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Abstract

We have applied the Method of Increments and the periodic Local-MP2 approach to the

study of the (110) surface of magnesium fluoride, a system of significant interest in heteroge-

neous catalysis. After careful assessment of the approximations inherent in both methods, the

two schemes, though conceptually different, are shown to yield nearly identical results. This

remains true even when analysed in fine detail through partition of the individual contribution

to the total energy. This kind of partitioning also provides thorough insight into the electron

correlation effects underlying the surface formation process, which are discussed in detail.
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1 Introduction

Magnesium fluoride has been known for its transparency in a broad range of wavelengths for a long

time, and thus has been used mainly for the construction of high quality lenses and optical devices.

In recent years, the sol-gel synthesis of MgF2 as high-surface nanoparticles has aroused interest

due to its potential application in heterogeneous catalysis.1 The shape of such nanoparticles is key

in determining their properties as a catalyst – and is dictated by the surface formation energy of

different cuts of the bulk crystal.2

The determination of surface energies is, however, quite a challenging task, both from the

experimental and theoretical point of view. Experimentally, surface energies are often obtained by

cleavage of planes in a single crystal – not an easy task by itself – and the results are often quite

temperature dependent. Consequently, experimental results differ by 10-40 % already for simpler

systems.3–6

From the theoretical side, it is challenging to treat different kinds of interaction, such as ionic,

covalent, purely dispersive interactions, at equally high level. The widely adopted density func-

tional theory (DFT) with common functionals is efficient and very often features a reasonable

high accuracy.7,8 However, existing studies indicate that DFT surface energies depend strongly on

the applied exchange-correlation functional.9 This may be due to an insufficient description of the

non-local electron correlation. For weak interactions, like physisorption, standard DFT functionals

tend to underestimate binding energies.10–13 The reliability of DFT results has been tremendously

improved by the introduction of dispersion corrections, both empirical14–16 and non-empirical17,18

ones, as well as non-local DFT functionals (e.g. vdw-DF19 and VV1020) and the recent MBD ap-

proach by Tkatchenko and co-workers.21 This, however, at the price of partly losing the first prin-

ciple character of the method. The most recent developments beyond DFT, such as doubly-hybrid

functionals,22–24 have not been tested on surface energies so far.

Standard implementations of high-level wave function-based electron correlation methods achieve

often high accuracies but scale unfavorably with system size.25 Efficient electron correlation schemes,

on the other hand, are often based on localized orbitals and, thus, exploit the local character of the
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Figure 1: MgF2 unit cell in the rutile structure. The red, transparent plane indicates the (110) plane.
Green (large) circles represent fluorine ions; black (small) circles indicate magnesium ions. a and
c are the two free lattice parameters.

correlation hole. Stollhof and Fulde were among the first ones to introduce the idea of localized or-

bitals for electron correlation in extended systems later known as the “local ansatz”.26–28 A sligthly

amended scheme was developed by Pulay and Saebø,29–31 which afterwards was implemented in

the MOLPRO program32,33 for molecular systems by Werner and Schütz34–36 and then extended to

solids for MP2 by Pisani et al.37,38 as implemented in the CRYSCOR program.38,39 The latter im-

plementations are based on an orthogonal set of localized orbitals spanning the occupied manifold,

while nonorthogonal projected atomic orbitals (PAOs) are used to represent the virtual space.

A different way of truncating the virtual space for periodic systems was introduced by Stoll via

the “method of increments” (MoI).40–43 The MoI relies on cluster schemes that mimic the infinitely

extended system, thus, allowing the application of standard quantum chemistry programs and any

implemented, size-extensive method to treat electron correlation through a many body expansion.

However, cluster schemes are not necessarily the only way to truncate the virtual space in the

incremental approach. Shukla et al. applied an incremental scheme that, again, relies on PAOs.44

Another approach based on clusters is the so-called hierarchical method. It is based on an approach

by Abdurahman et al.45 and was proposed for solids by Manby et al.46 A more exhaustive overview

of developments and applications of correlation methods to the solid state is provided by Müller

and Paulus.25

The MoI and the periodic Local-MP2 (LMP2) method have both been applied very success-

fully to describe adsorption energies.47–54 In this work, we do not only extend both methods to
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investigate the correlation contribution to surface energies, but show that the two approaches are

complementary and compare very well. This good comparability allows to exploit the benefits of

both methods. One advantage of the method of increments is the applicability of any size consistent

electron correlation method, while one advantage of the periodic LMP2 method is the applicability

of periodic boundary conditions.

In this work we predict the surface energy by applying the cluster based method of increments

and the periodic LMP2 method. Although both methods are conceptual different we show that,

for the MgF2 (110) surface (Fig. 1), they independently yield surface energy values that are in

very good agreement. This agreement allows us to confidently consider both methods to be very

accurate. Although we chose MgF2 as a test system, our methods are easily adopted to other

systems.

