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 40 

Identifying and characterizing strombolian activity from space is a challenging task for satellite-41 

based infrared systems. Stromboli volcano is a natural laboratory that offers a unique opportunity 42 

for refining thermal remote sensing applications that involve transient phenomena and small to 43 

moderate hot-spots. A new simple and fast algorithm gave us the opportunity to revisit the 44 

MODIS-derived thermal output at Stromboli volcano in the last 13 years. The new algorithm 45 

includes both nigthttime and daytime data and shows a high performance with the detection of 46 

small-amplitude thermal anomalies (< 1 MW), as well as a low occurrence of false alerts (< 4%). 47 

Here, we show that the statistical distribution of Volcanic Radiative Power (VRP; in Watt) is 48 

consistent with the detection of variable activity regimes that we subdivided into six levels of 49 

thermal activity: Very Low (VRP < 1 MW), Low (1 MW < VRP < 15 MW), Moderate (15 MW < 50 

VRP < 80 MW), High (80 MW < VRP < 315 MW), Very High (315 MW < VRP < 1000 MW), 51 

Extreme (VRP > 1000 MW). The “Low” and “Moderate” thermal levels are associated to 52 

strombolian activity and reflect fluctuations of the magma level within the conduit feeding the 53 

activity at the surface. The “High” and “Very High” levels of thermal output represent the bulk 54 

thermal emissions during periods of effusive activity. The most highly level (“Extreme”) is 55 

reached only during the onset of flank eruptions (occurred on 28 December 2002 and 27 February 56 
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2007). We found that the retrieved thermal levels are in general agreement with the explosive 57 

levels evaluated at Stromboli since 2005, and their correlation has been shown to be dependant on 58 

the observed activity (i.e. eruption onset, lateral flank effusion, summit overflows, strombolian 59 

activity). The specific hot spot detection system presented here allow us to characterise thermal 60 

emissions in terms of different levels of volcanic activity, to decode the thresholds separating 61 

them and to depict long term eruptive dynamics at open-vent volcanoes. 62 

 63 

1. Introduction 64 

In the last decade thermal remote sensing techniques have been increasingly applied for monitoring 65 

active volcanoes. Ramsey and Harris (2013) give an overview of these applications, discussing the 66 

limits of several satellite-based infrared sensors to detect and track volcanic hot-spot. Actually, 67 

many of these studies are concentrated in developing near real time automated techniques thus 68 

quantifying the heat released and the related mass fluxes (Ganci et al., 2012). 69 

A variety of algorithms were developed for detecting volcanic hot spots using different satellites 70 

and sensors, such as GOES (e.g. Harris et al., 1997), AVHRR (e.g. Harris et al. 1995; Tramutoli 71 

1998), MODIS (e.g. Flynn et al. 2002; Wright et al. 2002), SEVIRI (Hirn, Di Bartola, and Ferrucci 72 

2009; Ganci et al., 2011). A comprehensive review of these techniques, including their performance 73 

and applicability, is given by Steffke and Harris (2011). According to the authors, these algorithms 74 

may be subdivided into four main groups on the basis of their detection principles. These are:  75 

(i)       fixed threshold: which use the data on a single pixel to assess whether the radiance or 76 

temperature, is anomalous (i.e. Flynn et al., 2002, Wright et al. 2002); 77 

(ii)       contextual: it uses the difference between a pixel’s radiance (or temperature) and the 78 

surrounding pixels to assess the presence of an hot spot (i.e. Harris et al, 1995; 2001; 79 

Harris, Pilger, and Flynn 2002; Higgins and Harris 1997; Kaneko et al., 2002; Webley et 80 

al., 2008; Galindo and Dominguez, 2003); 81 
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(iii) temporal: it compares a pixel’s radiance (or temperature) with mean values obtained for 82 

the same pixel from time series of data (i.e. Di Bello et al., 2004; Pergola, Marchese, and 83 

Tramutoli 2004);  84 

(iv)      hybrid: it combines two or more of the above principles (i.e. Dean et al., 1998; Dehn, 85 

Dean, and Engle 2000; Kervyn et al., 2006; Hirn, Di Bartola, and Ferrucci 2009; 86 

Koeppen, Pilger, and Wright, Glaze, and Baloga 2011).  87 

 88 

In their review Steffke and Harris (2011) concluded that each algorithm operates well within the 89 

limits and criteria of its design requirement. For example, a global detection system such as 90 

MODVOLC (Flynn et al., 2002, Wright et al. 2002) has a lower efficiency in detecting hotspots, but 91 

favours the processing of a large amount of data in near real time. On the other hand, the algorithm 92 

based on the simple temporal principles (i.e. the RST technique of Di Bello et al., 2004) may be 93 

more efficient in detecting local small hotspots, but requires more complex data processing and is 94 

somehow inefficient to provide a continuous record of persistent, stationary thermal anomalies 95 

(Koeppen, Pilger, and Wright 2011, Steffke and Harris, 2011). The efficiency of any hot-spot 96 

detection system may effectively change in function of the observed volcanic activity. Effusive 97 

eruptions are easier case to be detected since they represent volcanic targets with high surface 98 

temperatures and widespread thermal anomalies (lava flows). Conversely, hot-spots detection over 99 

active lava domes is more challenging since these bodies have smaller planar dimensions and cooler 100 

lava surfaces (Wright, Glaze, and Baloga 2011). Moreover, the persistence of a thermal anomaly is 101 

a further complication for space-based hot-spot detection. For instance, short-lived phenomena 102 

(such as explosions or short paroxysms) produce transient thermal signals with small probabilities 103 

of being detected. If these events are associated to a small size hot emitters (i.e., a volcanic vent 104 

and/or vents), they represent critical targets. For these reasons the detection of “strombolian 105 

activity” from space represent one of the challenging task for satellite-based infrared systems (e.g., 106 

Coppola et al., 2012). 107 
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Stromboli is an open-system volcano, located in the Aeolian islands (Southern Tyrrhenian Sea; 108 

Figure 1) well known for its permanent volcanic activity considered as a reference case for 109 

classifying minor to intermediate volcanic eruptions (e.g., Newhall and Self, 1982). Volcanic 110 

activity is essentially strombolian, with continuous explosions and mild eruptions of scoriae, lapilli, 111 

ash and bombs (Rosi, Bertagnini, and Landi 2000) at summit vents. This activity may be 112 

sporadically replaced by lava effusions and more energetic explosions with the eruption of larger 113 

volumes of tephra, named “paroxysms” (Barberi, Rosi, and Sodi 1993).  114 

At Stromboli, the climate is temperate with higher temperatures reaching 36-40 °C during the 115 

summer (July) and minima temperatures of 0-4 °C during the winter time (December and January). 116 

