



AperTO - Archivio Istituzionale Open Access dell'Università di Torino

# Catheter Ablation of Atrial Fibrillation in Patients with Left Ventricular Systolic Dysfunction: A Systematic Review and Meta-Analysis.

| This is the author's manuscript                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original Citation:                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                            |
| Availability:                                                                                                                                                                                                                                                                                                              |
| This version is available http://hdl.handle.net/2318/149304 since                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                            |
| Published version:                                                                                                                                                                                                                                                                                                         |
| DOI:10.1161/CIRCEP.114.001938                                                                                                                                                                                                                                                                                              |
| Terms of use:                                                                                                                                                                                                                                                                                                              |
| Open Access                                                                                                                                                                                                                                                                                                                |
| Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright |

(Article begins on next page)

protection by the applicable law.



# UNIVERSITÀ DEGLI STUDI DI TORINO

*This is an author version of the contribution published on*: Questa è la versione dell'autore dell'opera: Circ Arrhythm Electrophysiol. 2014 Sep 28. pii: CIRCEP.114.001938.

[Epub ahead of print]

The definitive version is available at: La versione definitiva è disponibile alla URL: <u>http://circep.ahajournals.org/content/early/2014/09/28/CIRCEP.114.001938.abstract</u>

# Catheter ablation of atrial fibrillation in patients with left ventricular systolic dysfunction: a systematic review and meta-analysis

Matteo Anselmino, MD PhD<sup>1</sup>, Mario Matta, MD<sup>1</sup>, Fabrizio D'Ascenzo, MD<sup>1</sup>, T. Jared Bunch, MD<sup>2</sup>, Richard J. Schilling, MD<sup>3</sup>, Ross J. Hunter, MD PhD<sup>3</sup>, Carlo Pappone, MD PhD<sup>4</sup>, Thomas Neumann, MD<sup>5</sup>, Georg Noelker, MD<sup>6</sup>, Martin Fiala, MD PhD<sup>7</sup>, Emanuele Bertaglia, MD<sup>8</sup>, Antonio Frontera, MD<sup>9</sup>, Edward Duncan, MD<sup>9</sup>, Chrishan Nalliah BSc, MBBS<sup>10</sup>, Pierre Jais, MD<sup>11</sup>, Rukshen Weerasooriya, MD<sup>11,12</sup>, Jon M. Kalman, MD PhD<sup>13</sup>, Fiorenzo Gaita, MD Prof<sup>1</sup>.

<sup>1</sup>Cardiology Division, Department of Medical Sciences, University of Turin, Turin, Italy

<sup>2</sup>Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA

<sup>3</sup>Cardiovascular Biomedical Research Unit, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.

<sup>4</sup>Department of Arrhythmology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy.

<sup>5</sup>Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany

<sup>6</sup>Department of Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany

<sup>7</sup>Department of Cardiology, Heart Centre, Hospital Podlesi as, Třinec, Czech Republic

<sup>8</sup>Department of Cardiological, Thoracic, and Vascular Sciences, University of Padua, Padova, Italy

<sup>9</sup>Department of Cardiology, Bristol Heart Institute, University Hospital Bristol NHS Trust, Bristol, UK

<sup>10</sup>Department of Cardiology, Westmead Hospital & University of Sydney, Sydney, Australia

<sup>11</sup>Department of Cardiac Electrophysiology, Hopital Cardiologique du Haut-Leveque, Bordeaux-Pessac, France.

<sup>12</sup>University of Western Australia, Crawley, Western Australia.

<sup>13</sup>Department of Cardiology, The Royal Melbourne Hospital, Melbourne, Australia.

Word count: 4,994 words, 2 tables, 4 figures, and 43 references

Journal Subject Heads:

<u>Etiology</u>

[5] Arrhythmias, clinical electrophysiology, drugs

**Treatment** 

[22] Ablation/ICD/surgery

Heart Failure

[11] Other heart failure

# **Corresponding author:**

Fiorenzo Gaita, MD Professor (fiorenzo.gaita@unito.it) Cardiology Division, Città della Salute e della Scienza, Department of Medical Sciences,

University of Turin, Turin, Italy

Corso Dogliotti 24, 10126 Turin, Italy Phone: +39-011-6335570 Fax: +39-011-6966015

#### Abstract

**Background.** Catheter ablation of atrial fibrillation (AFCA) is an established therapeutic option for rhythm control in symptomatic patients. Its efficacy and safety among patients with left ventricular systolic dysfunction is based on small populations, and data concerning long-term outcome are limited. We performed this meta-analysis to assess safety and long-term outcome of AFCA in patients with left ventricular systolic dysfunction, to evaluate predictors of recurrence and impact on left ventricular function.

**Methods and Results.** A systematic review was conducted in MEDLINE/PubMed and Cochrane Library. Randomized controlled trials, clinical trials and observational studies including patients with left ventricular systolic dysfunction undergoing AFCA were included. Twenty-six studies were selected, including 1,838 patients. Mean follow-up was 23 (95% Confidence Interval: 18-40) months. Overall complication rate was 4.2 (3.6-4.8)%. Efficacy in maintaining sinus rhythm at follow-up end was 60 (54-67)%. Meta-regression analysis revealed that time since first AF (p=0.030) and heart failure (p=0.045) diagnosis related to higher, while absence of known structural heart disease (p=0.003) to lower incidence of AF recurrences. Left ventricular ejection fraction improved significantly during follow-up by 13% (p<0.001), with a significant reduction of patients presenting an ejection fraction <35% (p<0.001). NT-proBNP blood levels decreased by 620 pg/ml (p<0.001).

**Conclusions.** AFCA efficacy in patients with impaired left ventricular systolic function improves when performed early in the natural history of AF and heart failure. AFCA provides long-term benefits on left ventricular function, significantly reducing the number of patients with severely impaired systolic function.

Abstract word count: 239

Key-words: atrial fibrillation, catheter ablation, ventricular systolic dysfunction, meta-analysis

4

#### Introduction

Catheter ablation of atrial fibrillation (AFCA) is a well-established and growing treatment option for patients with symptomatic atrial fibrillation (AF) refractory to antiarrhythmic drugs<sup>1</sup>. In fact, despite a relatively high incidence of late recurrences, the long-term efficacy in maintaining sinus rhythm (SR) remains encouragingly high, especially if compared to pharmacologic approaches<sup>2</sup>.

AFCA has shown satisfactory safety and efficacy even in patients with moderate-severe structural heart disease and impaired left ventricular (LV) systolic function, with SR maintenance rates comparable to those of patients with normal LV function, although redo ablation procedures are more commonly required<sup>3,4</sup>. However these outcome data are based on small observational studies and no conclusive indication for AFCA in patients with reduced LV ejection fraction (LVEF) has been agreed.

Therefore, the present systematic review and meta-analysis aims to investigate long-term outcome of AFCA in patients with reduced LVEF, focusing on procedural safety, rhythm control efficacy, predictors of recurrence and their impact on LV function.

# Methods

The present study was conducted in accordance to current guidelines, including the recent Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) amendment to the Quality of Reporting of Meta-analyses (QUOROM) statement, as well as recommendations from The Cochrane Collaboration and Meta-analysis Of Observational Studies in Epidemiology (MOOSE)<sup>5,6</sup>. *Search strategy and study selection* 

MEDLINE/PubMed and Cochrane database were searched for pertinent articles published in English from 2002 until October 2013. Details on search strategy and terms, results selection and data extraction are provided in the Supplemental Methods. Of note, 13 (50%) studies did not differentiate persistent and long-standing persistent AF.

#### Statistical analysis

Continuous variables were reported as mean (standard deviation) or median (range), and categorical variables as n (%), weighted for sample size of each study and according to standard error by logarithmic transformation. Funnel plot analysis was used to evaluate potential publication bias, and Cochran Q2 tests and I2 to investigate heterogeneity. Using rates of event as dependent variables, a meta-regression analysis was performed to test whether an interaction between incidence of AF recurrences and time since first AF and heart failure diagnosis, absence of known structural heart disease and AFCA protocol was present. Due to the observational design of most of the included studies, random effect was performed for all analysis. Statistical analyses were performed with Comprehensive Metanalysis (Trial Version) and Review Manager.

#### Results

Search results are summarized in Figure 1 and described in details in the Supplemental Results. Fifteen studies<sup>7-21</sup> meeting the pre-specified inclusion criteria, and 11 long-term (at least 2 years) AFCA studies<sup>22-32</sup>, for which the corresponding Author was contacted and agreed to participate, were eventually included.

First Author, study design, publication date and main characteristics of each included study are reported in Supplemental Table 1 (Supplemental Material).

#### **Baseline patients characteristics**

A total of 1,838 patients were finally included from 26 studies. Baseline characteristics, derived combining confidence intervals from all studies, are shown in Table 1. The mean age from each

study ranged from 51 to 61 years and 38% were women. Paroxysmal AF accounted for 45% of the population. The mean LVEF ranged from 35% to 46% (mean value 40%) while mean left atrial antero-posterior diameter was 59 mm. LV systolic dysfunction was idiopathic in 39% of the patients, while coronary artery disease was the most common aetiology of LV impairment. The majority of patients were symptomatic from heart failure, with only 20% in NYHA class I at baseline. The time since first AF and heart failure diagnosis ranged from 29 to 46 and 20 to 28 months, respectively. Basal pro-BNP levels were heterogeneously elevated ranging from 678 to 1,400 pg/ml.

#### Catheter ablation protocols and complications

AFCA procedural characteristics are reported in Table 2. All patients underwent pulmonary veins (PV) isolation, while 45% and 54% of the patients were treated with additional linear lesions or focal ablation of complex fractioned atrial electrograms (CFAE) in the left atrium at first or redo procedure, respectively. Major procedural complications rate ranged from 3.6 to 4.8% (mean 4.2%; Figure 2). The most frequent complications were related to the access site and to cerebral thromboembolic events. Redo procedures were performed in 32 (24-36)% of the cases.

