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Abstract. Given a one-parameter family {gλ : λ ∈ [a, b]} of semi Riemannian metrics
on an n-dimensional manifold M , a family of time-dependent potentials {Vλ : λ ∈ [a, b]}
and a family {σλ : λ ∈ [a, b]} of trajectories connecting two points of the mechanical
system defined by (gλ, Vλ), we show that there are trajectories bifurcating from the trivial
branch σλ if the generalized Morse indices µ(σa) and µ(σb) are different. If the data are
analytic we obtain estimates for the number of bifurcation points on the branch and, in
particular, for the number of strictly conjugate points along a trajectory using an explicit
computation of the Morse index in the case of locally symmetric spaces and a comparison
principle of Morse Schöenberg type.

1. Introduction

Perturbed geodesics (p-geodesics) are trajectories of a simple mechanical system on a
semi Riemannian manifold M of finite dimension n. They are critical points of the energy
functional defined on the space of paths on M by

(1.1) E(γ) =
∫ 1

0

1
2
g(γ′(x), γ′(x))dx −

∫ 1

0
V (x, γ(x))dx

where g is a semi Riemannian metric on M and V is a time-dependent potential. When
the metric is indefinite, the functional E is of strongly indefinite type and the ordinary
Morse index of its critical points is infinite. In [36], we associated to each non degenerate
perturbed geodesic γ a generalized Morse index µspec(γ) ∈ Z and showed that it coincides
with the conjugate index µcon(γ), an integer that counts algebraically the total number of
conjugate points along γ. In the present paper we will use the generalized Morse index
in order to study bifurcation of perturbed geodesics under various conditions including
variation of metric and potential.

Recently, several kind of bifurcation phenomena have been studied in differential ge-
ometry and in mechanics. The change of qualitative properties of closed geodesics under
one parameter variation of the metric was discussed in [30, Section 3.4], and [7]. How the
crossing of 0 by a simple eigenvalue of the index form influences the topology of geodesics
on a Lorentzian surface was studied in [6]. Bifurcation of relative equilibria of symmetric
mechanical systems from a point of view close to ours was analyzed in [12]. A similar ap-
proach to bifurcation of minimal surfaces on a Riemannian manifold was taken in [27]. In
this paper we will deal only with bifurcation of geodesics from a trivial branch. This is one
of the typical bifurcation phenomena for solutions of differential equations studied in non-
linear functional analysis. Roughly speaking, given a smooth branch σ ≡ {σλ : λ ∈ [a, b]}
of perturbed geodesics, a bifurcation point from the trivial branch σ is a point λ∗ in [a, b]
such that arbitrary close to the pair (λ∗, σλ∗) there are pairs (λ, γλ) where γλ is a p-geodesic
with the same end points as σλ but not belonging to the branch σ.

If we take as trivial branch σλ the restrictions of a given perturbed geodesic γ : [0, 1] → M
to subintervals of the form [0, λ] it is easy to see that bifurcation can occur only at points
which are conjugate to 0.

Jacobi found a geometric characterization of conjugate points along extremals of a varia-
tional integral

∫ 1
0 L(x, y(x), y′(x)) dx. He proved that conjugate points arise as intersection
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points of a given extremal with the envelope of the family of extremals through a point.
By the envelope theory, this fact has as a consequence that all conjugate points along
extremals of variational integrals are bifurcation points from the trivial branch. This was
known from the very beginning of the calculus of variation (cf. [8, page 63]), although it
was never formulated in terms of bifurcation simply because this theory was inexistent at
that time. Jacobi’s characterization extends to vector-valued variational integrals whose
Lagrangian L verifies the Legendre condition: Lq̇iq̇j is positive definite. For example, in
[23] this fact was used in order to give an alternate definition of conjugate point.

The energy functional of a Riemannian metric verifies the Legendre condition trivially.
Therefore all conjugate points along perturbed geodesics on Riemannian manifold are bi-
furcation points (cf. Corollary 4.11, [30, Complement 2.1.13]).

On semi Riemannian manifolds with indefinite metric the above conclusion does not hold
anymore and conjugate points split in two classes: those which are points of bifurcation
and those which are not. The present paper is devoted to the analysis of this situation.
One of the consequences of the theory developed here is that, in the framework of semi
Riemannian manifolds, bifurcation invariants become useful in order to find among all
conjugate points those at which bifurcation occurs. We will call them strictly conjugate
points here.

In general, conjugate points of perturbed geodesics need not to be isolated and when the
metric is indefinite the same holds even in the geodesic case [26]. Because of this, we will
adopt an approach to bifurcation invented by Krasnoselskij and his collaborators in the
sixties [31]. This approach is based on topological invariants that are stable under pertur-
bations and allows to deal with non isolated potential bifurcation points. An alternative
non perturbative approach in the case of geodesics was explored in [40, 25].

The methods are of functional analytic type. Although the book [30] is concerned with
Riemannian manifolds only, it represents a main source for the analytic setting used here.
The definition of the generalized Morse index in [36] is based on the concept of spectral
flow of a family of Fredholm quadratic forms. It was shown in [19] that non vanishing of
the spectral flow of the family of Hessians along the trivial branch leads to bifurcation of
critical points of strongly indefinite functionals of Fredholm type. We will use an improved
version of this result in order to prove our main theorem:

Let M, g, V, σ be as described above. Assume that p-geodesics σa and σb are non degen-
erate (and hence have a well defined generalized Morse index).

If µ(σa) 6= µ(σb), then there must be at least one point λ∗ ∈ (a, b) which is a bifurcation
point from the trivial branch.

If σλ is degenerate only at a finite number of points λ ∈ I, e.g. when all data are analytic,
then there are at least |µ(σa)− µ(σb)|/n distinct bifurcation points λ ∈ (a, b).

In particular if the manifold and potential are analytic then along any non degenerate
perturbed geodesic γ there are at least |µ(γ)|/n strictly conjugate points.

The precise statement is in Section 4, Theorem 4.2, where we also derive other conse-
quences regarding the number of strictly conjugate points along a perturbed geodesic. The
proof of the theorem is deferred to Section 8.

When the manifold is a locally symmetric space, the contribution of the curvature tensor
to the generalized Morse index can be computed quite explicitly, since the matrix of the
curvature operator in a parallel orthonormal frame is constant.

Let J be the canonical flat metric of index ν in Rn. In Section 5, for each symmetric
matrix S we define an index, analogous to the index for periodic solutions of linear au-
tonomous Hamiltonian systems, considered in [24, 13, 20], but associated to the Dirichlet
boundary value problem for second order system Ju′′ + Su = 0. The index indJ(S) can be
computed from the eigenvalues of the matrix JS plus a correction term which can be easily
estimated. The generalized Morse index of a geodesic on a locally symmetric space equals
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the index of the system arising from the equation for Jacobi fields written in a parallel
orthonormal frame. Therefore, in Section 6, we take indJ(S) as our basic invariant and use
it in Corollary 6.1 and Corollary 6.2 in order to obtain computable criteria for bifurcation
and estimates for the number of bifurcation points along geodesics on locally symmetric
spaces.

If the potential is time independent and the p-geodesic σa ≡ p and σb ≡ q are constant,
then the number of bifurcation points along any trivial branch of perturbed geodesics
with end points σa and σb can be estimated from below by the index of the Hessian
of the potential V at p and q respectively. This is the content of Corollary 6.3. On
symmetric spaces this can be used in order to study bifurcation of periodic p-geodesics
from an equilibrium point (cf. Corollary 6.4).

In a more general setting we can still obtain bounds from below for the number of
bifurcation points using the previous calculations and a comparison principle. For geodesics
this principle is an extension of the classical Morse-Schöenberg comparison theorem to semi
Riemannian manifolds. For lightlike and timelike geodesics on Lorentzian manifolds it was
proved earlier by Beem, Ehrlich and Easley [5].

The comparison principle is formulated in Section 7, Theorem 7.1 and proved in Section
9. In Section 7, we use Theorem 7.1 in several ways both for geodesics and for perturbed
geodesics. In Corollaries 7.3 and 7.4 we estimate the number of strictly conjugate points
along a geodesic on analytic semi Riemannian manifolds by comparison with a locally
symmetric space of the same dimension and index. A similar approach leads to an estimate
for the number of strictly conjugate points along a horizontal geodesic on a warped product
with locally symmetric base in Corollary 7.5.

Finally, in Theorem 7.6 we obtain an estimate for the number of bifurcation points from
a trivial branch of p-geodesics on a locally symmetric space by comparing the Morse index
of a non degenerate p-geodesic with the Morse index of a geodesic with the same starting
point.

The remaining sections are as follows: Section 2 contains a discussion of Jacobi’s geo-
metric characterization of conjugate points mentioned above. Section 3 is a short review
of the results in [36] with the purpose to introduce the notations. In the appendix we
sketch the proof of the vector bundle neighborhood theorem needed for the reduction of
our problem to the framework considered in [19].

2. Conjugate points and bifurcation of extremals in calculus of variation

As a motivation for the theory developed here, let us make a digression on the relation
between the Jacobi’s geometric characterization of conjugate points and bifurcation from
the trivial branch.

Consider the one dimensional variational integral φ(y) =
∫ 1
0 L(x, y, y′) dx. Assume that

L is smooth with non vanishing partial derivative ∂L
∂z . Assume moreover that the initial

value problem y(0) = 0, y′(0) = z for the Euler Lagrange equation of the functional φ has
a solution y(x, z) defined on the whole interval [0, 1].

The plane curve given by the graph γ0 of the function y0(x) = y(x, 0) is naturally em-
bedded into a one parameter family of curves γz, given by the graphs of yz(x) = y(x, z), 0 ≤
x ≤ 1, passing through the point (0, 0).

The envelope E of this family of plane curves is by definition the set E = {(x, y) | y −
y(x, z) = 0, ∂y

∂z (x, z) = 0}. Jacobi characterized the points of the extremal γ0 conjugate to
γ0(0) as intersection points of γ0 with E . Since E can be also seen as the set of limit points of
intersections of nearby curves in the family (the set of intersections points of two consecutive
curves, in the pictoresque terminology of G. Peano [39]), Jacobi’s characterization leads to
the following conclusion (cf. [8, page 63]):
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Proposition 2.1. If the point Q∗ = γ0(x∗) is conjugate to γ0(0) along γ0, then for small
enough z the extremal γz intersects γ0 at a unique point Qz = γ0(xz) such that Qz → Q∗
as z → 0.

