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Compilation of Generic Regular Path Expressions
Using C++ Class Templates

Luca Padovani?

University of Bologna, Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, Italy

lpadovan@cs.unibo.it

Abstract. Various techniques for the navigation and matching of data structures
using path expressions have been the subject of extensive investigations. No mat-
ter whether such techniques are based on type information, indexing, automata,
it is desirable to synthesize implementations automatically, starting from a high-
level description of the path expressions to be traversed.
In this paper we present a library of C++ templates for the representation of regu-
lar path expressions and their compilation into efficient backtracking algorithms.
The resulting code can be used to implement visitors, pattern matchers, node col-
lectors on regular paths over possibly heterogeneous, linked data structures.
The point of the paper is on the path compilation technique, which was inspired
by a continuation-passing, functional semantics of the path expressions. We rely
on some peculiar aspects of C++ templates to create a compilation framework
that closely follows the given semantics.

1 Introduction

The traversal of linked data structures along paths with a certain pattern is an operation
that underlies many kinds of more complex queries: the recognition of a context in the
proximity of a node in the data structure, the selection, the iteration, the visit of a set of
nodes that are related by a pattern.

Regular path expressions extend the concept of plain regular expressions to the
traversal of linked data structures. The recent diffusion of XML technologies has made
path expressions the subject of a renewed interest. Among proposed standards we cite
XPath [11,17] and XQuery [19], but a whole plethora of languages and techniques have
been studied and developed. Optimized implementations are possibly based on type
information, indexing, finite state automata [20], tree automata [12,15].

There are contexts, however, where optimizations are not applicable or give little
advantage if compared to backtracking algorithms for path traversal. These contexts are
often characterized by the following aspects:

– the data structure evolves under the effect of frequent editing operations;
– operations may change the structure arbitrarily, making it infeasible to keep track

of the state of the structure if not by considering the whole structure as “the state”;
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– the patterns to be matched are sparse or linear, that is we are interested in checking
only a limited number of objects around a focused node (which is sometimes called
cursor), rather than performing an exhaustive query on whole documents.

The problem of backtracking algorithms is that their complexity grows unmanage-
ably as the path expressions become more complicated, the strive to make them efficient
contributes significantly to their complexity, they are seldom generic, reusable, and they
cannot be easily composed together. It is generally desirable to be able to specify the
path expressions to be traversed in a high-level language which would be compiled into
efficient traversal code.

In this paper we describe a framework for the compilation of generic regular path
expressions into backtracking algorithms. The framework is based on C++ class tem-
plates that represent path expressions. The same class templates are able to synthesize
the traversal code following the functional semantics of the path expressions being com-
piled. The bottom line is that there is no need for any tool other than the C++ compiler
itself, and the generated algorithm integrates seamlessly with the rest of the code.

The structure of the paper is as follows: in Section 2 we overview the basic con-
structs of generic regular path expressions and define their set-based semantics in a
way similar to what was done for XPath in [10]. In Section 3 we define a continuation-
passing, functional semantics for path expressions that is equivalent to the set-based
semantics. Section 4 gives the stateless implementation of a simple but limited compi-
lation framework that closely follows the functional semantics. Section 5 elaborates the
stateless implementation into a stateful one and shows how the library can be adapted
so as to accomplish specific tasks. Section 6 gives a brief account of related work. We
conclude in Section 7 with some performance comparisons. The source code of the PET
library is publicly available at http://www.cs.unibo.it/˜lpadovan/PET/
index.html.

Some knowledge of C++ templates and of the λ-calculus notation is assumed.