As a last remark, we mention that a high-quality, but computationally costly, alternative to

the above mentioned wavefunction-based electron correlation method is represented by Quantum

Monte Carlo (QMC) techniques. Although by definition QMC is exact only for bosons, it is

regarded as highly accurate for electronic properties of solids and provides reasonable surface

energies in agreement with quantum chemical methods.9,55,56

The paper is structured as follows. In section 2 we explain the applied methods and other

computational details. In section 3 we discuss our results for the MgF2(110) surface. Conclusions

follow in section 4.

2 Methods

2.1 Periodic Local-MP2 Method for Surface Energies

The local correlation method of Pulay and Saebø29–31 – that we briefly introduced in section 1 –

exploits the exponential decay, with respect to the distance, of Hamilton matrix elements between

excited determinants and the ground state determinant by spatially truncating, i.e. localizing, the

virtual space. A non-orthogonal localized virtual space is achieved by projecting out the occupied
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Figure 2: Schematic view on a two-dimensional domain construction for a CRYSCOR slab calcu-
lation. Dark orange (completely filled) circles represent a center with its light orange (half-filled
circles) symbolized excitation domain. A slab is created from a bulk structure (a) by truncating
the bulk in one dimension (b), thus, truncating the excitation domains. Excitation domain size
inconsistencies are circumvented by reintroducing ghost functions (blurry circles) at the former
atom positions (c).

space directly from the atomic orbital basis, creating so-called PAOs. Then, the LMP2 correction

to the HF wave function is written as38

|Ψ(1)〉 =
1
2 ∑
(iii jjj)∈P

∑
(aaabbb)∈[iii jjj]

T
iii jjj

aaabbb
|Φaaabbb

iii jjj 〉, (1)

where Φaaabbb
iii jjj are doubly excited determinants and T

iii jjj

aaabbb
are the corresponding amplitudes. In Eq. (1),

the labels (iii, jjj) refer to pairs of occupied Wannier functions (WFs) taken from a truncated list P, in

which the first WF iii is located in the reference unit cell and the second WF jjj is restricted within

a given distance to the first WF iii. Note that bold indices here combine the index within the unit

cell and the translation (lattice) vector: iii=iI , in the notation of Ref.38 The labels (aaa, bbb) refer to

pairs of mutually non-orthogonal virtual PAOs and the sum is restricted to the pair-domain [iii jjj] of

PAOs which are spatially close to at least one of the WF iii or jjj. This truncation of the virtual space

makes the computational cost of the LMP2 method scale linearly with the supercell size. Relying

on the Hartree-Fock (HF) solution and orbital localization of CRYSTAL,57,58 the method by Pulay

and Saebø was adapted for periodic systems by Pisani et al. and implemented into the CRYSCOR

program.38,39
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Constraining the excitation domains often results in practical difficulties, e.g. for calculating

differences between a system and its constituting parts. For each calculation equally sized ex-

citation domains have to be ensured, otherwise a significant basis set error is introduced. This

circumstance prevents a straight forward adaption of the LMP2 calculation to relaxed surface en-

ergies, as schematically represented in Fig. 2. Fig. 2a pictorially shows the projection of localized

orbitals of a bulk in two dimensions. In this picture a slab is created by truncating the bulk in

one dimension leading to Fig. 2b. It is immediately obvious that the truncation in one-dimension

leads to a different size of the excitation domain (light orange, half-filled circles) for the center.

Maintaining an equal size of the excitation domain can be achieved by introducing ghost atoms in

the slab compensating for the missing PAOs (see Fig. 2c). The same effect is present as well as

BSSE in non-local methods, but becomes critical within the local approximation due to the severe

truncation of the virtual space.

Let us show, in the following, how consistency in the domains can be obtained for surfaces. In

general the surface energy, Esurface, is

Esurface =
1

2A
(Eslab −nEbulk) , (2)

where Eslab is the slab energy per unit cell, Ebulk the bulk energy per unit cell, n is the number of

formula units in the unit cell of the slab divided by the number of formula units in the bulk unit cell

and A the surface of the slab unit. Eq. (2) can be divided into a HF and a post-HF (i.e. correlation)

part

2AEsurface = EHF
slab +Ecorr

slab −n
(

EHF
bulk +Ecorr

bulk

)

(3)

Esurface = EHF
surface +Ecorr

surface. (4)

For an MP2 treatment of the correlation the last term on the right hand side of Eq. (4) becomes