The proof of Proposition 2.1 is quite simple. It can be reduced to a very special case
of one of the basic results in bifurcation theory, known as Crandal-Rabinowitz bifurcation
theorem. For this, let us consider the variable x as a parameter. Let f : [0, 1]× R→ R be
defined by f(x, z) = y(x, z)− y(x, 0). Then the equation f(x, z) = 0 has a trivial branch of
solutions of the form (x, 0). Since Q∗ ∈ E , we have that ∂f

∂z (x∗, 0) = ∂y
∂z (x∗, 0) = 0. On the

other hand, ∂y
∂z (x, 0) is a Jacobi field along y0 derived from a nontrivial deformation of y0 by

extremals. Since ∂y
∂z (x∗, 0) = 0, the partial ∂2y

∂x∂z (x∗, 0) = ∂2f
∂x∂z (x∗, 0) cannot vanish. Thus,

we are in the hypothesis of the Crandal-Rabinowitz theorem [16]. Under this hypothesis a
nontrivial branch of solutions of f(x, z) = 0 of the form (x(z), z) = 0 with x(0) = x∗ can
be found by developing in Taylor series the rescaled function g(w) = f(x∗+zw, z) dividing
by z2 and solving in w using the implicit function theorem. Then the points Qz = (x(z), z)
are intersection points of γz with γ0 such that Qz → Q∗ as z → 0.

Of course, the relation of the envelope of a family of curves with bifurcation, understood
in the broad sense, is not limited to the variational setting. It is one of the main subjects
of singularity theory.

The approach to bifurcation of perturbed geodesics which we will use in this paper is a
reinterpretation of Proposition 2.1 from the point of view of nonlinear functional analysis.
Let us explain this using our example.

We look for solutions of a parametrized family of boundary value problems for the
Euler-Lagrange equations of the variational integral that are close to the restrictions of
our distinguished solution y0 to subintervals [0, λ], but in order to work in a fixed space
of functions, we reparametrize them. To be more precise, we choose a δ > 0 such that
on γ0([0, δ]) there are no conjugate points to Q0 = (0, 0). Then, for λ ∈ [δ, 1] we consider
ỹλ(x) = y(λ · x, 0). The path ỹ : [δ, 1] → C2[0, 1] defined by ỹ(λ) = ỹλ will be considered as
a trivial branch of solutions of the family of boundary value problems

(2.1)
d

dx
Lu′(λ, x, u, u′)− Lu(λ, x, u, u′) = 0, u(0) = 0, u(1) = y0(λ).

where L(λ, x, y, z) = L(λx, y, 1/λz).
If in Proposition 2.1 we take zn = 1/n, λn = xzn and yn(x) = y(λn ·x, zn), then we have

that λn → x∗, the sequence yn converges to ỹ(x∗) in C2[0, 1], and each yn is a solution of
(2.1) not in the branch ỹ. Thus, by the very definition of bifurcation point, any conjugate
instant λ = x∗ along y0 is a bifurcation point for solutions of (2.1) from the trivial branch
ỹ.

In the particular case considered above a whole smooth curve of nontrivial solutions
yz(x) = y(xz x, z) branches of from ỹ at ỹ(x∗). However under the general topological
assumptions of our main theorem we will only obtain a sequence of nontrivial solutions
converging to the trivial branch.

3. Perturbed geodesics and the energy functional

Let M be a smooth connected manifold of dimension n. Let g be a semi Riemannian
metric on M and let V : I×M → R be a smooth time-dependent potential. We will denote
by D the associated Levi-Civita connection and by D

dx the covariant derivative of a vector
field along a smooth curve γ. Here we use the notation introduced by Milnor, in [35].

A perturbed geodesic (p-geodesic) is a solution γ : [0, 1] → M of the second order differ-
ential equation

(3.1) D
dx γ′(x) + ∇V (x, γ(x)) = 0
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where ∇ is the gradient of a function on M with respect to the metric g.
Let Ω be the manifold of all H1-paths in M . It is well known that Ω is a smooth

Hilbert manifold modelled by H1([0, 1];Rn). The tangent space TγΩ at the point γ can be
identified in a natural way with the Hilbert space H1(γ) = {ξ ∈ H1([0, 1];TM) : τξ = γ}
of all H1-vector fields along γ. Here τ : TM → M is the projection of the tangent bundle
of M to its base.

Any choice of a Riemannian (positive definite) metric on M endows Ω with an associated
Riemannian structure and hence with a distance which makes Ω a metric space. The end-
point map

π : Ω → M ×M ; π(γ) = (γ(0), γ(1))

is known to be a submersion and therefore for each (p, q) ∈ M ×M the fiber

Ωp,q = {γ ∈ Ω : γ(0) = p, γ(1) = q}
is a sub-manifold of codimension 2n whose tangent space TγΩp,q is the subspace H1

0 (γ) of
H1(γ) given by

H1
0 (γ) = {ξ ∈ H1(γ) : ξ(0) = ξ(1) = 0}.

Since π is a submersion, the family of Hilbert spaces H1
0 (γ) is a Hilbert bundle TF (π) =

ker Tπ over Ω, called the bundle of tangents along the fibers. The reference for all the
above, and for everything else in this section is [36].

Associated to each pair (g, V ) there is an energy functional Ē : Ω → R defined by

(3.2) Ē(γ) =
∫ 1

0

1
2
g(γ′(x), γ′(x))dx −

∫ 1

0
V (x, γ(x))dx.

The critical points of the restriction E = Ep,q of Ē to the sub-manifold Ωp,q are precisely
the p-geodesics through p, q with kinetic energy 1

2g(γ′, γ′) and potential energy V . To be
more precise, critical points of the energy functional are weak solutions of (3.1), which turn
out to be smooth classical solutions by elliptic regularity.

In [36], we associated two integers to each non degenerate critical point of the energy
functional. The first integer is the generalized Morse index µspec(γ), defined as the negative
of the spectral flow of the Hessians of the energy functionals along the path γ̃ canonically
induced by γ on Ω. Since several points related to the construction of the generalized Morse
index will be used in the proof of our main theorem, we will briefly recall the construction
here.

The linearization of the boundary value problem
{

D
dx γ′(x) + ∇V (x, γ(x)) = 0
γ(0) = p, γ(1) = q

at the critical point γ is the equation of Jacobi fields

(3.3) D2

dt2
ξ(t) + R(γ′(t), ξ(t))γ′(t) + Dξ(t)∇V (t, γ(t)) = 0,

subjected to Dirichlet boundary conditions ξ(0) = 0 = ξ(1). Here ξ is a vector field along
γ, R is the curvature tensor of the connection D and Dξ(x)∇V (x, γ(x)) is the Hessian of
V (x,−) with respect to the metric g, viewed as a symmetric operator of Tγ(x)M.

Its weak solutions (H1
0 -Jacobi fields) are vector fields ξ ∈ H1

0 (γ) such that for any
η ∈ H1

0 (γ)

0 = Hγ(ξ, η) =
∫ 1

0
g( D

dxξ(x), D
dxη(x)) dx +(3.4)

−
∫ 1

0
g(R(γ′(x), ξ(x))γ′(x) + Dξ(x)∇V (x, γ(x)), η(x)) dx.
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Thus, Jacobi fields in H1
0 (γ) are the elements of the kernel of the bilinear form Hγ . The

Hessian of Ep,q at γ is the quadratic form hγ : H1
0 (γ) → R associated to Hγ .

Since the embedding of H1
0 (γ) into L2(γ) is compact, the form

c(ξ) =
∫ 1

0
gλ(R(γ′(x), ξ(x))γ′(x) + Dξ(x)∇V (x, γ(x)), ξ(x)) dx

is weakly semi-continuous. Being a weakly semi-continuous perturbation of a non degener-
ate form, hγ is a bounded Fredholm quadratic form. In particular kerhγ ≡ {ξ|Hγ(ξ, η) =
0 for all η} is finite dimensional.

The form hγ is non degenerate if and only if the instant 1 is not conjugate to 0 along γ.
If this holds we will say that the p-geodesic is non degenerate.

Each p-geodesic γ induces in a canonical way a path γ̃ on the manifold Ω of all paths on
M . The canonical path γ̃ : frm[o]−− → Ω associated to γ is defined by γ̃(λ)(x) = γ(λ ·x),
x ∈ [0, 1]. Each γ̃λ ≡ γ̃(λ) is a p-geodesic for (g, Vλ), where Vλ(x,m) = λ2V (λx,m). From
the above discussion it follows that the Hessian hλ of Eλ ≡ Ep,γ(λ) at γ̃λ is degenerate if
and only γ(λ) is a conjugate point to p = γ(0) along γ. If γ is non degenerate the path γ̃
has non degenerate end points. The family hλ, λ ∈ [0, 1] defines a function h on the total
space of the pull-back bundle γ̃∗(TF ) over [0, 1] such that its restriction to each fiber is a
bounded quadratic form and such that h0, h1 are non degenerate. This is what we called in
[36] an admissible family of Fredholm quadratic forms. The spectral flow of such a family
was defined in [36, Section 2].

Roughly speaking the spectral flow is a measure of how much of a negative subspace
for hλ at λ = 0 becomes positive at λ = 1 minus the part of a positive subspace that
becomes negative. In general the spectral flow depends on the homotopy class of the path
of quadratic forms but in this specific case it depends only on the end points. This allows
to define a relative form of Morse index even in the case when the classical Morse indices
are infinite. By definition the generalized Morse index of a p-geodesic γ is

µspec(γ) = −sf(h).

The second integer, µcon(γ), called conjugate index, was defined using Brouwer degree
in order to count zeroes of a determinant associated to the Jacobi equation by means of
trivalization via a parallel orthonormal frame (see [36, Section 4] for a detailed description).

Finally, we proved a generalization of the Morse Index Theorem to perturbed geodesics
on semi Riemannian manifolds [36, Theorem 1.1], by establishing the equality

(3.5) µspec(γ) = µcon(γ).

Taking into account (3.5) we will denote both indices with µ(γ).

