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UNIVERSITÀ DI TORINO

Maria Luisa Tonon

ON SIMPLE SHEAR FOR INCOMPRESSIBLE

ISOTROPIC LINEAR ELASTIC MATERIALS

QUADERNO N. 10/2011

QUADERNI SCIENTIFICI

del

DIPARTIMENTO DI MATEMATICA

Via Carlo Alberto, 10
10123 TORINO (Italia)



UNIVERSITÀ DI TORINO
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Abstract

In this paper we discuss some problems involving simple shear in incom-
pressible isotropic linear elastic materials within the framework of the lin-
earized finite theory of elasticity. First we obtain for a simple shear a univer-
sal relation in terms of components of the first Piola-Kirchhoff stress tensor.
Afterwards for a rectangular block deformed by a simple shear we evaluate
the absolute error and the relative error both for the Piola-Kirchhoff tractions
and the Cauchy tractions calculated by classical linear elasticity. Finally we
discuss two dead load problems corresponding to different Piola-Kirchhoff
tractions by using both the linearized finite theory of elasticity and the clas-
sical linear elasticity. The first problem can be solved only in linearized finite
theory of elasticity and the solution is a simple shear. The second problem
admits a simple shear as a solution in both theories, so that we can compare
the solutions.

AMS Subject Classification: 74B99, 74A05, 74A10, 74G05

Key Words: simple shear, incompressible isotropic materials, linearized finite
elasticity

1 Introduction

Simple shear is one of the main modes of behaviour of incompressible bodies, such as
rubber-like materials. Although incompressible materials are usually described by
the finite elasticity, the constraint of incompressibility can be also used in connection
with small-deformation problems. In this case it is worth using a theory which
guarantees the accuracy required by a linear model.
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In this paper we study some problems concerning simple shear in incompressible
isotropic elastic materials according to the linearized finite theory of elasticity, as
formulated by Hoger and Johnson in [2], [3]. Such a theory, based on a strict proce-
dure of linearization of the corresponding finite constitutive equations with respect
to the displacement gradient, describes the behaviour of constrained linear elastic
materials with the accuracy required by a linear theory. In fact, for such materials
the classical linear theory of elasticity is commonly adopted, but, as shown in [2],
[3], the constitutive equations of linearized finite theory of elasticity contain some
terms usually dropped in classical linear elasticity, all of which are first order in the
strain. In particular for incompressible isotropic bodies by coincidence the consti-
tutive equations provided by the two theories for the Cauchy stress are the same,
while the constitutive equations for the first Piola-Kirchhoff stress are different. In
linearized finite theory of elasticity the expression of the Piola-Kirchhoff stress con-
tains a term which is the product of the pressure and the displacement gradient; in
classical linear elasticity such a term disappears, since it is understood that small
strains correspond to small pressures, while this assumption leads to neglect an
essential characteristic of constrained materials.

Motivated by the previous remarks, in this paper we apply the linearized finite
theory of elasticity to the study of simple shear. In Section 2 we briefly recall the
field equations appropriate for the linearized finite theory of elasticity. In Section
3 we show that in such a theory for a simple shear a universal relation in terms of
components of the first Piola-Kirchhoff stress holds; the distinction between Cauchy
stress and Piola-Kirchhoff stress imposed by this theory is crucial in order to find
such a relation. In Section 4 by means of a consistent procedure of linearization
we obtain this universal relation from a corresponding universal relation in finite
elasticity. Afterwards in Section 5 we determine the Piola-Kirchhoff tractions and
the Cauchy tractions on the boundary of a rectangular block deformed by a simple
shear both in linearized finite theory of elasticity and in classical linear elasticity.
Following [2], we show that the absolute error in the Piola-Kirchhoff tractions cal-
culated by classical elasticity can be arbitrarily large, but the relative error is first
order in the strain; the same applies to Cauchy tractions. Finally, motivated by the
unexpected results obtained in [2], [8] for some dead load problems, in Section 6 we
discuss two dead load problems corresponding to different Piola-Kirchhoff tractions.
We show that the first problem cannot be solved in classical linear elasticity, while
in linearized finite theory of elasticity it admits a simple shear as a solution. After-
wards we show that the second problem can be solved in both theories, so that we
can compare the solutions which are two simple shears. For both problems we define
the range of tractions for which the linearized finite theory of elasticity applies and
we show that the shear modulus plays a central role in determining such a range.
Section 7 is devoted to concluding remarks.
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2 The Linearized Finite Theory of Elasticity for

