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SOME REMARKS ON THE RADIUS OF SPATIAL
ANALYTICITY FOR THE EULER EQUATIONS

MARCO CAPPIELLO AND FABIO NICOLA

Abstract. We consider the Euler equations on Td with analytic data and prove
lower bounds for the radius of spatial analyticity ε(t) of the solution using a new
method based on inductive estimates in standard Sobolev spaces. Our results
are consistent with similar previous results proved by Kukavica and Vicol, but
give a more precise dependence of ε(t) on the radius of analyticity of the initial
datum.

1. Introduction

Consider, on the d-dimensional torus Td, the Euler equations

(1.1)
∂u

∂t
+ P (u · ∇xu) = 0, div u = 0,

where P is the Leray projection in L2 on the subspace of divergence free vector
fields. It is well known that the corresponding Cauchy problem is locally well posed
in Hk if k > d/2 + 1, see e.g. [14, Chapter 17, Section 2]. The analyticity of the
solution in the space variables, for analytic initial data is also an important issue,
investigated in [1, 2, 3, 4, 10, 11, 12], and one is specially interested in lower bounds
for the radius of analiticity ε(t) as t grows.

To be precise, if f is an analytic function on the torus, its radius of analyticity
is the supremum of the constants ε > 0 such that ‖∂αf‖L∞ ≤ Cε−|α||α|! for some
constant C > 0. Notice that we can also replace the L∞ norm with a Sobolev norm
Hk, k ≥ 0.

Concerning the Euler equations on the torus, a recent result by Kukavica and
Vicol [10] states that for the radius of analyticity ε(t) of any analytic solution u(t)
we have the lower bound

(1.2) ε(t) ≥ C(1 + t)−2 exp
(
− C0

∫ t

0

‖∇u(s)‖L∞ ds
)

for a constant C0 > 0 depending on the dimension and C > 0 depending on the
norm of the initial datum in some infinite order Sobolev space.
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The same authors in [11] obtained a better lower bound for ε(t) for the Euler
equations in a half space replacing (1+t)−2 by (1+t)−1 in (1.2). Now, one suspects
that the same bound should hold also on Td and on Rd. In this paper we give a
new and more elementary proof of the results above on Td, which yields some
improvements concerning the dependence on the initial data. In fact, it is natural
to expect that the constant C in (1.2) should be comparable with the inverse of the
radius of analyticity of the initial datum. The dependence found in [10, 11] is due
to the fact that the proof given there relies on the energy method in infinite order
Gevrey-Sobolev spaces (cf. also [5, 6, 8, 9, 12]). In our recent paper [7] we developed
a method for the estimate of the radius of analyticity for semilinear symmetrizable
hyperbolic systems based on inductive estimates in standard Sobolev spaces. The
purpose of this note is to adapt this method to the Euler equations on Td and to
prove that

(1.3) ε(t) ≥ C(1 + t)−1 exp
(
− C0

∫ t

0

‖∇u(s)‖L∞ ds
)

(as suggested in [11]) with a neat dependence of the constant C on the initial
datum.

Namely, we have the following result.

Theorem 1.1. Let k > d/2 + 1 be fixed. There exists constants C0, C1 > 0,
depending only on k and d, such that the following is true.

Let u0 be analytic in Td, div u0 = 0, satisfying1

(1.4) ‖∂αu0‖Hk ≤ BA|α|−1|α|!/(|α|+ 1)2, α ∈ Nd,

for some B ≥ 9
4
‖u0‖H2k+1, A ≥ 1.

Let u(t, x) by the corresponding Hk maximal solution of the Euler equations (1.1),
with u(0, ·) = u0. Then u(t, ·) is analytic with radius of analyticity

(1.5) ε(t) ≥ A−1(1 + C1Bt)
−1 exp

(
− C0

∫ t

0

‖∇u(s)‖L∞ ds
)
.

The proof is different and more elementary than the one in [10, 11], and it is
in part inspired by the arguments in [1]. It proceeds by estimating by induction
the growth of the spatial derivatives of u in finite order Sobolev spaces. Moreover,
the same argument can be readily repeated replacing Td by Rd. Although in the
case of the Euler equations it provides only minor improvements to the results
in [10, 11], our method seems to be adaptable also to other types of quasilinear
evolution equations and conservation laws. We shall treat these applications in a
future paper.

