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ABSTRACT. We obtain a bifurcation result for solutions of the Lorentz equation in a semi-
Riemannian manifold; such solutions are critical points of a certain strongly inde�nite
functionals de�ned in terms of the semi-Riemannian metric and the electromagnetic �eld.
The �ow of the Jacobi equation along each solution preserves the so-called magnetic sym-
plectic form, and the corresponding curve in the symplectic group determines an integer
valued homology class called the Maslov index of the solution.

We study magnetic conjugate instants with symplectic techniques, and we prove at
�rst, an analogous of the semi-Riemannian Morse Index Theorem (see [12]). By using this
result, together with recent results on the bifurcation for critical points of strongly inde�nite
functionals (see [10]), we are able to prove that each non degenerate and non-null magnetic
conjugate instant along a given solution of the semi-Riemannian Lorentz force equation is
a bifurcation point.
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1. INTRODUCTION

In this paper we will study the occurrence of bifurcation phenomena for solutions of
the Lorentz force equation in General Relativity; such solutions represent the trajectories
of massive charges moving under the action of gravity and of the electromagnetic �eld.
Conjugate points along a solution z of the Lorentz force equation, called in this paper
�magnetic conjugate� points, correspond up to �rst order in�nitesimal to �xed endpoints
homotopies of z by a family zs of solutions of the equation. However, when dealing with
phenomena on a very large scale, like for instance when studying trajectories of massive
charges in a general relativistic spacetime, such �rst order approximation is not valid. The
aim of this paper is to establish to which extent one has multiplicity of trajectories in
the proximities of a magnetic conjugate point of a general relativistic spacetime, i.e., in
the language of bifurcation theory, we determine under which circumstances a magnetic
conjugate point determines a branch of solutions bifurcating from the given one.

In the classical literature, general relativistic solutions of the Lorentz force equations
are studied using the Kaluza-Klein formalism in Lorentzian, or more generally semi-
Riemannian geometry. Einstein's program in general relativity is based on the fact that
spacetime is nontrivially curved and that the gravity is the responsible of this curvature.
In 1921, Kaluza had postulated that gravitation and electromagnetism could be uni�ed in
a �ve dimensional theory of gravity. The physical interest in the modern Kaluza-Klein
theory, which could be considered as the historical precursor of the modern Yang -Mills
theory, is due to the fact that some quantities, like for instance the charge of a particle,
are spacetime related like the momentum or the energy. The charged particle trajectories
correspond to geodesics trajectories in the Kaluza extended manifold.

Although the Kaluza-Klein formalism is very natural, and it provides powerful tools for
studying existence and multiplicity results for causal solutions of the Lorentz force equa-
tion (see for instance [7, 8]), the theory does not seem to be well suited to study phenomena
depending on in�nitesimal of second order, like bifurcation theory, and it is practically use-
less if one wants to relate the Morse theory for solutions of the Lorentz equation with the
Morse theory of the corresponding geodesics. This observation is simple consequence of
the fact that magnetic conjugate points along solutions of the Lorentz equation do not cor-
respond necessarily to conjugate points along the corresponding Kaluza�Klein geodesics,
due to the fact that distinct solutions of the Lorentz equation having common endpoints lift
to Kaluza�Klein geodesics with possibly distinct endpoints. In particular, the bifurcation
result for semi-Riemannian geodesics proven in [19] cannot be applied, and the aim of
this paper is to develop a speci�c theory to study bifurcation of solutions of the Lorentz
equation.

