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Abstract

By means of a generalized version of Poincaré-Birkhoff theorem, we prove the
existence and multiplicity of periodic solutions for a hamiltonian system modelling
the evolution of advected particles in a two-dimensional ideal fluid inside a circular
domain and under the action of a point vortex with prescribed periodic trajectory.
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1 Introduction and main result

We consider the motion of a two-dimensional ideal fluid in a circular domain of radius
R > 0 subjected to the action of a moving point vortex whose position, denoted as
z(t), is a prescribed T -periodic function of time. This model plays an important role
in Fluid Mechanics as an idealized model of the stirring of a fluid inside a cylindrical
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tank by an agitator. A fundamental reference for this problem is the seminal paper [1],
where the concept of chaotic advection was coined. Following the classical Lagrangian
representation, the mathematical model under consideration is the planar system

ζ̇ =
Γ

2πi

(
|z(t)|2 −R2

(ζ − z(t))(ζz(t)−R2)

)
, (1)

where the complex variable ζ represents the evolution on the position of a fluid particle
induced by the so-called stirring protocol z(t). System (1) is a T -periodically forced
planar system with hamiltonian structure, where the stream function

Ψ(t, ζ) =
Γ

2π
ln

∣∣∣∣ ζ − z(t)
z(t)ζ −R2

∣∣∣∣
plays the role of the hamiltonian.

The main contribution of Aref in [1] was to show that the flow may experience
regular or chaotic regimes depending on the particular stirring protocol. For instance,
system (1) is integrable if z(t) is constant or z(t) = z0 exp(iΩt) but it is chaotic if z(t) is
piecewise constant (blinking protocol in the related literature). A naive way to measure
the influence of the ideas presented in [1] is to note the more than a thousand citations
of this inspiring paper up to the date. Aref’s blinking protocol is piecewise integrable
and the theory of linked twist maps permits a good analytical study of the underlying
dynamics (see for instance [4, 9]). More recently, other strategies of stirring have been
studied, for instance the figure-eight or the epitrochoidal protocol [8], but only from a
numerical point of view. Our contribution in this paper is to prove that both regular and
chaotic regimes share a common dynamical feature, namely the existence of an infinite
number of periodic solutions labeled by the number of revolutions around the vortex in
the course of a period.

To be precise, let us fix z : R→ C a T -periodic function such that |z(t)| < R for all
t. For a periodic solution ζ of (1) with period kT , the winding number of ζ is defined as

rotkT (ζ) =
1

2πi

∫ kT

0

d(ζ(t)− z(t))
ζ(t)− z(t)

and provides the number of revolutions of ζ(t) around the vortex point z(t) in the time
interval [0, kT ]. We proceed to state our main result.

Theorem 1.1. Let z : R→ C be a T -periodic function of class C1, such that |z(t)| < R
for all t. Then, for every integer k ≥ 1, system (1) has infinitely many kT -periodic
solutions lying in the disk BR(0). More precisely, for every integer k ≥ 1, there exists an
integer j∗k such that, for every integer j ≥ j∗k , system (1) has two kT -periodic solutions

ζ
(1)
k,j (t), ζ

(2)
k,j (t) such that, for i = 1, 2,

‖ζ(i)k,j‖∞ ≤ R and rotkT (ζ
(i)
k,j) = j. (2)
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Moreover, for every k ≥ 1, j ≥ j∗k and i = 1, 2,

lim
j→+∞

|ζ(i)k,j(t)− z(t)| = 0, uniformly in t ∈ [0, kT ]. (3)

In particular, for k = 1, we find that (1) has infinitely many T -periodic solutions. For
k > 1, we find subharmonic solutions of order k (i.e., kT -periodic solutions which are not
lT -periodic for any l = 1, . . . , k− 1) provided that j and k are relatively prime integers;

we remark that in this case it is also possible to show that ζ
(1)
k,j (t), ζ

(2)
k,j (t) are not in the

same periodicity class (namely, ζ
(1)
k,j (·) 6≡ ζ

(2)
k,j (·+ lT ) for every integer l = 1, . . . , k − 1).