#### Follow-up and recurrences

Mean follow-up was 23 months, ranging from 18 to 40 months. Recurrences were defined, consistently within all the studies, as episodes of AF or atrial tachycardia or atypical atrial flutter lasting at least 30 seconds detected during follow-up (eTable 1), with a blanking period of 3 months after ablation. Overall AFCA long-term efficacy at the end of follow-up period was 60 (54-67)%. Efficacy after a single procedure ranged, instead, from 36% to 44% (mean value 40%; Figure 2).

As shown in Figure 3, mean LVEF improved from 40 to 53% during follow-up, with a significant reduction of patients presenting an LVEF lower than 35% (p<0.001). Moreover, NT-proBNP levels decreased from 1,187 pg/ml before ablation to 567 pg/ml at follow-up end (p<0.001).

At meta-regression analysis (Figure 4), performed to test whether an interaction between relevant baseline clinical features<sup>2,33</sup> and incidence of AF recurrence was present, time since first AF and heart failure diagnosis related to a higher recurrence rate, while absence of known structural heart disease was associated to a lower recurrence rate of AF. A PV isolation alone approach versus an AFCA with extensive left atrial ablation (additional linear lesions or CFAE) did not relate to higher SR long-term maintenance.

## Discussion

The efficacy and safety of AFCA in patients with LV systolic dysfunction is based on small observational studies or meta-analyses that largely comprise a maximum of 500 patients. Through contacting each corresponding author of published long-term AFCA experiences in search of quantitative details on patients with impaired LV function, the present is the first study, to the best of our knowledge, to include a substantial number of patients with LV systolic dysfunction undergoing AFCA. In addition, the outcomes presented are based on long-term retrieved data specific to only those patients impaired LV systolic function.

Based on the present analysis, overall complication rate of AFCA in patients with reduced LVEF was of 4.2 (3.6-4.8)%, a safety profile similar to that reported amongst the general AFCA population<sup>2,34</sup>. Indeed the AFCA in more complex and frail anatomical substrate, secondary to the LV dysfunction and elevated left chambers filling pressure, has been in previous single center studies related to higher complication rates<sup>17</sup>; however, a clear excess of undesirable events has not emerged in the present large multicenter real-world population.

In the present analysis, first procedure efficacy was relatively low (40%), a finding reflective of the complexity of arrhythmia substrate in patients with reduced LVEF. However, with inclusion of repeat procedures the long-term AFCA efficacy improved to 60%, which is comparable to long-

term outcomes reported from general AFCA populations<sup>2,26</sup>. Of note, based on meta-regression analysis, performing AFCA early in the natural history of the disease significantly improves outcome. This finding is consistent with recent data that suggest increasing time from initial ECG diagnosis of AF to ablation significantly increased risk of AF recurrence after AFCA, independently of the AF subtype<sup>35</sup>. We anticipate the delays in rhythm treatment may be augmented in patients with LV dysfunction, as AF and heart failure share many strong pathophysiologic links that mutually influence atrial fibrosis, anatomical and electrical remodeling<sup>36</sup>.

The AFCA protocol used for the patients included in the present study was PV isolation alone in 55% and 46% of the cases at first and redo procedure, respectively. In patients with reduced LV systolic function, especially in case of persistent AF, previous literature has shown that, due to complex atrial substrate sustaining multiple reentry circuits, PV isolation ablation protocols may not be optimal<sup>37,38</sup>. As such, an upfront strategy of PV isolation alone in the majority of patients with LV dysfunction may have impacted the long-term success rates and need for redo procedures. However, if ablation approaches evolve to consistently obtain transmural PV isolation during the initial procedure, additional substrate modification or linear ablation may not be requisite<sup>39</sup>. Further, linear lesions and ablation of CFAE deemed beneficial for substrate modification may increase risk of iatrogenic atypical atrial flutters or atrial tachycardias, if they are incomplete or not anchored to electrically inert structures<sup>40</sup>. As such the consequences of these recurrences may counterbalance the benefit derived by more aggressive atrial substrate modification. In fact, based on meta-regression analysis, the AFCA protocol did not significantly relate to long-term outcome.

An interesting finding was that all the studies included in the present analysis consistently reported improvement in LV function during the follow-up period. Other studies have also demonstrated a benefit in LV function after AFCA even in presence of preserved LV function<sup>41</sup>. These findings highlight the role of atrial contraction in preserving normal hemodynamic function. In addition, 39% of the population did not present a known aetiology of their structural heart disease, therefore

LV function improvement could partially be explained by inclusion of patients with LV dysfunction secondary only to uncontrolled ventricular response (tachycardiomyopathy). However, recent randomized data suggest a similar improvement in LV function with definitive restoration of SR by AFCA, with little if any effect by increasing rate control<sup>13,21</sup>. Since AFCA is recommended only in case of rate and pharmacological rhythm control strategies failure, the incidence of real isolated tachycardiomyopathies should, therefore, be limited. Also, removal of long-term antiarrhythmic drug therapy when AFCA is successful, which often has a negative inotropic effect, may also provide pervasive benefit on LV function. Consistent with improvements in cardiac function over time, NT-proBNP levels declined significantly during follow-up after AFCA. NT-proBNP reduction has shown, after effective AFCA, to relate to favorable atrial remodeling and reduction in left atrial wall stress<sup>42</sup>. These findings are also applicable to those patients with severe disease. During the long-term follow-up, the number of patients with an LVEF lower than 35% significantly decreased. Patients with severe LV dysfunction are the most vulnerable to morbidity, mortality, and proarrhythmia from the majority of antiarrhythmic drugs for rhythm control<sup>43</sup>. As such, the pharmacologic options for these patients are often very limited, which translates to a direct need of nonpharmacologic options such as AFCA to improve long-term quality of life, morbidity and mortality associated in patients with coexistent AF and heart failure. Moreover, given current guideline recommendations for invasive treatments such as implantable defibrillators or cardiac resynchronization therapy, an LVEF improvement above 35% has relevant implications in terms of potentially reducing unnecessary device implantations, leading to a more focused patient selection and allocation of resources.

# Limitations

This study presents the following limitations. First, AFCA is a relatively recent and developing procedure, with different centers using different protocols and tools. AFCA procedural

10

characteristics may grow heterogeneity, and influence safety and efficacy outcomes. Second, prevalence of patients with long-standing persistent AF is low; the AFCA outcome reported in this study may therefore be scarcely reflective of this subgroup of patients. Third, although heterogeneity was appraised by random effect, this meta-analysis, in order to include the largest amount of data available from current literature, combines randomized controlled trials with observational studies. The enrolled population may therefore be affected by selection bias of single centers' experience and preference in referring patients to AFCA, excluding patients with heart failure considered unlikely to benefit from the procedure.. Finally, meta-regression analysis does not allow clinicians to drive causative inferences, but only speculative; large prospective multicenter clinical trials are needed to define AFCA safety and efficacy in this group of patients.

#### Conclusion

. AFCA long-term SR maintenance in patients with impaired LV systolic function is comparable to that reported on the long-term among the general population, especially when AFCA is performed early in the natural history of AF and heart failure. Moreover, LV function consistently improves over the follow-up, significantly reducing the proportion of patients with severely impaired LV systolic function. Large prospective multicenter trials are advised to clearly define the true safety and efficacy of AFCA in this subset population.

### Acknowledgement

We thank all contacted centers for the professionalism demonstrated by promptly collaborating and sharing data with the only aim to improve current medical knowledge.

#### Disclosures

Conflicts of interest: none.

# Reference

<sup>1</sup> Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW,Shen WK, Wann LS, Curtis AB, Ellenbogen KA, Estes NA 3rd, Ezekowitz MD, Jackman WM, January CT, Lowe JE, Page RL, Slotwiner DJ, Stevenson WG, Tracy CM, Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Le Heuzey JY, Kay GN, Olsson SB, Prystowsky EN, Tamargo JL, Wann S. Management of Patients With Atrial Fibrillation (Compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS Recommendations): A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2013;127:1916-1926.

<sup>2</sup> Ganesan AN, Shipp NJ, Brooks AG, Kuklik P, Lau DH, Lim HS, Sullivan T, Roberts-Thomson KC, Sanders P. Long-term Outcomes of Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-analysis. *J Am Heart Assoc.* 2013;2:e004549.

<sup>3</sup> Wilton SB, Fundytus A, Ghali WA, Veenhuyzen GD, Quinn FR, Mitchell LB, Hill MD, Faris P, Exner DV. Meta-analysis of the effectiveness and safety of catheter ablation of atrial fibrillation in patients with versus without left ventricular systolic dysfunction. *Am J Cardiol*. 2010;106:1284-1291.

<sup>4</sup> Dagres N, Varounis C, Gaspar T, Piorkowski C, Eitel C, Iliodromitis EK, Lekakis JP, Flevari P, Simeonidou E, Rallidis LS, Tsougos E, Hindricks G, Sommer P, Anastasiou-Nana M. Catheter ablation for atrial fibrillation in patients with left ventricular systolic dysfunction. A systematic review and meta-analysis. *J Card Fail.* 2011;17:964-970.

<sup>5</sup> Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.

<sup>6</sup> Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. *JAMA*. 2000;283:2008–2012. <sup>7</sup> Chen MS, Marrouche NF, Khaykin Y, Gillinov AM, Wazni O, Martin DO, Rossillo A, Verma A, Cummings J, Erciyes D, Saad E, Bhargava M, Bash D, Schweikert R, Burkhardt D, Williams-Andrews M, Perez-Lugones A, Abdul-Karim A, Saliba W, Natale A. Pulmonary vein isolation for the treatment of atrial fibrillation in patients with impaired systolic function. *J Am Coll Cardiol*. 2004;43:1004-1009.