The rainfall is not abundant and widely distributed in about 50-90 days a year of rain with a peak in 117 

the cold season. The month with the lowest number of rainy days is July, whereas December and 118 

January have the highest number of rainy days (cf., Laiolo et al., 2012). The sky is clear for 35% of 119 

the days in spring, 70% in summer, 50% in the fall and 25 % in the winter. Snow has been rarely 120 

observed at the summit of the volcano (924 m asl). Due to the peculiar volcanic activity and its 121 

temperate climate Stromboli volcano may be considered as a natural laboratory for refining infrared 122 

remote sensing applications. 123 

 124 

Figure 1 125 

 126 

In this paper we describe a new algorithm, specifically developed for hot-spot detection at 127 

Stromboli volcano. Thus, the new algorithm is addressed to detect small thermal anomalies and 128 

contains spectral (threshold), spatial (contextual) and temporal principles well compatible with the 129 

so-called “hybrid” approach (e.g., Koeppen, Pilger, and Wright 2011). Here, we analyze more than 130 

a decade of MODIS data collected on Stromboli by revisiting and updating the earlier analyses of 131 

Coppola et al. (2012). After showing the algorithm performance, we will show how the long term 132 
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thermal records may be used to define distinct thermal regimes that characterize the recent activity 133 

of Stromboli. 134 

 135 

2. The algorithm 136 

The algorithm uses MODIS level 1b data acquired by NASA’s Terra (launched on December 1999) 137 

and Aqua (launched on May 2002) satellites that normally image Stromboli volcano four times per 138 

day (since May 2002). The whole data set (from March 2000 to March 2013), consisting of more 139 

than 19000 images, has been analysed following several main steps. These are: (i) Data Extraction, 140 

(ii) Resampling, (iii) Definition of Region of Interest (ROIs), (iv) hot-spot detection (v) calculation 141 

of the Volcanic Radiative Power (VRP). 142 

 143 

2.1. Data Extraction from MODIS level1b granules 144 

The first step is dealing with the extraction of the data from the MODIS level1 granules. These data 145 

consist of the date and time of satellite overpasses, the satellite viewing geometry (zenith and 146 

azimuth), the location of each pixel (Latitude and Longitude) as well as the Digital Number (DN) 147 

related to the spectral bands of interest: 148 

(i)       Reflectivity of band 1 (R1), centred at 0.645 m (for daytime image only) 149 

(ii)       Reflectivity of band 2 (R2), centred at 0.858 m (for daytime image only) 150 

(iii) Radiance of band 6 (L6), centred at 1.64 m (for daytime image only) 151 

(iv)      Radiance of band 21 (L21), centred at 3.959 m (Low-gain MIR channel) 152 

(v)       Radiance of band 22 (L22), centred at 3.959 m (High-gain MIR channel) 153 

(vi)      Radiance of band 31 (L31), centred at 11.03 m (TIR channel) 154 

(vii) Radiance of band 32 (L32), centred at 12.02 m (TIR channel) 155 

 156 
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The DN of each selected band is firstly scanned to filter-out any missed or “corrupted” datum. 157 

According to the MODIS Level 1B Product User’s Guide (Toller, Isaacman, and Kuyper 2006) this 158 

is achieved by eliminating, for each band, all the pixels with DN > 32,768 (i.e., the invalid data 159 

values), with the exception of the pixels with DN = 65,533 (saturated values), used in the 160 

subsequent steps. 161 

The georeferred data are also scanned to remove the bow-tie effect that, at the edge of the swath, 162 

produces the so called “scan to scan” overlapping (Nishihama et al. 1997).  163 

Once the effects of invalid and bow-tie related pixels have been removed, we used the conversion 164 

coefficients for each selected band (scale and offset) in order to convert the DN into reflectivity 165 

and/or radiance data (for details regarding this step see the MODIS Level 1B Product User’s 166 

Guide).  167 

Finally, we build up a corrected spectral band centred at 3.959 m (hereby called band L21ok), by 168 

using the L21 or L22 radiance, depending on band 22 saturation (or not), respectively. 169 

 170 

2.2. Resampling of original data and production of NTI maps 171 

Cropping and resampling of the original Level1b MODIS data is necessary for two main reasons. 172 

First because high scan angles contribute to the growth of the projected ground spatial element (up 173 

to approximately 10 km
2
 for scan angles of 55°; Nishihama et al. 1997). This leads the radiance of a 174 

potential sub-pixel hotspot to be integrated over a variable area, thus introducing a further source of 175 

error in estimating its thermal output. Secondly, because the hot-spot detection scheme, described 176 

below, requires an image-to-image registration, similar to application of the RST technique (cf. Di 177 

Bello et al. 2004; Pergola, Marchese, and Tramutoli 2004). 178 

Thus, we cropped and resampled (into an equally-spaced 1 km grid) the MODIS level1b data which 179 

fall within a mask (50 x 50 km) centred over the summit of Stromboli volcano (Figure 2(a)). This 180 

means that one hot-spot pixel, whose area was 2 km
2
 in the original image, become two pixels with 181 

equal areas of 1 km
2
 in the resampled image. 182 
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Once the radiances data has been resampled we calculated the Normalised Thermal Index (NTI) for 183 

each pixel according to Wrigth et al. (2002): 184 

3221

3221

LL

LL
NTI

ok

ok                            (1) 185 

These NTI maps enhance the presence of any sub-pixel hotspot and represents the reference 186 

matrices to the further steps of the algorithm. 187 

 188 

Figure 2 189 

 190 

2.3. Regions of Interest 191 

A main step in the processing flowchart is the definition of three Regions Of Interest (ROIs) within 192 

the resampled NTI maps. These are centred on the volcano summit (where strombolian activity is 193 

taking place) and are normally concentric (see Figure 2(b)). The ROI1 consists of an outer ring 194 

(measuring 50 x 50 km) and includes the island of Panarea as well as the sea surrounding 195 