2A ·ELMP2
surface = E

d4,rlx
slab −nEd4

bulk, (5)
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where Ed4
bulk is the LMP2 energy of the bulk with an excitation domain for each fluorine that in-

cludes 4 ions: the fluorine itself and its three nearest magnesium neighbours (1F, 3Mg). E
d4,rlx
slab is

the LMP2 energy of the relaxed slab with equivalently sized excitation domains as in the bulk. Un-

fortunately, E
d4,rlx
slab is not directly accessible, since ghost atoms, that correct for excitation domain

sizes, can only be included meaningfully in an unrelaxed slab. In conclusion, Eq. 5 is rewritten to

2AELMP2
surface = ∆Erlx +E

d4,unrlx
slab −nEd4

bulk, (6)

where E
unrlx,d4
slab is the energy of the unrelaxed slab and ∆Erlx is the relaxation energy. Then, the

relaxation energy can be obtained as

∆Erlx ≈ E
d3,rlx
slab −E

d3,unrlx
slab , (7)

where d3 indicates a smaller (3-atom) excitation domain for fluorines at the top of the slab – that

are missing one of their three nearest neighbours. Thus, the BSSE corrected MP2 surface energy

in a CRYSCOR calculation of a relaxed slab is evaluated as

EMP2
surface =

1
2A

(

E
d4,unrlx
slab +E

d3,rlx
slab −E

d3,unrlx
slab −nEd4

bulk

)

. (8)

2.2 Method of Increments for Surface Energies

In the method of increments the correlation energy is expanded in terms of electron correlation

contributions (increments) from groups of localized orbitals.25,40–43 These groups are associated

with an atom, an ion, a molecule or a bond between atoms. The total correlation energy, Esolid
corr , is

Esolid
corr = ∑

i

εi +
1
2 ∑

i 6= j

∆εi j +
1
6 ∑

i 6= j 6=k

∆εi jk + ..., (9)

where εi is a one-center, ∆εi j a two-center and ∆εi jk a three-center increment.

A one-center increment, εi, is defined as the electron correlation energy from the electrons in
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the orbitals of group i. Here, we consider a group of four orbitals (2s2p6), of which each group is

centered either at a fluorine or a magnesium ion.

The two-center increment, ∆εi j, considers the non-additive part of the correlation energy εi j

from electrons in the groups i and j and is ∆εi j = εi j −εi−ε j. Higher order increments are defined

accordingly. Since increments decrease rapidly with the order and the inter-center distance, often

a small number of one- and two-center increments are enough to obtain more than 97% of the total

electron correlation energy.

The method of increments has already been adopted in the study of adsorption energies. In

such a calculation an interaction increment was defined according to the adsorption energy (see

e.g.51,54). Similar to such an interaction increment, we define a surface increment, σ , which is the

difference of an increment in the slab and the corresponding increment in the bulk. Thus, the 1-

and 2-body surface increments are defined as

σi = εslab
i − εbulk

i , (10)

σi j = ∆εslab
i j −∆εbulk

i j , (11)

where higher order increments are defined accordingly. The index i runs over all localized orbital

groups in the slab unit cell and j over all other ones that are not necessarily in the same unit

cell. εbulk
i is the i-th increment in the bulk that corresponds to the i-th increment in the slab εslab

i .

Corresponding 1-center increments can easily be identified. Identification of corresponding two-

center increments is only straight forward for unrelaxed slabs. In this case the distance between two

increments is equal in both structures. For relaxed slabs distances between centers vary, compared

to the bulk. However, also the relaxed slab increments can be assigned to their corresponding

equivalent in the unrelaxed slab.

The sum over all surface increments yields the correlation contribution to the surface energy

Ecorr
surface = ∑

i

ωiσi +∑
i j

ωi jσi j +∑
i jk

ωi jkσi jk + . . . , (12)
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where ω refers to the weighting factors, i.e. how often the specific increment occurs.

In Sec. 2.1 we show how to calculate the periodic MP2 contribution ensuring an equally sized

excitation domain. In the method of increments the effect of domain inconsistencies is partly

compensated by considering excitations into the whole virtual space. However, in principle, we

can adopt the same BSSE correction of the periodic case to the method of increments. To keep the

two methods strictly comparable, we applied the same scheme as in Sec. 2.1.

2.3 The Surface Model and Computational Details

2.3.1 Structure and Embedding

The bulk structure that underlies our surface models in the periodic and cluster approach is a rutile-

type MgF2 structure fully optimized (cell and inner parameters) at the B3LYP level. A detailed

investigation of the bulk structure is reported in our previous investigations in Ref.54,59 We found

the cell constants a and c and the one free atomic coordinate to be 4.665 Å, 3.083 Å and 0.304,

respectively. The bulk structure was optimized with B3LYP. By definition incremental post-HF

methods do not allow for relaxations based on gradients and up to now no such scheme is imple-

mented in the CRYSCOR code. However, B3LYP optimized lattice parameters of MgF2 showed

rather good agreement with experimental values in the past.59 This allows us to confidently calcu-

late relaxations with B3LYP and, afterwards, use these structures in a single point MP2 calculation.