4. The main theorem and some consequences

Let p : S2
ν (M) → M be the bundle of all non degenerate symmetric two forms of index ν

on the tangent bundle TM . Let I = [a, b] be an interval. A one parameter family of semi
Riemannian metrics on M is a smooth map g : I ×M → S2

ν (M) such that pg = π, where
π denotes the projection onto the second factor.

Each gλ = g(λ,−) is then a semi Riemannian metric on M of index ν. Using the Koszul
formula it is easy to see that the family of associated Levi-Civita connections Dλ is smooth
with respect to the λ variable in an obvious sense.

If V : I× [0, 1]×M → R is a smooth function, we consider V as a smooth one parameter
family of time-dependent potentials Vλ : [0, 1] ×M → R defined by Vλ(x, u) = V (λ, x, u).
The data (M, gλ, Vλ)λ∈I define a one parameter family of time-dependent mechanical sys-
tems.

We will also assume the existence of a one parameter family of known p-geodesics. In
other words, given a smooth family (gλ, Vλ)λ∈I as above, we assume that there exists a
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smooth map σ : [a, b]× [0, 1] → M such that for each λ ∈ I , σλ(x) ≡ σ(λ, x) is a p-geodesic
corresponding to the mechanical system (gλ, Vλ).

We will refer to the family (σλ)λ∈[a,b] as the trivial branch of perturbed geodesics.

Definition 4.1. A point λ∗ is called a bifurcation point for p-geodesics from the trivial
branch σ if there exists a sequence (λn, γn) → (λ∗, σ(λ∗)) in I × Ω such that γn is a weak
solution of equation (3.1) with boundary conditions

(4.1) γn(0) = σλn(0), γn(1) = σλn(1)

such that γn does not belong to σ(I).

As stated above the notion of bifurcation point depends on the metric induced on Ω by
an arbitrary choice of Riemannian metric on M. As a matter of fact using a slightly weaker
topology the concept of bifurcation point can be defined without appealing to the existence
of a Riemannian metric on M . There is an embedding of Ω into the space of continuous
paths in M endowed with the compact-open topology (see for example [29, Lemma 2.4.6]).
Thus, the sequence γn in the above definition converges to σ(λ∗) in C0([0, 1];M) as well.
A metric free definition of bifurcation point would be as follows: it is a point such that any
neighborhood of (λ∗, σ(λ∗)) in I × C0([0, 1];M) contains a solution of the boundary value
problem (3.1), (4.1) which is not in the trivial branch. Finally notice that, by bootstrap,
γn converges to σ(λ∗) in the Whitney topology of C∞(I; M). Therefore, the choice of any
of the above approaches gives the same bifurcation points.

For each λ ∈ I, let Eλ be the restriction of the energy functional associated to the data
(gλ, Vλ) to the sub-manifold Ωλ ≡ Ωσλ(0),σλ(1). The trivial branch σ can be viewed as a
smooth path σ : I → Ω of critical points σ(λ) = σλ of Eλ.

Our main result is the following theorem.

Theorem 4.2. Let M and (gλ, Vλ)λ∈I be as above. Let σ be a trivial branch of p-geodesics
of (M, gλ, Vλ)λ∈I such that the end points σa and σb are non degenerate.

(i) If µ(σa) 6= µ(σb), then there exists at least one bifurcation point, λ∗ ∈ (a, b), from
the trivial branch.

(ii) If σλ is degenerate only at a finite number of points λ ∈ I then there are at least
|µ(σa)− µ(σb)|/n distinct bifurcation points λ in (a, b).

Remark 4.3. The hypothesis in part (ii) of Theorem 4.2 is automatically verified in the
following two cases:

(a) The data (M, g, V, σ) are analytic. In this case the singular set Σ = {λ ∈ I| kerhλ 6=
0} can be characterized as the set of zeroes of an analytic ”determinant” function
[21]. Since ha is non degenerate this function does not vanish on the whole interval
I and hence Σ must be discrete.

(b) The intrinsic derivative (see Section 8) of the generalized family hλ, λ ∈ I of
Hessians at any point λ∗ ∈ Σ is a non degenerate quadratic form.

Remark 4.4. In the estimate of Theorem 4.2 the dimension n of the manifold arises because
it provides a bound for the possible dimensions of the space of H1

0 -Jacobi fields. The
estimate can be slightly improved for geodesics (V ≡ 0). A H1

0 -Jacobi field along a geodesic
γ must be perpendicular to γ′(x) at any point x ∈ [0, 1], which implies that the dimension
of the space of Jacobi fields vanishing at the end points cannot be greater than (n − 1).
Therefore in the case of a geodesic we can substitute n with (n− 1) in Theorem 4.2.

As already mentioned in the introduction, we will pay special attention to the following
particular case: We will take g and the potential V fixed, take a p-geodesic γ : [0, 1] → M
and consider as the trivial branch the path γ̃ : [0, 1] → Ω canonically induced by γ.
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Definition 4.5. A conjugate point γ(λ∗), λ∗ ∈ frm[o]−−, will be called a strictly con-
jugate if λ∗ is a bifurcation point from the trivial branch γ̃ in the sense of Definition
4.1.

Not all conjugate points are strictly conjugate. Here is an example of a p-geodesic on
a 3-dimensional semi Riemannian manifold with an isolated conjugate point which is not
strictly conjugate.

Example 4.6. Let us consider the manifold M = R3 endowed with the metric g0 =
dx2 − dy2 + dz2 and take as potential the function V (x, y, z) = 1/2x2 − 1/2y2 + 1/3x3y3.
Since the gradient of V with respect to g is ∇V (z, y, z) = (x+x2y3) ∂

∂x +(y−x3y2) ∂
∂y , the

equations of a p-geodesic are

(4.2)





x′′ + x + x2y3 = 0
y′′ + y − x3y2 = 0
z′′ = 0

In order to simplify the coefficients we will not normalize the interval: we consider the p-
geodesic γ0(t) = (0, 0, t) defined on [0, 2π], connecting (0, 0, 0) to (0, 0, 2π). We claim that
there are no p-geodesics γ 6= γ0 such that γ(0) = γ0(0) and γ(λ) = γ0(λ) for λ ∈ [0, 2π].

Indeed, if γ(t) = (x(t), y(t), z(t)) verifies (4.2) and the above boundary conditions, then
multiplying the first equation of (4.2) by y(t), the second by x(t), substracting the second
from the first and integrating from 0 to λ we obtain

∫ λ
0 (x2y4 + x4y2) dt = 0. Thus both

x, y ≡ 0 and γ(t) = γ0(t).
On the other hand there is a two dimensional subspace of Jacobi fields along γ0, ξ(t) =

a sin t ∂
∂x +b sin t ∂

∂y verifying the Dirichlet boundary conditions ξ(0) = 0 = ξ(π). Therefore
λ = π is a conjugate point which is not strictly conjugate.

In order now to construct an example of a geodesic with a conjugate point which is not
strictly conjugate we will reduce the problem to the previous one using the well known
correspondence between p-geodesics and geodesics of the associated Jacobi metric together
with a construction in [26] of a geodesic with assigned curvature operator on the normal
space.

Example 4.7. Let M and g0 be as in the previous example and let us consider the
conformally flat metric g = exp(2ρ) g0, where ρ is defined by

(4.3) ρ(x, y, z) = 1/2y2 − 1/2x2 + 1/3x3y3.

The Levi Civita connexions D of g and D0 of g0 are related by

DXY = D0
XY + dρ(X)Y + dρ(Y )X − g0(X, Y )∇0ρ

where ∇0 is the gradient with respect g0.
From this it follows easily that γ0(t) = (0, 0,

√
2t) is a geodesic with energy E(γ0) =

1/2g(γ′(t), γ′(t)) = 1. Moreover the vector fields ∂
∂x , ∂

∂y are parallel along γ0 and generate
the normal space T⊥γ(t)M. Calculating the curvature tensor we get R( ∂

∂z , ∂
∂x) ∂

∂z = ∂
∂x and

R( ∂
∂z , ∂

∂y ) ∂
∂z = ∂

∂y . Therefore the Jacobi equations for a normal vector field ξ(t) = u(t) ∂
∂x +

v(t) ∂
∂y are

(4.4)
{

u′′ + u = 0
v′′ + v = 0

As before, the Dirichlet problem ξ(0) = 0 = ξ(π) for (4.4) has a two dimensional subspace
of nontrivial solutions and therefore π is a conjugate instant. However we will show that
there cannot be non trivial geodesics bifurcating from the trivial branch γ0.



MORSE INDEX AND BIFURCATION OF P-GEODESICS 9

Assume that γ(t) = (x(t), y(t), z(t)) is a geodesic for g with γ(0) = (0, 0, 0) and γ(b) =
(0, 0, λ). If γ is close enough to γ0 then is γ is spacelike and, possibly after changing
the interval of definition, we can assume that the energy E(γ) = 1. By Jacobi’s theorem
[1, Theorem 3.7.7] geodesics for g with energy 1 are reparametrizations of the perturbed
geodesics for the mechanical system (M, g0,− exp(2ρ)) with total energy E = 0.

The equations for the corresponding p-geodesic are

(4.5)





x′′ + 2 exp 2ρ(x− x2y3) = 0
y′′ + 2 exp 2ρ(y + x3y2) = 0
z′′ = 0

If δ(t) = γ(h(t)) verifies the above equations then multiplying the first equation of (4.5)
by y(t), the second by x(t) substracting the second from the first as in the previous example
and then integrating from 0 to t∗ = h−1(λ) we obtain that x ≡ 0 ≡ y and hence γ = γ0.

We will now discuss some consequences of Theorem 4.2.

Corollary 4.8. Any regular p-geodesic γ with non-vanishing index has a strictly conjugate
point. If the data are analytic there must be at least |µ(γ)|/n of them.

For example, assume that (M, g) is complete, take a point p ∈ M and consider the
exponential map expp : Tp(M) → M . It is well known that points conjugate to p along
γ(x) = expp(x · v) are the critical values of the exponential map expp lying on γ. Consider

Bp = {m ∈ M | for some v ∈ exp−1(m), exp is not locally one to one at v}.
When M is a Riemannian manifold, Bp coincides with the set Cp of all critical values of
the exponential map (see [30, Theorem 2.1.12]). On general semi Riemannian manifolds,
Bp is only a closed proper subset of Cp. However, by definition of bifurcation point, the
exponential expp cannot be a local diffeomorphism at any point of the form t∗γ′(0) if t∗
is a strictly conjugate instant. Therefore by the previous Corollary any non degenerate
geodesic γ starting from p crosses Bp in at least |µ(γ)|/(n− 1) points.