1We use the sequence |α|!/(|α| + 1)2 in place of |α|! in (1.4) just for technical reasons; this does
not change the radius of analyticity.
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2. Notation and preliminary results

In the following we use the notation X . Y if X ≤ CY for some constant C
depending only on the dimension d and on the index k in Theorem 1.1.

Moreover, as in [1, page 196] we consider the sequence

(2.1) Mn =
n!

(n+ 1)2
, n ≥ 0,

so that

(2.2)
∑
β<α

(
α

β

)
M|α−β|M|β|+1 ≤ C|α|M|α|.

for some constant C > 0.
We also recall from [14, Chapter 13, Proposition 3.6], for future reference, the

following estimates

(2.3) ‖∂αu · ∂βv‖L2 ≤ C(‖u‖L∞‖v‖Hm + ‖u‖Hm‖v‖L∞), |α|+ |β| = m

for a constant C > 0 depending on m and on the dimension d.
We will use the following form of the Gronwall inequality.

Lemma 2.1. Let f(t) ≥ 0, g(t) ≥ 0, h(t) ≥ 0 be continuous functions on [0, T ]
and C ≥ 0, such that

f(t) ≤ C +

∫ t

0

h(s)f(s) ds+

∫ t

0

g(s) ds, t ∈ [0, T ].

Then, with H(t) :=
∫ t

0
h(s) ds, we have

f(t) ≤ eH(t)
[
C +

∫ t

0

e−H(s)g(s) ds
]
, t ∈ [0, T ].

Proof. The result can be obtained for example by applying Gronwall lemma in [13,
Lemma 2.1.3], and integrating by parts.

Finally we recall from [14, Chapter 17, Section 2 and Exercise 1, page 485] that
if u0 is a smooth vector field (and div u0 = 0), then the maximal Hk-solution u(t)
of the Euler equations, with u(0) = u0, k > d/2+1, is smooth as well and moreover
the following estimates hold for its Sobolev norms: if s ≥ k > d/2 + 1,

(2.4) ‖u(t)‖Hs ≤ ‖u(0)‖Hs exp
(
C0

∫ t

0

‖∇u(s)‖L∞ ds
)

for some constant C0 > 0 depending on the dimension and on s. Indeed, in the
sequel we will use these estimates for some fixed s (depending only on d).
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3. Proof of the main result (Theorem 1.1)

As observed in the previous section, we already know that the solution u is
smooth, since u0 is. Now, it is sufficient to prove that for |α| = N ≥ 2 we have

(3.1)
‖∂αu(t)‖k
M|α|

≤ 2BAN−1 exp
(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−2,

where the sequence M|α| is defined by (2.1) and C0, C1 are positive constants de-
pending only on k and d.

We also set

(3.2) EN [u(t)] = sup
|α|=N

‖∂αu(t)‖k
M|α|

.

We proceed by induction on N . The result is true for N = 2 by (2.4) with s =
k + 2 ≤ 2k + 1 and by the assumption B ≥ 9

4
‖u0‖H2k+1 , A ≥ 1. Hence, let N ≥ 3

and assume (3.1) holds for multi-indices α of length 2 ≤ |α| ≤ N − 1 and prove it
for |α| = N .

For |α| = N , |γ| ≤ k we estimate ‖∂α+γu‖L2 starting from the following formula,
which is well-known (see e.g. [14, pag. 477]):

(3.3)
d

dt
‖∂α+γu‖2L2 = −2([∂α+γ, L]u, ∂α+γu)L2 ,

with Lw = Luw := u · ∇w. Now, we have

(3.4) [∂α+γ, L]u =
∑
β≤α

(
α

β

) ∑
δ≤γ

|β|+|δ|<|α|+|γ|

(
γ

δ

)
∂α−β+γ−δu · ∇∂β+δu.

We estimate the L2 norm of each term, considering first the sum∑
β∈Aα

(
α

β

) ∑
δ≤γ

|β|+|δ|<|α|+|γ|

(
γ

δ

)
‖∂α−β+γ−δu · ∇∂β+δu‖L2 ,

where

Aα := {β : β ≤ α, 0 6= |β| ≤ |α| − 2}.