constrained materials

In this section we gather the field equations of the so-called linearized finite theory
of elasticity (LFTE in the following), derived in 1995 by Hoger and Johnson in [2],
[3]. For many reasons extensively exposed in [2], [3], LFTE is the most suitable
theory for constrained linear elastic materials, since only this theory is based on
constitutive equations having the accuracy required by a linear model. Here we
confine our attention to the constitutive equations of LFTE appropriate for solid
incompressible isotropic elastic materials.

Let B0 be a fixed reference configuration of the body; denote by X a material
point in B0 and by x = f(X) the corresponding point in the deformed configuration
B = f (B0), where f is the deformation function. Let u be the displacement, F the
deformation gradient, H the displacement gradient, given by

u (X) = f(X)−X, (1)

F = Grad f , (2)

H = Grad u = F− I; (3)

in (2), (3), Grad denotes the gradient operator taken with respect to X and I is the
identity tensor.

Since LFTE is a theory appropriate for small deformations, H is assumed to be
small and everywhere only terms that are at most linear in H are retained.

If we linearize about the zero strain state the finite Green strain tensor

EG =
1

2

(
FT F− I

)
(4)

and if we use (3), we obtain the infinitesimal strain tensor

E =
1

2

(
H + HT

)
. (5)

In finite elasticity the possible strains EG for an elastic material subject to a con-
straint must satisfy the constraint equation

ĉ (EG) = 0. (6)

If we linearize (6) we obtain the linear constraint equation

c̃(E) = 0, (7)

where c̃(E) ≡ ∂ĉ

∂EG

(O) · E is the linear constraint function and O denotes the zero

tensor.
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We now devote our attention to the constitutive equations of the body, which is
assumed to be elastic and homogeneous. In finite elasticity for constrained hyper-
elastic materials the Cauchy stress T is the sum of the determinate stress and the
reaction stress, that is the constitutive equation for T is

T =
1

det F
F
∂Ŵ

∂EG

(EG)FT + qF
∂ĉ

∂EG

(EG)FT , (8)

where Ŵ (EG) is the strain energy function and q is a Lagrange multiplier. In (8)
both Ŵ (EG) and ĉ (EG) are functions of the polynomial invariants of the strain EG

appropriate for the material symmetry required.
The first Piola-Kirchhoff stress S is defined in terms of the Cauchy stress T as

follows
S = (det F)TF−T . (9)

In LFTE the constitutive equations for T and S are derived by linearization of the
corresponding finite constitutive equations (8), (9) with respect to the displacement
gradient. It is worth noting that the procedure of linearization of LFTE is based on
the following requirements: the strain energy function for the constrained material
is taken to be that one of the unconstrained material with the same material sym-
metry; the strain energy function for the unconstrained material is retained until
all differentiation is carried out; the linearized constraint equation (7) is substituted

after the differentiation is complete; the linearizations of
∂Ŵ

∂EG

and
∂ĉ

∂EG

must be

parallel.
The final expressions for T and S appropriate for LFTE are

T =
∂2Ŵ

∂EG∂EG

(O)

∣∣∣∣∣
c

E + q
∂ĉ

∂EG

(O) +

+ qH
∂ĉ

∂EG

(O) + q
∂ĉ

∂EG

(O)HT + q
∂2ĉ

∂EG∂EG

(O)E

(10)

S =
∂2Ŵ

∂EG∂EG

(O)

∣∣∣∣∣
c

E + q
∂ĉ

∂EG

(O) + q tr E
∂ĉ

∂EG

(O) +

+ qH
∂ĉ

∂EG

(O) + q
∂2ĉ

∂EG∂EG

(O)E,

(11)

respectively (see [3], formulas (3.22), (3.23)); in (10), (11) the subscript c indicates
evaluation on the linear constraint equation (7).