Consistently, all structure optimizations in the present work, that underlie post-HF computations,

have been performed with B3LYP.

Based on the optimized bulk structure, we constructed slabs with 11, 15, 21 and 27 layers with

two (110) faces - the most stable low-index surface of MgF2. All four slabs have the same surface

termination and contain a mirror plane in the middle of the slab. Due to this symmetry there are

effectively only 5, 8, 11, and 14 layers. Ions were either allowed to relax freely (relaxed slab)

or were kept at their bulk positions (unrelaxed slab). For the BSSE correction additional layers

of ghost atoms were added on each side of the unrelaxed slab. For the slabs with 5, 8, and 11

layers and the optimized bulk structure we performed single-point periodic HF and periodic LMP2
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calculations.

MoI clusters were directly constructed from the relaxed and unrelaxed 11-layered periodic

slabs. For each layer individually, a cluster was created with either a fluorine or a magnesium ion

in the center. To construct clusters in the middle of the slab, further layers were included and kept

at the bulk positions. All clusters consist of at least 45 and at most 57 atoms, depending on the

structure. 1-center increments were always computed for ions that are positioned at the center of

the cluster.

Clusters, utilized in the MoI, were embedded in an array of point charges by utilizing the

embedding scheme described by Herschend et al.60 and Müller and Hermansson.61 The field was

constituted by formal point charges of +2 and −1 for magnesium and fluorine ions, respectively,

and the field was truncated at a distance of 20 Å from the center of the cluster. Positive point

charges next to atoms in the cluster were replaced by Stuttgart effective-core potentials (ECPs)62

with an effective charge of +2 a.u.

2.3.2 Basis Set and Computational Details

We applied the 8-511d1G basis set by Valenzano et al.63 for the magnesium ions and the 7-311G

basis set by Nada et al.64 with an additional d-polarization function with an exponent of 0.7 for the

fluorine ion. All structure optimizations (slab relaxations) were performed applying DFT and the

B3LYP functional as implemented in the CRYSTAL09 program code.57,58 Shrinking factors of 12

were employed for the Monkhorst-Pack and Gilat k-point net. Values of 8, 8, 8, 20, and 50 were

applied as truncation criteria for the bielectronic integrals (cf. CRYSTAL09 manual58). An energy

convergence criterion of 10−7 a.u. was used in the self consistent field iteration.

Localizations of periodic wave functions were performed for valence electrons only, following

the scheme in Ref.65,66 Default Boys control parameters were applied with initial and final toler-

ances for the DM matrix element calculation and a convergence criterion of 10−7. In the periodic

DF-LMP2 the same shrinking factors as in the HF and DFT calculation were employed for the

Monkhorst-Pack and Gilat k-point net. Density fitting was performed purely in direct space using
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Table 1: Surface energies (in J/m2) calculated with DFT/B3LYP for unrelaxed and relaxed slabs
with different numbers of layers. Atom shifts ∆zi (in mÅ) along the z-axis – between relaxed and
unrelaxed slabs – are also reported. These are relative to ions i in layer 1 and 2 and are evaluated
as ∆zi = zrlx

i − zurlx
i ,

no. layers Eurlx
surface Erlx

surface ∆zi

layer 1, i =F layer 2, i =Mg layer 2, i =F
5 0.9207 0.6922 2 73 140
8 0.9202 0.6824 12 109 123
11 0.9201 0.6791 19 117 119
14 0.9199 0.6781 20 118 118

a mixed Gaussian-Poisson auxiliary basis set.67 Domain sizes have been defined manually to en-

sure consistency in the LMP2 calculations and were in principle set to 4, including the 3 nearest

neighbours of a fluorine and itself (1F, 3Mg). Domains were decreased to 3 atoms (1F, 2Mg) for

the relaxed and unrelaxed slab, where fluorine atoms at the surface are explicitly missing one of

their coordination partners. Pairs between 0 to 8 Å and 8 to 12 Å were treated as weak and distant,

respectively (cf. CRYSCOR Manual39).

Cluster calculations have been performed using the MOLPRO 2012.1 program package.32,33,68–70

The localization of the canonical Hartree-Fock solution was performed according to the Foster-

Boys algorithm.71 The “active orbitals” were re-canonized, for treating the localized orbitals with

perturbation methods.

All one-center increments in the unit cells of bulk and slab are included in the many-body

expansion as well as pairs of increments with an inter-center distance of smaller than 5 Å. Three-

center increments were constructed to consist of centers that are nearest neighbours.