2 Syntax and set-based semantics

We consider a linked data structure where links are represented as labelled arcs. For
the sake of simplicity, in this paper we assume that the data structure is uniform and
that its elements have all the same type Object . This assumption is relaxed in the im-
plementation of the library. We consider generic regular path expressions generated by
the grammar of Table 1. The expressions are generic in the sense that the finite set of
atomic expressions, denoted by the nonterminal 〈atom〉, is left unspecified. Conceptu-
ally atoms can be classified as selectors and filters. Selectors follow labelled arcs in the
data structure: for each x, y ∈ Object , we say that s ∈ 〈atom〉 selects y from x if there
is an arc x s→ y in the data structure. For example, in a tree data structure we may have
the “first child of” or “parent of” selectors (links), with their usual meaning. Filters can
be thought of as predicates on objects in the Object domain. In data structures with
labeled objects a typical filter is “has label l” (examples of “labels” are names, types,
identifiers). Only two atoms are pre-defined, they are the identity selector 1 and the
null selector 0 (equivalently the filters for the always-true and always-false predicates
respectively).

http://www.cs.unibo.it/~lpadovan/PET/index.html
http://www.cs.unibo.it/~lpadovan/PET/index.html


Table 1. Abstract syntax of generic regular path expressions.

〈atom〉 ::= 0
| 1
| . . .

〈expr〉 ::= a a ∈ 〈atom〉
| e1 | e2
| e1 e2
| e∗

| e? 1 | e
| e+ ee∗

| en ee · · · e︸ ︷︷ ︸
n

0 ≤ n

| en,m en | en+1 | · · · | em 0 ≤ n ≤ m

A core path expression can be a single atom a, the alternative e1 | e2 between two
path expressions e1 and e2, the composition e1 e2 of two path expressions e1 and e2,
or the closure e∗ of a path expression e. The remaining regular path expressions can
be expressed in terms of these core expressions as shown in Table 1, hence they will
not be considered any further; the implementation, however, supports them. Note that
given two filters p1 and p2, the composition p1 p2 represents the conjunction p1 ∧ p2
and p1 | p2 represents the disjunction p1 ∨ p2.

We define the set-based semantics of a path expression e focused on an object x as
the finite set of objects selected (or reached) by e starting from x (Table 2). Borrowing
the notation from [10], we write Set(Object) for the type of a set where each element is
of type Object and Set1(Object) for the subtype of sets with at most one element. Each
atom is modelled as a function a : Object → Set1(Object). A selector s is modelled as
a function s such that, given an object x, s(x) = {y} if x s→ y, and s(x) = ∅ if there is
no arc from x labelled s. A filter p is modelled as a function p such that, given an object
x, p(x) = {x} if x satisfies p, and p(x) = ∅ otherwise.

Table 2. Set-based semantics of regular path expressions.

SJK : Expr → Object → Set(Object)

SJ0Kx = ∅
SJ1Kx = {x}
SJaKx = a(x)

SJe1 | e2Kx = SJe1Kx ∪ SJe2Kx
SJe1 e2Kx = SJe2KSJe1Kx =

⋃
y∈SJe1Kx SJe2Ky

SJe∗Kx =
⋃∞

i=0 SJeiKx



Example 1 (plain regular expressions). Regular expressions over sequences of symbols
in a finite vocabulary V can be seen as a special case of regular path expressions where
there is only one selector “next character” and there is one filter for each symbol a ∈ V
with the meaning “the current character is a”. As there is only one selector, the syntax
of plain regular expression does not normally have any notation for it, juxtaposition of
symbols has the meaning of concatenation.

Example 2 (XPath expressions). The subset of XPath (version 1.0 [11]) expressions
without qualifiers can be encoded as regular path expressions. Assuming that the parent ,
first child , next sibling selectors are defined, we encode XPath axes as follows:

self ⇒ 1
child ⇒ first child next sibling∗

descendant ⇒ (first child next sibling∗)+

ancestor ⇒ parent+

following sibling ⇒ next sibling+

following ⇒ parent∗ next sibling+(first child next sibling∗)∗

The remaining XPath axes are symmetric to the shown ones.