For the constraint of incompressibility, (6), (7) take the form

det(2EG + 1) = 1 (12)

tr E = 0, (13)
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respectively. Moreover, for isotropy Ŵ is a function of the polynomial invariants
I · EG, I · E2

G, I · E3
G. Then, for incompressible isotropic materials in LFTE the

Cauchy stress (10) and the Piola-Kirchhoff stress (11) reduce to

T = 2µE− pI (14)

and
S = 2µE− p

(
I−HT

)
, (15)

respectively (see [3], formulas (4.15), (4.16)); in (14), (15) µ is the shear modulus
and p = −2q is the pressure.

In classical linear elasticity for constrained materials the typical method followed
in order to construct linear constitutive equations is very different. As shown in [3],
Section 5, it is assumed that the constitutive equation for the Cauchy stress, denoted
by Tcl, is

Tcl =
∂W̃c

∂E
(E) + q

∂c̃

∂E
(E), (16)

where c̃(E) is the linear constraint function and W̃c is the quadratic strain energy
function of the corresponding unconstrained material that has been evaluated with
c̃(E) = 0 (see [3], formula (5.1)). In general, there are several terms missing from
(16) as compared to (10), both for the determinate stress and the reaction stress;
such terms are first order in the strain, so that the constitutive equation (16) usually
adopted in classical linear elasticity is not correct at first order in the displacement
gradient.

For incompressible isotropic materials equation (16) reduces to (14), so that
casually the constitutive equations provided by classical linear elasticity and LFTE
coincide (see [3], Section 5, for more details).

Now we turn to first Piola-Kirchhoff stress tensor S. In classical linear elasticity
for constrained materials it is stated that the Piola-Kirchhoff stress and the Cauchy
stress coincide (see [2], Section 7), as occurs for unconstrained materials. Then
for isotropic linear elastic bodies the classical constitutive equation for the Piola-
Kirchhoff stress is

Scl = 2µE− pI. (17)

If we compare (15) to (17), we see that the two constitutive equations differ by a term
that is linear in H. Then, only if the pressure p is small, so that in (15) the term pHT

can be neglected, the two constitutive equations coincide. In classical linear elasticity
it is a priori assumed that small strains correspond to small pressures. Since for
incompressible materials the strains can be small even under large pressures, LFTE
must be adopted.

Finally, we list the field equations of linearized elastostatics for incompressible
isotropic materials according to LFTE
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H = Grad u

E =
1

2

(
H + HT

)
W =

1

2

(
H−HT

)
tr E = 0

S = 2µE− p I + p (E−W) , p = − tr S

Div S + b = 0.

(18)

These equations hold on the undeformed body. In (18)3, W is the infinitesimal
rotation tensor; in (18)6 Div denotes the divergence operator taken with respect to
X, while b is the body force density measured per unit volume of B0.

For completeness’ sake we also recall the corresponding field equations appropri-
ate for classical linear elasticity

H = Grad u

E =
1

2

(
H + HT

)
tr E = 0

Scl = 2µE− p I, p = − tr Scl

Div Scl + b = 0.

(19)

3 Simple shear according to LFTE. A new uni-

versal relation. Comparison to classical linear

elasticity

In this section we study the problem of simple shear within the context of LFTE;
we obtain a new universal relation in terms of components of the Piola-Kirchhoff
stress S. Finally we compare our results to those of classical linear elasticity.

Let {e1, e2, e3} be an orthonormal basis. A simple shear of a rectangular block
is a homogeneous deformation x = f(X) defined with respect to such a basis as

x1 = X1 + γX2

x2 = X2

x3 = X3,
(20)

where γ > 0 is an arbitrary dimensionless constant called the amount of shear.
Simple shear was first considered in 1948 by Rivlin [5] within the framework of the
nonlinear elasticity; various problems related to simple shear have been analyzed
since, both for compressible and incompressible isotropic solid elastic materials (see,
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among many others, [1], [4], [9]). An important result concerning simple shear is
the Poynting effect, which is a typical feature of the nonlinear elasticity. In fact,
constitutive equations for compressible or incompressible isotropic nonlinear elastic
bodies provide for the components of the Cauchy stress T the well-known universal
relation due to Rivlin

T11 − T22 = γ T12 : (21)

not only are the normal stresses not equal to zero, but in general they cannot even
equal one another (Poynting effect). Moreover (21) shows that the normal Cauchy
stresses T11 and T22 determine the shear stress T12, while T11 and T22 cannot be
determined by T12.