3 Results

3.1 Structure and Slab Convergence

Surface energies are not only sensitive to structural changes in the slab (relaxation) but also to the

number of layers (slab size). This becomes even more important when the aim is to achieve very
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accurate energies with post-HF methods. Therefore, we selected two criteria to estimate a proper

size of our slab model: The first criterion is the convergence of the B3LYP surface energy with slab

size; the second criterion is the convergence of the slab relaxation with slab size (measured by the

relative shift of the ions in the relaxed slab). In Table 1 we compare surface energies and relative

shifts of ions for four relaxed (110) slabs that increase in size and possess equal terminations (see

Section 2.3.1). Two main results can be extracted from this data: (i) the surface energy converges

fast with the size of the slab, specially in the unrelaxed case; (ii) the structural relaxation converges

less quickly. Based on these results, we chose the 11-layer slab for all post-HF computations. This

slab is converged in surface energy and structural relaxation to values smaller than 1 mJ/m2 and

2 mÅ, respectively.

We assess the BSSE with three methods, the HF, the B3LYP and the LMP2 method, by cal-

culating the surface energy, Esurface (see Table 2). EHF
surface, EB3LYP

surface , and ELMP2
surface converge nicely

after two layers of ghost atoms with an accuracy as high as 1 mJ/m2 or higher. Thus, we include

two layers of ghost functions in all calculations that consider BSSE corrections. The effect of

BSSE corrections on the MgF2(110) surface energy for various methods is shown in Table 6 in the

supplementary material.

Table 2: Surface energies (in J/m2) calculated with DFT/B3LYP, HF or LMP2 for unrelaxed slabs
with additonal numbers of ghost layers. A ghost layer is a layer of atoms, where the atoms have
been replaced by their corresponding basis sets.

no. ghost EB3LYP
surface EHF

surface EMP2
s

layers
0 0.9201 0.9754 0.9741
1 0.8692 0.9453 0.9285
2 0.8339 0.9215 0.8735
3 0.8337 0.9206 0.8744
4 0.8336 0.9205 0.8743

12



F8

F11

F2

F5

F11

F5

F8

F2

F10

F6

F4

F9

F7

F3

F1

Figure 3: Surface increments (σi = εslab
i − εbulk

i ) for fluorine ions from F1 to F11. Results are pre-
sented for relaxed (rlx, red cubes), unrelaxed (urlx, black crosses) and excitation domain consistent
(rlx BSSE corr, blue circles) slab calculations.
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Figure 4: Surface energy, Esurface, including the sum of MP2 pair energy contributions up to a pair
distance d. For MoI, d is the distance between two increments, i.e. ions. In the case of periodic
LMP2 the distance d refers to centers of Wannier functions (see CRYSCOR Manual39). Symbols
indicate MP2 values obtained with MoI. Solid lines refer to periodic LMP2 values. For periodic
LMP2 d was increased by steps of 0.5 Å. The MoI distances are the actual nearest neighbour dis-
tances of two centers in the unrelaxed structure. Incremental results for d = 10 Å are extrapolated
from periodic LMP2.

3.2 Electron Correlation in the Surface

One of the great advantages of local correlation methods is the possibility to partition electron

correlation contribution spatially. This allows to examine electron correlation in a very detailed

picture. One point is, for example, how the correlation energy emerges when approaching a bulk

like layer starting from a surface layer. Expectations are that an increment deep in the slab is very

similar to an increment in the bulk. To verify this assumption, in the MoI we simply analyse the

1-body surface increments σi. An equivalent 1-body increment can also be defined in the periodic

LMP2 method, by summing over all MP2 energy pairs that arise solely from a certain ion (center).

Upon approaching lower layers, σi is expected to converge to zero. Indeed, such a behaviour

is observed for both, relaxed and unrelaxed, slabs (cf. Fig. 3). However, only in the unrelaxed

structure σi converges monotonically already in the third layer. The convergence is not monotonic

anymore in the relaxed case. Upon relaxation the former large electron correlation energy differ-

ence at the surface is smeared out over the whole slab. Convergence, although it is achieved, is

only reached for the deepest layers.
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All three methods independently result qualitatively in the same convergence behaviour; for all

methods surface increments converge equally. The largest differences appear between CCSD(T)

and MP2 surface increments, although these differences are small. In conclusion, surface incre-

ments are already surprisingly well described by MP2. Between MP2 in the MoI and the periodic

LMP2 the agreement is excellent. This means that (i) embedding errors in the MoI are negligible

and (ii) excitation domains in periodic LMP2 are sufficiently large. Both points name the two

largest error sources when directly comparing both approaches.