Stromboli. The ROI2 represents an intermediate region (15 x 15 km) essentially characterized by the 196 

sea surrounding the island of Stromboli. Finally, the ROI3 (5 x 5 km) samples the island of 197 

Stromboli itself, including the coast lines and small portions of its near-shore sea. 198 

 199 

2.4. Hot Spot detection 200 

The algorithm is based on the characterization of the natural variation of the NTI (seasonal effect) 201 

within each ROI. For example in Figure 2 we plot the NTI time-series relative to the nighttime 202 

pixels of each ROI during 2006. Note that within this plot, the thermal anomalous pixels (hot-spot 203 

contaminated) tend to increase their NTI, whereas the presence of thick and cold clouds has the 204 

opposite effect and tend to lowering their relative values (negative spikes). 205 

 206 

Figure 3 207 
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 208 

The seasonal variation of the NTI is clear in the three regions although some anomalous pixel is 209 

consistent with the presence of some hot-spot within ROI3 (Figure 3(a)). 210 

In the next sections we describe the algorithm subdivided for nighttime and daytime data, 211 

respectively. 212 

 213 

2.4.1. Nighttime algorithm 214 

To detect an hot-spot within the nighttime images we firstly defined two fluctuating thresholds 215 

(named NTIthresh1 and NTIthresh2, respectively) that envelop the natural variation of the NTI within 216 

the whole image (including ROI1, ROI2 and ROI3; Figure 2(b)) in absence of thermal anomalies 217 

and/or cloud covering. These thresholds are obtained by using the form of a typical sinusoidal 218 

function which can be described by: 219 

 220 

Ct
P

ANTI thresh

2
sin                                      (2) 221 

 222 

where A is the yearly amplitude of the NTI variation, P is the length of each cycle ( /days), t is the 223 

time of satellite overpass (julian day),  is the phase shift (i.e., the day when the curve crosses the 224 

baseline as it ascend), and C is the baseline, here represented by the average yearly NTI value. 225 

To set the appropriate parameters for the two thresholds (Equation 2), it is necessary to process at 226 

least one year of data. Hence, the operator may chose the appropriate values of A,  and C by 227 

excluding the pixels clearly contaminated by hot-spot and clouds (with NTI values that clearly 228 

deviate from the seasonal trend). The values assumed for Stromboli volcano are summarised in 229 

Table 1 with their relative NTI thresholds plotted in Figure 3. 230 
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These two thresholds define three fields on the NTI timeseries, where the upper and lower fields 231 

represent the sectors where hot-spot contaminated and cloud contaminated pixels are surely present 232 

(Figure 3). 233 

At this point a pixel is considered “alerted” (hot-spot contaminated) if at least one of the following 234 

test is successfully passed. 235 

The first test is applied to all the pixels of an image (NTIROIS) and requires that the NTI is higher 236 

than NTIthresh1: 237 

Alert1 = NTIROIS > NTIthresh1                      [Test 1] 238 

 239 

The second test is applied for detecting exclusively the smallest thermal anomalies of ROI3 having 240 

an NTI comprised between NTIthresh1 and NTIthresh2. This is achieved by comparing the NTI of each 241 

ROI3-pixel (not previously alerted by the Test 1) with some statistical parameters retrieved from a 242 

selected suite of “reference-pixels” appertaining to ROI2. In particular, these “reference-pixels” 243 

(NTIRef2) are the ROI2 pixels which satisfy the following condition: 244 

 245 

NTIRef2 = NTIthresh1 > NTIROI2 > NTIthresh2         [Condition 2] 246 

 247 

Hence according to condition 2, we defined “reference-pixels” all the pixels of ROI2 which have the 248 

NTI comprised between the two thresholds previously defined (NTIthresh1 and NTIthresh2). In other 249 

words, NTIRef2 exclusively includes the pixels surrounding Stromboli volcano that are not 250 

contaminated by hot-spots or clouds. 251 

From these reference pixels we thus calculate the maximum value (NTIMax2), mean (NTIMean2) and 252 

the standard deviation (NTIstd2) which are the parameters used to define the second test: 253 

 254 

Alert2 = (NTIROI3 > NTIMax2) & [NTIROI3 > (NTIMean2 + 3 ×NTIstd2)]  [Test 2] 255 

 256 
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Therefore, Test 2 settles that a pixel of ROI3, in order to be considered hot spot contaminated, must 257 

have an NTI higher than the value obtained by considering the natural variability of the surrounding 258 

region (ROI2). 259 

The total number of “alerted” pixels (Alert) is finally obtained by considering all the pixels passing 260 

the Test 1 (Alert1) or the Test 2 (Alert 2). 261 

 262 

2.4.2. Daytime algorithm 263 

The detection of hot-spot during daytime overpasses is much more complicated due to two main 264 

reasons. First, because the radiance in the MIR channel (L21ok) is particularly affected by solar 265 

reflection effects (Wright et al., 2002). Solar reflection perturbs the NTI as well, especially for 266 

pixels that are sampling reflective surfaces (i.e. water, snow, sand, clouds, etc.), thus causing an 267 

increase in its value due to the reflected solar energy (Wright et al., 2002). Secondly, because 268 

during daytime the solar heating may effectively enhance the contrast between vegetated and non-269 

vegetated areas. This will produce apparently higher NTI values over volcanic (non-vegetated) areas 270 

when compared with the surrounding (vegetated) areas. These intrinsic effects, may cause a 271 

problematic discrimination of genuine volcanic hot-spot since during daytime all the pixels in non-272 

vegetated areas have NTI values that naturally exceed the surrounding background. 273 

In the attempt to reduce the effects of solar reflection we apply a correction to the L21ok radiance (on 274 

the resulting NTI) based on the co-registered radiance recorded on band 6 (L6). Following Wright et 275 

al., 2004 for daytime data we thus corrected the radiance at 4 m (L21ok) by subtracting 4.26% of the 276 

energy radiated at 1.6 m (L6) (assumed to be the solar reflected component). The corrected NTI 277 

thus becomes: 278 

 279 

 
32621

32621

))*0426.0((

))*0426.0((

LLL

LLL
NTI

ok

ok
corr                                           (3) 280 

 281 
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The comparison between the un-corrected and corrected NTI, relative to the 2006 day-time data is 282 

shown in Figure 3. In Figure 4(a), the un-corrected NTI shows an extremely noisy signal in all the 283 

ROIs, overprinted on the typical seasonal trend. The noise introduced by solar reflection 284 

