−)

SO(16) − Δ
(u−)

SO(12) = −1

6
Γ2,2

[
0
1

](ϑ12
2

η12
− 8

)
. (3.12)

Surprisingly, the non-holomorphic contributions to the thresh-
olds cancel when taking their difference, and reduce to a purely 
holomorphic BPS-like term. As we shall show, the difference of 
gauge thresholds exhibits a remarkable universal behaviour, inde-
pendently of the details of the T 4/ZN orbifold. Indeed, the non-
holomorphic contribution to the difference of thresholds reads

−ϑ8
2 |ϑ4

3 + ϑ4
4 |2ϑ̄4

3 ϑ̄4
4

η12η̄12
− ϑ4

2 ϑ4
4 |ϑ4
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4 |2ϑ̄4

3 ϑ̄4
4

η12η̄12

+ ϑ4
2 ϑ4

3 |ϑ4
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3 |2ϑ̄4
3 ϑ̄4

4

η12η̄12

= 12
(

O 2
8 V 8 + 3V 3

8

)(
Ō 2

8 V̄ 8 − V̄ 3
8

)
, (3.13)

where in the right-hand side we have introduced the SO(8) char-
acters. Although, this term looks completely non-holomorphic it 
actually possesses a BPS-like structure due to a remarkable MSDS 
identity [16,10]

Ō 2
8 V̄ 8 − V̄ 3

8 = 8, (3.14)

which reflects a hidden MSDS spectral flow in the bosonic sector 
of the global N = (2, 2) superconformal symmetry on the world-
sheet [17,31]. As a result, Eq. (3.13) reduces to the purely holomor-
phic contribution (3.12).

To evaluate the integrals, we first notice that the combination 
ϑ12

2 /η12 corresponds to an automorphic function of the Hecke con-
gruence subgroup Γ0(2). Moreover, it is regular at the cusp at 
τ = i∞ while it has a simple pole at the cusp τ = 0.4 This is suf-
ficient to identify [30]

ϑ12
2

η12
= F0(1,1,0) − 16 = ĵ2(τ ) − 24, (3.15)

where F0(1, 1, 0) is the meromorphic weight-zero Niebur–Poincaré 
series attached to the cusp at τ = 0 of Γ0(2), and ĵ2(τ ) is the 
Fricke transform [30] of the Γ0(2) Hauptmodul

j2(τ ) = η24(τ )

η24(2τ )
+ 24. (3.16)

The modular integrals can be straightforwardly computed using 
the results of5 [28–30,32] to yield

4 We remind here that the compactification of the fundamental domain F0[2] of 
Γ0(2) requires adding two points, i.e. the two cusps, τ = i∞ and τ = 0. See, for 
instance, [30].

5 The first integral was actually originally computed in [25] by unfolding the fun-
damental domain against the Narain lattice.
R.N.
∫
F

dμΓ2,2(T , U ) = − log T2U2
∣∣η(T )η(U )

∣∣4
, (3.17)
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, (3.18)

and
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= −2 log
[∣∣ĵ2(T /2) − ĵ2(U )
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∣∣4]

. (3.19)

Combining the various contributions, one finds

ΔSO(16) − ΔSO(12)

= 36 log
[
T2U2

∣∣η(T )η(U )
∣∣4] − 4

3
log

[
T2U2
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+ 1

3
log
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∣∣4∣∣ j2(U ) − 24

∣∣4]
. (3.20)

Again, the various terms have a clear physical interpretation. The 
first line generalises the celebrated result of [25]. The presence of 
second term is ascribed to the modified Kaluza–Klein masses of 
BPS states, that are indeed affected by the free action of the orbi-
fold. In fact, since the Z′

2 orbifold corresponds to a spontaneous 
breaking of supersymmetry, the model in (2.3) contains precisely 
the same excitations as the E8 ×E8 heterotic string on T 2 × T 4/ZN , 
whose masses are continuously deformed by the scale of super-
symmetry breaking. As a result, the duality group is broken down 
to the subgroup Γ 0(2)T × Γ0(2)U of SL(2; Z)T × SL(2; Z)U .

While the first two contributions are regular at any point in 
the classical moduli space, the term in the second line, particular 
to this vacuum with broken supersymmetry, possesses logarithmic 
singularities at the locus T /2 = U and its Γ0(2) images. The origin 
of these singularities is ascribed to massive charged BPS-like states 
that become massless at special points in moduli space. To man-
ifest their origin in the perturbative spectrum, it is convenient to 
express their contribution to (2.3) in terms of the SO(2n) charac-
ters

1

2
(O 4 O 4 × V̄ 12 Ō 4 V̄ 16)

(
Γ2,2

[
1
0

]
+ Γ2,2

[
1
1

])
. (3.21)

These states include the left-moving NS vacuum and its stringy ex-
citations, while the right-moving sector is massless and belongs to 
the bi-fundamental representation (16, 12) of the SO(16) × SO(12)

gauge group. They always carry non-trivial momentum and wind-
ing quantum numbers, and the lightest states have mass

m2
O 4 O 4

= |T /2 − U |2
T2U2

. (3.22)

Indeed, these states become massless at the point T /2 = U , where 
p2

R = 0, and are responsible for the logarithmic divergence in 
(3.20).