Using (2.3) and the fact that k > d/2 + 1 we see that for β ∈ Aα we have

‖∂α−β+γ−δu · ∇∂β+δu‖L2 . ‖∂α−βu‖k‖∇∂βu‖k.
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By the inductive hypothesis (3.1) (note that 2 ≤ |α − β| ≤ |α| − 1 = N − 1,
2 ≤ |β|+ 1 ≤ N − 1) we obtain

∑
β∈Aγ,δ,α

(
α

β

)∑
δ≤γ

(
γ

δ

)
‖∂α−β+γ−δu · ∇∂β+δu‖L2

.
∑
β<α

(
α

β

)
M|α−β|M|β|+1B

2AN−1 exp
(
C0(N −1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 +C1Bt)
N−3

. NMNB
2AN−1 exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3,

where we used (2.2).
It remains to estimate the L2 norms of the terms in (3.4) when β ≤ α, δ ≤ γ

and |β|+ |δ| < |α|+ |γ|, but the conditions

0 6= |β| ≤ |α| − 2

fail.
Consider first the terms where the highest order derivatives fall on a single factor,

namely |β|+ |δ| = |α|+ |γ| − 1 or |β|+ |δ| = 0. We distinguish three cases: for the
terms with β = α and |δ| = |γ| − 1 we have(

α

α

)
‖∂γ−δu · ∇∂α+δu‖L2 . ‖∇u‖L∞‖∂αu‖H|δ|+1 ≤ ‖∇u‖L∞‖∂αu‖Hk

whereas for those with |β| = |α| − 1, δ = γ we use(
α

β

)
‖∂α−βu · ∇∂β+γu‖L2 . |α|‖∇u‖L∞

∑
j:αj≥1

‖∂α−eju‖Hk+1

. |α|‖∇u‖L∞
∑
j:αj≥1

1≤k≤d

‖∂α−ej+eku‖Hk . NMN‖∇u‖L∞EN [u],

where EN [u] is defined in (3.2).
Finally, for the terms with |β|+ |δ| = 0 we have(

α

0

)
‖∂α+γu · ∇u‖L2 . ‖∇u‖L∞‖∂αu‖Hk .

We now consider the terms with 0 6= |β|+|δ| ≤ |α|+|γ|−2 but β = α or |β| = |α|−1
or β = 0.
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If β = α then |δ| ≤ |γ| − 2 ≤ k − 2 and we can write(
α

α

)
‖∂γ−δu · ∇∂α+δu‖L2 ≤ ‖∂γ−δu‖L∞‖∇∂α+δu‖L2

. ‖∂γ−δu‖Hk‖∂αu‖Hk−1 . ‖∂γ−δu‖Hk sup
j:αj≥1

‖∂α−eju‖Hk

. MN−1‖u(0)‖H2k exp
(
C0

∫ t

0

‖∇u(s)‖L∞ ds
)

×BAN−2 exp
(
C0(N − 2)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3

. MN−1B
2AN−2 exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3,

where we used (2.4) (with s = |γ − δ| + k ≤ 2k), the inductive hypothesis (3.1),
and the fact that B > ‖u0‖H2k+1 .

If |β| = |α| − 1 then |δ| ≤ k − 1 and we have(
α

β

)
‖∂γ−δu · ∇∂β+δu‖L2 . |α| · ‖∂γ−δu‖L∞‖∇∂β+δu‖L2 . |α| · ‖∂γ−δu‖Hk‖∂βu‖Hk

. NMN−1‖u(0)‖H2k exp
(
C0

∫ t

0

‖∇u(s)‖L∞ ds
)

×BAN−2 exp
(
C0(N − 2)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3

. NMN−1B
2AN−2 exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3.

Finally, if β = 0 then δ 6= 0 and we have(
α

0

)
‖∂α+γ−δu · ∇∂δu‖L2 . ‖∂αu‖Hk−1‖∇∂δu‖Hk

. sup
j:αj≥1

‖∂α−eju‖Hk‖∇∂δu‖Hk

. MN−1B
2AN−2 exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

× (1 + C1Bt)
N−3.