<sup>8</sup> Hsu LF, Jaïs P, Sanders P, Garrigue S, Hocini M, Sacher F, Takahashi Y, Rotter M, Pasquié JL, Scavée C, Bordachar P, Clémenty J, Haïssaguerre M. Catheter ablation for atrial fibrillation in congestive heart failure. *N Engl J Med.* 2004;351:2373-2383.

<sup>9</sup> Tondo C, Mantica M, Russo G, Avella A, De Luca L, Pappalardo A, Fagundes RL, Picchio E, Laurenzi F, Piazza V, Bisceglia I. Pulmonary vein vestibule ablation for the control of atrial fibrillation in patients with impaired left ventricular function. *Pacing Clin Electrophysiol*. 2006;29:962-970.

<sup>10</sup> Gentlesk PJ, Sauer WH, Gerstenfeld EP, Lin D, Dixit S, Zado E, Callans D, Marchlinski FE. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. *J Cardiovasc Electrophysiol*. 2007;18:9-14.

<sup>11</sup> Efremidis M, Sideris A, Xydonas S, Letsas KP, Alexanian IP, Manolatos D, Mihas CC, Filippatos GS, Kardaras F. Ablation of atrial fibrillation in patients with heart failure: reversal of atrial and ventricular remodelling. *Hellenic J Cardiol.* 2008;49:19-25.

<sup>12</sup> Nademanee K, Schwab MC, Kosar EM, Karwecki M, Moran MD, Visessook N, Michael AD, Ngarmukos T. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. *J Am Coll Cardiol.* 2008;51:843-849.

<sup>13</sup> Khan MN, Jaïs P, Cummings J, Di Biase L, Sanders P, Martin DO, Kautzner J, Hao S, Themistoclakis S, Fanelli R, Potenza D, Massaro R, Wazni O,Schweikert R, Saliba W, Wang P, Al-Ahmad A, Beheiry S, Santarelli P, Starling RC, Dello Russo A, Pelargonio G, Brachmann J, Schibgilla V, Bonso A, Casella M, Raviele A, Haïssaguerre M, Natale A; PABA-CHF Investigators. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. *N Engl J Med.* 2008;359:1778-1785. <sup>14</sup> Lutomsky BA, Rostock T, Koops A, Steven D, Müllerleile K, Servatius H, Drewitz I, Ueberschär D, Plagemann T, Ventura R, Meinertz T, Willems S. Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging. *Europace*. 2008;10:593-599.

<sup>15</sup> De Potter T, Berruezo A, Mont L, Matiello M, Tamborero D, Santibañez C, Benito B, Zamorano N, Brugada J. Left ventricular systolic dysfunction by itself does not influence outcome of atrial fibrillation ablation. *Europace*. 2010;12:24-29.

<sup>16</sup>Choi AD, Hematpour K, Kukin M, Mittal S, Steinberg JS. Ablation vs medical therapy in the setting of symptomatic atrial fibrillation and left ventricular dysfunction. *Congest Heart Fail*. 2010;16:10-14.

<sup>17</sup> MacDonald MR, Connelly DT, Hawkins NM, Steedman T, Payne J, Shaw M, Denvir M, Bhagra S, Small S, Martin W, McMurray JJ, Petrie MC. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. *Heart*. 2011;97:740-747.

<sup>18</sup>Cha YM, Wokhlu A, Asirvatham SJ, Shen WK, Friedman PA, Munger TM, Oh JK, Monahan KH, Haroldson JM, Hodge DO, Herges RM, Hammill SC, Packer DL. Success of ablation for atrial fibrillation in isolated left ventricular diastolic dysfunction: a comparison to systolic dysfunction and normal ventricular function. *Circ Arrhythm Electrophysiol*. 2011;4:724-732.

<sup>19</sup> Anselmino M, Grossi S, Scaglione M, Castagno D, Bianchi F, Senatore G, Matta M, Casolati D, Ferraris F, Cristoforetti Y, Negro A, Gaita F. Long-term results of transcatheter atrial fibrillation ablation in patients with impaired left ventricular systolic function. *J Cardiovasc Electrophysiol*. 2013;24:24-32.

<sup>20</sup>Calvo N, Bisbal F, Guiu E, Ramos P, Nadal M, Tolosana JM, Arbelo E, Berruezo A, Sitges M, Brugada J, Mont L. Impact of atrial fibrillation-induced tachycariomyopathy in patients undegoing pulmonary vein isolation. *Int J Cardiol*. 2013;168:4093-4097.

<sup>21</sup> Jones DG, Haldar SK, Hussain W, Sharma R, Francis DP, Rahman-Haley SL, McDonagh TA, Underwood SR, Markides V, Wong T. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. *J Am Coll Cardiol*. 2013;61:1894-1903.

<sup>22</sup> Pappone C, Rosanio S, Augello G, Gallus G, Vicedomini G, Mazzone P, Gulletta S, Gugliotta F, Pappone A, Santinelli V, Tortoriello V, Sala S, Zangrillo A, Crescenzi G, Benussi S, Alfieri O. Mortality, morbidity, and quality of life after circumferential pulmonary vein ablation for atrial fibrillation: outcomes from a controlled nonrandomized long-term study. *J Am Coll Cardiol*. 2003;42:185-197.

<sup>23</sup> Bertaglia E, Tondo C, De Simone A, Zoppo F, Mantica M, Turco P, Iuliano A, Forleo G, La Rocca V, Stabile G. Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation ablation: a 6-year multicentre experience. *Europace*. 2010;12:181–187.

<sup>24</sup> Pappone C, Vicedomini G, Augello G, Manguso F, Saviano M, Baldi M, Petretta A, Giannelli L, Calovic Z, Guluta V, Tavazzi L, Santinelli V. Radiofrequency catheter ablation and antiarrhythmic drug therapy: a prospective, randomized, 4-year follow-up trial: the APAF study. *Circ Arrhythm Electrophysiol*. 2011;4:808-814.

<sup>25</sup> Medi C, Sparks PB, Morton JB, Kistler PM, Halloran K, Rosso R, Vohra JK, Kumar S, Kalman JM. Pulmonary vein antral isolation for paroxysmal atrial fibrillation: results from long-term follow-up. *J Cardiovasc Electrophysiol*. 2011;22:137–141.

<sup>26</sup> Weerasooriya R, Khairy P, Litalien J, Macle L, Hocini M, Sacher F, Lellouche N, Knecht S, Wright M, Nault I, Miyazaki S, Scavee C, Clementy J, Haissaguerre M, Jais P. Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? *J Am Coll Cardiol*. 2011;57:160–166.

<sup>27</sup> Bunch TJ, Crandall BG, Weiss JP, May HT, Bair TL, Osborn JS, Anderson JL, Muhlestein JB, Horne BD, Lappe DL, Day JD. Patients treated with catheter ablation for atrial fibrillation have

long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. *J Cardiovasc Electrophysiol*. 2011;22:839-845.

<sup>28</sup> Hunter RJ, McCready J, Diab I, Page SP, Finlay M, Richmond L, French A, Earley MJ, Sporton S, Jones M, Joseph JP, Bashir Y, Betts TR, Thomas G, Staniforth A, Lee G, Kistler P, Rajappan K, Chow A, Schilling RJ. Maintenance of sinus rhythm with an ablation strategy in patients with atrial fibrillation is associated with a lower risk of stroke and death. *Heart*. 2012;98:48-53.

<sup>29</sup>Lim TW, Koay CH, See VA, McCall R, Chik W, Zecchin R, Byth K, Seow SC, Thomas L, Ross DL, Thomas SP. Single-ring posterior left atrial (box) isolation results in a different mode of recurrence compared with wide antral pulmonary vein isolation on long-term follow-up: longer atrial fibrillation-free survival time but similar survival time free of any atrial arrhythmia. *Circ Arrhythm Electrophysiol*. 2012;5:968-977.

<sup>30</sup> Neumann T, Wójcik M, Berkowitsch A, Erkapic D, Zaltsberg S, Greiss H, Pajitnev D, Lehinant S, Schmitt J, Hamm CW, Pitschner HF, Kuniss M. Cryoballoon ablation of paroxysmal atrial fibrillation: 5-year outcome after single procedure and predictors of success. *Europace*. 2013;15:1143-1149.

<sup>31</sup> Vogt J, Heintze J, Gutleben KJ, Muntean B, Horstkotte D, Nölker G. Long-term outcomes after cryoballoon pulmonary vein isolation: results from a prospective study in 605 patients. *J Am Coll Cardiol*. 2013;61:1707-1712.

<sup>32</sup> Fiala M, Wichterle D, Bulková V, Sknouril L, Nevralová R, Toman O, Dorda M, Januska J, Spinar J. A prospective evaluation of haemodynamics, functional status, and quality of life after radiofrequency catheter ablation of long-standing persistent atrial fibrillation. *Europace*. 2014;16:15-25.

<sup>33</sup> D'Ascenzo F, Corleto A, Biondi-Zoccai G, Anselmino M, Ferraris F, di Biase L, Natale A, Hunter RJ, Schilling RJ, Miyazaki S, Tada H, Aonuma K, Yenn-Jiang L, Tao H, Ma C, Packer D, Hammill S, Gaita F. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a meta-analysis. *Int J Cardiol.* 2013;167:1984-1989.

<sup>34</sup> Gupta A, Perera T, Ganesan A, Sullivan T, Lau DH, Roberts-Thomson KC, Brooks AG, Sanders P. Complications of catheter ablation of atrial fibrillation: a systematic review. *Circ Arrhythm Electrophysiol*. 2013;6:1082-1088.

<sup>35</sup> Bunch TJ, May HT, Bair TL, Johnson DL, Weiss JP, Crandall BG, Osborn JS, Anderson JL, Muhlestein JB, Lappe DL, Day JD. Increasing time between first diagnosis of atrial fibrillation and catheter ablation adversely affects long-term outcomes. *Heart Rhythm.* 2013;10:1257-1262

<sup>36</sup> Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. *Cardiovasc Res.* 2002;54:230-246.