(represented by spikes) is particularly evident on ROI1 and ROI3, both related to the reflective sea 285 

surface. On the other hand, the application of Equation (3) (solar correction) produces a clear 286 

attenuation of these signals enhancing the filtered seasonal pattern. Notably, the seasonal trend and 287 

the absolute values of the NTIcorr relative to ROI1 and ROI2 (Figure 4(b)) become very similar to 288 

those recorded during nighttime overpasses (compare Figure 3(b) and 4(b)). This similarity suggest 289 

that the trend recorded by NTIcorr is almost exclusively affected by the seasonal variation of the sea 290 

surface temperature (thermal inertia of the sea makes the diurnal changes in temperature less 291 

pronounced than on land) and increases our confidence that solar contamination has been removed 292 

by applying Equation (3).  293 

This is also confirmed by looking at the NTIcorr trend of ROI3 that from April to October (i.e., 294 

during the hot season) is “diverging” from ROI1 and ROI2. Such a decoupling can be explained by 295 

the increase of the temperature gradient occurring between the summit, non-vegetated, volcanic 296 

areas (essentially affected by the solar heating) and the surroundings. 297 

We therefore define a single daytime NTI threshold (NTIthresh3) that allows us to discriminate 298 

between the solar heating effects and the presence of a genuine volcanic hot-spot. As previously, we 299 

used Equation (2) to describe the seasonal NTIthresh3 trend (Figure 4(b)). The parameters for 300 

calculating NTIthresh3 are summarized in Table 1. We thus flagged a thermal alert whenever a 301 

daytime pixel satisfies the following test: 302 

 303 

Alert3 = NTIROIS > NTIthresh3                  [Test 3] 304 

 305 

As it will be discussed later, the capability of detecting hot-spot during daytime is much more 306 

reduced when compared to the application of the nighttime algorithm. This results in poor detection 307 
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rates during periods of low strombolian activity. However, during periods of more vigorous thermal 308 

activity, as well as during the effusive eruptions, the results of the daytime algorithm will strongly 309 

integrate the dataset recorded during nighttime overpasses (cf., Tables 2 and 3). 310 

 311 

Figure 4 312 

 313 

2.5. Volcanic Radiative Power 314 

When a pixels is flagged as alert, the “above background” at 4 m radiance ( L4PIX) is calculated 315 

as: 316 

 317 

bkalertPIX LL=ΔL 444                                  (4) 318 

 319 

where L4alert is the 4 m radiance of the alerted pixel/s and L4bk is the background radiance at 4 m. 320 

This last, L4bk, it is estimated from the arithmetic mean of all the pixels surrounding the alerted one 321 

(or around the alerted cluster) not contaminated by clouds. Accordingly, cloudy pixels were 322 

detected using the method described by Giglio et al., (2003) so that: 323 

 324 

cloud=   [BT11<255]         [Condition 4; for nighttime data] 325 

or 326 

cloud= [(R1+R2)>0.9]  or  [BT11<245]  or  [((R1+R2)>0.9)  &  (BT11<265)]   [Condition 5;  327 

for daytime data] 328 

 329 

where BT11 is the brightness temperature (in K) of band 11 (retrieved from L11 using the Plank’s 330 

function), and R1 and R2 are the reflectivity of bands 1 and 2, respectively. 331 



 14 

Following Wooster, Zhukov, and Oertel (2003), we calculated the Volcanic Radiative Power (VRP 332 

in W) by means of the MIR method. Hence, for any individual alerted pixels, the VRPPIX is 333 

calculated as: 334 

 335 

PIXPIXPIX LA=VRP 49.18                       (5) 336 

 337 

where APIX is the pixel size (1 km
2
 for the resampled MODIS pixels). 338 

When two or more pixels (a cluster of pixels) are alerted, the total radiative power is finally 339 

calculated as the sum of the single VRPPIX, so that: 340 

 341 

nalert

PIXVRP=VRP
1

            (6) 342 

 343 

where nalert is the number of alerted pixels. 344 

 345 

3. Algorithm performance 346 

Due to the differences of the nighttime and daytime alert detection procedures, the two algorithms 347 

must be considered separately when testing their performances. 348 

To test the performance of the nighttime algorithm, we followed the methodology of Steffke and 349 

Harris (2011) and we visually inspected all the NTI images in order to identify the presence of a real 350 

hotspot (“Manual” alerts, Table 2). These hand-picked images were used as a reference benchmark 351 

for comparing these results with those obtained by using the algorithm (see algorithm alerts in 352 

Table 2). This is computed in terms of how many automatic detections are effectively consistent 353 

with those manually identified (cf. “Correct” in Table 2). Hence, the difference between the 354 

“Manual” and the “Correct” detections represents the “Missed” detections (Table 2). Finally, when 355 
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the algorithm detected a hotspot that was not validated by visual inspection, we classified it as a 356 

“False” detection (cf. Table 2). 357 

The results of this comparison, are shown in Table 2 where the total number of detections (and their 358 

relative percentage), are subdivided year by year. In addition, in Figure 5 we also show a typical 359 

NTI map for each detection case (Correct, Missed and False detections). 360 

 361 

Figure 5 362 

 363 

The overall comparison suggests that the nighttime algorithm perform correctly on ~79% of the 364 

“Manual” detections, with ~22% of “Missed” cases, and less than 4% of “False” alerts (Table 2). 365 

Noticeably, all the “False” detections consist of small amplitude thermal anomalies (i.e. VRP < 2 366 

MW), and they could be easily eliminated by setting a cutoff at 2 MW. However, such a cutoff will 367 

also produce a strong reduction of the efficiency of the algorithm, with the “Correct” detections 368 

decreasing from ~79% to less than 59%. Since most of the “False” detections are low-amplitude 369 

ones, we preferred to keep some false alerts than missing several real hotspots.  370 

The excellent performance of the nighttime algorithm is also evident by means of comparing the 371 

frequency of alerted detections retrieved both manually (falertManual = Nalert,Manual/NOverpasses) and 372 

automatically (falert,algorithm = Nalert,,algorithm/NOverpasses) (Figure 6(a)). The best linear fit plots close to 373 

the 1:1 ratio (with R
2
= 0.97), thus suggesting an excellent agreement over the whole range of falert. 374 