It is worth to point out that the regularity condition on the stirring protocol plays
an important role. In fact, Theorem 1.1 is not true for a discontinuous z(t) (e.g. the
blinking protocol), because condition (3) would imply unphysical discontinuous particle
trajectories. The existence and multiplicity of periodic solutions for a general protocol,
as well as their stability properties, remains as an open problem. We will come back to
this issue in the final section.

The rest of the paper is divided in three section. In Section 2 the Poincaré section
is defined, whereas Section 3 contains the proof of Theorem 1.1 by an application of a
generalized version of Poincaré-Birkhoff Theorem. The paper is concluded by Section
4 with a discussion on the physical meaning of the presented results and some other
remarks.

2 Definition of the Poincaré section.

For our purposes, it is convenient to write system (1) as

ζ̇ =
Γ

2πi

 1

ζ − z(t)
− 1

ζ − R2

|z(t)|2 z(t)

 . (4)

In this form, the first term at the right models the action of the vortex whereas the
second term corresponds to the wall influence on the flow. Identifying C with R2 and
setting ζ = (x, y), z(t) = (a(t), b(t)), we can rewrite system (4) in real notation as

ẋ =
Γ

2π

− y − b(t)
|ζ − z(t)|2

+
y − R2

|z(t)|2 b(t)∣∣∣ζ − R2

|z(t)|2 z(t)
∣∣∣2


ẏ =
Γ

2π

 x− a(t)

|ζ − z(t)|2
−

x− R2

|z(t)|2a(t)∣∣∣ζ − R2

|z(t)|2 z(t)
∣∣∣2
,

ζ = (x, y) ∈ R2. (5)
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Let BR ⊂ R2 be the closed disk centered at the origin with radius R. First, we recall
a well known property of system (5).

Lemma 2.1. Let ζ : J → R2 be a solution of (5), with J ⊂ R its maximal interval of
definition. If |ζ(t0)| ≤ R for some t0 ∈ J , then |ζ(t)| ≤ R for every t ∈ J , that is to
say, the disk BR is invariant for the flow associated to (5).

Proof. Since BR = {(x, y) ∈ R2 | V (x, y) ≤ R2} for V (x, y) = x2 + y2, by standard
result of flow-invariant sets, it is enough to prove that

〈Z(t, x, y)|∇V (x, y)〉 = 0, for every t ∈ [0, T ], x2 + y2 = R2,

where Z(t, x, y) denotes the vector field of the differential system (5). With simple
computations, we find indeed

〈Z(t, x, y)|∇V (x, y)〉 =
1

2

(
X(t, x, y)x+ Y (t, x, y)y

)
=

Γ

π

(
b(t)x− a(t)y

)
∣∣∣ζ − R2

|z(t)|2 z(t)
∣∣∣2 − R2

|z(t)|2 |ζ − z(t)|
2

|ζ − z(t)|2
∣∣∣ζ − R2

|z(t)|2 z(t)
∣∣∣2


=

Γ

π

(
b(t)x− a(t)y

)
(

1− R2

|z(t)|2

)(
|ζ|2 − R2

|z(t)|2 |z(t)|
2
)

|ζ − z(t)|2
∣∣∣ζ − R2

|z(t)|2 z(t)
∣∣∣2


= 0.

From now on, we will study solutions to system (5) belonging to the invariant disk

BR; accordingly, the singularity of the vector field at ζ = R2

|z(t)|2 z(t) (for which |ζ| > R)

will not play any role. On the contrary, we will take advantage of the singularity at
ζ = z(t). To this aim, it is useful to introduce the change of variable

η = ζ − z(t)

and set η = (u, v), so that system (5) is transformed into

u̇ =
Γ

2π

− v

|η|2
+

v + b(t)
(

1− R2

|z(t)|2

)
∣∣∣η + z(t)

(
1− R2

|z(t)|2

)∣∣∣2
− ȧ(t)

v̇ =
Γ

2π

 u

|η|2
−

u+ a(t)
(

1− R2

|z(t)|2

)
∣∣∣η + z(t)

(
1− R2

|z(t)|2

)∣∣∣2
− ḃ(t),

η = (u, v) ∈ R2. (6)
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In the following, given η0 6= 0, we will denote by η(·; η0) the unique solution of (6)
satisfying the initial condition η(0) = η0.