<sup>37</sup> Gaita F, Caponi D, Scaglione M, Montefusco A, Corleto A, Di Monte F, Coin D, Di Donna P, Giustetto C. Long term clinical results of two different ablation strategies in patients with paroxysmal and persistent atrial fibrillation. *Circ Arrhythmia Electrophysiol*. 2008;1:269–275.

<sup>38</sup> Knecht S, Hocini M, Wright M, Lellouche N, O'Neill MD, Matsuo S, Nault I, Chauhan VS, Makati KJ, Bevilacqua M, Lim KT, Sacher F, Deplagne A, Derval N,Bordachar P, Jaïs P, Clémenty J, Haïssaguerre M. Left atrial linear lesions are required for successful treatment of persistent atrial fibrillation. *Eur Heart J*. 2008;29:2359-2366.

<sup>39</sup> Tamborero D, Mont L, Berruezo A, Matiello M, Benito B, Sitges M, Vidal B, de Caralt TM, Perea RJ, Vatasescu R, Brugada J. Left atrial posterior wall isolation does not improve the outcome of circumferential pulmonary vein ablation for atrial fibrillation: a prospective randomized study. *Circ Arrhythm Electrophysiol*. 2009;2:35-40.

<sup>40</sup> Sawhney N, Anousheh R, Chen W, Feld GK. Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. *Circ Arrhythm Electrophysiol*. 2010;3:243-248.

<sup>41</sup> Tops LF, Den Uijl DW, Delgado V, Marsan NA, Zeppenfeld K, Holman E, van der Wall EF, Schalij MJ, Bax JJ. Long-term improvement in left ventricular strain after successful catheter

ablation for atrial fibrillation in patients with preserved left ventricular systolic function. *Circ Arrhythm Electrophysiol*. 2009;2:249-257.

<sup>42</sup> Solheim E, Off MK, Hoff PI, De Bortoli A, Schuster P, Ohm OJ, Chen J. N-terminal pro-B-type natriuretic peptide level at long-term follow-up after atrial fibrillation ablation: a marker of reverse atrial remodelling and successful ablation. *J Interv Card Electrophysiol*. 2012;34:129-136.

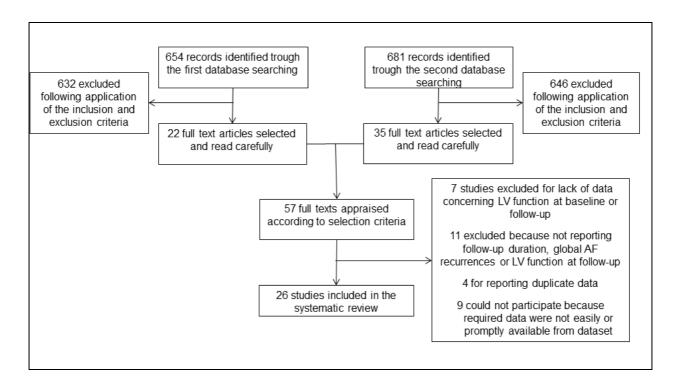
<sup>43</sup> Flaker GC, Blackshear JL, McBride R, Kronmal RA, Halperin JL, Hart RG. Antiarrhythmic drug therapy and cardiac mortality in atrial fibrillation. *J Am Coll Cardiol*. 1992;20:527-532.

|                                | Mean value                           |
|--------------------------------|--------------------------------------|
|                                | (Lower-Upper 95%Confidence Interval) |
| Age, years                     | 59 (51-61)                           |
| Female gender, %               | 38 (29-43)                           |
| BMI, kg/m <sup>2</sup>         | 29 (24-31)                           |
| Mean follow-up, months         | 23 (18-41)                           |
| Type of AF                     |                                      |
| - Paroxysmal, %                | 45 (41-56)                           |
| - Persistent, %                | 50 (35-54)                           |
| - Long-standing persistent, %  | 5.0 (2.0-7.0)                        |
| Time since first AF diagnosis, | 42 (29-46)                           |
| months                         |                                      |
| Hypertension, %                | 63 (57-68)                           |
| Diabetes mellitus, %           | 12 (9.0-15)                          |
| Prior stroke/TIA, %            | 13 (11-19)                           |
| Time since first heart failure | 27 (20-28)                           |
| diagnosis, months              |                                      |
| Basal 6 minute walking test,   | 534 (250-670)                        |
| meters                         |                                      |
| Basal pro-BNP (pg/ml)          | 11,187 (678-11,400)                  |
| Thyroid disease                |                                      |
| - Hyperthyroidism, %           | 7.5 (5.5-8.5)                        |
| - Hypothyroidism, %            | 3.5 (3.0-5.0)                        |
| Chronic lung disease, %        | 5.0 (1.0-10)                         |
| Obstructive sleep apnea, %     | 15 (7.5-19)                          |
| NYHA class                     |                                      |
| - I, %                         | 20 (15-25)                           |
| - II, %                        | 45 (35-49)                           |
| - III or IV, %                 | 35 (30-45)                           |
| Cardiomiopathy                 |                                      |
| - Ischemic, %                  | 41 (35-46)                           |
| - Hypertensive, %              | 10 (5.0-14)                          |

**Table 1.** Clinical features of patients included in the selected studies (1,838 patients).

| - Valvular heart disease, % | 10 (6.0-15) |
|-----------------------------|-------------|
| - Idiopathic, %             | 39 (35-45)  |
| QRS duration at ECG, msec   | 83 (80-120) |
| Baseline medical therapy    |             |
| - Amiodarone, %             | 33 (25-40)  |
| - Oral anticoagulants, %    | 56 (45-69)  |
| - Beta-blockers, %          | 70 (43-82)  |
| LVEF, %                     | 40 (35-46)  |
| Left atrial AP diameter, mm | 59 (40-110) |

BMI: body mass index; AF: atrial fibrillation. TIA: transient ischemic attack; NYHA: New York Heart Association; LVEF: left ventricular ejection fraction; AP: antero-posterior. **Table 2.** Procedural features and efficacy rates of atrial fibrillation catheter ablation in the selected


 studies (1,838 patients).

|                                    | Mean value                            |
|------------------------------------|---------------------------------------|
|                                    | (Lower-Upper 95% Confidence Interval) |
| First procedure                    |                                       |
| PV isolation, %                    | 100 (100-100)                         |
| PV isolation alone, %              | 55 (51-76)                            |
| Left isthmus line, %               | 35 (10-50)                            |
| Roof line, %                       | 46 (34-48)                            |
| CFAE, %                            | 5.0 (1.0-7.0)                         |
| Fluroscopy time, minutes           | 39 (24-64)                            |
| Procedural time, hours             | 3.1 (2.6-3.8)                         |
| Post procedural cardioversion, %   | 53 (30-65)                            |
| Overall complications, %           | 4.2 (3.6-4.8)                         |
| Access site complications, %       | 2.0 (1.0-2.5)                         |
| Stroke/TIA, %                      | 1.0 (0.6-1.5)                         |
| Cardiac tamponade, %               | 1.2 (0.6-1.5)                         |
| Others, %                          | 1.2 (0.7-1.6)                         |
| Redo procedures, 32 (24-36)% of pa | itients                               |
| Time after first procedure, months | 12 (9.0-15)                           |
| PV isolation, %                    | 100 (100-100)                         |
| PV isolation alone, %              | 46 (43-56)                            |
| Left isthmus line, %               | 25 (21-29)                            |
| Roof line, %                       | 35 (31-34)                            |
| CFAE, %                            | 5.0 (1.0-7.0)                         |
| First procedure efficacy, %        | 40 (36-44)                            |
| Final efficacy, %                  | 60 (54-67)                            |

PV: pulmonary veins; CFAE: complex fractioned atrial electrograms; TIA: transient ischemic attack.

Figure 1. Search criteria and flow chart of the studies screened and included in the systematic

review.



LV: left ventricular. AF: atrial fibrillation.