In the remaining part of this section we will discuss some criteria for isolated conjugate
points to be strictly conjugate.

Let I be the n-dimensional vector space of all Jacobi fields along γ verifying ξ(0) = 0.
Consider I[x] = {ξ(x) : ξ ∈ I} ⊂ Tγ(x)M . It is easy to see that γ(λ∗), λ∗ ∈ [0, 1], is
conjugate to 0 if and only if I[λ∗] 6= Tγ(λ∗)M. Let us denote by I[x]⊥ the g orthogonal of
I[x].

The conjugate instant λ∗ is said to be regular if the quadratic form Γ(λ∗) given by the
restriction of gγ(λ∗) to I[λ∗]⊥ is non degenerate. It is shown in [36] that regular conjugate
instants are isolated and moreover the variation of the generalized Morse index through λ∗
is given by the signature of the quadratic form Γ(λ∗). More precisely, for ε small enough,

(4.6) µ(γ̃λ∗+ε)− µ(γ̃λ∗−ε) = sign Γ(λ∗).

From the main theorem it follows

Corollary 4.9. Any regular conjugate point such that sign(g|I[λ∗]⊥) 6= 0 is strictly conju-
gate.

Remark 4.10. The conjugate points in the previous examples are both non degenerate but
with vanishing signature.

If g is positive definite then any conjugate point is regular and the signature of the form
Γ(λ∗) is simply the dimension of I[λ∗]⊥. Therefore:

Corollary 4.11. If (M, g, V ) is a mechanical system on a Riemannian manifold all con-
jugate points along a p-geodesic γ are strictly conjugate.
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When λ∗ is not regular but yet isolated then its local contribution µcon(λ∗) to the varia-
tion of the Morse index can be still defined as in [36, (4.14)]. Thus λ∗ is a bifurcation point
whenever µcon(λ∗) 6= 0. The local invariant µcon(λ∗) can be computed either by the algo-
rithm for computing the degree of an analytic plane vector field as described in [36, Lemma
4.3] or using the calculation of µMaslov(λ∗) in the degenerate case via partial signatures as in
[25, 43]. However neither the algorithm for the degree nor the formula by partial signatures
can be considered effective. This is one of the motivations for the approach adopted in this
paper.

5. Computation of the generalized Morse index

In this section we will consider some special cases in which the generalized Morse index
can be found explicitly, providing computable criteria for the existence of bifurcation points.
As motivation, let us discuss first the Morse index of a geodesic on a Riemannian locally
symmetric space.

If γ : [0, 1] → M is a geodesic, then, by Corollary 4.11, the conjugate instants are isolated
and each one of them gives a strictly positive contribution m(λ) = dim kerhλ to the index
µ(γ). The index of a geodesic is not easy to compute in general but when the related second
order system has constant coefficients one can easily get explicit formulas.

For example, if M has a constant positive sectional curvature K > 0 then the conjugate
points correspond to instants λk = kπ/L

√
K, where L is the length of the geodesic γ.

Moreover the multiplicity of each conjugate point is (n − 1). Thus γ is non degenerate if
L
√

K/π is not an integer and its index is given by µ(γ) = (n− 1)NK(γ), where NK(γ) =
[L
√

K/π] is the integral part of L
√

K/π. One can use this in Theorem 4.2 in order to
estimate the number of geodesics bifurcating from a known trivial branch σλ. Assume, for
instance, that there exists a smooth family gλ of metrics on M connecting two metrics of
constant positive sectional curvature K, K ′. If σ : [a, b] → Ω(M) is a path such that each
σλ is geodesic for the metric gλ and σa, σb are non degenerate, then by Theorem 4.2 there
are at least |NK(σa)−NK′(σb)| bifurcation points from the trivial branch σ. In particular,
if g is a fixed metric of constant positive curvature then along any branch of geodesics with
a large enough variation of length there will be bifurcation points from the branch. All
of the above extends immediately to geodesics on locally symmetric spaces by considering
the eigenvalues of the matrix of the curvature operator R(γ′, v)γ′ in a parallel orthonormal
frame.

The generalized Morse index for p-geodesics on a semi Riemannian manifold constructed
in [36] is not always positive and hence it is a considerable weaker object than the classical
Morse index. Even in the case of locally symmetric spaces (DR ≡ 0) formulas for the index
are harder to compute than in the Riemannian case. Nevertheless, the above topological
picture is still present in this context and leads to estimates for the number of bifurcation
points.

Let γ : [0, 1] → M be a p-geodesic on M for (g, V ), with g a semi Riemannian metric,
and let γλ(x) = γ(λx), λ ∈ [0, 1]. Choosing a parallel g-orthonormal frame F = {ei(x) :
i = 1, . . . , n} along γ and trivializing γ∗λ(TM) by means of the frame Fλ = {ei(λx) : i =
1, . . . , n}, by the computation performed in [36, Section 4], we have that such a trivialization
induces a one to one correspondence between H1

0 -Jacobi fields verifying Dirichlet boundary
conditions at 0 and λ and the weak solutions f = (f1, . . . , fn) of the boundary value problem
for a second order system of ordinary differential equations

(5.1)
{

Jf ′′(x) + Sλ(x)f(x) = 0
f(0) = 0 = f(1) ∀x ∈ [0, 1],
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where J is the symmetry

(5.2) J =
(

Idn−ν 0
0 −Idν

)

and Sλ(x) = λ2S(λx), with S(x) = (Sij(x)) the n× n symmetric matrix defined by

(5.3) Sij(x) = g(R(γ′(x), ei(x))γ′(x) + Dei(x)∇V (x, γ(x)), ej(x)).

Thus weak solutions of the system above are elements in the kernel of the quadratic form
hλ : H1

0 ([0, 1];Rn) → R defined by

hλ(f) =
∫ 1

0
〈Jf ′(x), f ′(x)〉 − 〈Sλf(x), f(x)〉 dx

where 〈·, ·〉 denotes the usual scalar product in Rn. In particular hλ is a weakly continuous
perturbation of a non degenerate form. The quadratic form hλ is nothing but the expression
of hγλ

in the trivialization of γ∗λ[TF (π)] induced by the trivialization of γ∗λ(TM) given by
the parallel frame introduced above (see [36, (3.6)]). It follows from this that

(5.4) µ(γ) = −sf(h, [0, 1]).

Now let us compute sf(h, [0, 1]) assuming that S(x) ≡ S is a constant matrix. We
represent, the associated path of bilinear forms against the scalar product 〈f, g〉H1

0
=∫ 1

0 〈f ′(x), g′(x)〉dx by a path of self-adjoint operators L. Then, each Lλ is defined by

〈Lλf, g〉H1
0

=
∫ 1

0
〈Jf ′(x)g′(x)〉 − 〈λ2Sf(x), g(x)〉 dx.

Thus, Lλ = J + λ2K where, by abuse of notation, we denote with J the corresponding
multiplication operator, while K is the compact operator defined by

〈Kf, g〉H1
0

= −
∫ 1

0
〈Sf(x), g(x)〉 dx.

Any f ∈ H1
0 ([0, 1];Rn) has a Fourier expansion given by

f(x) =
∞∑

k=1

ak sinπkx

where ak belong to Rn. Hence, H1
0 ([0, 1];Rn) decomposes into an orthogonal direct sum

(5.5) H1
0 ([0, 1];Rn) =

∞⊕

k=1

Vk

where
Vk = span{a sin kπx : a ∈ Rn}.

From the relation

Kf = g ⇐⇒




g′′(x) = Sf(x)

g(0) = g(1) = 0

it follows that each Vk is an invariant subspace of Lλ. Since Lλ is self adjoint Vk reduces
Lλ and we have an orthogonal decomposition Lλ =

⊕∞
k=1 Lk

λ, where Lk
λ is the restriction

of Lλ to Vk.
If we choose as basis of Vk the set Bk given by

Bk = {φi,k(x) : 1 ≤ i ≤ n}, φi,k(x) = ei sin kπx,
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where ei is the canonical base of Rn, then the n×n matrix that represents Lk
λ with respect

to the base Bk, is given by

(5.6) Lk
λ = J − λ2

(πk)2
S.

By the above formula the restriction of Lλ to (
⊕m

k=1 Vk)
⊥is an isomorphism for m

big enough. Thus by the normalization property (see [36, 19]), the spectral flow of the
restriction of the path L to (

⊕m
k=1 Vk)

⊥ is zero. Hence,

(5.7) sf(L) =
m∑

k=1

sf(Lk, [0, 1]) =
m∑

k=1

[ν − µMorse(Lk
1)],

since the spectral flow of a path of operators defined on a finite-dimensional space is the
difference between the Morse indices of its end points.

Given a constant symmetric matrix S such that (5.1) has only the trivial solution for
λ = 1 we define the index of S with respect to J by

(5.8) indJ(S) =
∞∑

k=1

[
µMorse(Lk

1)− ν
]
.

Notice that indJ(S) is well defined since by the above discussion, the sum on the right
hand side is finite.

Summing up the above discussion, we have proved:

Proposition 5.1. If the matrix S defined by (5.3) is constant then µ(γ) = indJ(S).

There is a special case, in which the computation of the index turns out to be as simple
as in the case of a geodesic on a Riemannian symmetric space.

A matrix S commuting with J will be called split. Any split matrix S has the form

S =
(

A 0
0 B

)

where A and B are two symmetric matrices of dimension respectively (n−ν)× (n−ν) and
ν × ν. Diagonalizing A and B and we get

(5.9) U∗AU = diag(λ1, . . . , λn−ν) and V ∗BV = diag(µ1, . . . , µν)

and using the invariance of the spectral flow under cogredience we reduce the calculation
of indJ(S) to that of the diagonalized system

(5.10)





f ′′1 (x) + λ2λ1f1(x) = 0
· · · · · · · · · · · ·
f ′′n−ν(x) + λ2λn−νfn−ν(x) = 0
−f ′′n−ν+1(x) + λ2µ1un−ν+1(x) = 0
· · · · · · · · · · · ·
−f ′′n(x) + λ2µνfn(x) = 0.