3 Functional semantics

The set-based semantics is very concise and clear in giving the meaning of path expres-
sions, and its naive implementation is naturally based on object sets and union opera-
tions. If we were to compile an expression e to a function that way, the type of such
functions would be F0JeK : Object → Set(Object) and, for instance, the compilation
rule for a compound expression e1 e2 would look something like

F0Je1 e2K = λx. ∪y∈(F0Je1K x) (F0Je2K y) .

This implementation, which is typical for several XPath engines, is unsatisfactory when

1. we are not interested to knowing which nodes have been selected, but only if at
least one node was selected, or

2. we are interested to bind only a limited subset of the selected objects, or
3. we want to bind different objects to different names (perhaps because objects have

different types), or
4. we want to visit the selected objects as they are discovered.

The heart of the problem is the composition e1 e2, in particular when the path e1
selects more than one object. We cannot avoid the set-union operation as long as e1
and e2 are completely evaluated in isolation. What we need is a way to tell FJe1K that,
whenever it selects a node, it should proceed along the path e2 from this node and, if
this path fails, search for the next object selected by e1. We do this by adding to FJe1K
one more parameter, called the continuation.

Table 3 shows the continuation-passing, functional semantics of regular path ex-
pressions. We adopt the λ-calculus notation with the following extensions. We use {x}



Table 3. Functional semantics of regular path expressions.

null ≡ λx.∅
id ≡ λx.{x}

fork ≡ λk1.λk2.λk3.λx.match (k1 x)with
{y} → (k2 y)
∅ → (k3 x)

AJ0K = null
AJ1K = id
AJaK = λx.a(x)

FJK : Expr → (Object → Set1(Object))→ Object → Set1(Object)

FJaK = λk.(fork AJaK k null)
FJe1 | e2K = λk.(fork (FJe1K k) id (FJe2K k))
FJe1 e2K = λk.(FJe1K (FJe2K k))
FJe∗K = λk.(fix λf.(fork k id (FJeK f)))

to denote “some object x” and ∅ to denote “no object”. These correspond to the Some x
and None values in languages like ML or OCaml. We destruct optional values using a
simplified form of pattern matching which is only capable of discriminating a singleton
and the empty set and optionally binding a name to the value of the singleton.

The terms null, id, fork, and fix are called basic terms. The first two terms correspond
to the compiled versions of the 0 and 1 paths respectively. The fork term is the basic
term for backtracking: (fork e1 e2 e3 x) tries to follow the path e1 with focus x. If it
succeeds (thus reaching an object y), it continues along e2 with focus y. If it fails, it
continues along e3 with focus x. The composition of two paths e1 e2 is translated as
the function corresponding to e1 to which the function corresponding to e2 is passed as
continuation. The compilation of e∗ makes use of the fix-point basic term, fix, which is
left unspecified in the semantics as it will be implemented using a peculiar feature of
C++ class templates. As usual, we require that (fix F ) = (F (fix F )) for all functions
F .

Note that the function we obtain from a path expression e expects a continuation k
that “receives” the selected objects. We will see in Section 5.3 that, by varying k, one
can use the path expression to accomplish different tasks.

Let us conclude this section with a proposition stating that the set-based semantics
and the functional semantics are in a way equivalent:

Proposition 1. Let

eq = λx.λy.

{
{x}, if x = y
∅, otherwise

be the filter that tests whether two objects are the same object, then we have

∀x, y ∈ Object , x ∈ SJeKy ⇐⇒ (FJeK (eq x) y) = {x} .

The proof follows by a structural induction on the path expression e.



4 Implementation

If we were to generate code for a functional language, the rules of the functional se-
mantics in Table 3 could be used directly. As a matter of fact, when we first attacked
the problem it seemed that the only way of producing a code close to the functional
semantics was to use a functional language as target (a concrete attempt was done with
Objective Caml [21]). In C++ functions are not first-class entities (let alone continua-
tions) and moreover they can only be declared at the top-level or inside a class, hence
the compilation process would not be compositional. In particular, it would not be pos-
sible to compile a local path expression within another C++ function, for instance as
a test expression of an if statement. We can circumvent these limitations using C++
class templates.