In classical linear elasticity the normal Cauchy stresses are of the order of terms
neglected, the Poynting effect disappears and shear stress suffices to produce simple
shear.

The previous remarks hold both for compressible and incompressible isotropic
materials.

Let us now consider the homogeneous deformation of simple shear (20) according
to LFTE. From (1) we have

u1 = γX2

u2 = 0
u3 = 0 ;

(22)

then by (3), (22) we obtain

[H] =

 0 γ 0
0 0 0
0 0 0

 . (23)

In virtue of (5), (23) the infinitesimal strain tensor is

[E] =

 0 1
2
γ 0

1
2
γ 0 0
0 0 0

 . (24)

For an incompressible isotropic material subject to simple shear (20) constitutive
equation (15) for the Piola-Kirchhoff stress provides

[S] =

 −p µγ 0
pγ + µγ −p 0

0 0 −p

 . (25)

Since the deformation (20) is homogeneous and the body is assumed to be homoge-
neous, the equilibrium equation (18)6 in the absence of body force is satisfied if and
only if p is constant.

We now consider the components of S in (25): matrix (25) shows that the non-
zero components of S satisfy the relations

S12 − S21 = γ S11 = γ S22 = γ S33. (26)
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Moreover the following relation holds

S12 − S21 =
1

3
(tr S) γ. (27)

Relations (26), (27) are first obtained in this paper; when a simple shear is applied,
they are satisfied by every isotropic incompressible linear elastic body in LFTE, so
that they are universal relations. From (26) we see that the components S12 and S21

of S determine the normal components S11, S22, S33, while the opposite is untrue.
It is worth noting that (26), (27) exhibit terms as γSii (i not summed), or (tr S) γ;

since γSii = −pH12 and (tr S) γ = −3 pH12, such terms must be retained in order
to have accuracy to first order in the strain, since the pressure can be large even if
the strain is small.

A second remark concerns the comparison of LFTE to classical linear elasticity.
The classical linear elasticity for constrained materials is valid if the pressure is
small, so that the constitutive equation for the Piola-Kirchhoff stress is given by
(17). In this case the symmetry of Scl forces to vanish the left-hand side of (26); on
the other hand, for small pressures the terms in the right-hand sides of (26) must
be neglected, so that in (26) all sides reduce to zero.

In this sense, the well-known results for simple shear in classical linear elasticity
can be obtained by the more general results for simple shear in LFTE.

A final remark concerns the choice of the stress tensor. The distinction between
S and T, as clearly claimed in LFTE, is crucial in order to find universal relation
(26), since no relation involving the components of T can be obtained.

4 Universal relation for simple shear: comparison

to finite elasticity

In this section we show that universal relation (26) obtained for S in LFTE follows
from a universal relation for S in finite theory, if a suitable procedure of linearization
is applied.

First we recall the constitutive equations for an incompressible isotropic elastic
material within the framework of the finite elasticity, both for the Cauchy stress T
and the Piola-Kirchhoff stress S. For the Cauchy stress T the constitutive equation
is

T = −pI + ϕ1FFT + ϕ−1F
−T F−1, (28)

where the coefficients ϕ1 and ϕ−1 are functions of the first two invariants of the
tensor FFT (see [9], formula (49.5)).

If we substitute in (9) constitutive equation (28) and the constraint condition
det F = 1 we obtain the following constitutive equation for the Piola-Kirchhoff stress
S

S = −pF−T + ϕ1F + ϕ−1F
−T F−1F−T . (29)
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Let us now consider simple shear (20); in virtue of (2) the matrix corresponding to
the deformation gradient F is

[F] =

 1 γ 0
0 1 0
0 0 1

 . (30)

Then equation (28) provides for T the matrix

[T]=

 −p+ϕ1(1+γ2)+ϕ−1 (ϕ1−ϕ−1)γ 0
(ϕ1−ϕ−1)γ −p+ϕ1+ϕ−1(1+γ2) 0

0 0 −p+ϕ1+ϕ−1

, (31)

while (29) gives for S the matrix

[S]=

−p+ϕ1+ϕ−1(1+γ2) (ϕ1−ϕ−1)γ 0
pγ−2ϕ−1γ−ϕ−1γ

3 −p+ϕ1+ϕ−1(1+γ2) 0

0 0 −p+ϕ1+ϕ−1

. (32)

Note that in (31), (32) according to finite elasticity the terms of second order and
third order in γ must be retained.