Lemma 2.2. There exists r > 0 such that, if 0 < |η0| ≤ r, then the solution η(·; η0)
exists on R and satisfies |η(t; η0) + z(t)| ≤ R, for every t ∈ R.

Proof. Define
r = R− |z(0)| > 0.

Then, for 0 < |η0| ≤ r, the function ζ(t) = η(t; η0) + z(t) solves (5) and

|ζ(0)| ≤ |η0|+ |z(0)| ≤ r + |z(0)| = R.

From Lemma 2.1, we have the a priori bound

|η(t; η0) + z(t)| ≤ R, for every t ∈ J, (7)

where J ⊂ R denotes the maximal interval of definition of η(t; η0). Our objective is
to show that actually J = R, completing the proof of the lemma. Notice that, in
view of the a priori bound (7), we just have to show that η(t; η0) cannot reach the
singularity η = 0 in finite time. First, we are going to consider the particular case
of z(t) = (a(t), b(t)) belonging to the C2 class, then the general case is proved by a
standard limiting argument.

Define the function (to simplify the notation, we take advantage here of both real
and complex notation)

K(t, η) =
Γ

2π

(
ln |η| − ln

∣∣∣z(t)(η + z(t))−R2
∣∣∣)+ ȧ(t)v − ḃ(t)u

and set k(t) = K(t, η(t; η0)) for t ∈ J . Since K(t, η) is a hamiltonian function for (6),
we have

〈∇Kη(t, η(t; η0))|η′(t, η0)〉 = 0,

so that (writing for simplicity η(t; η0) = η(t)),

|k′(t)| =

∣∣∣∣∂K∂t (t, η(t; η0))

∣∣∣∣
=

∣∣∣∣∣∣∣−
Γ

2π

〈
z(t)(η + z(t))−R2

∣∣γ(t)
〉∣∣∣z(t)(η + z(t))−R2

∣∣∣2 + ä(t)v(t)− b̈(t)u(t)

∣∣∣∣∣∣∣
≤ Γ

2π

|γ(t)|∣∣∣z(t)(η + z(t))−R2
∣∣∣ + |ä(t)v(t)− b̈(t)u(t)|,
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being γ(t) = z′(t)η(t) + 2〈z(t)|z′(t)〉. From the a priori bound (7) one gets∣∣∣z(t)(η + z(t))−R2
∣∣∣ ≥ R2 −

∣∣∣z(t)(η(t) + z(t))
∣∣∣

≥ R
(
R− |z(t)|

)
> 0, (8)

so there exists M > 0 (independent on η0) such that |k′(t)| ≤M for every t ∈ J . Hence,

|K(t, η(t))−K(0, η0)| ≤M |t|, for every t ∈ J. (9)

Since K(t, η) is unbounded near η = 0, this shows that η(t) cannot reach the singularity
in finite time, thus concluding the proof. For the general C1 case, one can approach
uniformly z(t) by C2 functions, and the result follows from the continuous dependence
of the solutions of the initial value problem with respect to parameters.

Fix now an integer k ≥ 1. We can then define the Poincaré map Ψk at time kT as

Br \ {0} 3 η0 7→ Ψk(η0) = η(kT ; η0).

By the fundamental theory of ODEs, it turns out that Ψk is a global homeomorphism
of Br \ {0} onto Ψk(Br \ {0}), preserving area and orientation; moreover, from (9) we
see that Ψk can be extended (as an area and orientation preserving homeomorphism)
to the whole disc Br by setting Ψk(0) = 0.

3 Proof of the main result.

By Section 2, for any integer k ≥ 1 there exists a well-defined homeomorphism Ψk :
Br → Ψk(Br) preserving area and orientation. Moreover, Ψk(0) = 0. For the reader’s
convenience, we recall here the generalized version of Poincaré-Birkhoff theorem which
we are going to apply (see [5, 7]).