C++ class templates allow the programmer to abstract the definition of a class with
respect to one or more template parameters. This way it is possible to design generic
classes that can be used with arbitrary data types. For example, the type

template <typename A, typename B>
struct Pair {
A first;
B second;

};

defines a generic Pair structure with two template parameters A and B for represent-
ing pairs of values of arbitrary types. In order to be used, parameterized classes must
be instantiated with the appropriate types. The instantiation acts by substituting the ab-
stracted types with the provided ones. For example Pair<int, float> represents
the type of Pairs where the first component has type int and the second compo-
nent has type float. Roughly speaking, class templates can be thought of as functions
operating on and returning types.

In addition to member fields, class templates can contain member methods, member
types, and member templates as well, all of which may depend on template parameters.
Member methods of class templates are instantiated (that is, their actual object code
is output by the compiler) on demand when they are invoked. Upon instantiation of a
method of a class template, the compiler may decide to do code inlining for the method’s
body, or to output a standalone instance of the method to be called one or more times.

Going back to our problem, we can let the C++ compiler output functions on de-
mand using templates, thus: for each basic term we define a template that has as many
template parameters as the continuation parameters of the term (none for null and id,
three for fork) and has a static member function walk accepting one parameter (the
cursor) and implementing the term semantics. This approach is possible as long as all
the continuation parameters are known at compile-time, because template instantiation
must be resolved by the C++ compiler. This condition holds: given a compiled path ex-
pression FJeK and a statically-known receiving term t, no redex in (FJeK t) involving
continuations does depend on runtime information.

The use of templates also allows us to relax the constraint of working on homoge-
neous data structures. As anticipated in the introduction, we will focus on the compi-
lation framework rather than on these details of the implementation. From now on we



assume that the objects of the data structure being traversed are accessed by a pointer
Object*: the walk method will accept and return a Object* value.

4.1 Basic terms

The user has to provide a class (template) for each atom occurring in the path expres-
sions. Typically, selectors corresponds to accessors in the Object class and filters are
predicates over Object objects. The class for an atom a must provide a static walk
method accepting the current object in the path (the x variable in the specification, the
x parameter in the C++ code below) and returning a possibly null object.

Following these guidelines, the id and null atoms are implemented as follows:

struct IdTerm
{ static Object* walk(Object* x) const { return x; } };
struct NullTerm
{ static Object* walk(Object*) const { return 0; } };

According to Table 3 the term fork has four parameters. However, the first three
parameters (k1, k2, and k3) are continuations so they are represented by template pa-
rameters:

template <typename K1, typename K2, typename K3>
struct ForkTerm {
static Object* walk(Object* x) const {
if (Object* y = K1::walk(x)) return K2::walk(y);
else return K3::walk(x);

}
};

Finally, we need to implement the fix-point operator and we do so by exploiting a
special case of parameterized inheritance. The function for which we have to compute
the fixed point is represented by the template template parameter F:

template <template <typename> class F>
struct FixTerm : public F<FixTerm<F> > { };

A variant of this construct, in which the class itself is a parameter of the class it de-
rives from, is known under the name of Curiously Recurring Template Pattern [7,5].
Although there are other slightly more compact ways of implementing recursive types,
this one closely resembles the functional semantics and, anyway, it introduces no over-
head if compared to the equivalent variants (however see note 1 in Section 4.2).

Example 3. The path expression parent (parent | 1), which selects both the parent and
the grandparent of the cursor, is represented by the type

ForkTerm<ParentTerm,
ForkTerm<ForkTerm<ParentTerm, k, NullTerm>,

IdTerm, ForkTerm<IdTerm, k, NullTerm> >,
NullTerm>

where Parent implements the parent atom and k is the atom that is supposed to
receive the selected objects.