Non trivial solutions for u′′ + λ2au = 0 with Dirichlet boundary conditions u(0) = 0 =
u(1) arise with multiplicity 1 only for λ2λi = k2π2, k ∈ IN.

Defining, for a real number a,

N(a) = #{i ∈ N | i2π2 < a},
we get:
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Proposition 5.2. If S is constant and split then

(5.11) µ(γ) = indJ(S) =
n−ν∑

1

N(λi)−
ν∑

1

N(−µi).

In general indJ(S) can be estimated in terms of the negative real eigenvalues of the J-
symmetric matrix JS. For this we will need some well known results about Maslov index.
Most of what we will use here can be found in [44, 34].

The Dirichlet boundary value problem for Ju′′ + Su = 0 is equivalent to the following
boundary value problem for a first order Hamiltonian system in R2n

(5.12)
{

w′(x) = Hw(x)
w(0) ∈ V, w(1) ∈ V

where w = (u, v) ∈ Rn × Rn, V = {0} × Rn and

(5.13) H =
(

0 J
−S 0

)
.

Since H is a hamiltonian matrix its flow Ψ(x) = exH is a path in the symplectic group
Sp(2n) of all transformations preserving the canonical symplectic form ω on R2n. The
symplectic group acts naturally on the manifold Λ(n) of all Lagrangian subspaces of R2n,
and hence the path Ψ induces a path L on the Lagrangian Grasmannian Λ(n) defined by
L(x) = Ψ(x)V.

According to [36, Proposition 6.1], if L(1) is transverse to V, then indJ(S) is defined and,
taking ε > 0 small enough,

(5.14) indJS = µV (L, [ε, 1])

where µV (L) is the Maslov index of the path L with respect to V, an integer which
counts algebraically the intersections of the path L with the singular cycle Σ(V ) = {V ′ ∈
Λ(n) | dimV ∩V ′ > 0} or, what is the same, the number of points x ∈ [ε, 1] such that L(x)
fails to be transverse to V. On the other hand, the Maslov index µV (L, [ε, 1]) is related
with the Conley Zehnder index or the rotation number of the path Ψ [24, 13]) which can
be computed from the spectrum of JS. For this, we need to consider the symplectic space
R2n ×R2n equipped with the symplectic form ω̄ = −ω × ω. With this symplectic form the
path defined by M(x) = Graph Ψ(x) is a path of Lagrangian subspaces. By [44, Theorem
3.2], if W = V × V then

(5.15) µV (L, [ε, 1]) = µW (M, [ε, 1]).

The Maslov index of the path M with respect to the diagonal ∆ ⊂ R2n ×R2n is related
to µW (M, [ε, 1]) by

(5.16) µ∆(M, [ε, 1]) = µW (M, [ε, 1]) + 1/2[sign(W,∆, M(1))− sign(W,∆,M(ε))]

where sign denotes the signature of a triple of Lagrangian subspaces [34].
By our hypothesis M(1) is transverse to W. In what follows, for simplicity, we will assume

also that M(1) is transverse to ∆, equivalently, that 1 is not an eigenvalue of eH . Notice
that both conditions are also verified by M(ε), if we take ε > 0 small enough. Indeed, by
[36, Proposition 6.1], M(x) fails to be transverse to W only at a conjugate instant and we
showed in [36] that conjugate instants cannot accumulate to 0. On the other hand, 1 is an
eigenvalue of eεH if and only if 2π

ε i is an eigenvalue of H which is impossible for ε small
enough.

In this situation, by [34, Proposition 1],
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(5.17) |sign(W,∆,M(1))| ≤ 1/2 dim[(∆ ∩W )ω/∆ ∩W ]

where (∆ ∩ W )ω denotes the symplectic orthogonal of ∆ ∩ W . Since ∆ ∩ W is an n-
dimensional isotropic subspace, |sign(W,∆,M(1))| ≤ n. By the same argument it holds
|sign(W,∆, M(ε))| ≤ n. Summing up (5.14),(5.15),(5.16) we obtained

(5.18) |µ∆(M, [ε, 1])− indJS | ≤ n.

Let us recall that the Conley-Zehnder index of the path Ψ: [0, t] → Sp(n) is the integer
µ∆(M, [0, t]). It depends only on the purely imaginary eigenvalues H and can be computed
as follows:

Assume first that all purely imaginary eigenvalues of H are simple. If λ = iα is an
eigenvalue with eigenvector e then ē is an eigenvector corresponding to λ̄. It is easy to
see that 1

2iω(ē, e) is a non vanishing real number. Let β = ±α according to the sign of
1
2iω(ē, e). If τ = 2π/t then there exists an m ∈ Z such that mτ < β < (m + 1)τ. Set
||λ|| = m + 1/2 and let j(t,H) =

∑
λ ||λ|| then, by [13],

(5.19) µ∆(M, [0, t]) = j(t,H).

When the imaginary eigenvalues are not simple the above formula still holds provided that
we count the imaginary part of each eigenvalue λ positively p times and negatively q times
according to the number p (resp. q) of positive (resp. negative) eigenvalues of the hermitian
form 1

2iω(ē, e) defined on the generalized eigenspace of λ.
With this we can estimate indJ(S) in terms of the negative eigenvalues of the matrix

JS. Indeed, since H2 = diag(JS, SJ) the purely imaginary eigenvalues of H are precisely
square roots of the negative eigenvalues of JS. Let j(S) = j(1,H)− j(ε,H).

From (5.18) and the above computation we get |indJ(S) − j(S)| ≤ n and therefore we
obtain:

Proposition 5.3. Under the above assumptions

j(S)/n − 1 ≤ indJ(S)/n ≤ j(S)/n + 1.

Since our main theorem allows us to estimate the number of bifurcation points in terms
of indJ(S)/n, the above result is good enough for our purpose.

6. Applications

A semi Riemannian manifold (M, g) is locally symmetric if for any p ∈ M , there is a
local isometry sp at p, leaving p fixed and such that Tpsp = −Id. The above condition is
equivalent to the vanishing of the covariant derivative of the curvature tensor or, what is
the same, that the curvature tensor commutes with parallel translation along paths on M.

The curvature operator along a path γ is the g-symmetric endomorphism

Rγ(x) : Tγ(x)M → Tγ(x)M, defined by

(6.1) Rγ(x)(v) = R(γ′(x), v)γ′(x).

Notice that here we follow Klingerberg’s book [30] in the choice of terminology. Elsewhere
this operator is called either ”tidal force” or ”Jacobi operator” while the term ”curvature
operator ” is reserved to the curvature tensor viewed as a function of the third variable,
i.e. to the infinitesimal generators of the restricted holonomy.

By the above discussion the curvature operator along any geodesic path γ on a locally
symmetric manifold M commutes with the parallel translation along γ and therefore the
matrix
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(6.2) (Ri,j(x)) = g(R(γ′(x), ei(x))γ′(x), ej(x))

of Rγ′(x) in any parallel orthonormal frame F = {ei(x); i = 1, ..., n} is constant. The index
of the matrix (Ri,j) is clearly independent from the choice of the frame and will be denoted
by indJR

From Theorem 4.2 and Proposition 5.1 (with V ≡ 0) we obtain:

Corollary 6.1. Let (M, g) be an analytic semi Riemannian locally symmetric space. If γ
is a non degenerate geodesic there are at least |indJ(R)|/(n − 1) strictly conjugate points
along γ.

Let (M, g) = (M1, g1) × (M2,−g2) where Mi are Riemannian symmetric spaces of di-
mension n − ν and ν respectively. If γ is a non degenerate geodesic on M , the curvature
operator along γ splits into a direct sum of the curvature operators along projections of γ
on M1 and M2. Denoting the corresponding eigenvalues by λi and µi respectively, from
Proposition 5.2 we get

Corollary 6.2. If M and γ are as above, then along γ there are at least

|
n−ν∑

i=1

N(λi)−
ν∑

i=1

N(−µi)|/(n− 1)

strictly conjugate points.

Now we consider bifurcation of p-geodesics of a family of analytic mechanical systems
(M, gλ, Vλ) parametrized by I = [a, b].

Assume that both Va and Vb are time independent. Let qa and qb be critical points of
Va and Vb respectively. The constant paths qa and qb are p-geodesics for the corresponding
mechanical systems. Let Hi(v) = Dv∇Vi(qi) : TqiM → TqiM ; i = a, b be the Hessians of
Vi at qi. Since the curvature operator along a constant path vanishes, the matrix S of (5.3)
reduces in this case to the matrix of the Hessian in an orthonormal basis of TqiM. From
the main theorem we obtain:

Corollary 6.3. Let (M, gλ, Vλ) be as above. Assume that the constant p-geodesics qa and
qb are non degenerate. Then, along any analytic trivial branch σ of p-geodesics such that
σa = qa and σb = qb there must be at least |indJ(Ha)− indJ(Hb)|/n bifurcation points.

Our next result deals with bifurcation of nontrivial periodic p-geodesics from a branch
of critical points on symmetric spaces.

Let (M, gλ, Vλ) be as above. Assume moreover that M is an analytic semi Riemannian
symmetric space. Suppose also that each Vλ is time independent and that the trivial branch
of p-geodesics is given by an analytic path q : I → M such that each qλ is a critical point
of Vλ. Assume that the potential Vλ is invariant under the symmetry sλ at qλ.

Corollary 6.4. Under the above assumptions, if qa and qb are non degenerate p-geodesics
then there are at least |indJ(Ha)− indJ(Hb)|/n points of the branch at which bifurcation of
non constant 2-periodic geodesics arises.

By the above Corollary, there are at least |indJ(Ha) − indJ(Hb)|/n points λ∗ ∈ I such
that close to the constant p-geodesic qλ∗ there are p-geodesics with both end points on the
trivial branch but not belonging to the trivial branch. Such geodesics cannot be constant.

On the other hand, since sλ is an isometry and Vλ sλ = Vλ, the energy functional Eλ is
invariant under the map induced on Ωλ by sλ. Hence, if γ is any p-geodesic for (gλ, Vλ), so
is sλγ. By symmetry any non constant p-geodesic γ with end points at qλ and close to the
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trivial branch produces a non constant periodic geodesic γ̄ of period 2 close to the branch
q. For this, it is enough to define

γ̄(x) =
{

γ(x) if 0 ≤ x ≤ 1
sλγ(2− x) if 1 ≤ x ≤ 2.