Summing up, we have

‖[∂α+γ, L]u‖L2 . NMN‖∇u‖L∞EN [u]

+NMNB
2AN−1 exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3.
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By applying the Cauchy-Schwarz inequality in L2 in (3.3) and summing over |γ| ≤ k
we then obtain2

d

dt

‖∂αu(t)‖Hk

M|α|
≤ C(N − 1)‖∇u(t)‖L∞EN [u(t)]

+ CNAN−1B2 exp
(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

(1 + C1Bt)
N−3

for a constant C > 0 depending only on the dimension d and k.
Now we integrate from 0 to t and take the supremum on |α| = N . We obtain

EN [u(t)] ≤
∫ t

0

C(N − 1)‖∇u(s)‖L∞EN [u(s)] ds+ EN [u(0)]

+

∫ t

0

CNB2AN−1 exp
(
C0(N − 1)

∫ s

0

‖∇u(τ)‖L∞ dτ
)

(1 + C1Bs)
N−3 ds.

We can take C0 ≥ C, so that Gronwall inequality (Lemma 2.1) gives

EN [u(t)] ≤ exp
(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

×
[
EN [u(0)] + CNB2AN−1

∫ t

0

(1 + C1Bs)
N−3 ds

]
≤ exp

(
C0(N − 1)

∫ t

0

‖∇u(s)‖L∞ ds
)

×
[
EN [u(0)] +

C

C1

N

N − 2
BAN−1(1 + C1Bt)

N−2
]

Now, we have EN [u(0)] ≤ BAN−1 by the assumption (1.4). If we choose C1 = 3C,
so that 3C/C1 = 1, since A ≥ 1, N ≥ 3 we have

EN [u(0)]+
C

C1

N

N − 2
BAN−1(1 + C1Bt)

N−2

≤ [BAN−1 +
3C

C1

BAN−1](1 + C1Bt)
N−2

≤ 2BAN−1(1 + C1Bt)
N−2,

and we obtain exactly (3.1) for |α| = N . The theorem is proved.

2We use N/(N − 1) ≤ 3/2 if N ≥ 3, and also d
dt‖∂

αu(t)‖2Hk = 2‖∂αu(t)‖Hk
d
dt‖∂

αu(t)‖Hk , which
in fact holds for ‖∂αu(t)‖Hk 6= 0 but a standard argument, see e.g. [13, pag. 47-48], shows that
the results below still hold when ‖∂αu(t)‖Hk = 0.
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d’Euler en deux dimensions, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 17, A995-A998.

[5] J. Bona and Z. Grujic’, Spatial analyticity properties of nonlinear waves. Dedicated to Jim
Douglas, Jr. on the occasion of his 75th birthday. Math. Models Methods Appl. Sci., 13
(2003), 345–360.

[6] J. Bona, Z. Grujic’ and H. Kalisch Algebraic lower bounds for the uniform radius of spatial
analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22
(2005), 783–797.

[7] M. Cappiello, P. D’Ancona and F. Nicola, On the radius of spatial analyticity for semilinear
symmetric hyperbolic systems, J. Differential Equations 256 (2014), 2603–2618.

[8] C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equa-
tions, J. Funct. Anal. 87 (1989), no. 2, 359-369.

[9] Z. Grujic’ and I. Kukavica, Space analyticity for the nonlinear heat equation in a bounded
domain, J. Differential Equations 154 (1999), no. 1, 42-54.

[10] I. Kukavica and V. Vicol, On the radius of analyticity of solutions to the three-dimensional
Euler equations, Proc. Amer. Math. Soc. 137 (2009) no. 2, 669–677.

[11] I. Kukavica and V. Vicol, The domain of analyticity of solutions to the three dimensional
Euler equations in half space, Discrete Contin. Dyn. Syst. 29 (2011), no. 1, 285-303.

[12] C.D. Levermore and M. Oliver, Analyticity of solutions for a generalized Euler equation, J.
Differential Equations 133 (1997), 321–339.

[13] J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, GSM Series 133,
Amer. Math. Soc., 2012.

[14] M. Taylor, Partial differential equations III. Nonlinear equations. Springer-Verlag, New-York,
1996.

Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Al-
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