4.2 A template-based compiler

It is clear from Example 3 that types representing path expressions are not readable and
handy to work with: it would be better to use some syntax that is more closely related
to the structure of the path expressions those types derive from. Although the concrete
syntax of path expressions is affected by the application domain (as the two examples
at the end of Section 2 have shown), we can lift from the level of basic terms to the
level of the path structure. The idea, the same used in expression templates [5,18], is to
encode the structure of a path expression using types so that, for instance, the type

SeqPath<AtomPath<ParentTerm>,
OrPath<AtomPath<ParentTerm>, AtomPath<IdTerm> > >

would represent the path expression parent (parent | 1).
C++ classes (and class templates) may contain other class template declarations.

We exploit this feature for implementing the compilation rules shown in Table 3. To
this aim, each template representing the structure of a path expression defines a member
class template Compile with a template parameter K for the continuation. The inner
Compile class must define a member type RES representing the basic term resulting
from the compilation. A look at the actual code for the AtomPath, OrPath, and
SeqPath templates should clarify the basic idea:

template <typename A> struct AtomPath {
template <typename K> struct Compile
{ typedef ForkTerm<A, K, NullTerm> RES; };

};

template <typename P1, typename P2> struct OrPath {
template <typename K> struct Compile {
typedef typename P1::template Compile<K>::RES T1;
typedef typename P2::template Compile<K>::RES T2;
typedef ForkTerm<T1, IdTerm, T2> RES;

};
};

template <typename P1, typename P2> struct SeqPath {
template <typename K> struct Compile {
typedef typename P2::template Compile<K>::RES T1;
typedef typename P1::template Compile<T1>::RES RES;

};
};

For the compilation of the StarPath construct we first define an auxiliary tem-
plate F representing λf.(fork k id (FJeK f)) and then we apply the fix-point operator
FixTerm to F:1

1 At the time of this writing not every C++ compiler is capable of handling correctly the
StarPath template. An alternative formulation for the RES member type which can be suc-
cessfully compiled with GCC version 3.3.3 is struct RES : public ForkTerm<K,
IdTerm, typename P::template Compile<RES>::RES> { }; Note that this



template <typename P> struct StarPath {
template <typename K> struct Compile {
template <typename f>
struct F : public ForkTerm<K, IdTerm,

typename P::template Compile<f>::RES> { };
typedef FixTerm<F> RES;

};
};

4.3 Code improvement

The uniform treatment of selectors and filters simplifies the framework but can re-
sult into inefficient code. When the first template argument of ForkTerm is a filter,
ForkTerm’s walk method is exceedingly complex because a filter never returns an
object different from the cursor. Depending on the type of the walk’s parameter (which
need not necessarily be an actual pointer), a compiler may be unable to optimize the
code by itself. Fortunately we can help the compiler improving the generated code in
such cases by using partial template specialization. Below we show an example of such
optimization:

template <typename Object, typename K2, typename K3>
struct ForkTerm<IdTerm, K2, K3> {
static Object* walk(Object* x) { return K2::walk(x); }

};

Any time a ForkTerm is instantiated with IdTerm as its first template argument,
this specialization, which defines a shorter and more efficient implementation of the
walk method, will be “preferred” by the C++ compiler to the more general one.

5 Stateful implementation

The library developed so far is relatively simple and clean and the compilation scheme
closely follows the functional semantics of path expressions. However, the use of static
walking methods prevents methods from accessing any data that is not constant or at the
global scope. For example, if we were to design a sink atom collecting any object that
it is passed to, we would have to declare a global container and access that container
from the walk method of the Sink class. More generally, terms can only be parame-
terized by values that are constants with internal static linkage, because this is the only
category of values that can be passed as template parameters. Not even constant strings
nor floating point numbers, for example, can be used as template parameters.