An illustrative analysis, as given before, is not possible for all 2-body surface increments in-

dividually: there are simply too many of them. However, we can evaluate the contribution of the

two-center surface increments by partitioning them according to their inter-center distances d. In

the same way we can also partition pair energies in periodic LMP2. In that case the distance d

refers not to the centers (ions) but to the centroids of the localized Wannier functions. However,

for both methods such a partitioning sums up all MP2 energy contributions (including 1-body

contributions) up to a distance d and this allows us again to compare between both methods.

Starting from the HF level, the aforementioned partitioning is shown in Fig. 4. Apart from a

shift by the relaxation energy the relaxed and unrelaxed profiles are similar. A first, remarkable

result is that the periodic LMP2 and MoI compare again excellently. The agreement weakens when

we correct for BSSE errors: the BSSE is less pronounced in the periodic-LMP2, mostly due to the

truncation of the excitation domains. The excellent agreement allows us to confidently extrapolate

our incremental expansion with the LMP2 result to larger pair distances. An extrapolated value for

10 Å is given in figure 4.

The partitioning reveals that short-range correlation up to d ≤ 2.585 Å favors and stabilizes the

slab, i.e. reduces the surface energy. This can be understood in general terms by thinking that

electrons on the surface are more “free” to move, and can avoid each other more efficiently than in

the bulk. At the same time, long-range correlation with d > 2.6 Å favors the bulk and destabilizes

the slab, i.e. increases the surface energy.

A detailed explanation for these results can be found on an incremental level. A surface incre-
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ment in the MoI is the (incremental) correlation contribution to the surface energy. Hence, electron

correlation contributions to the surface energy can be classified as stabilizing or destabilizing. This

allows to extract some general trends (a detailed list of sums of increments is given in the supple-

mentary material, Table 4 and 5). The first three 1-body surface increments at the top of the slab

favor the surface. Increments deeper in the slab contribute much less and in the relaxed surface

their contributions can also be destabilizing. However, the sum of all 1-body increments still favors

the slab.

Besides the composing centers and their inter-center distance, contributions of two-center sur-

face increments, σi j, are mostly dominated by the appearance or absence of individual 2-body

increments, ∆εi j, in the 3D or 2D system, respectively. Upon formation of a slab, ions at the

surface loose coordination partners. As a consequence, some 2-body increments, that originally

appear in the bulk, are missing in the slab (∆εslab
i j = 0). In such a case, Eq. 11 simply reduces to

σi j = σb
i j =−∆εbulk

i j and since increments are negative (∆εbulk
i j < 0) these correlation contributions

destabilize the surface. Additionally, these σb
i j surface increments are always large and contribute

significantly.

σb
i j increments appear for the first time in the group of 2-body increments with d = 2.841 Å.

Consequently, the destabilizing correlation contribution, that arises from the sum of this group,

constitutes the largest amount of 2-body electron correlation to the surface energy. There are no σb
i j

for surface increments with d = 2.585 Å, d = 3.083 Å, and d = 4.024 Å. As a consequence, these

groups of increments stabilize, i.e. favor, the surface and their contribution is small. σb
i j increments

occur again in all other groups of 2-body surface increments. However, their contribution is also

minor, due to their already large spatial separation. The same discussion as above could be carried

out using the periodic-LMP2 terminology, with identical conclusions.

3.3 Surface Energy

Kulifeev et al. are the only ones who published experimentally determined surface energies for

MgF2 so far.72 Unfortunately, a comparison to our results is impossible. Kulifeev et al. based
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Table 3: Surface energies, Esurface (in J/m2), for various standard DFT functionals, the LMP2
method as implemented in CRYSCOR 38,39 and canonical MP2 and CCSD(T) as employed via the
Method of Increments (MoI). In the case of MoI a “+c” indicates inclusion of electron correlation
of the 2s2p shell of Mg2+ ions. All surface energies are BSSE corrected. The relaxation energy,
∆Esurface, is finally reported as the difference between the two preceding columns.

Method Esurface / J
m2 ∆Esurface / J

m2

rlx unrlx

pe
ri

od
ic DFT

LDA 0.792 0.980 −0.188
PBE 0.569 0.809 −0.240
PBE-D3 0.780 0.976 −0.196
PW91 0.576 0.810 −0.234
B3PW 0.565 0.799 −0.234
B3LYP 0.593 0.834 −0.241
B3LYP-D3 0.958 1.180 −0.222
HF 0.642 0.894 −0.252
HF1 0.658 0.922 −0.264

CRYSCOR LMP2 0.657 0.874 −0.217

cl
us

te
r

MoI

MP2 0.629 0.837 −0.208
MP2 (ext.pol.) 0.638 0.846 −0.208
MP2+c 0.650 0.858 −0.208
CCSD(T) 0.651 0.861 −0.210
CCSD(T)+c 0.681 0.882 −0.201

their estimations on the rising drop method at temperatures close to the melting point. Thus,

such a surface energy is by definition only exact at high temperatures and for isotropic solids.