Observe that Corollary 6.4 it is not applicable to geodesics, since it holds true only if the
potential is not trivial.

7. A comparison principle for p-geodesics on semi-Riemannian manifolds

Given a mechanical system (M, g, V ) and a path γ : [0, 1] → M let us consider

(7.1) Sγ(x) : Tγ(x)M → Tγ(x)M ; Sγ(x) = Rγ(x) + Pγ(x)

where Rγ(x)(v) = R(γ′(x), v)γ′(x) and Pγ(x)(v) = Dv∇V (x, γ(x)) are the curvature oper-
ator and the Hessian of V along γ respectively.

Since both Rγ and Pγ are g-symmetric it follows that Sγ is a symmetric endomorphism
of γ∗(TM).

Let (M1, g1, V1) and (M2, g2, V2) be two mechanical systems on manifolds of the same
dimension n and such that both g1 and g2 have the same index ν. Let pi ∈ Mi; i = 1, 2 be
two given points. Choose an isometry ϕ : Tp1M1 → Tp2M2. Given v1 ∈ Tp1M1, let γ1 be
the unique p-geodesic corresponding to (g1, V1), such that γ1(0) = p1 and γ′1(0) = v1. If
v2 = ϕ(v1), we denote by γ2 the unique p-geodesic in M2 for the system (g2, V2), such that
γ2(0) = p2 and γ′2(0) = v2. We assume that both γ1 and γ2 are defined on the interval
[0, 1] and are nondegenerate critical points of the corresponding energy functionals.

We will compare the index of γ1 with the index of γ2. First we extend the isometry ϕ to
an isometry between γ∗1(TM) and γ∗2(TM). For any x ∈ [0, 1], let ϕx : Tγ1(x)M1 → Tγ2(x)M2

be defined by

(7.2) ϕx v = P2
x ◦ ϕ ◦ P1

−x(v) ∀v ∈ Tγ1(x)M1,

where P i
x : TpiMi → Tγi(x)Mi is the parallel transport along γi.

Theorem 7.1. Let (Mi, gi, Vi) and γi be as above. Let Si(x) = Sγi(x). If for each x ∈ [0, 1]
and v ∈ Tγ1(x)

(7.3) g2

(
S2(x)ϕxv, ϕxv

) ≤ g1

(
S1(x)v, v

)

then

µ(γ2) ≤ µ(γ1).

When both manifolds are Riemannian, the Hessian forms are essentially positive and
have a finite Morse index. In this case the theorem is an easy consequence of the fact
that Morse index is nonincreasing. The proof in the general case is based on monotonicity
properties of the spectral flow and it is given in Section 9. Analogous results can be found
in [3] and [4] in a different framework.

Taking V ≡ 0 we obtain an extension of the Morse-Schöenberg comparison theorem to
general semi Riemannian manifolds.

Corollary 7.2. Let (Mi, gi) and γi be as above with Vi ≡ 0. If for each x ∈ [0, 1],

(7.4) g2 (Rγ2(x)ϕxv, ϕxv) ≤ g1 (Rγ1(x)v, v) ,

then µ(γ2) ≤ µ(γ1).

For lightlike and timelike geodesics on Lorentzian manifolds this was proved by Beem
Ehrlich Easley (see for instance [5]).

Comparing an analytic semi Riemannian manifold M1 with a semi Riemannian locally
symmetric space M2 of the same dimension and index we conclude that
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Corollary 7.3. If (7.4) holds and if indJR2(0) is defined and is positive, then along γ1

there must be at least indJ R2(0)/(n − 1) strictly conjugate points. The same is true if
indJR2(0) is negative and the reverse of inequality (7.4) holds.

The simplest comparison is with a space form M2 of index ν and curvature K. The
curvature tensor of M2 is R2(X,Y )Z = K[g2(Z, X)Y −g2(Z, Y )X]. Since ϕx is an isometry
sending γ′1(x) into γ′2(x) we have

g2 (Rγ2(x)ϕxv, ϕxv) = K[g1(γ′1(x), γ′1(x))g1(v, v)− g1(γ′1(x), v)2].

Identifying Tp1M1 with Tp2M2 via ϕ, the curvature operator of R2 restricted to the
normal subspace γ′2(0)⊥ coincides with K[g1(γ′1(0), γ′1(0))]Id on γ′1(0)⊥. If γ1 is not a null
geodesic, without loss of generality we can assume that ε(γ1) = g1(γ′1(0), γ′1(0)) = ±1. By
Proposition 5.2 indJR2 = N(Kε(γ1))(n− 1). From the above corollary we conclude that

Corollary 7.4. If (M,g) is a semi Riemannian manifold such that

(7.5) g(R(X, Y )Y, X) ≥ K[g(X,X)g(Y, Y )− g(X, Y )2]

for some real number K, then any geodesic γ on M such that Kε(γ) > 0 has at least
N(Kε(γ)) strictly conjugate points.

If the manifold is Riemannian, inequality (7.5) implies that the sectional curvature has to
be bounded from below. When the metric is indefinite, if the sectional curvature is bounded
from below (or above) then it is automatically bounded. Nevertheless, the hypothesis in
Corollary 7.4 does not imply that the sectional curvature of M is constant. Nontrivial
examples of semi Riemannian manifolds verifying (7.5) are given in [2]. In this paper and
also in [32] several comparison results of Sturm type are proved.

In a similar way we can obtain estimates for the number of strictly conjugate points
along a nondegenerate horizontal geodesic in a semi Riemannian warped product with
locally symmetric base.

Let B and F be two semi Riemannian manifolds and let ρ be a smooth positive function
defined on B. The warped product Mρ = B ×ρ F is the product manifold B × F endowed
with a twisted product metric. Namely, for p = (b, f) ∈ B × F we write the tangent space
TpB × F as an internal direct sum of TpB ≡ T(b,f)B × {f} with TpF ≡ T(b,f){b} × F

and endow it with the metric gρ = gB + ρ2gF . Notice that the direct sum decomposition
TpMρ = TpB ⊕ TpF is orthogonal with respect to both gρ and the product metric g1.

We will do the comparison between the manifold Mρ and the manifold M1, the semi
Riemannian product of B and F. Given a point p = (b, f) we choose an isometry ϕ : TpMρ →
Tϕ(p)M1 whose restriction to TpB is the identity.

Let γ be any horizontal geodesic through p. Then γ is a geodesic under both metrics and
decomposing a vector w ∈ Tγ(x) as w = (u, v) under the above orthogonal decomposition
we have that the curvature operator on M1 is given by

(7.6) Rγ(x)(u, v) = R(γ′(x), u)γ′(x) = RB
γ̄ (x)u

where γ̄ is the projection of γ onto the base B and RB is the curvature operator on B.
It follows plainly from (7.6) that the family of hessians hλ of the energy functional on

M1 at γλ, λ ∈ [0, 1] is a direct sum of the family of hessians h̄λ of E on B at γ̄λ with a
family of nondegenerate quadratic forms defined on Tγλ

(F ). Hence, by normalization and
the direct sum property of the spectral flow, µ(γ) = µ̄(γ̄), as a geodesic on M1.

On the other hand by [37, Proposition 42], on Mρ we have

(7.7) Rγ(x)(u, v) = R(γ′(x), u)γ′(x) − 1
f

Hess(ρ)(γ′(x), γ′(x))v.
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From Corollary 7.2 and the above discussion it follows that if ρ is a convex function then
for any horizontal geodesic γ on Mρ we have µ(γ̄) ≤ µ(γ). Hence:

Corollary 7.5. If B is a locally symmetric space and the warping function ρ is convex then
along any nondegenerate horizontal geodesic there are at least indJR

B
γ̄ (0)/(n − 1) strictly

conjugate points.

Our final application is an estimate of the number of bifurcation points from the triv-
ial branch for a family (M, g, Vλ, σλ) where M is an analytic complete locally symmet-
ric space and Vλ, λ ∈ [a, b], is an analytic family of potentials on M . For i = a, b let
Ri(x) : Tσi(x)M → Tσi(x)M and P i

x : Tσi(0)M → Tσi(x)M be the curvature operator and the
parallel translation along the p-geodesic σi respectively.

Theorem 7.6. Assume that, as symmetric operators,

Pa
xRa(0)Pa

−x ≥ Ra(x) and PxRb(0)P−x ≤ Rb(x).

Suppose moreover that the hessians of Vi, i = a, b at each point of σi are respectively positive
and negative semi-definite. Then, if indJ(Ra)(0) > indJ(Rb)(0), the number of bifurcation
points from the trivial branch along σ is not less than [indJ(Ra(0))− indJ(Rb(0))]/n.

Proof. We use the comparison principle between (M, g, Vi) and (M, g, 0). Comparing the
Hessian of E at the p-geodesics σi with the Hessian of the energy at a geodesic having the
same origin and initial velocity, we obtain

µ(σa) ≥ indJ(Ra)(0) and µ(σb) ≤ indJ(Rb)(0).

Therefore
|µ(σa)− µ(σb)| ≥ indJ(Ra)(0)− indJ(Rb)(0).

The conclusion follows from the main theorem. ¤

8. Proof of the main theorem

Before going to the proof of Theorem 4.2 we will prove an abstract bifurcation theorem
for critical points of families of smooth functionals. This theorem is an extension of the
main theorem in [19] to the geometric framework which naturally arises in dealing with
bifurcation of p-geodesics. Moreover, we will improve the result in [19] obtaining estimates
from below for the number of bifurcation points.

Definition 8.1. A smooth family of Hilbert manifolds {Xλ}a≤λ≤b parameterized by a real
interval I = [a, b] is a family of manifolds of the form Xλ = p−1(λ) where p : X → I is a
smooth submersion of a Hilbert manifold X onto I.