Generalized Poincaré-Birkhoff theorem. Let 0 < r1 < r2 and set A = {(x, y) ∈
R2 | r21 ≤ x2 + y2 ≤ r22}. Let Ψ : Br2 → Ψ(Br2) be an area-preserving homeomorphism
with Ψ(0) = 0. Assume that, on the universal covering space {(ρ, θ) ∈ R2 | ρ > 0} with
covering projection Π(ρ, θ) = (ρ cos θ, ρ sin θ), Ψ|A has a lifting of the form

Ψ̃(ρ, θ) = (R(ρ, θ), θ + γ(ρ, θ)),

being R(ρ, θ), γ(ρ, θ) continuous functions 2π-periodic in the second variable. Finally,
suppose that, for a suitable j ∈ Z, the twist condition

γ(r1, θ) > 2πj and γ(r2, θ) < 2πj, for every θ ∈ R,

is fulfilled. Then there exist two distinct points (ρ(1), θ(1)), (ρ(2), θ(2)) ∈ ]r1, r2[×[0, 2π[
such that (for i = 1, 2) Ψ̃(ρ(i), θ(i)) = (ρ(i), θ(i) + 2πj).
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To apply this theorem, we therefore write

η(t) = (ρ(t) cos θ(t), ρ(t) sin θ(t)), ρ(t) > 0,

transforming system (6) into {
ρ̇ = I(t, ρ, θ)

θ̇ = Θ(t, ρ, θ),
(10)

being

I(t, ρ, θ) =
Γ

2π

 (b(t) cos θ − a(t) sin θ)
(

1− R2

|z(t)|2

)
∣∣∣(ρ cos θ, ρ sin θ) + z(t)

(
1− R2

|z(t)|2

)∣∣∣2
− ȧ(t) cos θ − ḃ(t) sin θ

Θ(t, ρ, θ) =
Γ

2π

 1

ρ2
−
ρ+ (a(t) cos θ + b(t) sin θ)

(
1− R2

|z(t)|2

)
ρ
∣∣∣(ρ cos θ, ρ sin θ) + z(t)

(
1− R2

|z(t)|2

)∣∣∣2
+

ȧ(t) sin θ − ḃ(t) cos θ

ρ
.

We denote by (ρ(·; ρ0, θ0), θ(·; ρ, θ0)) the unique solution to (10) satisfying the initial
condition (ρ(0), θ(0)) = (ρ0, θ0). In view of Lemma 2.2, such solutions globally exist
(and ρ(t) 6= 0) if ρ0 ∈ ]0, r].

Define j∗k ≥ 1 as the smallest integer such that

θ(kT ; r, θ0)− θ(0; r, θ0) < 2πj∗k , for every θ0 ∈ [0, 2π[ . (11)

Fix now an integer j ≥ j∗k ; we claim that there exists rj ∈ ]0, r[ such that

θ(kT ; rj , θ0)− θ(0; rj , θ0) > 2πj, for every θ0 ∈ [0, 2π[ . (12)

Indeed, arguing similarly as in (8) we see that∣∣∣(ρ cos θ, ρ sin θ) + z(t)
(

1− R2

|z(t)|2

)∣∣∣2
is bounded away from zero for ρ ∈ ]0, r]; accordingly, we can find r̂j ∈ ]0, r[ such that

Θ(t, ρ, θ) >
2πj

kT
, for every t ∈ R, ρ ∈ ]0, r̂j ], θ ∈ R. (13)

Now, a well-known argument (usually referred to as “elastic property”), relying on the
continuous dependence of the solutions from the initial conditions and on the fact that
Ψk(0) = 0, yields the existence of rj ∈ ]0, r̂j [ such that