Figure 2. Funnel plot of the included studies concerning complication rates (A) and efficacy after first procedure (B) or at follow-up end (C).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |           |           | Odds Ratio                                                                                                                                                                                                                                                                                                                               | Odds Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | log[Odds Ratio]                  | SE        | Weight    | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                       | IV, Random,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Anselmino, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                              | 0.01      | 9.0%      | 2.46 [2.41, 2.51]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Bertaglia, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                | 0         |           | Not estimable                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Bunch, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                              | 0.02      | 8.9%      | 2.01 [1.94, 2.09]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Calvo, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8                              | 2000      | 7.3%      | 6.05 [4.78, 7.65]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Cha, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                              | 2.2.2     | 8.6%      | 3.32 [3.01, 3.66]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Chen, 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                              |           | 8.8%      | 2.01 [1.86, 2.18]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Choi, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0.33      | 3.3%      | 6.69 [3.50, 12.77]                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | De Potter, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                              |           | 8,9%      | 3.00 [2.83, 3.19]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Efredimis, 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                |           |           | Not estimable                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Fiala, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8                              |           | 5.5%      | 6.05 [4.09, 8.95]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Hsu, 04<br>Hunter, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                              | - T.STO - | 8.3%      | 3.32 [2.89, 3.81]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Jones, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1                              |           | 2.5%      | 8.17 [6.45, 10.33]<br>14.88 [6.79, 32.59]                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Khan, 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                              | 1.000     | 3.7%      | 12.18 (6.77, 21.93)                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Lim, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                              |           | 6.2%      | 5.47 [3.92, 7.64]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Lutomsky, 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                              |           | 3.7%      | 5.47 [3.04, 9.86]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | MacDonald, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                              |           | 1.3%      | 18.17 [5.61, 58.91]                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Tondo, 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 0.15      | 6.6%      | 4.95 [3.69, 6.65]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | (37-58-87-00) (30-459-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |           |           | 000000000000000                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |           | 100.0%    | 4.17 [3.59, 4.83]                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | Heterogeneity: Tau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.06; Chi <sup>#</sup> = 520.1 | 11, df=   | 15 (P < 0 | 0.00001); P = 97%                                                                                                                                                                                                                                                                                                                        | 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |    |
| B. Catheter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ablation effic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acy af                                                                                                                                                                                                   | Test for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |           |           | C. Cathete                                                                                                                                                                                                                                                                                                                               | er ablation effi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | icacy at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the end of follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w-up                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Ratio     | 21        | C. Cathete<br>Study or Subgroup                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the end of follo<br>Odds Ratio<br>IV. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W-up<br>Odds Ratio<br>IV. Random, 95% | сі |
| tudy or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | log[Odds Ratio] SE<br>-0.8 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight 1<br>5.3%                                                                                                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% Ci<br>0.45 [0.42, 0.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ocedure<br>Odds F                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12                                                                                                                                                                                                                                                                                                       | log[Odds Ratio] 5<br>-0.45 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>SE Weight</u><br>13 4.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                            | сі |
| Study or Subgroup<br>Inselmino, 12<br>Sertaglia, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight 1<br>5.3%<br>3.9%                                                                                                                                                                                 | ter the first pro<br>Odds Ratio<br>V, Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ocedure<br>Odds F                | Ratio     | CI .      | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10                                                                                                                                                                                                                                                                                      | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE Weight<br>13 4.8%<br>11 4.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Odds Ratio<br>IV, Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                            | CI |
| itudy or Subgroup<br>Inselmino, 12<br>Iertaglia, 10<br>Iunch, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight 1<br>5.3%<br>3.9%<br>5.3%                                                                                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% Cl<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.33, 0.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ocedure<br>Odds F                | Ratio     | 21        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11                                                                                                                                                                                                                                                                         | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE Weight<br>13 4.8%<br>11 4.1%<br>14 4.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Odds Ratio<br>IV, Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]                                                                                                                                                                                                                                                                                                                                                                                                                                     | Odds Ratio<br>TV, Random, 95%         | CI |
| tudy or Subgroup<br>nselmino, 12<br>tertaglia, 10<br>tunch, 11<br>taivo, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.04<br>-1.02 0.04<br>-0.99 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%                                                                                                                                                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.32, 0.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ocedure<br>odds f                | Ratio     | 21        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Cairo, 13                                                                                                                                                                                                                                                            | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE Weight<br>13 4.8%<br>11 4.1%<br>14 4.8%<br>15 4.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.54]                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio                            | CI |
| study or Subgroup<br>Inselmino, 12<br>Iertaglia, 10<br>Iunch, 11<br>Salvo, 13<br>Shen, 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight 1<br>5.3%<br>3.9%<br>5.3%                                                                                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% Cl<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.33, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ocedure<br>odds f                | Ratio     | <b>CI</b> | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Cahro, 13<br>Chen, 04                                                                                                                                                                                                                                                | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE Weight<br>13 4.8%<br>11 4.1%<br>14 4.8%<br>15 4.7%<br>11 4.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Odds Ratio<br>IV, Random, 95% Cl<br>0.64 (0.60, 0.68)<br>0.50 (0.40, 0.62)<br>0.48 (0.45, 0.52)<br>0.49 (0.45, 0.54)<br>0.79 (0.77, 0.80)                                                                                                                                                                                                                                                                                                                                                                                           | Odds Ratio<br>TV, Random, 95%         | CI |
| tudy or Subgroup<br>riselmino, 12<br>lettaglia, 10<br>lunch, 11<br>laho, 13<br>lihen, 04<br>lihoi, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>5.3%                                                                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.32, 0.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caivo, 13<br>Chen, 04<br>Choi, 10                                                                                                                                                                                                                                    | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0<br>-0.66 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5E Weight<br>13 4.8%<br>11 4.1%<br>14 4.8%<br>15 4.7%<br>11 4.9%<br>1 4.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 (0.60, 0.68)<br>0.50 (0.40, 0.62)<br>0.48 (0.45, 0.52)<br>0.49 (0.45, 0.54)<br>0.79 (0.77, 0.80)<br>0.52 (0.42, 0.63)                                                                                                                                                                                                                                                                                                                                                                      | Odds Ratio<br>TV, Random, 95%         | CI |
| itudy or Subgroup<br>Inselmino, 12<br>Iertagia, 10<br>Iunch, 11<br>Jaho, 13<br>Ihen, 04<br>Ihoi, 10<br>IP Potter, 10<br>Stedimis, 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.11<br>-0.89 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%                                                                                                                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% Cl<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.33, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]                                                                                                                                                                                                                                                                                                                                                                                                                | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Cahro, 13<br>Chen, 04                                                                                                                                                                                                                                                | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5E Weight<br>13 4.8%<br>11 4.1%<br>14 4.8%<br>15 4.7%<br>11 4.9%<br>11 4.2%<br>18 4.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.49 [0.45, 0.54]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]                                                                                                                                                                                                                                                                                                                            | Odds Ratio<br>TV, Random, 95%         | CI |
| tudy or Subgroup<br>rselmino, 12<br>tertaglia, 10<br>unch, 11<br>sitvo, 13<br>then, 04<br>thoi, 10<br>te Potter, 10<br>fredimis, 07<br>taia, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.1<br>-0.98 0.14<br>-1.2 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%<br>3.6%                                                                                                                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.39 [0.28, 0.54]<br>0.39 [0.22, 0.40]                                                                                                                                                                                                                                                                                                                                                                                           | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Cairo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10                                                                                                                                                                                                                   | log[Odds Ratio]         S           -0.45         0.           -0.69         0.1           -0.73         0.0           -0.71         0.0           -0.66         0           -0.46         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SE         Weight           13         4.8%           14         4.1%           04         4.8%           05         4.7%           11         4.9%           15         4.7%           11         4.9%           12         4.2%           13         4.4%           14         3.8%                                                                                                                                                                                                                                                                                                                         | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 (0.60, 0.68)<br>0.50 (0.40, 0.62)<br>0.48 (0.45, 0.52)<br>0.49 (0.45, 0.54)<br>0.79 (0.77, 0.80)<br>0.52 (0.42, 0.63)                                                                                                                                                                                                                                                                                                                                                                      | Odds Ratio<br>TV, Random, 95%         | сі |
| tudy or Subgroup<br>nselmino, 12<br>tertaglia, 10<br>unch, 11<br>salvo, 13<br>then, 04<br>thol, 10<br>te Potter, 10<br>fredmis, 07<br>teatlas, 14<br>tentlesk, 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.14<br>-1.2 0.15<br>-0.98 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%<br>3.6%<br>4.9%                                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.32, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.44]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]                                                                                                                                                                                                                                                                                                                                                 | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caho, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07                                                                                                                                                                                                   | log[Odds Ratio] 9<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0<br>-0.66 0<br>-0.46 0.0<br>-0.46 0.0<br>-0.39 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE         Weight           33         4.8%           11         4.1%           94         4.8%           15         4.7%           11         4.2%           18         4.4%           14         3.8%           17         4.5%                                                                                                                                                                                                                                                                                                                                                                             | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.48 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]                                                                                                                                                                                                                                                                                                                            | Odds Ratio<br>TV, Random, 95%         | сі |