Of course the components of T in (31) satisfy the Rivlin’s universal relation
(21); in addition to this well-known relation matrix (32) shows that another relation
involving some components of S holds

S12 − S21 = γS11 = γS22. (33)

Now we linearize relation (33). To this aim we first linearize the components of
S in (32). The requirement that the undeformed configuration be a natural state
provides in linear theory the condition

ϕ1(3, 3)− ϕ−1(3, 3) = µ (34)

(see [9], formula (50.14)); moreover the requirement that the residual stress be zero
in the undeformed configuration (see [3], formulas (3.11), (3.12)) imposes the further
restriction

ϕ1(3, 3) + ϕ−1(3, 3) = 0. (35)

Then linearization of (33), obtained by using (34), (35) and retaining only terms
that are of first order in γ, provides the first three sides of (26).

The anomaly represented by the last term in (26) is due to the different powers
of γ appearing in (32).

The results obtained for simple shear exhibit that, unlike the classical linear
elasticity for constrained materials, in one sense LFTE retains a clear memory of
finite elasticity. This particular feature of LFTE is emphasized also in [2], where
Hoger and Johnson show that in LFTE a dead load traction problem may admit
multiple solutions, as occurs in finite elasticity.
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5 The Piola-Kirchhoff tractions and the Cauchy

tractions in LFTE. Absolute error and relative

error with respect to classical linear elasticity

In this section we determine the Piola-Kirchhoff tractions and the Cauchy tractions
on the boundary of a rectangular block deformed by a simple shear both in LFTE
and in classical linear elasticity. Moreover we show that the absolute error in the
Piola-Kirchhoff tractions calculated by classical elasticity can be arbitrarily large,
but the relative error is first order in the strain; such a discrepancy will be significant
when very high accuracy is required, for instance in numerical simulations; the same
applies to Cauchy tractions.

Let n0 be the outward unit normal to the surface of the undeformed body. The
Piola-Kirchhoff traction is defined as Sn0. For a simple shear in LFTE the Piola-
Kirchhoff stress S is given by (25), so that the Piola-Kirchhoff tractions on the
boundary of the rectangular block are

Se1 =

 −p
pγ+µγ

0

 , Se2 =

 µγ
−p
0

 , Se3 =

 0
0
−p

 . (36)

As noted in Section 2, in classical linear elasticity the Piola-Kirchhoff stress tensor
is given by (19)4. Since the values of the pressure in (18)5 and (19)4 are determined
by appropriate boundary conditions, we give boundary conditions such that tr S =
tr Scl; then the classical Piola-Kirchhoff tractions on the boundary are

Scle1 =

 −pµγ
0

 , Scle2 =

 µγ
−p
0

 , Scle3 =

 0
0
−p

 . (37)

Therefore we note that in LFTE simple shear (20) produces traction vectors Se1

and Se2 such that |Se1| 6= |Se2|, while in classical linear elasticity |Scle1| = |Scle2|.
From (36), (37) we see that for n0 =e1 the absolute error in the Piola-Kirchhoff

tractions is
|Se1 − Scle1| = |p| γ, (38)

while for n0 =e2 and n0 =e3 the tractions in the two theories coincide.
Thus, because p can be arbitrarily large, also the absolute error can be arbitrarily

large.

The corresponding relative error is defined as
|Se1 − Scle1|
|Se1|

, where before lin-

earization

|Se1| = |p|

[
1 +

(
p+ µ

p

)2

γ2

] 1
2

. (39)
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Then the relative error in the Piola-Kirchhoff tractions consistent with a linear
theory is

|Se1 − Scle1|
|Se1|

= γ, (40)

that is the relative error is first order in the strain.
We now determine the Cauchy tractions according to LFTE. In general, in finite

elasticity the outward unit normal n to the surface of the deformed body is related
to the normal n0 of the undeformed body through

n =
(
F−T n0 · F−T n0

)− 1
2 F−T n0 ; (41)

linearization of (41) yields

n =
[
(1 + n0 · En0) I−HT

]
n0 (42)

(see [2], formula (2.8)).
Then by linearizing (9) and using (42), (18)5 we obtain the Cauchy tractions

Tn on the deformed body in terms of the Piola-Kirchhoff tractions Sn0 on the
undeformed body

Tn = Sn0 − p (n0 · En0) n0 (43)

(see [2], formula (4.3)); (43) shows that in general in LFTE the difference between
Tn and Sn0 is first order in the strain.