However, the percentage of “Correct” detections seems to be affected by the level of volcanic 375 

activity (Figure 6(b)), which is basically correlated with the frequency of detection ( falert,algorithm). 376 

This means that the algorithm is most highly efficient during effusive phases, whereas it reduces its 377 

performance during periods of weak to moderate strombolian activity. From Table 2 it also appear 378 

that the number of “False” detection it is not correlated with the level of activity and remain 379 

typically around four cases per year. 380 

 381 
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Figure 6 382 

 383 

The overall effectiveness of the nighttime algorithm can be finally compared with the results 384 

obtained by Coppola et al., (2012) which analyzed nighttime MODIS data at Stromboli volcano 385 

between 2000 and 2012 with a different algorithm. In our previous paper (Coppola et al., 2012) we 386 

found 743 alerts during 9635 overpasses, with an average frequency of alert detection 387 

(falert=Nalert/NOverpasses) equal to 8.5%. Over the same period the new algorithm (section 2.4.1) 388 

detected 1332 alerts (falert=15%; Table 2), thus doubling the detection capability (particularly for 389 

small-amplitude thermal anomalies) with respect to our previous alghorithm (Coppola et al., 2012). 390 

For comparison, during 2000-2012 the MODVOLC system (which use a simple fixed threshold) 391 

detected at Stromboli volcano 442 nighttime alerts (falert=4.5%), half of which identified during the 392 

effusive periods of activity.  393 

 394 

Figure 7 395 

 396 

Testing the performance of the daytime algorithm is more problematic, due to the difficulty in 397 

discriminating “false” and “real” hotspot using the visual inspection of each image. As previously 398 

discussed, this difficulty relies on solar heating effects, so that discriminating a genuine volcanic 399 

hot-spot from a pixel “naturally” hotter than its surrounding is rather challenging. This is 400 

particularly true for low-amplitude thermal anomalies, whose radiance in the MIR channel may 401 

exceed only moderately from their background values. Therefore, there are no effective benchmarks 402 

for testing the daytime algorithm despite visual data inspection. However, this procedure it is useful 403 

to exclude by eye the presence of evident “False” detections.  404 

An alternative approach to evaluate the daytime algorithm takes into account the nighttime 405 

detections as a reference thermal signal. We thus plotted separately the VRP retrieved from 406 

nighttime and daytime data (Figure 7). In particular, we compared the results for a period of high 407 
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thermal emissions (the first seven months of 2003 effusive activity; Figure 7(a)) with those 408 

obtained for a year of lower thermal emissions (characterized by low to mild strombolian activity 409 

during 2009; Figure 7(b)). In both the cases, the trends of thermal outputs confirm an excellent 410 

agreement between the two dataset (daytime and nighttime). Notably, during the effusive phase the 411 

daytime algorithm performed very well in terms of mean VRP (the average value of the VRP 412 

measurements) as well as in tracking the general trend of the eruptive sequence (Figure 7(a)). 413 

However, the number of daytime detections was almost halved with respect to the nighttime 414 

detections, likely due to the minor efficiency of the algorithm in detecting small thermal anomalies.  415 

The minor sensitivity of the daytime algorithm is also evident by comparing the dataset recorded 416 

during one year of typical strombolian activity (i.e. during 2009; Figure 7(b)). The general trend of 417 

daytime data is still consistent with the fluctuations of thermal outputs recorded during the night. 418 

However, the number of alert detections obtained by applying the daytime algorithm drastically 419 

decreased. Again these results demonstrate the limits of the daytime algorithm which is unable to 420 

detect smaller hotspots. In fact the daytime dataset consist of 364 alerts over a total of 9599 421 

overpasses, which gives a mean falert equal to 4% (Table 3). This compares with a frequency of alert 422 

detection of 15% for nighttime images thus enhancing the different efficiency in hotspot detection 423 

of the two algorithms. 424 

 425 

4. Statistical analysis of VRP and thermal regimes 426 

 427 

We here focus our analysis on the nighttime dataset for statistical reasons. This dataset consists of a 428 

large number of observations (1445 data) and shows a higher efficiency in detecting small thermal 429 

anomalies.  430 

As a whole, the entire nighttime dataset indicates that VRP is ranging from < 1 MW to more than 431 

3000 MW, thus spanning over three orders of magnitude. Particularly, its frequency distribution is 432 

extremely peaked and skewed toward higher values, as shown in Figure 8(a). A useful way to 433 
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visualise the shape and properties of such kind of positive, asymmetric distributions consists in 434 

transforming the original data (VRP) into log-transformed data (log[VRP]). This procedure was 435 

previously used to identify distinct thermal regimes at Stromboli and Nyamuragira volcanoes 436 

(Coppola et al., 2012; 2013). 437 

Our new dataset for Stromboli volcano (log(VRP) records) reveals the presence of two main 438 

regimes that intersect around 30 MW (logVRP=7.5; Figure 8(b)). Similarly, Coppola et al., (2012) 439 

found that a VRP of ~50 MW marks a change in the eruptive style of Stromboli, basically identified 440 

with the transition from strombolian-dominated to effusive-dominated activity. The small 441 

discrepancy between the two thresholds is likely due to the higher sensibility of the new algorithm 442 

which is able to detect a larger number of small thermal anomalies (see chapter 3). However our 443 

analysis remains consistent with those previously provided by Coppola et al. (2012) and confirm the 444 

presence, at Stromboli volcano, of two main thermal regimes (strombolian and effusive) 445 

overlapping at 30-50 MW.  446 

Considering the modal value of each regime (the most frequent value), we here estimate that 447 

strombolian and effusive activities are characterised by a typical VRP of 4 MW (logVRP=6.6) and 448 

100 MW (logVRP=8), respectively. Based on this simple relation we may roughly infer that the 449 

energy radiated during twenty-five years of strombolian activity is almost equivalent to those 450 

realised during one year of effusive activity. 451 

 452 

Figure 8 453 

 454 

A deeper investigation on the VRP distribution can be achieved by plotting the log-transformed data 455 

(log(VRP)) within a normal probability plot (Figure 9). Here, a population of events (or 456 

observations) log-normally distributed follows a straight line, as showed by the black dashed line 457 

(Figure 8). Though the most of the dataset follows approximately this kind of distribution we 458 

suggest that some minor inflection points, separating groups of data, may be regarded as changing 459 
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points indicative of distinct radiating regimes. The inferred inflection points appears around 1, 15, 460 