| study or Subgroup<br>inselmino, 12<br>iertagia, 10<br>ivunch, 11<br>iavo, 13<br>ihen, 04<br>ihol, 10<br>iere Potter, 10<br>fredimis, 07<br>iala, 14<br>ieretlesk, 07<br>isu, 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.11<br>-0.89 0.14<br>-1.2 0.15<br>-0.98 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%<br>3.6%<br>4.9%<br>4.9%<br>4.7%                                                                                                         | ter the first pro<br>Odds Ratio<br>V, Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.38 [0.33, 0.43]                                                                                                                                                                                                                                                                                                                                                 | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentlesk, 07<br>Hsu, 04                                                                                                                                                          | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0<br>-0.24 0.0<br>-0.26 0.0<br>-0.46 0.0<br>-0.39 0.1<br>-0.45 0.0<br>-0.77 0.0<br>-0.41 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SE         Weight           13         4.8%           11         4.1%           14         4.8%           15         4.7%           16         4.9%           11         4.9%           11         4.9%           13         4.8%           14         4.9%           15         4.7%           16         4.9%           17         4.5%           13         4.8%           15         4.7%                                                                                                                                                                                                                 | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.56, 0.73]<br>0.66 [0.60, 0.73]                                                                                                                                                                                                                                                                                  | Odds Ratio<br>TV, Random, 95%         | сі |
| study or Subgroup<br>meelmino, 12<br>tertaglia, 10<br>sunch, 11<br>savo, 13<br>chen, 04<br>hoi, 10<br>te Potter, 10<br>Sredimis, 07<br>faida, 14<br>sentiesk, 07<br>isu, 04<br>unfer, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.1<br>-0.98 0.14<br>-1.2 0.15<br>-0.98 0.07<br>-0.69 0.08<br>-1.05 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%<br>4.9%<br>4.9%<br>4.9%<br>5.0%                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.38 [0.35, 0.41]<br>0.39 [0.26, 0.54]<br>0.39 [0.26, 0.54]<br>0.39 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.30 [0.23, 0.43]<br>0.50 [0.43, 0.59]<br>0.35 [0.31, 0.59]                                                                                                                                                                                                                                                                                                       | ocedure<br>odds f                | Ratio     | a         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caho, 13<br>Chen, 04<br>Choi, 10<br>Die Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12                                                                                                                                            | log[Odds Ratio] 5<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.73 0.0<br>-0.74 0.0<br>-0.66 0<br>-0.46 0.0<br>-0.39 0.1<br>-0.45 0.0<br>-0.77 0.0<br>-0.71 0.0<br>-0.77 0.0<br>-0.75 | SE         Weight           33         4.8%           14         4.9%           15         4.7%           16         4.9%           17         4.9%           18         4.9%           19         4.9%           11         4.2%           12         4.8%           13         4.8%           14         3.8%           13         4.8%           13         4.8%           15         4.7%           34         4.8%                                                                                                                                                                                       | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.48 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.39]<br>0.64 [0.55, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]                                                                                                                                                                                                                                        | Odds Ratio<br>TV, Random, 95%         | сі |
| Study or Subgroup<br>Inselmino, 12<br>Iteraglia, 10<br>Sunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Stredimis, 07<br>Isla, 14<br>Sentiesk, 07<br>Isla, 14<br>Juniter, 12<br>ones, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | log[Odds Ratio] SE<br>-0.8 0.04<br>-1.2 0.13<br>-1.02 0.04<br>-0.99 0.07<br>-0.96 0.04<br>-0.95 0.17<br>-0.98 0.11<br>-0.89 0.14<br>-1.2 0.15<br>-0.98 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>3.3%<br>4.4%<br>3.7%<br>3.6%<br>4.9%<br>4.9%<br>4.7%                                                                                                         | ter the first pro<br>Odds Ratio<br>V, Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.38 [0.33, 0.43]                                                                                                                                                                                                                                                                                                                                                 | ocedure<br>odds f                | Ratio     | a         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caivo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentlesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13                                                                                                                               | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.74         0.0           -0.66         0           -0.46         0.0           -0.46         0.0           -0.46         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.41         0.0           -0.35         0.0           -0.23         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SE         Weight           33         4.8%           11         4.1%           04         4.8%           05         4.7%           01         4.9%           11         4.9%           12         4.9%           13         4.8%           14         3.8%           17         4.5%           13         4.8%           15         4.7%           13         4.8%           15         4.7%           13         4.8%           15         4.7%                                                                                                                                                             | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.66]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.49 [0.45, 0.54]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.55, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]                                                                                                                                                                                                                                        | Odds Ratio<br>TV, Random, 95%         | сі |
| tudy or Subgroup<br>nselmino, 12<br>tertaglia, 10<br>unch, 11<br>taivo, 13<br>then, 04<br>thol, 10<br>te Potter, 10<br>fredimis, 07<br>taia, 14<br>tentlesk, 07<br>tsu, 04<br>tunter, 12<br>ones, 13<br>han, 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.14           -1.2         0.15           -0.98         0.04           -0.98         0.14           -1.2         0.15           -0.89         0.08           -1.105         0.06           -1.23         0.08           -0.34         0.06           -0.73         0.11                                                                                                                                                                                                                                        | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>3.3%<br>4.4%<br>3.7%<br>3.6%<br>4.9%<br>5.0%<br>4.7%                                                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.39 [0.28, 0.54]<br>0.39 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.35 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.35 [0.31, 0.59]<br>0.35 [0.31, 0.59]<br>0.35 [0.31, 0.59]<br>0.35 [0.31, 0.59]<br>0.35 [0.31, 0.59]<br>0.35 [0.31, 0.50]                                                                                                                                                                         | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08                                                                                                                   | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.666         0           -0.46         0.0           -0.46         0.0           -0.46         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.35         0.0           -0.35         0.0           -0.30         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE         Weight           33         4.8%           11         4.1%           35         4.7%           36         4.7%           37         4.8%           38         4.4%           38         4.4%           4.4%         3.8%           37         4.5%           33         4.8%           35         4.7%           34         4.8%           35         4.7%           34         4.8%           34         4.8%                                                                                                                                                                                     | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.66, 0.80]                                                                                                                                                                                              | Odds Ratio<br>TV, Random, 95%         | сі |
| study or Subgroup<br>inselmino, 12<br>tertaglia, 10<br>tunch, 11<br>Salvo, 13<br>then, 04<br>thoi, 10<br>be Potter, 10<br>fredmis, 07<br>islaa, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 04<br>tunter, 12<br>ones, 13<br>chan, 08<br>im, 12<br>utomsky, 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.96         0.14           -1.2         0.15           -0.98         0.07           -0.98         0.07           -0.89         0.08           -1.23         0.08           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.69         0.15                                                                                                                                                                                                                                        | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>3.3%<br>4.4%<br>3.3%<br>4.9%<br>5.0%<br>4.9%<br>5.0%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.3%<br>3.6%                                                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.36 [0.33, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.35 [0.31, 0.39]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.48 [0.39, 0.60]                                                                                                                                                                                                                   | ocedure<br>odds f                | Ratio     | a         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caho, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Llim, 12                                                                                                        | log[Odds Ratio] 9<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0<br>-0.86 0<br>-0.46 0.0<br>-0.39 0.1<br>-0.45 0.0<br>-0.35 0.0<br>-0.35 0.0<br>-0.37 0.0<br>-0.37 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE         Weight           33         4.8%           11         4.1%           14         4.8%           15         4.7%           11         4.9%           11         4.9%           13         4.8%           14         3.8%           15         4.7%           13         4.8%           14         3.8%           15         4.7%           14         4.8%           15         4.7%           14         4.8%           18         4.4%                                                                                                                                                             | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.48 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.55, 0.73]<br>0.46 [0.44, 0.48]<br>0.68 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.66, 0.80]<br>0.69 [0.59, 0.81]                                                                                                                                                                         | Odds Ratio<br>TV, Random, 95%         | сі |
| tudy or Subgroup<br>inselmino, 12<br>intertagia, 10<br>iunch, 11<br>iaho, 13<br>ihen, 04<br>ihol, 10<br>iredimis, 07<br>iala, 14<br>ientlesk, 07<br>isu, 04<br>iunter, 12<br>ones, 13<br>chan, 08<br>im, 12<br>utomsky, 08<br>iacDonald, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.11           -0.89         0.15           -0.98         0.08           -1.05         0.06           -0.89         0.08           -1.05         0.06           -0.34         0.06           -0.73         0.11           -0.69         0.15           -1.25         0.16                                                                                                                                                                                                                                       | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>3.3%<br>4.9%<br>3.5%<br>4.9%<br>4.9%<br>4.9%<br>5.0%<br>4.7%<br>5.0%<br>3.6%<br>3.3%                                                                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.22, 0.39]<br>0.36 [0.33, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.38 [0.35, 0.43]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.38 [0.31, 0.45]<br>0.55 [0.43, 0.59]<br>0.55 [0.43, 0.59]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.48 [0.39, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.21, 0.39]                                                                                                                                                                         | ocedure<br>odds f                | Ratio     | CI        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caivo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentlesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08                                                                                        | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.74         0.0           -0.46         0.0           -0.46         0.0           -0.46         0.0           -0.46         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.46         0.0           -0.77         0.0           -0.35         0.0           -0.35         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.71         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE         Weight           33         4.8%           11         4.1%           15         4.7%           16         4.9%           17         4.5%           18         4.4%           13         4.8%           14         4.9%           15         4.7%           15         4.7%           16         4.7%           17         4.5%           13         4.8%           15         4.7%           14         4.8%           15         4.6%           18         4.4%           16         3.6%                                                                                                         | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.49 [0.45, 0.54]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.98]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.68 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.68, 0.80]<br>0.68 [0.59, 0.81]<br>0.48 [0.37, 0.66]                                                                                                                                                    | Odds Ratio<br>TV, Random, 95%         | сі |
| tudy or Subgroup<br>rselmino, 12<br>tertaglia, 10<br>unch, 11<br>sivo, 13<br>then, 04<br>thoi, 10<br>te Potter, 10<br>fredimis, 07<br>iala, 14<br>tentlesk, 07<br>isu, 04<br>tuntler, 12<br>ones, 13<br>han, 08<br>im, 12<br>utomsky, 08<br>IacDonald, 10<br>led, 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.14           -1.2         0.15           -0.98         0.04           -1.2         0.15           -0.98         0.07           -0.88         0.08           -1.05         0.06           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.69         0.15           -1.25         0.16                                                                                                                                                                               | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>5.3%<br>4.4%<br>3.7%<br>3.6%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.3%<br>3.6%<br>0.8%                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.39 [0.28, 0.54]<br>0.39 [0.28, 0.54]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.35 [0.31, 0.59]<br>0.55 [0.43, 0.59]<br>0.25 [0.31, 0.39]<br>0.48 [0.39, 0.60]<br>0.48 [0.39, 0.60]<br>0.50 [0.47, 0.67]<br>0.29 [0.21, 0.39]<br>0.25 [0.10, 0.65]                                                                                                                               | ocedure<br>odds f                | Ratio     | 21        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caho, 13<br>Chen, 04<br>Chol, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Llim, 12                                                                                                        | log[Odds Ratio] 9<br>-0.45 0.0<br>-0.69 0.1<br>-0.73 0.0<br>-0.71 0.0<br>-0.24 0.0<br>-0.86 0<br>-0.46 0.0<br>-0.39 0.1<br>-0.45 0.0<br>-0.35 0.0<br>-0.35 0.0<br>-0.37 0.0<br>-0.37 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE         Weight           33         4.8%           14         4.18%           15         4.7%           16         4.2%           17         4.2%           18         4.4%           19         4.5%           10         4.5%           13         4.8%           15         4.7%           16         4.7%           15         4.7%           16         4.8%           17         4.8%           18         4.8%           19         4.8%           16         4.8%           17         3.9%                                                                                                        | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.49 [0.45, 0.54]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.66 [0.51, 0.39]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.38]<br>0.74 [0.69, 0.80]<br>0.68 [0.59, 0.81]<br>0.49 [0.37, 0.66]<br>0.51 [0.39, 0.65]                                                                                                          | Odds Ratio<br>TV, Random, 95%         | сі |