We consider now simple shear (20). Since E is given by (24), we see from (42)

that the normals corresponding to n0 =e1, n0 =e2, n0 =e3, are n=

 1
−γ
0

, n=e2,

n = e3. The vector

 1
−γ
0

 is a unit vector, since we deal with a linear theory.

Then in LFTE by (43), (36) we obtain for the Cauchy tractions the expressions

T

 1
−γ
0

=

 −p
pγ+µγ

0

 , Te2 =

µγ
−p
0

 , Te3 =

 0
0
−p

 ; (44)

comparison of (44) to (36) shows that for a simple shear in LFTE the Cauchy
tractions and the Piola-Kirchhoff tractions coincide.

Finally we determine the Cauchy tractions according to classical linear elasticity.
The usual assumption is

Tcln = Scln0 (45)

(see [2], formula (7.4)): in classical linear elasticity for any deformation the Cauchy
tractions and the Piola-Kirchhoff tractions coincide. Then for simple shear (20) by

11



(45), (37) we have

Tcl

 1
−γ
0

=

−pµγ
0

, Tcle2 =

µγ
−p
0

, Tcle3 =

 0
0
−p

. (46)

It follows that for the absolute error and the relative error in Cauchy tractions
calculated by classical elasticity the remarks concerning Piola-Kirchhoff tractions
hold.

6 Two Piola-Kirchhoff traction problems in LFTE

and classical linear elasticity

In this section we consider two dead load problems corresponding to different Piola-
Kirchhoff tractions which are prescribed on the boundary of the rectangular block.

We show that the first problem can be solved in LFTE and the solution is a
simple shear, while no solution exists in classical linear elasticity.

Afterwards we show that the second problem can be solved both in LFTE and
in classical linear elasticity; moreover we note that the simple shear obtained as a
solution in LFTE reduces to the simple shear which solves the problem in classical
linear elasticity when the pressure is small.

Finally for both problems we determine the range of tractions for which LFTE
applies.

(i) First we consider within the framework of LFTE the dead load problem
corresponding to the following Piola-Kirchhoff tractions

Se1 =

 α
β
0

 , Se2 =

 δ
α
0

 , Se3 =

 0
0
α

 , (47)

where β 6= δ. We will discuss the case β = δ in the second problem.
A homogeneous Piola-Kirchhoff stress which is in agreement with tractions (47)

is

[S] =

 α δ 0
β α 0
0 0 α

 . (48)

If we compare (48) to (18)5, we see that p = −α; moreover if α 6= 2µ we obtain the
components of the infinitesimal strain tensor (18)2 in terms of tractions (47)

[E] =


0

1

2

β + δ

2µ− α
0

1

2

β + δ

2µ− α
0 0

0 0 0

 . (49)
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We now recall that the infinitesimal rotation tensor W is defined by (18)3; then
from (18)5, (48) we see that the components of W in terms of the tractions are

[W] =


0

1

2

δ − β
α

0

1

2

β − δ
α

0 0

0 0 0

 . (50)

Finally the displacement u from the origin is

u = (E + W) X, (51)

where E and W are given by (49) and (50), respectively.
Then in LFTE simple shear (49) is the solution of the dead load problem (47).

When the pressure is such that α=2µ, we have β=−δ; it follows that E is arbitrary
up to tr E = 0, while

W12 =−W21 =
δ

2µ
.

We now prescribe the same tractions in classical linear elasticity, that is we set

Scle1 =

 α
β
0

 , Scle2 =

 δ
α
0

 , Scle3 =

 0
0
α

 , (52)

where β 6= δ. In this case no solution exists for the dead load problem (52), because
the Piola-Kirchhoff stress Scl given by (19)4 is symmetric, while in (52) we have
β 6= δ.