80, 315 and 1000 MW and defines six main radiating regimes hereby named Very Low, Low, 461 

Moderate, High, Very High and Extreme (Figure 9). 462 

 463 

Figure 9 464 

 465 

The “Very Low” radiating regime (VRP < 1 MW) represents about 17 % of the data and includes 466 

essentially the most of the false alerts detected by the algorithm. However, in the 75% of the cases 467 

the detection of a Very Low regime represents a genuine hotspot which may be associated to the 468 

presence of a single vent (with a radius of ~ 1 m and temperature of 950°C) within the summit area 469 

of Stromboli. 470 

The “Low” radiating regime (1 MW < VRP < 15 MW) is the most represented group, comprising 471 

more than 55% of the data. This regime consist of the bulk thermal emissions associated to the 472 

“typical” strombolian activity typically characterized by persistent degassing and frequent explosive 473 

events occurring at one to 15 open vents (Harris and Stevenson, 1997).  474 

This regime gradually shifts toward the “Moderate” radiating regime (15 MW < VRP < 80 MW) 475 

that is represented by about 15% of the data. The “Moderate” regime is typical of periods with more 476 

vigorous strombolian activity which may evolve into short periods of sustained spattering and/or 477 

fountaining or eventually summit overflows (Coppola et al., 2012). We regard the “Moderate” 478 

regime as a transitional state (between strombolian and effusive) characterised by the uprising of the 479 

magma column that is feeding the active vents. Eventually this regime may prelude the transition 480 

into a pure effusive phase (flank eruption) as observed before the 2002-2003 and 2007 eruptions 481 

(Coppola et al., 2012).  482 

The transition from “Moderate” to “High” thermal regimes marks a clear change in the eruptive 483 

style of Stromboli, leading to lava effusion (Figures 9). The “High” radiating regime (80 MW < 484 

VRP < 315 MW) is represented by 10% of the data and it has been observed during the second 485 



 20 

phase of the 2002-2003 eruption (from mid-February 2003 to July 2003) as well as during the most 486 

of the summit overflows recently occurred at Stromboli (Coppola et al., 2012). Notably, during 487 

these periods the effusion of lava typically occurred at a rates < 1m
3
s

-1
 (Calvari et al., 2005, Ripepe 488 

et al., 2005, INGV Report 2011-08-02).  489 

Conversely, the “Very High” radiating regimes (315 MW < VRP < 1000 MW) has been recorded 490 

during the initial phases of the 2002-2003 major eruption (from January to mid-February 2003), as 491 

well as during the 2007 eruption and some major, long-lived overflows (such as those of December 492 

2012 (Figure 9). The “Very High” regime includes only 2% of the observations and it is always 493 

associated with sustained lava effusion with a discharge rates of 1 to 5 m
3
 s

-1 
(Marsella et al., 2009; 494 

Calvari et al., 2010). 495 

Finally, the highest thermal regime (hereby defined as “Extreme”; VRP > 1000 MW) has been 496 

recorded only two times during the last fourteen years on 28 December 2002 and on 27 February 497 

2007 (Figure 9). In particular, these cases, that represents only 0.1% of the data, where recorded 498 

few hours after the beginning of the two major flank eruptions and marks the onset of the main 499 

effusive phases. In these cases, lava discharge rate were higher than 10 m
3
s

-1
 (Calvari et al., 2005; 500 

Neri and Lanzafame, 2008), and accompanied the initial and very fast emplacement of lava flows 501 

along the “Sciara del Fuoco”. We thus infer that the detection of such high VRP (>1000 MW) likely 502 

indicates the onset of a flank eruption at Stromboli volcano. A complete timeseries of VRP recorded 503 

between 2000 and 2012 (nighttime data only) is shown in Figure 10 where the colour of each 504 

detection (stem) is function of the ongoing thermal regime. 505 

 506 

Figure 10 507 

 508 

5. Discussion 509 

 510 
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Coppola et al., (2012) reported that all the detection above 50 MW were coeval with major episodes 511 

of spattering and lava overflows. However, the whole cross validation of the thermal activity levels 512 

described above is challenging due to limited field observations and related reports. To overcome 513 

these problems and to better understand the thermal regimes and their bearings with volcanic 514 

activity levels, it is worth to compare thermal MODIS outputs with the explosive levels recorded 515 

(on a daily basis since 2005) by the Laboratorio di Geofisica Sperimentale of the University of 516 

Florence (cf., http://lgs.geo.unifi.it/) and sent to the Italian Civil Protection Department (DPC). The 517 

explosive level is based on a data set of geophysical parameters (seismic, infrasound, number of 518 

explosions, deformation) recorded for over a decade: it is subdivided into five levels, representing 519 

an average assessment of  the explosive intensity ( i.e., 0 - Not determined; 1 – Low; 2 – Moderate; 520 

3 – High; 4 – Very high). The timeseries reported in Figure 11, indicates an overall correlation 521 

between thermal and explosive levels (such as their averages on a weekly basis), with a general 522 

increase of the thermal output during periods characterised by high explosive activity.  523 

 524 

Figure 11 525 

 526 

However, this comparison also suggests that different periods, or different types of activity show 527 

rather peculiar links between thermal and explosive levels. This is particularly evident by plotting 528 

the explosive levels vs. the thermal levels, as shown in Figure 12. Here, several distinct fields may 529 

be visualised: each one of them characterises a specific type of volcanic activity or eruptive period. 530 

For instance, the onset of the 2007 effusive eruption was characterized by an “extreme” thermal 531 

level, associated to a “very high” explosive level (star in Figure 12). Conversely, the subsequent 532 

flank effusion was characterised by very high thermal levels coeval with a low explosive activity 533 

(red circles). This particular relationship was likely due to the sharp ceasing of the explosive 534 

activity at summit vents, due to the propagation of an effusive fracture down to the central part of 535 

NE flank; this event drained the lava out of the crater area and was followed by a sharp decrease in 536 

http://lgs.geo.unifi.it/
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geophysical and geochemical parameters (e.g., Ripepe et al., 2009; Cigolini et al., 2013). An 537 

additional case is given by the major summit overflows that occurred between 2008 and 2012 538 

(black arrows in Figure 11). Here, the high thermal levels were associated to a moderate-high 539 

explosive activity (black circles), thus suggesting that summit outflows were accompanied to a 540 

sustained explosive activity. Finally, the dataset suggests that the ratio between thermal and 541 

explosive levels were somehow different during the 2005-2006 and the 2008-2012 eruptive periods 542 