| study or Subgroup<br>inselmino, 12<br>tertaglia, 10<br>unch, 11<br>salvo, 13<br>shen, 04<br>shol, 10<br>te Potter, 10<br>fredmis, 07<br>isla, 14<br>tentlesk, 07<br>isla, 04<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 04<br>tentlesk, 08<br>tentlesk, 08<br>tentle | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.14           -1.2         0.15           -0.98         0.07           -0.88         0.07           -0.89         0.08           -1.05         0.06           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.89         0.15           -1.25         0.16           -1.25         0.16           -1.26         0.15           -1.27         0.16                                                                                                                    | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>3.3%<br>4.4%<br>3.7%<br>4.9%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.4%<br>3.6%<br>3.6%<br>3.4%                                 | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.30 [0.32, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.48 [0.39, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.27, 0.39]<br>0.25 [0.10, 0.65]<br>0.33 [0.26, 0.42]                                                                                                                                                    | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08<br>MacDonald, 10                                                                       | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.73         0.0           -0.666         0           -0.46         0.0           -0.46         0.0           -0.46         0.0           -0.77         0.0           -0.77         0.0           -0.35         0.0           -0.30         0.0           -0.37         0.0           -0.77         0.0           -0.73         0.0           -0.73         0.0           -0.77         0.0           -0.77         0.0           -0.77         0.0           -0.73         0.0           -0.73         0.0           -0.73         0.0           -0.74         0.1           -0.668         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE         Weight           33         4.8%           11         4.1%           14         4.8%           95         4.7%           11         4.2%           14         4.8%           15         4.7%           16         4.8%           17         4.5%           13         4.8%           15         4.7%           14         4.8%           15         4.7%           14         4.8%           15         3.6%           13         3.9%           13         2.0%                                                                                                                                   | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.54]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.68 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.68, 0.80]<br>0.68 [0.59, 0.81]<br>0.48 [0.37, 0.66]                                                                                                                                                    | Odds Ratio<br>TV, Random, 95%         | сі |
| Study or Subgroup<br>Inselmino, 12<br>Iteraglia, 10<br>Sunch, 11<br>Salvo, 13<br>Then, 04<br>Thoi, 10<br>De Potter, 10<br>Stredimis, 07<br>Isla, 14<br>Sentlesk, 07<br>Isla, 14<br>Sentlesk, 07<br>Isla, 14<br>Jentlesk, 07<br>Jentlesk, 08<br>Jentlesk, 08<br>Jentles                                                                                                                                                                                                                                     | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.11           -0.88         0.15           -0.98         0.06           -1.2         0.15           -0.98         0.07           -0.89         0.06           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.69         0.15           -1.25         0.16           -1.39         0.49           -1.11         0.12                                                                                                                                                 | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>5.3%<br>4.4%<br>3.7%<br>3.6%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.3%<br>3.6%<br>0.8%                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.22, 0.39]<br>0.36 [0.33, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.26, 0.43]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.38 [0.31, 0.46]<br>0.48 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.55 [0.43, 0.59]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.21, 0.39]<br>0.25 [0.10, 0.65]<br>0.33 [0.26, 0.42]<br>0.41 [0.37, 0.46]                                                                                                          | ocedure<br>odds f                | Ratio     | 2         | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentlesk, 07<br>Hisu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08<br>MacDonald, 10<br>Medi, 01                                                          | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.24         0.0           -0.45         0.0           -0.46         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.41         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.71         0.1           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.45         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE         Weight           33         4.8%           14         4.8%           15         4.7%           11         4.9%           13         4.8%           14         4.9%           15         4.7%           13         4.8%           14         3.8%           15         4.7%           16         4.7%           16         4.7%           18         4.8%           15         4.7%           14         4.8%           15         3.6%           13         3.9%           13         2.0%           14         2.2%                                                                               | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.68, 0.80]<br>0.69 [0.59, 0.81]<br>0.46 [0.59, 0.81]<br>0.46 [0.59, 0.81]<br>0.46 [0.59, 0.85]<br>0.51 [0.39, 0.65]<br>0.51 [0.39, 0.65]<br>0.54 [0.35, 1.17]                                           | Odds Ratio<br>TV, Random, 95%         | сі |
| B. Catheter<br>Study or Subgroup<br>Inselmino, 12<br>Sentaglia, 10<br>Sunch, 11<br>Salvo, 13<br>Choi, 10<br>De Potter, 10<br>Sredimis, 07<br>Tiala, 14<br>Sentlesk, 07<br>Tsu, 04<br>Hunter, 12<br>Iones, 13<br>Chan, 08<br>Jim, 12<br>Lifones, 13<br>Chan, 08<br>Lifones, 14<br>Chan, 14<br>Lifones, 15<br>Chan, 15<br>Chan, 16<br>Lifones, 15<br>Chan, 16<br>Lifones, 15<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Chan, 16<br>Lifones, 16<br>Lifone                                                                                                                                                                         | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.14           -1.2         0.15           -0.98         0.07           -0.88         0.07           -0.89         0.08           -1.05         0.06           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.89         0.15           -1.25         0.16           -1.25         0.16           -1.26         0.15           -1.27         0.16                                                                                                                    | Weight 1<br>5.3%<br>5.3%<br>4.9%<br>5.3%<br>4.4%<br>3.7%<br>4.9%<br>4.7%<br>5.0%<br>4.3%<br>3.6%<br>3.4%<br>0.8%<br>4.1%<br>5.0%                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.30 [0.32, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.30 [0.22, 0.40]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.48 [0.39, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.27, 0.39]<br>0.25 [0.10, 0.65]<br>0.33 [0.26, 0.42]                                                                                                                                                    | ocedure<br>odds f                | Ratio     | C1        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caho, 13<br>Chen, 04<br>Choi, 10<br>Die Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08<br>MacDonald, 10<br>Medi, 01<br>Neumann, 13                                            | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.71         0.0           -0.66         0           -0.66         0           -0.45         0.0           -0.45         0.0           -0.46         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.45         0.0           -0.41         0.0           -0.35         0.0           -0.37         0.0           -0.71         0.1           -0.71         0.1           -0.71         0.1           -0.35         0.1           -0.35         0.1           -0.71         0.1           -0.68         0.1           -0.68         0.1           -0.68         0.1           -0.63         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE         Weight           33         4.8%           11         4.1%           13         4.8%           14         4.9%           15         4.7%           11         4.2%           12         4.4%           13         4.8%           14         3.8%           15         4.7%           16         4.8%           15         4.7%           14         4.8%           15         4.7%           14         4.8%           13         3.9%           13         3.9%           14         4.2%           13         2.0%           14         4.2%           1         4.2%                            | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.48 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.55, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.66, 0.80]<br>0.78 [0.59, 0.81]<br>0.49 [0.57, 0.86]<br>0.51 [0.39, 0.65]<br>0.64 [0.55, 1.17]<br>0.53 [0.44, 0.65]                                                                                     | Odds Ratio<br>TV, Random, 95%         | сі |
| Study or Subgroup<br>Inselmino, 12<br>Sertaglia, 10<br>Sunch, 11<br>Salvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Stredimis, 07<br>Isiala, 14<br>Sentlesk, 07<br>Isu, 04<br>Uninter, 12<br>Iones, 13<br>Chan, 08<br>Jim, 12<br>Unorsky, 08<br>AccDonald, 10<br>Kedi, 01<br>Veumann, 13<br>Pappone, 03<br>Pappone, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.98         0.14           -1.2         0.15           -0.98         0.04           -0.98         0.14           -1.2         0.15           -0.98         0.08           -1.15         0.08           -1.23         0.08           -1.23         0.06           -1.23         0.16           -1.23         0.16           -1.23         0.16           -1.23         0.16           -1.23         0.16           -1.39         0.49           -1.11         0.12           -0.89         0.06           -0.53         0.16 | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>3.3%<br>4.4%<br>3.7%<br>4.9%<br>4.7%<br>5.0%<br>4.7%<br>5.0%<br>4.3%<br>3.6%<br>3.4%                                                                         | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.37 [0.32, 0.39]<br>0.37 [0.32, 0.39]<br>0.37 [0.32, 0.43]<br>0.39 [0.28, 0.54]<br>0.39 [0.35, 0.41]<br>0.39 [0.35, 0.41]<br>0.39 [0.35, 0.45]<br>0.41 [0.31, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.54]<br>0.38 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.35 [0.31, 0.39]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.21, 0.39]<br>0.25 [0.10, 0.65]<br>0.33 [0.26, 0.42]<br>0.41 [0.37, 0.46]<br>0.41 [0.37, 0.46]<br>0.42 [0.43, 0.81]<br>0.48 [0.41, 0.56]<br>1.00 [0.65, 1.54] | ocedure<br>odds f                | Ratio     | CI        | Study or Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Caixo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08<br>MacDonald, 10<br>Medi, 01<br>Neumann, 13<br>Pappone, 03<br>Pappone, 11<br>Tondo, 06 | log[Odds Ratio]         9           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.71         0.0           -0.24         0.0           -0.45         0.0           -0.46         0.0           -0.39         0.1           -0.45         0.0           -0.35         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.38         0           -0.37         0.0           -0.38         0           -0.37         0.0           -0.38         0           -0.35         0           -0.35         0           -0.35         0           -0.35         0           -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE         Weight           33         4.8%           11         4.1%           14         4.8%           15         4.7%           11         4.9%           11         4.9%           11         4.9%           11         4.9%           11         4.9%           12         4.5%           13         4.8%           14         3.8%           15         4.7%           14         4.8%           15         3.6%           13         3.9%           13         2.0%           11         4.2%           12         2.0%           13         2.9%           14         4.8%           12         4.0% | Odds Ratio<br>IV. Random, 95% Cl<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.48 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.39]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.68 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.86]<br>0.74 [0.68, 0.80]<br>0.65 [0.59, 0.81]<br>0.49 [0.37, 0.66]<br>0.51 [0.39, 0.65]<br>0.51 [0.39, 0.65]<br>0.51 [0.39, 0.65]<br>0.53 [0.44, 0.65]<br>0.70 [0.58, 0.86]<br>0.70 [0.58, 0.75]<br>0.81 [0.54, 1.03] | Odds Ratio<br>TV, Random, 95%         | сі |
| study or Subgroup<br>inselmino, 12<br>tertaglia, 10<br>unch, 11<br>savo, 13<br>shon, 10<br>te Potter, 10<br>stredimis, 07<br>isla, 14<br>tentlesk, 07<br>isla, 10<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 10<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 11<br>tentlesk, 07<br>isla, 12<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 14<br>tentlesk, 07<br>isla, 10<br>tentlesk, 07<br>tentlesk, 08<br>tentlesk, 07<br>tentlesk, 08<br>tentlesk, 07<br>tentlesk, 08<br>tentlesk, 08<br>tentlesk, 07<br>tentlesk, 08<br>tentlesk, 07<br>tentlesk, 08<br>tentlesk, 08<br>tent                      | log[Odds Ratio]         SE           -0.8         0.04           -1.2         0.13           -1.02         0.04           -0.99         0.07           -0.96         0.04           -0.95         0.17           -0.88         0.14           -1.2         0.15           -0.88         0.07           -0.89         0.14           -1.2         0.15           -0.89         0.07           -0.89         0.08           -1.23         0.08           -0.34         0.06           -0.73         0.11           -0.89         0.15           -1.25         0.16           -0.39         0.15           -1.25         0.16                                                                                                                     | Weight 1<br>5.3%<br>3.9%<br>5.3%<br>4.9%<br>3.3%<br>4.4%<br>3.7%<br>4.9%<br>4.7%<br>5.0%<br>3.6%<br>3.6%<br>3.6%<br>3.6%<br>3.6%<br>3.4%<br>0.8%<br>3.4%<br>0.8%<br>3.4%<br>0.8%<br>4.1%<br>5.0%<br>3.4% | ter the first pro<br>Odds Ratio<br>V. Random, 95% CI<br>0.45 [0.42, 0.49]<br>0.30 [0.23, 0.39]<br>0.30 [0.32, 0.39]<br>0.37 [0.32, 0.43]<br>0.38 [0.35, 0.41]<br>0.39 [0.28, 0.54]<br>0.38 [0.31, 0.46]<br>0.41 [0.31, 0.46]<br>0.41 [0.31, 0.46]<br>0.30 [0.22, 0.40]<br>0.38 [0.33, 0.43]<br>0.50 [0.43, 0.59]<br>0.29 [0.25, 0.34]<br>0.71 [0.63, 0.60]<br>0.48 [0.39, 0.60]<br>0.48 [0.39, 0.60]<br>0.50 [0.37, 0.67]<br>0.29 [0.21, 0.39]<br>0.25 [0.10, 0.65]<br>0.33 [0.26, 0.42]<br>0.41 [0.37, 0.46]<br>0.59 [0.43, 0.61]<br>0.48 [0.41, 0.56]                                                                | ocedure<br>odds f                | Ratio     | C1        | Study of Subgroup<br>Anselmino, 12<br>Bertaglia, 10<br>Bunch, 11<br>Calvo, 13<br>Chen, 04<br>Choi, 10<br>De Potter, 10<br>Efredimis, 07<br>Fiala, 14<br>Gentiesk, 07<br>Hsu, 04<br>Hunter, 12<br>Jones, 13<br>Khan, 08<br>Lim, 12<br>Lutomsky, 08<br>MacDonald, 10<br>Medi, 01<br>Neumann, 13<br>Pappone, 03<br>Pappone, 03              | log[Odds Ratio]         S           -0.45         0.0           -0.69         0.1           -0.73         0.0           -0.73         0.0           -0.666         0           -0.46         0.0           -0.46         0.0           -0.45         0.0           -0.46         0.0           -0.47         0.0           -0.48         0.0           -0.41         0.0           -0.33         0.0           -0.37         0.0           -0.37         0.0           -0.37         0.0           -0.35         0.0           -0.45         0.3           -0.668         0.1           -0.45         0.3           -0.63         0.0           -0.35         0           -0.35         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SE         Weight           33         4.8%           11         4.1%           14         4.8%           15         4.7%           11         4.9%           11         4.9%           11         4.9%           11         4.9%           11         4.9%           12         4.5%           13         4.8%           14         4.8%           15         4.7%           14         4.8%           13         3.9%           13         3.9%           13         2.9%           11         4.2%           12         2.0%           14         4.8%           12         4.0%                           | Odds Ratio<br>IV. Random, 95% CI<br>0.64 [0.60, 0.68]<br>0.50 [0.40, 0.62]<br>0.48 [0.45, 0.52]<br>0.49 [0.45, 0.52]<br>0.79 [0.77, 0.80]<br>0.52 [0.42, 0.63]<br>0.63 [0.54, 0.74]<br>0.68 [0.51, 0.89]<br>0.64 [0.56, 0.73]<br>0.46 [0.44, 0.49]<br>0.66 [0.60, 0.73]<br>0.70 [0.65, 0.76]<br>0.79 [0.72, 0.88]<br>0.74 [0.66, 0.80]<br>0.66 [0.59, 0.81]<br>0.49 [0.37, 0.66]<br>0.51 [0.39, 0.65]<br>0.64 [0.35, 1.17]<br>0.53 [0.44, 0.65]<br>0.70 [0.85, 0.75]                                                                | Odds Ratio<br>TV, Random, 95%         | сі |