By the implicit function theorem each fiber Xλ of the submersion is a submanifold of
X of codimension one. For each x ∈ Xλ the tangent space TxXλ coincides with kerTpx.
Being p a submersion the family of Hilbert spaces TF (p) = {kerTpx : x ∈ X} is a Hilbert
sub-bundle of the tangent bundle TX. TF (p) is the bundle of tangents along the fibers
or the vertical bundle of the submersion p. A smooth functional f : X → R defines by
restriction to the fibers of p a smooth family of functionals fλ : Xλ → R

We will assume that there exists a smooth section σ : I → X of p such that σ(λ) is a
critical point of the restriction fλ of the functional f to the fiber Xλ.

We will refer to σ as the trivial branch of critical points of the family {fλ : λ ∈ I}. We
will say that λ∗ ∈ I is a point of bifurcation for critical points of the family {fλ : λ ∈ I}
from the trivial branch σ(I) if there exists a sequence λn → λ∗ and a sequence xn → σ(λ∗)
such that p (xn) = λn and each xn is a critical point of fλn not belonging to σ(I).

In what follows we will denote with hλ the Hessian of fλ at the point σ(λ).
Our next assumption is that, for each λ ∈ I, the Hessian hλ is a Fredholm quadratic

form. Moreover we will assume that the end points ha and hb are non degenerate.
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The family of Hessians hλ, for λ ∈ [a, b], defines a smooth function h on the total space
of the pull-back bundle H = σ∗TF (p) of the vertical bundle TF (p) by the map σ : I → X
such that the restriction of h to each fiber is a Fredholm quadratic form. The function
h : H → R is a generalized family of Fredholm quadratic forms. Since the restrictions ha, hb

to the fibers over a and b are non degenerate, the family is admissible and the spectral flow
sf(h) = sf(h, [a, b]) of the family h is defined by [36, (2.2)].

Theorem 8.2. Under the above assumptions if sf(h) 6= 0, then there exists at least one
bifurcation point λ∗ ∈ (a, b) of critical points of f from the trivial branch.

Moreover, if kerhλ 6= 0 only for a finite number of points λ ∈ I then there are at least
|sf(h)|/m distinct bifurcation points in (a, b), where m = max{dim kerhλ}.

Let us mention that the singular set Σ(h) = {λ ∈ I : kerhλ 6= 0} is finite if all the data
(X, p, f, σ) are analytic. Another situation in which Σ(h) is finite is the following one:

If h : H → R is a generalized family of quadratic forms, the intrinsic derivative ḣλ : Hλ →
R of h at λ is the restriction to kerhλ of the ordinary derivative of the smooth path of
quadratic forms hλMλ where M is any local trivialization of the bundle H. It is easy to
see that the resulting quadratic form ḣλ is independent from the choice of trivialization. A
point λ ∈ Σ(h) is called regular when ḣλ is a nondegenerate quadratic form on kerhλ. By
straightforward extension to bundles of the arguments in [20], one shows that each regular
point λ ∈ Σ(h) is isolated in Σ(h). Therefore, if h has only regular singular points they are
in finite number.

Remark 8.3. By [20] if all points in Σ(h) are regular then

sf(h) =
∑

λ∈Σ

sign ḣλ,

where sign denotes the signature.

Proof of Theorem 8.2. By the vector bundle neighborhood theorem (Theorem A.1)
there exist a trivial Hilbert bundle H = I×H over I = [a, b] and a fiber preserving smooth
map ψ : H → σ∗X such that ψ(λ, 0) = σ(λ) and such that ψ is a diffeomorphism of H with
an open neighborhood O of σ(I) in X.

Let f̃ : I ×H → R be defined by f̃ = f ◦ψ. Then f̃ is a family of smooth functionals on
the Hilbert space H. Since the restriction ψλ of ψ to the fiber is a diffeomorphism, we have
that u ∈ H is a critical point of f̃λ = fλ ◦ ψλ if and only if x = ψλ(u) is a critical point
of fλ. In particular 0 is a critical point of f̃λ for each λ ∈ I. The Hessian h̃λ of f̃λ at 0 is
given by h̃λ(ξ) = hλ(T0ψλ)([ξ]). By cogredience and normalization property of the spectral
flow (see Propositions 3.1 and 3.2 in [19]), we have that sf(h, I) = sf(h̃, I) = sf(L, I) where
L : I → Φs(H) is the smooth path of self-adjoint Fredholm operators representing the
family h̃ with respect to the scalar product, i.e. h̃λ(u) = 〈Lλu, u〉 ∀u ∈ H.

In order to prove the first assertion we argue as follows. Our hypothesis implies that
sf(L, I) 6= 0, and [19, Theorem 1] ensures the existence of a critical point u 6= 0 of some
fλ, λ ∈ I, in every neighborhood V of 0. Choosing a un 6= 0 in Vn = B(0, 1/n) we
can assume by passing, if necessary, to subsequences that the corresponding sequence λn

converges to some λ∗ ∈ (a, b). Let xn = ψλn(un). By construction of ψ each xn is a critical
point of fλn not belonging to σ(I) and xn → σ(λ∗). Thus λ∗ is a bifurcation point.

In order to prove the second assertion let us assume that the set Σ(h) is finite. Let
a < λ1 < λ2 < . . . < λk < b be the points in Σ(h). We want to show that at least |sf(h)|/m
of them are bifurcation points.
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Taking Ij = [λj − δ, λj + δ] with δ > 0 sufficiently small so that Ij are disjoint, we have
that h at the end points of Ij is non degenerate and hence

(8.1) sf(h, I) =
k∑

j=1

sf(h, Ij)

by additivity of the spectral flow. Since 0 is always an isolated point in the spectrum of
a self-adjoint Fredholm operator, there exists a positive number η such that the spectrum
of Lλj intersects the interval [−η, η] only in 0. Then we can choose δ > 0 small enough so
that η, −η do not belong to the spectrum of Lλ, for any λ ∈ Ij and so that (8.1) still holds
true. Let Pλ, λ ∈ [λj−δ, λj +δ], be the orthogonal projection onto the subspace associated
with the part of the spectrum of Lλ lying in the interval [−η, η]. Taking if necessary a
smaller δ, by [28, Chapter II, Section 6], there exists a continuously differentiable path U
on [λj − δ, λj + δ] of orthogonal operators such that

(8.2) Uλj = Id and UλPλU−1
λ = Pλj ∀λ ∈ [λj − δ, λj + δ].

Since the spectral flow is invariant under cogredience, we get

(8.3) sf(Lλ, Ij) = sf(Mλ, Ij)

where Mλ = UλLλU−1
λ .

From (8.2), it follows that Mλ is reduced by Pλj , for any λ ∈ Ij , being Lλ reduced
by Pλ in that interval. Under the splitting H = kerLλj

⊕
ImLλj , Mλ can be written as

Mλ = M1
λ + M2

λ . But M2
λ is an isomorphism and therefore sf(M2

λ , Ij) = 0.
From this and (8.3) we get

sf(Lλ, Ij) = sf(M1
λ , Ij) = µMorse(M1

λj−δ)− µMorse(M1
λj+δ)

where the last equality follows from the property that the spectral flow of a path of linear
operators defined on a finite dimensional space equals the difference of the Morse Indexes
at the end points.

Since dimkerLλj ≤ m it follows that

|µMorse(M1
λj−δ)− µMorse(M1

λj+δ)| ≤ m;

Summing up

|sf(h)| ≤
k∑

j=1

|sf(Lλj , Ij)| ≤ dm

where d is the number of nonzero addends in the above formula. Since, by the first part,
any interval Ij with a nontrivial contribution to the above sum must contain at least one
bifurcation point there must be at least d = |sf(h)|/m distinct bifurcation points in I. ¤

With this we can finally prove Theorem 4.2.
Let us consider the end-point map e : I → M ×M defined by e(λ) = (σ(λ)[0], σ(λ)[1]).

The pullback e∗(π) : e∗(Ω) → I of the submersion π : Ω → M × M via the map e is
defined in the usual way. By standard transversality arguments we have that the total
space e∗(Ω) = {(λ, γ) ∈ I × Ω : e(λ) = π(γ)} is an Hilbert manifold (which inherits the
Riemannian metric from Ω) and the map e∗(π) : e∗(Ω) → I given by the projection to the
first factor is a submersion (see [33, Chapter 3, Section 3]).

The fiber of e∗(π) over λ ∈ I is the submanifold Ωσ(λ)[0],σ(λ)[1]. By the commutativity of
the following diagram
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e∗(Ω)

e∗(π)

²²

ι // Ω

π

²²

I

σ

<<

e
// M ×M

where ι is the projection to the second factor, we have that σ : I → Ω induces a section
σ̄ : I → e∗(Ω) of e∗(π). By the same argument the vertical bundle TF (e∗(π)) coincides
with ι∗(TF (π)) and moreover σ∗(TF (π)) = σ̄∗[TF (e∗(π))]. The one-parameter family of
functionals Ē = E◦ι : e∗(Ω) → R has the same bifurcation points as the family {Eλ : λ ∈ I}
because ιλ sends in a one to one fashion critical points of Ēλ into critical points of Eλ.
Moreover the isomorphism ιλ intertwines the Hessian h̄λ of Ēλ at σ̄λ with the Hessian hλ

of Eλ at σλ. Now Theorem 4.2 follows from Theorem 8.2 and the following proposition

Proposition 8.4. Under assumptions of Theorem 4.2,

sf(h) = µ(σa)− µ(σb).

Proof. Let T = [a, b]× [0, 1]. Consider the map θ : T → Ω defined by

(8.4) θ(λ, t)(x) = σλ(tx).

Each θ(λ, t) is a critical point of the energy functional Eλ,t : Ωe(λ) → R associated to
the data (M, gλ, t2Vλ). Let hλ,t be the Hessian of Eλ,t at θ(λ, t). As before, hλ,t defines a
generalized family of Fredholm quadratic forms h : θ∗TF (π) → R. Let h̄ be the restriction
of this family to the boundary ∂T of T. Trivializing θ∗TF (π)|∂T and using [19, Poposition
3.6] we conclude that sf(h̄) = 0. On the other hand, the spectral flow is the sum of the
spectral flows of each segment of the boundary of T . By definition of hλ,t we have that hλ,0

is nondegenerate for all λ. Indeed, θ(λ, 0) ≡ p is a constant path. A H1-vector field ξ along
p is simply a path ξ ∈ H1(I; Tp(M)) and hence h0(ξ) = dp(ξ) =

∫ 1
0 g( D

dsξ(x), D
dsξ(x)) dx

which is clearly nondegenerate.
From the above discussion we have that

sf(h(·,a), [0, 1]) − sf(h(1,·), [a, b]) = sf(h(·,b), [0, 1])

that is sf(h) = µ(σa) − µ(σb). ¤

9. Proof of Theorem 7.1

Let γ1, γ2 as in (7.1). By (3.4) the Hessian of the energy functional at γ1 computed on
a vector field ξ along γ is given by

(9.1) hγ1(ξ) =
∫ 1

0
g1( D

dxξ(x), D
dxξ(x)) dx−

∫ 1

0
g1(S1(x)ξ(x), ξ(x)) dx.