(blue and pink circles, respectively): after the 2007 eruption the thermal to explosive ratio was 543 

generally higher than  before the eruption, thus suggesting that some changes occurred in the 544 

eruptive dynamics. 545 

 546 

Figure 12 547 

 548 

6. Conclusions 549 

We have developed a new algorithm which is specifically addressed to the detection of small hot 550 

spot associated with thermal anomalies typical of strombolian activity. In particular, the new 551 

algorithm was developed on the basis of the constant position of thermal anomalies that 552 

substantially coincides with the active summit vents. Moreover, it includes principles of contextual, 553 

temporal and spectral hot spot detection approaches/methods. The application of this algorithm in 554 

analyzing Stromboli activity is very efficient (up to 95 % of correct alerts) and reduces the rate of 555 

false alerts (typically around four per year), especially when applied to nighttime data. The high 556 

efficiency in tracking small hot spot (< 1 MW), coupled with the analysis of MODIS derived 557 

thermal records for over a decade, gave us the opportunity to build up an exhaustive dataset of 558 

volcanic radiative power (VRP) measurements. Notably, the frequency distribution and the 559 

probability plot of these thermal records allows the definition of distinct radiating regimes which 560 

are closely associated to different levels of volcanic activity. We thus suggest that the refinement of 561 

a near real time processing scheme allow us  to discriminate, on the basis of satellite-based thermal 562 
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monitoring, the changes in strombolian activity: such as, for instance, the occurrence of summit 563 

overflows as well as the possible onset of lateral flank eruptions. Finally, we trust that a wise 564 

comparison of the retrieved thermal outputs with other geophysical and geochemical parameters, is 565 

an additional key-factor for better understanding the eruptive dynamics at Stromboli. However, 566 

similar approaches could be taken in monitoring other persistently active volcanoes. 567 

 568 
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List of parameters and specific definitions used in the algorithm 

Parameter Definition Explanation

ROIs Region of Inerest (s=1,2 or 3)

NTI Normalised Thermal Index Equation 1 applied pixel per pixel on nighttime images

NTI corr Normalised Thermal Index corrected for solar reflection Equation 3 applied pixel per pixel on daytime images

NTI ROIs NTI of pixels within ROIs Equation 1 applied to the pixels of  ROIs

NTI Ref2 Reference  pixels of ROI2 Pixels of ROI2 satisfiyng Condition 2

NTI Max2 Maximum NTI of NTIRef2

NTI Mean2 Mean NTI of NTIRef2

NTI Std2 Standard deviation of NTIRef2

NTI thres1 Empirical upper NTI threshold (nighttime algorithm) Equation 2 with parameters settled in Table 1

NTI thres2 Empirical lower NTI threshold (nighttime algorithm) Equation 2 with parameters settled in Table 1

NTI thres3 Empirical upper NTI threshold (daytime algorithm) Equation 2 with parameters settled in Table 1

Alert1 Alerted pixel(s) Pixel(s) flagged as "alert" using Test 1 (nighttime algorithm)

Alert2 Alerted pixel(s) Pixel(s) flagged as "alert" using Test 2 (nighttime algorithm)

Alert3 Alerted pixel(s) Pixel(s) flagged as "alert" using Test 3 (daytime algorithm)

cloud Cloudy pixel(s) Pixel(s) considered as "cloudy" using Conditions 3 and 4

L 4alert MIR radiance (at 4mm) of alerted pixel(s)

L 4bk Backgound MIR radiance (at 4mm) of alerted pixel(s)
arithmetic mean of all the pixels surrounding the alerted one (or 

around the alerted cluster) not contaminated by clouds

L 4PIX "Above background" MIR radiance of alerted pixel(s) Equation 4

VRP PIX Volcanic Radiative Power of alerted pixel(s) Equation 5
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 TABLE 1 - Parameters used to define the NTI thresholds (Equation 2)  

       

 Parameter Unit NTIThresh1 NTIThresh2 NTIThresh3  

            

       

 
A [NTI variation] adimensional 0.02 0.02 0.07 

 

 
P [cycle length] day

-1
 /183 /183 /183

 

 
[phase shift] day 121 121 106 

 

 
C [NTI baseline] adimensional -0.865 -0.915 -0.82 
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TABLE 2 - Summary of the nighttime alerts detected manually ("Manual") and automatically 

by the algorithm 

        

               

 Year Overpasses Manual
a
 Algorithm

a
    

            

     Correct
1
 Missed

1
 False

2
 

  no. no. (%) no. (%) no. (%) no. (%) no. (%) 
               

        

 2000 339 37 (10.9) 32 (9.4) 25 (67.6) 12 (32.4) 7 (21.8) 

 2001 406 14 (3.4) 16 (3.9) 10 (71.4) 4 (28.6) 6 (37.5) 

 2002 597 72 (12.1) 54 (9.0) 50 (69.4) 22 (30.6) 4 (7.4) 

 2003 818 386 (47.2) 370 (45.2) 364 (94.3) 22 (5.7) 6 (1.6) 

 2004 833 77 (9.2) 46 (5.5) 45 (58.4) 32 (41.6) 1 (2.2) 

 2005 836 70 (8.4) 43 (5.1) 39 (55.7) 31 (44.3) 4 (9.3) 

 2006 819 124 (15.1) 99 (12.1) 91 (73.4) 33 (26.6) 8 (8.1) 

 2007 822 197 (24.0) 179 (21.8) 175 (88.8) 22 (11.2) 4 (2.2) 

 2008 827 166 (20.1) 127 (15.4) 125 (75.3) 41 (24.7) 2 (1.6) 

 2009 835 199 (23.8) 140 (16.8) 140 (70.3) 59 (29.6) 0 (0.00) 

 2010 836 103 (12.3) 84 (10.0) 83 (80.6) 20 (19.4) 1 (1.2) 

 2011 837 179 (21.4) 142 (17.0) 138 (77.1) 41 (22.9) 4 (2.8) 

 2012 830 155 (18.7) 113 (13.6) 110 (71.0) 45 (29.0) 3 (2.6) 

        

 TOTAL 9635 1779 (18.5) 1445 (15.0) 1395 (78.4) 384 (21.6) 50 (3.5) 