It is possible to extend the implementation seen so far to a stateful one, that is an
implementation where term classes are allowed to have non-static member fields that
can affect (or can be affected by) the evaluation of the walk method. Since most of the
changes needed to the classes already seen are either trivial or technical, in the section
that follows we only give a few examples and a brief account for them. The interested
reader can have a look at the source code for the details.

type too is defined using a variant of the CRTP even if the FixTerm template is not needed
anymore.



5.1 Stateful basic terms

The changes required to implement stateful terms are the following:

– terms containing subterms (like fork) must have a constructor that accepts objects
representing the compiled subterms and stores them as member fields;

– the walk method must no longer be static;
– calls to the continuations must no longer be static but rather are proper method

invocations on the continuation member fields.

In IdTerm and NullTerm only the walk method changes, which is no longer
static. The stateful variant of ForkTerm is as follows, with the relevant changes un-
derlined:

template <typename K1, typename K2, typename K3>
struct ForkTerm {
ForkTerm(const K1& _k1, const K2& _k2, const K3& _k3)
: k1(_k1), k2(_k2), k3(_k3) { }

Object* walk(Object* x) const {
if (Object* y = k1.walk(x)) return k2.walk(y);
else return k3.walk(x);

}
const K1 k1;
const K2 k2;
const K3 k3;

};

The instances corresponding to the three continuations are passed to the construc-
tor and embedded in the instance of ForkTerm. Embedding the subterms (as opposed
to referencing them via pointers) is necessary because most of the time terms will be
instantiated by the C++ compiler into temporaries, and storing references to such tem-
poraries would likely result into dangling pointers.

Not surprisingly, the most delicate class to change is FixTerm. The problem arises
because not only the type of the stateful FixTerm must be circular (which, as we have
seen in Section 4.1, can be achieved in a relatively easy way), but also its instance as
well. The circularity of the instance must be broken somehow using a reference for
otherwise we end up with the paradoxical situation of an instance object containing a
proper copy of itself. Also, such a circular term must be constructed in “one shot” by
the default C++ constructor mechanism for we do not want the user to have to manually
patch circular terms after their compilation!

The initialization of a recursive term is possible because during the instantiation of a
class, and precisely when the constructor of a derived class is initializing the base class,
it is already possible to refer to this, since the memory for the object is allocated
before initialization takes place. In particular, in the initialization of the base class it is
possible to pass *this as a constant reference to the object being instantiated. If the
base class, or any other class this reference is passed to, stores it somewhere we have the
desired circularity. To make sure that no attempt is done to copy *this, we introduce
a new term, which we call WeakRefTerm, that stores its child term as a reference
rather than as an embedded object. The WeakRefTerm’s walk method just forwards
the invocation to the child term hence it is semantically transparent:



template <typename K> struct WeakRefTerm {
WeakRefTerm(const K& _k) : k(_k) { }
Object* walk(Object* x) const { return k.walk(x); }
const K& k;

};

It is sufficient to pass WeakRefTerm(*this) to the base class to have the de-
sired effect of creating a finite circularity. This solution is still problematic, though,
because if a circular object gets copied (this eventually happens as continuations may
be duplicated) the default field-by-field copy constructor will break the circularity. Nor
it is possible to define a specific copy constructor that restores the circular references in
the new copy.

The only possibility is to forbid the copy of circular objects, and to actually share
them when continuations are duplicated. This implies that circular objects must be allo-
cated in the heap, that they must provide a reference-counter for keeping track of their
sharing, and that they must be managed by a special RefTerm class which stores a
pointer to such a heap allocated object forwarding any call to it. The RefTerm is sim-
ilar to WeakRefTerm as far as the expression semantics is concerned. In addition, it
acts as a smart pointer that increases and decreases the reference counter appropriately
and eventually releases the circular object when it is no longer used.