Denoting by Φ: H1
0 (γ1) → H1

0 (γ2) the bounded operator induced by ϕ we have that

hγ2(Φξ) =
∫ 1

0
g2( D

dxϕxξ(x), D
dxϕxξ(x)) dx−

(9.2)
∫ 1

0
g2(S2(x)ϕxξ(x), ϕxξ(x)) dx.

Since parallel translation commutes with D
dx and ϕ0 is an isometry it follows that

g( D
dxξ(x), D

dxξ(x)) = g( D
dxϕxξ(x), D

dxϕxξ(x))
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pointwise and hence the first two integrals in (9.1), (9.2) coincide. Therefore the inequality

g(S2(x)ϕxξ(x), ϕxξ(x)) ≤ g(S1(x)ξ(x), ξ(x))

implies that hγ2(Φξ) ≤ hγ1(ξ), for all ξ ∈ H1
0 (γ1).

Let γ̃i, i = 1, 2 be the canonical paths induced by γi on Ω(Mi) and let hλ be the Hessian
of Eλ at γ̃i

λ.

Since the top order terms (those containing D
dx) of h1

λ and h2
λΦλ coincide, the difference

h1
λ − h2

λΦλ is weakly semi-continuos. By the proof of Proposition 8.4

(9.3) h1
0(ξ) =

∫ 1

0
g1( D

dxξ, D
dxξ) dx =

∫ 1

0
g2( D

dxϕ0ξ,
D
dxϕ0ξ) dx = h2

0(Φ0ξ)

Moreover by hypothesis

(9.4) h2
1(Φ1ξ) = hγ2(Φξ) ≤ hγ1(ξ) = h1

1(ξ).

On the other hand, µ(γ1) = −sf(h1) while µ(γ2) = −sf(h2) = −sf(h2Φ).
Taking in account (9.3) and (9.4), in order to conclude the proof of the comparison

theorem it is enough to show that if h and k are two admissible generalized families of
Fredholm quadratic forms on a Hilbert bundle H over [a, b] whose difference is weakly
semi-continuous and such that ha = ka, kb ≤ hb, then sf(k) ≤ sf(h). The rest of the proof
is devoted to show this.

Without loss of generality we can assume that H = [a, b]×H is trivial. Since hλ − kλ is
weakly compact it follows that q(s, λ) = shλ + (1− s)kλ, is a Fredholm quadratic form for
all (s, λ) ∈ [0, 1]× [a, b]. The compactness of T = [0, 1]× [a, b] together with the property
that the space of Fredholm quadratic forms is open imply that there exists a small η > 0
such that q(s, λ) + t|| · ||2 is still Fredholm, for any (s, λ) ∈ T and |t| ≤ η. Taking possibly
a smaller η we can further assume that hi + t|| · ||2 is non degenerate for i = a, b and |t| ≤ η

Define h̃λ = hλ + λη|| · ||2. Then h̃ is a family of Fredholm quadratic forms that is
homotopic to h by the admissible homotopy (t, λ) → hλ + tλη|| · ||2 and therefore sf(h̃) =
sf(h). But now h̃0 = k0 and k1 < h̃1.

Consider the family of Fredholm quadratic forms defined on T by φ(s, λ) = sh̃λ+(1−s)kλ.
The closed path obtained by restricting φ to ∂T has spectral flow zero. In fact, its spectral
flow is the sum of the spectral flows of each segment of the boundary of [0, 1]× [a, b] and by
the same arguments as in the proof of Theorem 4.2, we have: sf(h̃)− sf(k) = sf(ρ), where
ρ(s) = (1− s)k1 + sh̃1.

Since ρ̇ = h1− k1 is positive definite if Σ(ρ) is non empty all points s ∈ Σ(ρ) are regular
and, by Remark 8.3, each gives a positive contribute dim ker ρ(s) to the spectral flow of
ρ. Thus sf(ρ) ≥ 0 and hence sf(k) ≤ sf(h). ¤

In our comparison theorem it is possible to avoid the non degeneracy condition by
introducing the concept of extended generalized Morse index analogous to the extended
Morse index (index plus nullity) in the classical case (compare with [10, 15]).

Let h be a generalized family of Fredholm quadratic forms on a Hilbert bundle H over
[a, b]. Let us consider the self-adjoint Fredholm operators Lλ representing hλ with respect
to the scalar product. Self-adjoint Fredholm operators are characterized by the fact that
0 is an isolated point in the spectrum of finite multiplicity. Thus, there exists a number
δ0 > 0 so that hλ + δ‖ · ‖2 = 1/2〈(L + δ)u, u〉 is not degenerate for λ = a, b and for any
0 < δ ≤ δ0. Since the set of all Fredholm quadratic forms is open in the set of all quadratic
forms, δ0 can be chosen in such a way that hλ + δ‖ · ‖2 is a Fredholm form for λ ∈ [a, b]
and 0 < δ ≤ δ0.

The extended spectral flow of the family h is

(9.5) sf(h) = sf(hλ + δ‖ · ‖2, λ ∈ [a, b]).
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for small enough δ.
The normalization property for the spectral flow implies that the right hand side does

not depend on the choice of δ. The extended spectral flow is clearly additive under con-
catenation and direct sum. It is homotopy invariant under homotopies keeping the end
points fixed.

The extended (generalized) Morse index is defined for any p-geodesic by

(9.6) µ̄(γ) = −sf(h)

where h is the family of hessians at the canonical path γ̃
Arguing as above with the perturbed families we obtain:

Theorem 9.1. If γ1, γ2 are two (possibly degenerate) p-geodesics as in Theorem 7.1, related
by (7.3) then

µ̄(γ2) ≤ µ̄(γ1).

Appendix A. The vector bundle neighborhood Theorem

This section is devoted to a technical result, which is used in the proof of the main
theorem.

Theorem A.1. Let E and B be two C∞ Banach manifolds such that E admits a C∞
partition of unity and B is compact. Let π : E → B be a C∞ split submersion, i.e. the
differential is surjective and the kernel splits. Let τ : B → E be a smooth section of π.
Then there exist a Banach bundle π′ : F → B, an open neighborhood V of the 0-section in
F and a fiber preserving diffeomorphism j : V ↪→ U, of V with an open neighborhood U of
τ(B) such that τ(b) = j(0b) for all b ∈ B

The proof of this result, follows the construction of tubular neighborhoods of subman-
ifolds based on sprays. However here we need sprays whose exponential map is fiber
preserving. The construction is that of Palais in [38], see also [14].

Let π : E → B be a split submersion and let p : TF (π) → E be the associated bundle of
tangents along the fibers. A C∞-vector field ξ on TF (π) is called a bundle spray over E if
it satisfies the following two conditions:

(1) Tp(ξ(v)) = v ∀v ∈ TF (π);
(2) ξ(sv) = T s̃(sξ(v)) ∀s ∈ R ∀v ∈ TF (π)

where s̃ : TF (π) → TF (π) is the multiplication map given by v 7→ sv for any v ∈ TF (π).
Condition (1) implies that for all v ∈ T (Eb), also Tp(ξ(v)) ∈ T (Eb) and then ξ(v) ∈

T (T (Eb)). Therefore, if u : [0, 1] → TF (π) is an integral curve of ξ with u(t0) ∈ T (Eb),
then u([0, 1]) ⊂ T (Eb) and so pu([0, 1]) ⊂ Eb.

Proof. The existence of a bundle spray ξ over E follows from the implicit function theorem
and partition of unity arguments. Indeed, let e ∈ E be a point. Since π : E → B is a split
submersion, by the implicit function theorem, there exists a neighborhood Ue of e in E and
two open sets Vb ⊂ B and Wb ⊂ π−1(b) for some b ∈ B such that Ue = Vb ×Wb. Now let
us consider the vertical tangent bundle over the open set Ue. By definition, we have

TF (Ue) = TF (Vb × Wb) = Vb × T (Wb).

In this way we are able to construct a bundle spray locally on TF (Ue) extending to the
product an ordinary spray on T (Wb) in the obvious way. Observing that a convex com-
bination of two bundle sprays is again a bundle spray, we can take a smooth partition of
unity on E and glue the local sprays in order to get a bundle spray on TF (π).

If ξ is a bundle spray for π, the associated exponential map, is defined as follows: for
each v ∈ TF (E) let σv be the maximal integral curve of ξ such that σv(0) = v. The
second condition for a bundle spray implies that there exists an open neighborhood D of



24 M. MUSSO, J. PEJSACHOWICZ, AND A. PORTALURI

the zero section in TF (E) such that for all v ∈ D, σv(1) is defined. Now by definition
exp(v) = p(σv(1)) ∀v ∈ D.

Let F = τ∗(TF ). If i : F → TF is the canonical inclusion and V = i−1(D) we define
j : V → E by j(v) = exp i(v). By construction of the exponential map j is fiber preserving
and clearly j(0b) = τ(b). We want to show that j restricted to a (possibly) smaller neighbor-
hood V of the zero section is a diffeomorphism. For this, if jb : Fb → Eb is the restriction of
j to the fiber, identifying Fb with its tangent space in the canonical way and arguing as in
[33, Theorem 4.1] we show that Tjb(0b) = id. Since j is fiber preserving this easily implies
that Tj(0b) is injective and hence invertible since, being B finite dimensional, Tj(0b) is
Fredholm of index 0. Thus j is a local diffeomorphism. Since this holds for every b ∈ B, by
a standard compactness argument there must be a (possibly) smaller neighborhood V of
the zero section such that the restriction of j to that neighborhood is a (fiber preserving)
diffeomorphism with a neighborhood U of τ(B). This concludes the proof. ¤
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