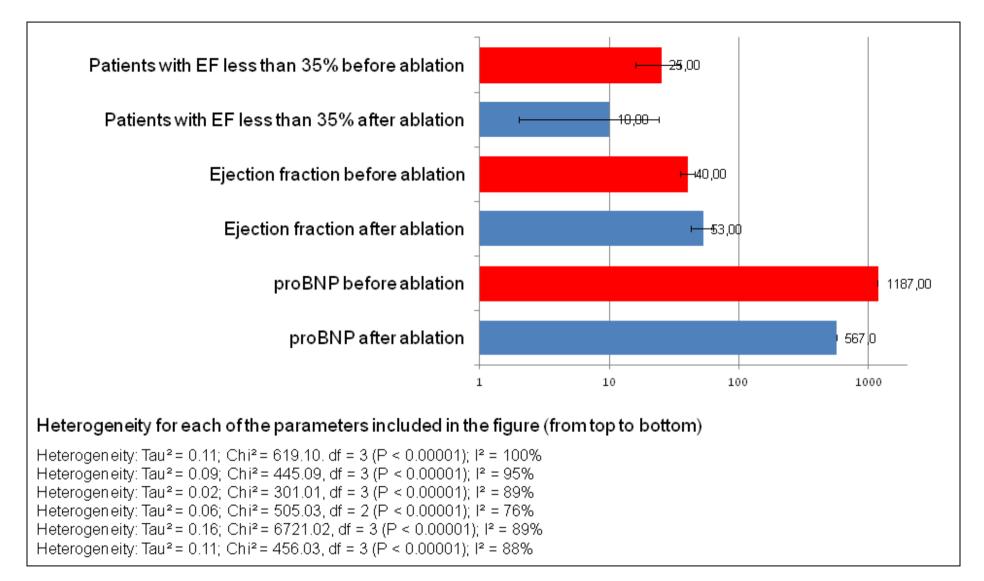
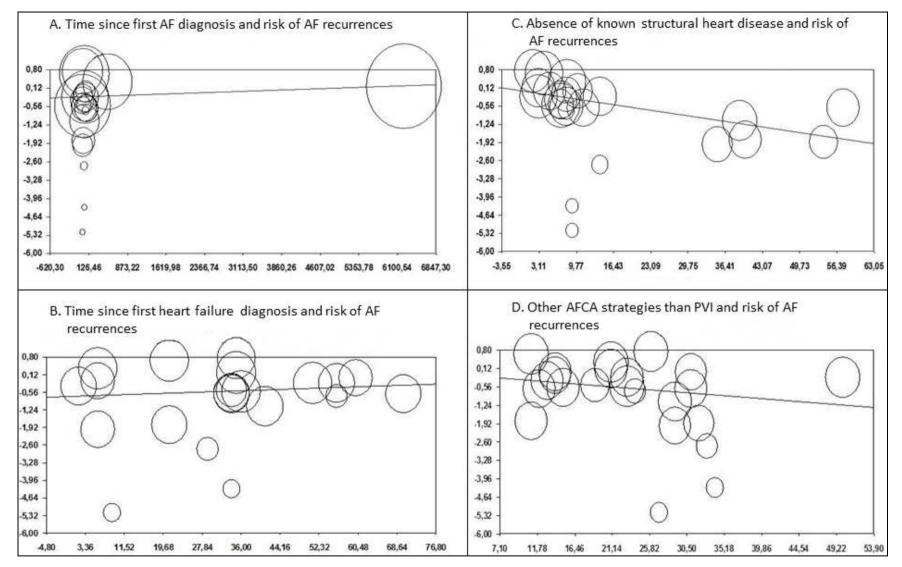




Figure 3. Improvement of instrumental (echocardiographic and laboratory) parameters after atrial fibrillation catheter ablation.

EF: left ventricular ejection fraction.

**Figure 4.** Meta regression analysis assessing the impact of time since first AF diagnosis (A, Beta 1.1: p=0.030), time since first heart failure diagnosis (B, Beta 0.67: p=0.045), absence of known structural heart disease (C, Beta -0.02: p=0.003), and other AFCA strategies than pulmonary veins isolation (D, Beta -0.023: p=0.340) on long-term incidence of AF recurrences.



AF: atrial fibrillation. AFCA: atrial fibrillation catheter ablation.