5.2 Expression templates

The stateful implementation also allows us to define a set of overloaded operators that
can be used to construct complex path expression types (and corresponding instances)
in a transparent way. In our implementation we have overloaded the infix operators >>
and | to be used for composition and alternatives, respectively, and the prefix operators
* and + to be used for “zero or more” and “one or more” closure operators, respectively.
We have also overloaded the bracketing operator [] to implement qualifiers (these
are special filters that verify a structural predicate, similar to XPath qualifiers) and the
function application operator () that, given a path expression e and a node x, starts up
the compilation process and evaluates e starting from x.

Example 4. The following C++ expression implements the following axes as de-
fined in the example 2, assuming that the Parent, NextSibling, and FirstChild
terms have been defined with their intuitive meaning, and evaluates the expression from
the node x:

(*atom(Parent()) >> +atom(NextSibling())
>> *atom(FirstChild()) >> *atom(NextSibling()))(x)

5.3 Usage patterns

Once the basic framework has been designed and implemented, it is possible to add
atoms to perform more specific operations.

Example 5 (pattern matching). To test whether the data structure matches a pattern
(specified as a regular path expression) p from a node x, we just write the statement



if (p(x)) { /* there is a match */ }

Example 6 (collecting). In order to collect all the nodes selected by a regular path ex-
pression from a node x, we introduce a filter atom Sink that stores each node that
has been encountered. The filter does not propagate nodes encountered in an earlier
traversal:

struct Sink {
Object* walk(Object* x) const {
if (sink.find(x) == sink.end()) {
sink.add(x);
return x;

} else return 0;
}
std::set<Object*> sink;

};

After the visit is completed, the Sink term can be queried to retrive the set of collected
nodes:

Sink sink;
(p >> atom(sink) >> empty())(x);
/* do something with sink */

where the expression empty() is the library’s implementation of the 0 atom.

Example 7 (visitor). To perform a user-provided operation on each node selected by a
regular path expression from a node x (without necessarily collecting the visited nodes),
a visitor class is implemented as an atom that always fails, thus forcing the backtracking
algorithm to search for any possible alternative path:

template <typename Object> struct Visitor {
bool walk(Object* x) const {
/* visit x */
return false;

}
};

Example 8 (unique visitor). If the data structure contains cycles, and more generally if
one wants to be sure that the each selected node is not visited more than once, a sink
term can be composed just before the Visitor atom:

Visitor visitor;
(p >> atom(Sink()) >> atom(visitor)))(x);

6 Related work

The compilation framework that we have presented builds on top of a standard C++
compiler and heavily relies on template metaprogramming, with no need for external



tools. Although this work does not introduce new concepts, the used techniques have
been applied in original ways.

Continuations are well-known and date back to the construction of compilers based
on Continuation Passing Style (CPS, see [3]) and also to the field of denotational seman-
tics [1,2]. In the latter case, continuations become critical in specifying the semantics
of the sequential composition of commands in imperative programming languages with
gotos. In [1], the semantics of a construct S1;S2 in an environment ρ and with con-
tinuation θ is defined to be CJS1;S2K ρ θ = CJS1K ρ (CJS2K ρ θ) which basically is the
same rule for path composition of Table 3, except that in our context the environment ρ
plays no role.

The use of C++ templates for metaprogramming is also well-known [4,18], and the
synthesis of types from other types using template classes is related to C++ traits [6].
In our development it is crucial the capability of class templates to be instantiated ev-
erywhere in the source program. The compiler keeps track of which templates have
been instantiated, hence it can decide whether to do instantiation or to retrieve a pre-
vious instantiation. Compared to higher-order functions in a functional programming
language, templates have the advantage that they can be expanded by inlining. The
Curiously Recurring Template Pattern (CRTP [7]), which occurs in the bibliography
mainly as a twisted mix of genericity and inheritance, is also crucial since it represents
the only way to generate implicitly recursive functions (where the recursive nature is
not apparent from the source code). Other approaches that relate templates and func-
tional programming (like the FC++ library [14,16] or the BOOST Lambda library2) do
not address recursion but rather rely on explicitly recursive functions.