In order to state properly our result, let us �x our notations and let us recall a few basic
de�nitions. Let (M, g) be a semi-Riemannian manifold and let B ∈ X(M) be a smooth
vector �eld on M ; the corresponding 1-form ω = g(B, ·) will be called the magnetic
1-form. A trajectory of a charged massive particle moving under the action of an electro-
magnetic �eld B is represented by a curve z : I → M , where I is an interval of the real
line IR, satisfying the Lorentz force equation, given by:

D
dt ż +

(∇B −∇B?
)
ż = 0,

where D
dt denotes the covariant derivative along z with respect to the Levi-Civita con-

nection and (∇B)? is the g-adjoint of ∇B. Although the Lorentzian case is of physical
interest, we will develop the theory in the more general setting of semi-Riemannian mani-
fold; on the other hand, we will restrict ourselves to the case of exact magnetic 2-forms, in
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which case the Lorentz equation has a variational structure. Most of the results discussed
in this paper hold true also in the more general case of non exact magnetic 2-forms, and
very likely the entire theory presented could be extended to such more general case using
techniques of non variational bifurcation.

Solutions of the Lorentz equation are critical points of the action functional:

F (z) =
∫ 1

0

[1
2
g(ż, ż) + g(B, ż)

]
dt =

∫ 1

0

[1
2
g(ż, ż) + ω(ż)

]
dt.

where ω is the so-called magnetic 1-form on M whose differential is computed as curlB.
Linearization of the Lorentz force equation along a given solution z produces the so-

called electromagnetic Jacobi equation (see (2.14)), whose solutions are called electromag-
netic Jacobi �elds. The electromagnetic Jacobi equation coincides with the kernel of the
so-called electromagnetic Index form which is the second variation of the electromagnetic
energy functional (see (2.8)). These notions was introduced for the �rst time in [6].

Now, given a trajectory z, according to [6] we say that an instant t0 ∈ ]0, 1] is said
to be a magnetic conjugate instant, if there exists at least one non zero electromagnetic
Jacobi �eld J with J(0) = 0 = J(t0). The corresponding point z(t0) is said to be a
magnetic conjugate point to z(0) along z; hence, magnetic conjugate points can be inter-
preted as �xed endpoints of a homotopy of solutions of the magnetic equation, up to �rst
order approximation. When dealing with phenomena on a very large scale, such �rst order
approximation is not satisfactory, and the aim of this paper is to establish in which exact
terms one has multiplicity of solutions in correspondence to magnetic conjugate points.

It is well known that, in the geodesic case, the �ow of the Jacobi deviation equation
preserves the symplectic form Ω on TM which is the pull-back via the semi-Riemannian
structure g of the standard Liouville form on T ∗M ; likewise, the �ow associated to the
electromagnetic Jacobi equation preserves the so-called magnetic symplectic form given
by µ = Ω − π∗

(
curl B

)
, where π : TM → M is the canonical projection. It follows

that the fundamental solution of the electromagnetic Jacobi equation, give us a path in the
Lie group of all symplectomorphism of the symplectic space IR2n endowed with the mag-
netic symplectic form, and, in particular, its phase �ow induces a path in the Lagrangian
Grassmannian manifold of IR2n.

The magnetic conjugate instants along a solution of the Lorentz force equation can be
characterized as the intersection of this path with an co-oriented analytic one co-dimen-
sional embedded submanifold of the Lagrangian Grassmannian manifold, also called the
Maslov cycle. The relative homology class of this path is de�ned to be the Maslov index
of the solution. One of the main result of this paper is to prove an analogous of the Morse
index theorem for trajectories of the Lorentz force equation, relating the Maslov index of
a solution with a generalized Morse index of the corresponding path of electromagnetic
index forms. Due to the inde�niteness of the semi-Riemannian structure, the Morse Index
of the second variation of the electromagnetic energy functional is not well de�ned and a
correct substitute is given by the so-called spectral �ow associated to a path of symmetric
Fredholm forms. The spectral �ow is an integer homotopy invariant, originally introduced
by Atiyah, Patodi and Singer in [2], which roughly speaking can be thought as the net of
change of the eigenvalues which cross the value zero.