(ii) We now prescribe in LFTE the Piola-Kirchhoff tractions

Se1 =

 α
β
0

 , Se2 =

 β
α
0

 , Se3 =

 0
0
α

 . (53)

Tractions (53) provide a symmetric stress S; moreover by (18)5 we have p = −α and

[E] =


0

β

2µ− α
0

β

2µ− α
0 0

0 0 0

 . (54)

if α 6= 2µ.
Of course (54) can be also obtained from (49) by setting β = δ, but we discuss

the case β 6= δ and the case β = δ separately, in order to compare our results with
those ones of the classical linear elasticity.
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Note that in this case the symmetry of S has as a consequence the symmetry of
the tensor H, so that W = O; the displacement from the origin is then

u = EX, (55)

where E is given by (54).
If α=2µ, we obtain β=0, E arbitrary up to tr E=0, and W=O.
Finally we solve in classical linear elasticity the dead load problem corresponding

to the same tractions, that is we set

Scle1 =

 α
β
0

 , Scle2 =

 β
α
0

 , Scle3 =

 0
0
α

 . (56)

Equation (19)4 provides p=−α; moreover, denoting by Ecl the infinitesimal strain
obtained by classical linear elasticity, from (19)4 we have

[Ecl] =


0

β

2µ
0

β

2µ
0 0

0 0 0

 . (57)

Since the infinitesimal rotation W is arbitrary, the displacement from the origin,
denoted by ucl, is given in terms of the infinitesimal strain (57) by the formula

ucl = EclX, (58)

to within an arbitrary infinitesimal rigid body displacement.
Therefore the second Piola-Kirchhoff traction problem can be solved both in

LFTE and in classical linear elasticity. The corresponding solutions are the simple
shear (54) and the simple shear (57), respectively. Our aim is now to compare
solution (54) to solution (57). By (54) we see that β = 2µE12 +pE12; in classical
linear elasticity the pressure p is supposed to be small, the product pE12 is neglected,
so that strain (54) reduces to strain (57).

The same occurs also in [8], where another dead load problem is solved both in
LFTE and in classical linear elasticity and the corresponding solutions are compared.

In one sense the qualitative behaviour of the solutions for LFTE and classical
linear elasticity parallels the behaviour of the corresponding constitutive equations.

Finally we turn our attention to the solutions obtained for LFTE both for the
first problem and the second problem in order to define the range of tractions for
which LFTE applies.

If we use (18)2, (18)3 and the condition E ·W = 0, we obtain

|E|2 + |W|2 = |H|2 . (59)
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Since we deal with a linear theory, we impose a suitable restriction on |H|;
suppose for instance that |H| ≤ H̃ for a particular material. Then |E| and |W|
must satisfy the restriction

|E|2 + |W|2 ≤ H̃2. (60)

We now consider the first problem, for which E and W are given by (49), (50)
respectively; restriction (60) takes the form

(β + δ)2

2 (2µ− α)2 H̃2
+

(β − δ)2

2α2H̃2
≤ 1. (61)

The range of tractions (47) for which LFTE applies is then represented by the region
whose boundary is the ellipse

(β + δ)2

2 (2µ− α)2 H̃2
+

(β − δ)2

2α2H̃2
= 1. (62)

Finally we consider the second problem, for which E is given by (54), while
W = O. In this case restriction (60) shows that the region in which LFTE applies
is defined by

|β| ≤ 1√
2
|2µ− α| H̃. (63)

Conditions (61), (63) emphasize that the shear modulus µ plays a central role in
determining the range of tractions for which LFTE applies; for instance for rubber
materials the shear modulus µ is 4.225 · 105 N/m2.

7 Conclusions

The stress-strain relations usually adopted to describe the behaviour of constrained
materials within the framework of the linear elasticity are those of the so-called
classical linear elasticity. For many reasons such a theory is inadequate in order to
have the accuracy required by a linear theory, so that for constrained linear elastic
materials the constitutive equations of the linearized finite theory of elasticity must
be adopted (see [2], [3]). In this paper, by using the linearized finite theory of
elasticity, we obtain unexpected results concerning simple shear in incompressible
linear elastic materials.

Other results provided by such a theory which are unexpected for a linear theory
can be found in [2], [8] as regards static problems, and in [6], [7] as concerns wave
propagation; for instance, in [2] Hoger and Johnson show that a dead load problem
for incompressible linear elastic materials may have multiple solutions. Therefore
this paper represents a natural continuation of [2], [3], [6], [7], [8].
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