Notice that the fact that extra massless states emerge from 
the Z′

2 twisted sector is compatible with the fact that the term 
ϑ12

2 /η12, originating from the un-twisted sector, has a pole at the 
cusp τ = 0 but is regular at τ = i∞. In fact, the two cusps are 
related by an S modular transformation that also relates the un-
twisted and twisted sectors. As a result, the singularity of the u−
sector at τ = 0 is to be understood as the map under S of the 
physical infra-red singularity of the twisted sector.

One can compute the gauge thresholds also in the case of the 
other singular limits of K3, namely N = 3, 4, 6. Although the re-
sult of the thresholds depends on the particular value of N , their 
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difference exhibits a remarkable universal behaviour. In fact, one 
finds

ΔSO(16) − ΔSO(12)

= α log
[
T2U2

∣∣η(T )η(U )
∣∣4] + β log

[
T2U2

∣∣ϑ4(T )ϑ2(U )
∣∣4]

+ γ log
[∣∣ĵ2(T /2) − ĵ2(U )

∣∣4∣∣ j2(U ) − 24
∣∣4]

, (3.23)

with (α, β, γ ) = (36, − 4
3 , 13 ) for the Z2 and Z3 orbifolds,

(α, β, γ ) = 5
8 (36, − 4

3 , 8
15 ) for the Z4 orbifold and (α, β, γ ) =

35
144 (36, − 4

3 , 13 ) for the Z6 orbifold.
This universality structure is a direct consequence of the univer-

sal behaviour of the N = 2 thresholds [25,33], which is preserved 
by the free action of the Z′

2.

4. Decompactification limits

It is instructive to study Eq. (3.23) in the decompactification 
limits. For convenience, we shall assume a squared T 2 with

T = iR1 R2 and U = i
R2

R1
, (4.1)

so that the masses of the two gravitini and of the O 4 O 4 states 
read

m2
3/2 = 1

R2
1

and m2
O 4 O 4

= 1

4

(
R1 − 2

R1

)2

. (4.2)

In the R1 → ∞ limit, N = 2 supersymmetry is recovered, and 
the leading behaviour of Eq. (3.23)

lim
R1→∞[ΔSO(16) − ΔSO(12)] = πα

3
R1

(
R2 + 1

R2

)
+ . . . (4.3)

grows linearly with the T 2 volume. This is expected from scal-
ing arguments, since in six dimensions the gauge coupling has 
length dimension −1. The term proportional to β in (3.23) only 
grows logarithmically with R1 as a result of supersymmetry en-
hancement since, charged states lighter than the supersymmetry-
breaking scale are effectively BPS-like and thus contribute loga-
rithmically to the difference of threshold corrections, whereas the 
infinite towers of charged states heavier than m3/2 have an effec-
tive N = 4 supersymmetry and, thus, do not contribute. Finally, 
the term proportional to γ is exponentially suppressed because 
the lightest charged states O 4 O 4 have mass mO 4 O 4 
 m3/2 and 
effectively decouple.

In the R2 → ∞ limit, the leading behaviour of (3.23) is

lim
R2→∞[ΔSO(16) − ΔSO(12)]

= πα

3
R2

(
R1 + 1

R1

)
+ πβR2

R1

+ 2πγ R2

(
R1 − 2

R1
−

∣∣∣∣R1 − 2

R1

∣∣∣∣
)

+ . . . . (4.4)

As expected, the term proportional to α is again linearly diver-
gent with the T 2 volume. The term proportional to β now scales 
as R2/R1, and consistently vanishes as m3/2 → 0. The term pro-
portional to γ depends on the scale of supersymmetry breaking. 
When R1 >

√
2 it is exponentially suppressed because m3/2 <

mO 4 O 4 , whereas when R1 <
√

2 it scales as R2(2/R1 − R1). This 
is a consequence of the fact that, in the R1 → 0 limit, supersym-
metry is explicitly broken, and this term grows with the volume 
R2 R̃1 ∼ R2/R1 of the T-dual torus.
Notice that in the R1 → 0 limit, the freely-acting orbifold de-
generates into an explicit breaking of supersymmetry. This implies 
that the universal behaviour (3.23) should hold also in the case 
when the ten-dimensional O(16) × O(16) theory of [18,19] is com-
pactified on T 2 × K3. As a result, a similar universal behaviour of 
the threshold differences is expected to arise also when T 2 × K3
is replaced by a generic Calabi–Yau manifold. It would be inter-
esting to investigate whether Eq. (3.23) also holds when the ten-
dimensional heterotic string, whether supersymmetric or not, is 
compactified on a manifold that does not preserve any supersym-
metry.
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