Using such an homotopy invariant we will prove the equality between the Maslov in-
dex of a trajectory of the Lorentz force equation and the spectral �ow associated to the
path of Fredholm quadratic forms arising from the Hessians of the electromagnetic energy
functionals, up to a sign.
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The study of multiplicity results for trajectories of the Lorentz force equation in the
Riemannian case or the behavior of these solutions, is well known (see for instance [3, 4,
13]). In the Lorentzian case for spacelike trajectories or more generally for trajectories of
any causal character in a semi-Riemannian manifold, a careful analysis of the behavior of
such trajectories or a multiplicity result is much more involved. For a better understanding
of the behavior of these trajectories in the neighborhood of a magnetic conjugate point,
we will introduce the notion of magnetic bifurcation point along a solution of the Lorentz
equation. A magnetic bifurcation point (or, more precisely, a magnetic bifurcation instant)
along one such solution z is a point z(t0) for which there exists a sequence tn → t0 and
a sequence of solutions zn 6= z of the Lorentz equation tending to z as n → ∞, such that
zn(tn) = z(tn) for all n. A natural question to ask is: which magnetic conjugate points
along a solution of the Lorentz equation are magnetic bifurcation points?

We will use some recent results on bifurcation theory for strongly inde�nite functionals
([10]), we are able to give an answer to the above questions. The main result in [10] is
that bifurcation occurs at those singular instants whose contribution to the spectral �ow
is non null (Proposition 4.3). By a suitable choice of coordinates in the space of paths
joining a �xed point p in M and a point variable along a given trajectories of the Lorentz
forced equation z starting at p, the magnetic bifurcation problem is reduced to a bifurca-
tion problem for a smooth family of strongly inde�nite functionals de�ned in (an open
neighborhood of 0) a �xed Hilbert space (Subsection 5.1). To each magnetic conjugate
instant z(t0) along z we associate a vector space P[t0] ⊂ Tz(t0)M , called the magnetic
conjugate plane (De�nition 3.1); when the restriction of the spacetime metric g to P[t0]
is nondegenerate, then z(t0) is called nondegenerate, and the signature of such restriction
is the signature of the magnetic conjugate point. The Maslov index of a solution of the
Lorentz equation is computed under generic circumstances as the sum of the signatures of
all magnetic conjugate instants (Corollary 3.9); using the index theorem, we get that jumps
of the spectral �ow occur at those magnetic conjugate points having non null signature.
Applying the theory of [10], we get that nondegenerate magnetic conjugate points with
non vanishing signature are magnetic bifurcation points; more generally, a magnetic bifur-
cation point is found in every segment of solution of the Lorentz equation that contains a
(possibly non discrete) set of magnetic conjugate points that give a non zero contribution
to the Maslov index (Corollary 5.6).

To conclude, we remark that the occurrence of degeneracies of the restriction g|P[t0] is
yet a rather misterious phenomenon, that deserves attention. Even more challenging, it
is not clear whether non spacelike Lorentzian solutions may admit a non discrete set of
magnetic conjugate instants.

2. THE VARIATIONAL PROBLEM

2.1. Geometrical setup and the action functional. We will consider a smooth manifold
M endowed with a semi-Riemannian metric tensor g; by the symbol D

dt we will denote
the covariant differentiation of vector �elds along a curve with respect to the Levi-Civita
connection of g, while R will denote the curvature tensor of ∇ chosen with the sign con-
vention: R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], where ∇ will denote the covariant derivative of
the Levi-Civita connection of g. Let B ∈ X(M) be a smooth vector �eld on M ; this vector
�eld B de�nes the so-called magnetic 1-form ω on M , de�ned by:

(2.1) ω = g(B, ·);
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its differential dω is easily computed as:
dω = curlB,

where curl B is the 2-form:
curl B(X, Y ) = g

(∇XB, Y
)− g

(
X,∇Y B

)
.