Our use of class templates is just an application of offline partial evaluation [8,9]:
C++ may be regarded as a two-level language where template parameters represent
statically known values, and method parameters represent dynamically known values.
A path expression compiled using the rules in Table 3 results into a function where all
the continuation parameters are statically known. The C++ compiler partially evaluates
the functions obtained from the compilation process by unfolding the continuations and
recursively evaluating the resulting code.

7 Final remarks

There are several contexts where it is desirable to use backtracking algorithms for the
evaluation of regular path expressions. The code generated by the PET library is effi-
cient and modern C++ compilers (such as the latest versions of GCC3 or LLVM4) are
capable of tail-optimizing function calls and simple (but not trivial) path expressions
are compiled as loops instead of recursive function calls. The library is generic in that
it makes no assumptions on the data structures being traversed. The user is free to add
atoms to fit her own needs, while the library of basic terms can be written once and for
all without loosing genericity.

2 http://www.boost.org/libs/lambda/doc/
3 http://gcc.gnu.org/
4 http://llvm.cs.uiuc.edu/
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Table 4. Comparing PET against other query engines. The times are in milliseconds
and refer to 20 evaluations of the indicated paths, excluding parsing time. The factor f
is the ratio matching time/(parsing time + matching time).

Nodes PET Xalan libxml2 Fxgrep
XPath expression n ms f ms f ms f ms f

//node() 33806 238 .079 100 .008 18368 .869 4102 .054
//mrow[@xref] 750 158 .054 120 .010 3807 .579 4007 .052
//mrow[@xref]/text() 3162 161 .054 190 .015 5435 .661 3942 .053
//text()[../mrow[@xref]] 3162 202 .068 930 .068 8298 .750 - -
//*[@xref][text()] 2486 147 .050 510 .042 5634 .671 3603 .054
//text()/../*[@xref] 2486 175 .059 1220 .092 14729 .824 - -

We have made some (non-exhaustive) comparative tests of the PET library against
the implementations of XPath provided by Xalan5 and libxml26 and against the
Fxgrep XML querying tool [20]. It should be kept in mind that the compared libraries
have very different architectures. While PET produces native code, Fxgrep translates
paths into finite state automata, and libxml2 and Xalan provide interpreters for XPath
expressions. Table 4 shows the absolute times spent for the matching phase, as well as
the ratio given by the matching time over the total time (parsing and matching). This
way, we have tried to give a performance score that roughly measures the matching
algorithm regardless of the implementation language and architecture.

By looking at the absolute times PET outperforms the other tools in most cases. We
have to remark that while PET, Xalan, and libxml2 are C/C++ libraries, Fxgrep
is written in SML/NJ (Standard ML of New Jersey) and, as the author of Fxgrep
has recognized, this might be the main cause of its modest absolute performance. By
looking at the f ratio, PET performances are rather good. The important thing to notice
in this case is how much the ratio f varies, that is how much the absolute time depends
on the particular query. On one side we have Fxgrep, which is almost unaffected by
the kind of query, and this is consequence of the fact that Fxgrep uses an optimized
automaton that scans the whole document. On the opposite side, Xalan and particularly
libxml2 show a significant variance. In these tools the time spent on union operations
on node-set becomes predominant in certain queries. In some cases libxml2 spends
more than 90% of the total time merging node sets. The cost of computing a node set
is also relative to whether we are actually interested to know which nodes have been
selected, or just if some node has been selected (this is relevant in XPath when a path
occurs within a qualifier). The PET library roughly sits in between these two situations,
and proves to be an effective and cheap tool for the programmer.

It is also important to remark that while the other tools are targeted to XML process-
ing, PET is completely generic and provides an easily extensible compilation frame-
work that can be adapted to specific tasks.

5 C++ version, see http://xml.apache.org/xalan-c/
6 http://xmlsoft.org/
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