Despite these deficiencies, we believe Kulifeevs experimental value should be mentioned, rather

for completness than as a reference value. Kulifeev et al. estimate a surface energy of 0.24 J/m2.

Our computationally obtained surface energies are summarized in Table 3. Consistently, all

methods reveal a relaxation energy ∆Esurface in the range of 0.2 J/m2; the effect of including dis-

persion effects, either empirically by -D3 corrections or through MP2, is to reduce the value of

∆Esurface. Concerning surface energies, hybrid and GGA functionals predict values that are in very

good agreement with each other. The only exceptions are LDA and the dispersion corrected func-

tionals. LDA, PBE-D3 and B3LYP-D3 result in surface energies that are about 30 % larger than

predicted with GGA and hybrid functionals.

The HF surface energy is generally larger than GGA and hybrid functionals, but still smaller
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than LDA or DFT-D3 surface energies. Regardless of the method, the total electron correlation

contribution to the surface energy is small. As discussed earlier, the individual electron correlation

contributions are much larger but short- and long-range contributions cancel each other almost

completely. As a consequence, HF already describes the surface energy surprisingly well.

Between the canonical MP2 as employed in the MoI and the periodic LMP2 the agreement is

again very good (see bottom of Table 3). The agreement is even better if we compare periodic

LMP2 to the extrapolated MP2 value in the MoI (labeled in Table 3 as ext. pol.). From the extrap-

olated value we can also estimate the error introduced by the spatial truncation of the incremental

expansion, that is about 0.01 J/m2. As already stated in section 3.2, the remaining differences can

have two main sources. One of them is the truncation in the excitation space inherent in the local

approach, the other one is the cluster approximation in the incremental calculations. However,

these errors are small and of the size of 0.02 J/m2.

CCSD(T) surface energies are very close to MP2 energies. MP2 underestimates the surface

energy by about 0.022 J/m2, compared to CCSD(T). Thus, already MP2 includes most of the MgF2

(110) electron correlation in the surface energy.

From the method of increments we can also estimate the correlation contribution from the 2s2p

electrons of the Mg ions. Sometimes this contribution is referred to as core correlation. In some

cases such a core correlation can contribute significantly. In our case the core correlation is very

small, due to canceling incremental contributions, and about 0.02 J/m2 and 0.03 J/m2 for MP2 and

CCSD(T), respectively.

Throughout our study we showed the excellent comparability of results of both periodic LMP2

and MoI. However, from a computational point of view both methods require very different user

efforts. While the periodic LMP2 method allows in principle a very straight forward mostly auto-

mated way of calculating the MP2 energy and is, therefore, quite fast, the MoI requires the user to

carefully create and embed clusters individually. However, this allows to directly apply any size

extensive method and once the clusters are selected the following calculations are embarrassingly

parallel. A parallel implementation of the periodic LMP2 in CRYSCOR is under development and
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will increase the applicability of the method to even larger systems. So far, a more convenient and

automatic scheme of the MoI exists only for molecules.73

4 Conclusion

Although, MoI and periodic LMP2 are based either on clusters or periodic boundary conditions,

they both perform very well and are in excellent agreement. The mutual local character of both

methods allows to analyse the surface electron correlation in great detail.

Mainly two competitive effects determine whether the total electron correlation contribution

favors or opposes the formation of a surface. On the one side, electrons at the surface gain addi-

tional “freedom” to move and avoid each other more effectively. On the other side, surface ions

loose their coordination partners and thus loose correlation energy from the binding. The first ef-

fect is of a rather short–range character, the second effect is more long–ranged, which is reflected

by the one- and two-center contributions, respectively.

While standard DFT generally underestimates the MgF2 (110) surface energy, LDA and DFT-

D3 being the exception to the contrary, HF lies already very close to the post-HF results. Surface

energies are 0.66, 0.65 and 0.68 J/m2 for periodic LMP2 (without Mg 2s2p correlation), MP2

(MoI) and CCSD(T) (MoI), respectively.
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Table 4: Incremental correlation contribution, σ , (in J/m2) at the MP2 level to the MgF2 (110)
surface energy. Atom labels refer to all atoms of one kind, e.g. F includes all 1-body increments
of fluorine atoms in the surface. d indicates the distance between two atoms that built a 2-body
increment. The distance refers to the bulk or unrelaxed structures only. Distances of the relaxed
structure are not shown.