Given a smooth n-dimensional manifold, let Ω the set of all paths z : [0, 1] → M
of Sobolev class H1. It is well known that Ω is an in�nite dimensional smooth Hilbert
manifold modelled on the Hilbert space H1([0, 1], IRn). For each z ∈ Ω, the tangent space
TzΩ can be identi�ed with the space of vector �elds V along z of class H1. Now let
ev : Ω → M × M be the evaluation map given by ev(z) = (z(0), z(1)); this map is a
submersion, and therefore for each pair (p, q) ∈ M ×M , the inverse image:

Ωp,q := ev−1(p, q) =
{
z ∈ Ω : z(0) = p, z(1) = q

}

is a submanifold of codimension 2n in Ω, whose tangent space TzΩp,q is identi�ed with the
space of vector �elds V along z of class H1 and vanishing at the endpoints. Keeping this
identi�cation in mind, we will tacitly apply standard results on Sobolev spaces to tangent
spaces TzΩp,q.
To each data (g,B), where g is a semi-Riemannian structure and B is the smooth magnetic

vector �eld, we associate the following magnetic action functional F : Ω → IR de�ned by

(2.2) F (z) =
∫ 1

0

[1
2
g(ż, ż) + g(B, ż)

]
dt =

∫ 1

0

[1
2
g(ż, ż) + ω(ż)

]
dt.

By the smoothness of the data, it follows immediately that F is a smooth function and
hence so are the restrictions Fp,q of F to Ωp,q . It is not hard to see that, due to the fact that
the metric tensor g is inde�nite, Fp,q is unbounded both from above and from below on
Ωp,q , and that the Morse index of its critical points in Ωp,q is in�nite.
2.2. First variation of the action functional. We will now compute the �rst variation
of the functional (2.2); to this aim, let z ∈ Ωp,q and V ∈ TzΩp,q be �xed, and let
{zs}s∈]−ε,ε[ be a variation of z in Ωp,q with variational vector �eld V . Recall that this
means that ]−ε, ε[ 3 s 7→ zs ∈ Ωp,q is a C1 map, with z0 = z and d

ds

∣∣
s=0

zs = V . Then,
dFp,q(z)V = d

ds

∣∣
s=0

Fp,q(zs); this derivative is computed as follows:

(2.3) d
ds

Fp,q(zs) =
∫ 1

0

[
g
(

D
ds

d
dtzs,

d
dtzs

)
+g

(
D
dsB(zs), d

dtzs

)
+g

(
B(zs), D

ds
d
dtzs

)]
dt,

and evaluating at s = 0 we get:

dFp,q(z)V =
∫ 1

0

[
g
(

D
dtV, ż

)
+ g

(∇V B, ż
)

+ g
(
B, D

dtV
)]

dt

=
∫ 1

0

[
g
(

D
dtV, ż

)
+ dω(V, ż)

]
dt.

(2.4)

Proposition 2.1. A curve z ∈ Ωp,q is a critical point of f if and only if z is smooth and it
satis�es the second order equation:
(2.5) D

dt ż +
(∇B −∇B?

)
ż = D

dt ż − (∇B)?ż + D
dtB = 0,

where (∇B)? is the g-adjoint1 of ∇B de�ned by g
(
(∇B)?a, b

)
= g

(∇bB, a
)
.

1In order to avoid confusion, in this paper we will denote by ? the adjoint with respect to the bilinear form
g, while we will use the customary symbol ∗ to denote the adjoint of linear operators in IRn with respect to the
Euclidean product.
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Proof. The regularity of z is obtained by standard boot-strap arguments; equation (2.5) is
then obtained immediately performing integration by parts in (2.4) and the Fundamental
Lemma of Calculus of Variations. ¤

It is also worth recalling that the solutions of (2.5) preserve their causal character:

Lemma 2.2. If z : [0, 1] → M is a solution of (2.5), then the quantity g(ż, ż) is constant.

Proof. Contracting the left-hand side of (2.5) with the covector g(·, ż) one gets:

0 = g
(

D
dt ż, ż)− g

(
D
dtB, ż

)
+ g

(
D
dtB, ż

)
= g

(
D
dt ż, ż) =

1
2

d
dt

g(ż, ż). ¤

2.3. Second variation of the action functional. Recall that, for a smooth vector �eld
Z on M , the Hessian of Z, denoted by HessZ, is the (2, 1)-tensor �eld on M given by
∇∇Z; more explicitly:

Hess Z(v1, v2) = ∇v1∇V2Z −∇∇v1V2Z,

where V2 is any local extension of v2. Observe that the Hessian HessZ is not in general
symmetric; its symmetric anti-symmetric parts are computed as:
(2.6)

HessaZ(v1, v2) = 1
2R(v1, v2)Z, HesssZ(v1, v2) = Hess Z(v1, v2)− 1

2R(v1, v2)Z.