               

        

 a - percentages are calculated as the number of detections over the number of the overpasses  

 1 - percentages are calculated from the fraction of "Correct" and "Missed" detections, with respect to the 

  "Manual" detections      

 2 - percentages are calculated from the fraction of "False" detections with respect to the “Algorithm” detections 
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TABLE 3 - Summary of daytime thermal alerts 

detected by the algorithm 
 

            

 Year Overpasses  Algorithm    

  no.  no. %
a
  

            

       

 2000 320  3 0.9%  

 2001 397  2 0.5%  

 2002 574  13 2.3%  

 2003 809  172 21.3%  

 2004 813  11 1.4%  

 2005 842  5 0.6%  

 2006 830  11 1.3%  

 2007 836  48 5.7%  

 2008 842  11 1.3%  

 2009 848  27 3.2%  

 2010 821  15 1.8%  

 2011 823  28 3.4%  

 2012 844  18 2.1%  

       

 TOTAL 9599  364 3.8%  

            

       

 a - percentages are calculated as the number of detections over  

  the number of the overpasses     
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Figure Captions 811 

 812 

Figure 1. Location of Stromboli volcano in the Southern Tyrrhenian sea, 813 

 814 

Figure 2. (a) Example of NTI Map obtained from nighttime images (acquired on June 16, 2006 over 815 

Stromboli). Note the thermal anomalous pixels (bright pixels) over the summit of the volcano; (b) 816 

Regions of Interest (ROIs) defined for the hot-spot detection scheme (see text for explanation). 817 

 818 

Figure 3. (a) NTI time-series for the 2006 nighttime data over Stromboli. Each point represents the 819 

NTI of a single pixel. Different colors refer to the three distinct ROIs (see the electronic text for the 820 

colors). The two sinusoidal lines envelop the fluctuations of the NTI due to the seasonal trend; (b) 821 

The same NTI time-series with the alerts detected by the algorithm overlapped. Alert1 and Alert2 822 

are obtained using the Test 1 and 2 respectively (see the text for explanation). For colors refer to the 823 

electronic copy.  824 

 825 

 826 

Figure 4. (a) NTI time-series relative to the 2006 daytime data over Stromboli. Each point represent 827 

the NTI of a pixel. The different colors refers to the three distinct ROIs (see the electronic version 828 

for the colors); (b) the NTI timeseries corrected for solar reflection according to the Equation (3). 829 

The alerts detected by the daytime algorithm (obtained using the Test 3) are overlapped. For colors 830 

refer to the electronic copy.  831 

 832 

 833 

Figure 5. (a)  Zoomed view of selected nighttime NTI map (ROI2 and ROI3 only)  recorded on 834 

February 12, 2006; any anomaly is visible over Stromboli volcano and the island appears cooler 835 

than the surrounding area. Three other examples of nighttime NTI maps represent the following 836 



 34 

cases: Correct (b), Missed (c) and False (d) detections (resulting from the nighttime algorithm). The 837 

squares marks the location of the Correct (red), Missed (blue) and False (white) pixels. For colors 838 

refer to the electronic copy.  839 

 840 

 841 

Figure 6. (a) Relationship between the frequency of alert detection retrieved manually (falertManual) 842 

and automatically (falert,algorithm); (b) percentage of “Correct” detection as a function of falert,algorithm. 843 

The algorithm performs almost optimally during period characterized by falert,algorithm >0.5. 844 

 845 

Figure 7. (a) Comparison of thermal outputs during 2003 (a) and 2009; (b) the nighttime algorithm 846 

(blue) and the daytime algorithm (red) are reported. For colors refer to the electronic copy.  847 

 848 

 849 

Figure 8. (a) Frequency histogram of VRP data recorded during 2000-2013 (nighttime only); (b) 850 

frequency histogram of log-transformed data (logVRP) enhancing the presence of two main regimes 851 

associated to the strombolian and effusive activity, respectively. These two regimes intersect at 852 

about 30 MW (logVRP=7.5). 853 

 854 

Figure 9. Probability plot of logVRP. Black dashed line represent the best fit regression by 855 

assuming a pure lognormal distribution. The vertical lines represent the inferred inflection points 856 

used to define 6 distinct thermal regimes: very low, low, moderate, high, very high and extreme 857 

thermal outputs. Note that the two VRP recorded during the onset of the effusive flank eruption 858 

(violet stars) are the only “extreme” values detected between 2000 and 2013. The threshold of 30 859 

MW is in the middle of the Moderate regime, which is ascribed to the transition between 860 

strombolian-dominated and effusive-dominated activity, respectively. For colors refer to the 861 

electronic copy.  862 
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 863 

 864 

Figure 10. VRP timeseries (on log scale) recorded at Stromboli between 2000 and 2013. Different 865 

colours refer to the thermal regimes previously defined (see the text for explanation). The red 866 

horizontal line is the threshold at 30 MW separating the strombolian activity from lava effusion. For 867 

colors refer to the electronic copy.  868 

 869 

Figure 11. Thermal activity levels (left axis; red line) and explosive levels (right axis; gray bars) 870 

recorded between 2005 and 2012. The different colour scales on the two axes refer to thermal 871 

regimes (obtained by MODIS, left hand-side) and explosive regimes (right hand-side, evaluated by 872 

the Laboratorio di Geofisica Sperimentale of University of Florence; http://lgs.geo.unifi.it/) based 873 

on multiparametric recordings (seismic, infrasonic, number of explosions, deformation). The black 874 

arrows indicate the timing of major overflows. The occurrence of the February 2007 eruption is 875 

marked by a sharp increase in thermal levels coeval with a decrease in explosive activity. For 876 

colours refer to the electronic copy.  877 

 878 

Figure 12. Scatter-plot of explosive vs. thermal levels of activity recorded at Stromboli between 879 

2005 and 2012. Note how different kind of activities (such us eruption onset, effusive flank 880 

eruption, major overflows, etc.) fall within different fields (see text for details). For colours refer to 881 

the electronic copy.  882 
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Fig. 1 889 
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Fig. 2 891 
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Fig. 3 894 
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Fig. 4 896 
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Fig. 5 899 
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Fig. 6 902 
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Fig. 7 904 

 905 

 906 



 39 

Fig. 8 907 
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Fig. 9 910 
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Fig. 10 914 
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Fig. 11 917 
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Fig. 12 927 
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