Orbital groups d/Å Erlx
surface Eurlx

surface Erlx
surface Eurlx

surface
(no BSSE) (no BSSE)

ω ·σi F −0.070 −0.104 −0.131 −0.165
Mg 0.024 0.025 0.001 0.003

∑i ω ·σF
i −0.070 −0.104 −0.131 −0.165

∑i ω ·σ all
i −0.046 −0.079 −0.130 −0.163

ω ·σij F-Mg 2.006 0.027 0.025 0.026 0.025
F-Mg 2.012 −0.004 −0.005 −0.006 −0.007
F-F 2.585 −0.018 −0.008 −0.021 −0.010
F-F 2.841 0.110 0.083 0.104 0.077
F-F 3.083 0.001 0.000 −0.001 −0.002

Mg-Mg 3.083 0.000 0.000 0.000 0.000
F-F 3.375 0.012 0.010 0.012 0.009

F-Mg 3.543 0.000 0.000 0.000 0.000
F-F 4.012 0.003 0.003 0.003 0.003
F-F 4.024 0.000 0.000 −0.001 −0.001
F-F 4.571 0.002 0.002 0.002 0.002
F-F 4.665 0.003 0.003 0.003 0.003

∑i j ω ·σF
i j 0.113 0.091 0.101 0.081

∑i j ω ·σ all
i j 0.135 0.112 0.122 0.099

EHF
surface 0.658 0.922 0.658 0.922

E
MP2(F)
surface 0.701 0.909 0.629 0.837

E
MP2(all)
surface 0.747 0.955 0.650 0.858
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Table 5: Incremental correlation contribution, σ , (in J/m2) at the CCSD(T) level to the MgF2 (110)
surface energy. Atom labels refer to all atoms of one kind, e.g. F includes all 1-body increments
of fluorine atoms in the surface. d indicates the distance between two atoms that built a 2-body
increment. The distance refers to the bulk or unrelaxed structures only. Distances of the relaxed
structure are not shown.

Orbital groups d/Å Erlx
surface Eurlx

surface Erlx
surface Eurlx

surface
(no BSSE) (no BSSE)

ω ·σi F −0.059 −0.089 −0.119 −0.150
Mg 0.023 0.025 0.001 0.002

∑i ω ·σF
i −0.059 −0.089 −0.119 −0.150

∑i ω ·σ all
i −0.035 −0.064 −0.118 −0.147

ω ·σij F-Mg 2.006 0.030 0.019 0.038 0.027
F-Mg 2.012 −0.005 −0.006 −0.008 −0.008
F-F 2.585 −0.020 −0.010 −0.024 −0.013
F-F 2.841 0.124 0.095 0.115 0.086
F-F 3.083 0.001 0.000 −0.002 −0.003

Mg-Mg 3.083 0.000 0.000 0.000 0.000
F-F 3.375 0.013 0.011 0.013 0.010

F-Mg 3.543 0.000 0.000 0.000 0.000
F-F 4.012 0.004 0.003 0.004 0.003
F-F 4.024 −0.001 -0.001 −0.001 −0.001
F-F 4.571 0.003 0.003 0.003 0.003
F-F 4.665 0.003 0.003 0.003 0.003

∑i j ω ·σF
i j 0.129 0.105 0.112 0.088

∑i j ω ·σ all
i j 0.153 0.118 0.142 0.108

EHF
surface 0.658 0.922 0.658 0.922

E
CCSD(T)(F)
surface 0.728 0.938 0.650 0.861

E
CCSD(T)(all)
surface 0.776 0.976 0.681 0.882
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Table 6: Surface energies, Esurface (in J/m2), for various standard DFT functionals, the LMP2
method as implemented in CRYSCOR 38,39 and canonical MP2 and CCSD(T) as employed via the
Method of Increments (MoI). In the case of MoI a “+c” indicates inclusion of electron correlation
of the 2s2p shell of Mg2+ ions. The last two columns of surface energy values are with, the first
two without BSSE correction.

Method Esurface / J
m2

rlx (no BSSE) unrlx (no BSSE) rlx unrlx

pe
ri

od
ic DFT

LDA 0.886 1.074 0.792 0.980
PBE 0.681 0.921 0.569 0.809
PBE-D2 0.867 1.027 0.755 0.915
PBE-D3 0.892 1.088 0.780 0.976
PW91 0.686 0.921 0.576 0.810
B3PW 0.639 0.874 0.565 0.799
B3LYP 0.681 0.921 0.593 0.834
B3LYP-D2 0.972 1.179 0.884 1.092
B3LYP-D3 1.046 1.267 0.958 1.180
HF 0.696 0.947 0.642 0.894
HF2 0.712 0.975 0.658 0.922

CRYSCOR LMP2 0.704 0.921 0.657 0.874

cl
us

te
r

MoI

MP2 0.701 0.909 0.629 0.837
MP2 (ext.pol.) 0.709 0.918 0.638 0.846
MP2+c 0.747 0.955 0.650 0.858
CCSD(T) 0.728 0.938 0.651 0.861
CCSD(T)+c 0.776 0.976 0.681 0.882
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