Given a tangent vector v ∈ TmM , we will think of Hess Z(v) and HesssZ(v) as linear
operators on TmM ; for the computation of the kernel of the second variation of f we will
need the g-adjoint of HesssZ(v), which is computed easily from (2.6) as:

(2.7)
(
HesssZ(v)

)?(w) =
(
HessZ(v)

)?(w)− 1
2R(Z,w)v.

Recall that a bounded symmetric bilinear form on a Hilbert space is said to be Fredholm
if it is realized by a (self-adjoint) Fredholm operator.

Remark 2.3. If b : H1
0 ([0, 1], IRn)×H1

0 ([0, 1], IRn) → IR is a bilinear form such that the
map (V, W ) 7→ b(V, W ) is continuous in the product topology C0×H1 (or in the topology
H1×C0), then b is realized by a compact operator on H1

0 ([0, 1], IRn). This follows easily
from the fact that the inclusion of H1([0, 1], IRn) into C0([0, 1], IRn) is compact, and from
the fact that the adjoint of a compact operator is compact.

Proposition 2.4. Let z ∈ Ωp,q be a critical point of Fp,q; then, the Hessian HessFp,q(z)
of Fp,q at z is the Fredholm form on TzΩp,q given by:

HessFp,q(z)[V, W ] =
∫ 1

0

[
g
(

D
dtV, D

dtW
)

+ g
(
R(ż, V ) ż, W

)
+ g

(
D
dtV,∇W B

)
+ g

(
D
dtW,∇V B

)]
dt

+
∫ 1

0

[
g
(
HesssB(V, W ), ż

)
+ 1

2g
(
R(V, ż)W,B

)
+ 1

2g
(
R(W, ż)V,B

)]
dt.

(2.8)

Proof. Let z ∈ Ωp,q be a critical point of Fp,q , V ∈ TzΩp,q and let {zs}s∈]−ε,ε[ be a
variation of z in Ωp,q with variational vector �eld V . Then,

HessFp,q(z)[V, V ] =
d2

ds2

∣∣∣
s=0

Fp,q(zs),



BIFURCATION FOR THE LORENTZ FORCE EQUATION 7

which is computed by differentiating (2.3) as follows:

d2

ds2

∣∣∣
s=0

Fp,q(zs) =
∫ 1

0

[
g
(

D
dtV, D

dtV
)

+ g
(
R(V, ż) V, ż

)
+ g

(
R(V, ż)V, B

)
+ 2g

(∇V B, D
dtV

)]
dt

+
∫ 1

0

[
g
(

D
ds

d
ds

∣∣
s=0

B, ż
)

+ g
(

D
dt

D
ds

d
ds

∣∣
s=0

zs, B
)

+ g
(

D
dt

D
ds

d
ds

∣∣
s=0

zs, ż
)]

dt.

Integration by parts in the last two terms of the integral above and the differential equation
(2.5) satis�ed by z yield:

∫ 1

0

[
g
(

D
dt

D
ds

d
ds

∣∣
s=0

zs, B
)

+ g
(

D
dt

D
ds

d
ds

∣∣
s=0

zs, ż
)]

dt

= −
∫ 1

0

g
(
(∇B)?ż, D

ds
d
ds

∣∣
s=0

zs

)
dt = −

∫ 1

0

g
(∇ D

ds
d
ds

∣∣
s=0

zs

B, ż
)
dt.