ρ0 = rj =⇒ ρ(t; ρ0, θ0) ≤ r̂j , for every t ∈ [0, kT ], θ0 ∈ [0, 2π[ .
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Hence (12) follows from (13), after integrating the second equation in (10).
In view of (11) and (12), the Poincaré-Birkhoff fixed point theorem implies the

existence of at least two distinct points (ρ
(1)
k,j , θ

(1)
k,j), (ρ

(2)
k,j , θ

(2)
k,j) ∈ ]rj , r[×[0, 2π[ such that,

for i = 1, 2,

ρ(kT ; ρ
(i)
k,j , θ

(i)
k,j) = ρ(0; ρ

(i)
k,j , θ

(i)
k,j), θ(kT ; ρ

(i)
k,j , θ

(i)
k,j) = θ(0; ρ

(i)
k,j , θ

(i)
k,j) + 2πj. (14)

Accordingly,

ζ
(i)
k,j(t) = η(t; (ρ

(i)
k,j cos θ

(i)
k,j , ρ

(i)
k,j sin θ

(i)
k,j)) + z(t)

is a kT -periodic solution to (5) such that, in view of Lemma 2.2, ‖ζ(i)k,j‖∞ ≤ R.
The second relation in (2) is just a consequence of (14), using complex notation.

Indeed, ζ
(i)
k,j(t)− z(t) = ρ(t; ρ

(i)
k,j , θ

(i)
k,j)e

iθ(t;ρ
(i)
k,j ,θ

(i)
k,j) so that, with easy computations,

rotkT (ζ
(i)
k,j) =

1

2πi

∫ kT

0

d(ζ
(i)
k,j(t)− z(t))

ζ
(i)
k,j(t)− z(t)

=
1

2πi

∫ kT

0

(
d

dt

(
log(ρ(t; ρ

(i)
k,j , θ

(i)
k,j))

)
+ iθ′(t; ρ

(i)
k,j , θ

(i)
k,j)

)
dt = j.

From this information, we can conclude that (3) holds true. Indeed, the continuity of
the winding number as a function ζ 7→ rotkT (ζ) implies that an upper bound exists
for the winding numbers of any family of solutions uniformly bounded away from zero.

Hence, the solutions {ζ(i)k,j(t)}j (i = 1, 2) cannot be bounded away from zero and the
previous “elastic property” implies that they converge to zero uniformly.

4 Discussion and final remarks.

We have considered a simple 2D model of the stirring of a fluid inside a cylindrical tank
by an agitator or rod following a smooth (regular) periodic protocol. The associated
mathematical model is a non-autonomous planar hamiltonian system with a moving
singularity (vortex). By a non-standard application of Poincaré-Birkhoff theorem, we
prove the existence of an infinite number of periodic and subharmonic solutions orbiting
around the moving vortex. Intuitively, a vortex induces a singularity on the angular
variable, twisting the flux around it, so Poincaré-Birkhoff Theorem becomes a natural
tool of potential application here, and in fact in more general contexts like arbitrary
boundary domains [6, 10] or the presence of multiple vortices [2, 3]. Such extensions
will be the subject of future works.

The physical relevance of periodic motions of particles in models of fluid mixing is
nicely described in [9, Section 2]. Typically, the periodic orbits obtained by means of
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the Poincaré-Birkhoff theorem are inscribed in a classical KAM scenario and conforms
the “skeleton” of global mixing properties. Stable periodic orbits produce “stability
islands” around them, whereas hyperbolic (unstable) orbits provide invariant (stable
and unstable) manifolds acting as flux barriers and, on the other hand, may support
Smale horseshoes. Therefore, it is natural to conjecture that our periodic orbits should
be encapsulated by quasiperiodic orbits (KAM tori) conforming the ubiquitous KAM
dynamics around the vortex. It should be easy to find numerical evidence of this con-
jecture, although a rigorous mathematical proof may be very difficult. Anyway, the
mathematical results presented in this paper have a clear physical interpretation: for
any smooth periodic stirring protocol, there are infinitely many fluid particles rotating
aroung the agitator and following it all the time (“sticky particles”). Note that this fact
is independent of how fast the agitator is moved. In this sense, one can say that a discon-
tinuous protocol (like the classical Aref’s blinking protocol) would be more convenient
for an efficient mixing.
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[5] W.Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983),
341–346.

[6] P. Franzese, L. Zannetti, Advection by a point vortex in closed domains, Eur. J. of Mech. B-Fluids
12 (1993), 1–24.
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