By de�nition of Hess B we therefore get:

Hess Fp,q(z)[V, V ] =
∫ 1

0

[
g
(

D
dtV, D

dtV
)

+ g
(
R(V, ż)V, ż

)
+ g

(
R(V, ż) V,B

)]
dt

+
∫ 1

0

[
2g

(∇V B, D
dtV

)
+ g

(
HessB(V, V ), ż

)]
dt.

(2.9)

Finally, (2.8) is obtained by polarization of (2.9), using formulas (2.6) and the �rst Bianchi
identity for the curvature tensor R.

The bilinear form Bz de�ned by (V, W ) 7→ ∫ 1

0
g
(

D
dtV, D

dtW ) dt is strongly nonde-
generate on TzΩp,q , i.e., represented by an isomorphism of TzΩp,q . Now, the difference
Hess f(z) − Bz is sum of terms that are continuous with respect to the C0-topology in
either the �rst or the second variable. It follows from what observed in Remark 2.3 that
HessFp,q(z) is Fredholm. ¤

In view to future developments, it will be convenient to write the second variation of
Fp,q in the following form:

(2.10) Hess Fp,q(z)[V, W ] =
∫ 1

0

g
(

D
dtV, D

dtW ) dt + H[V, W ] + K[V,W ],

where:

H[V,W ] =

− 1
2

∫ 1

0

[
g
(
V,∇ D

dt W
B

)− g
(∇V B, D

dtW
)

+ g
(
W,∇ D

dt V
B

)− g
(∇W B, D

dtV
)]

dt,

(2.11)
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and

K[V, W ] =
∫ 1

0

[
g
(
R(ż, V ) ż, W

)
+

1
2
g
(
R(V, ż)W,B

)
+

1
2
g
(
R(W, ż)V, B

)]
dt

+
∫ 1

0

[1
2
g
(

D
dtV,∇W B

)
+

1
2
g
(∇V B, D

dtW
)

+
1
2
g
(
V,∇ D

dt W
B

)]
dt

+
∫ 1

0

[1
2
g
(∇ D

dt V
B, W

)
+ g

(
HesssB(V,W ), ż

)]
dt.

(2.12)

The bilinear forms H and K are symmetric; formula (2.10) is obtained by a straightforward
calculation using (2.11) and (2.12). Moreover, an easy integration by parts yields the
following formula:

∫ 1

0

[
g
(

D
dtV,∇W B

)
+ g

(
V,∇ D

dt W
B

)]
dt = −

∫ 1

0

g
(
V, Hess B(ż,W )

)
dt,

from which it follows that K[V, W ] can be rewritten as:

K[V, W ] =
∫ 1

0

[
g
(
R(ż, V ) ż, W

)
+

1
2
g
(
R(V, ż)W,B

)
+

1
2
g
(
R(W, ż)V, B

)]
dt+

∫ 1

0

[
g
(
HesssB(V,W ), ż

)− 1
2
g
(
HessB(ż, V ),W

)− 1
2
g
(
HessB(ż,W ), V

)]
dt.

(2.13)

Corollary 2.5. The kernel of HessFp,q(z) in TzΩp,q consists of smooth vector �elds V ∈
TzΩp,q satisfying the following second order linear differential equation:

(2.14) D2

dt2 V −R(ż, V )ż−(∇B)?
(

D
dtV

)
+ D

dt

(∇V B
)−Hess B(V )?(ż)−R(ż, V )B = 0.

Proof. The regularity for vector �elds in the kernel of Hess f(z) is obtained by standard
bootstrap techniques; equation (2.14) is easily obtained using integration by parts in (2.8),
keeping in mind formulas (2.7) and the �rst Bianchi identity for R. ¤

We will denote with the symbol Jm(z) the magnetic Jacobi differential operator for
vector �elds along z, i.e., Jm(z)V is given by the left-hand side of (2.14).

De�nition 2.6. The differential equation (2.14) will be called the magnetic Jacobi equation
along the solution z of the variational problem (2.2).

3. MAGNETIC CONJUGATE POINTS AND THE MASLOV INDEX

In this section we will introduce the notion of magnetic conjugate points along a solu-
tion of (2.5) and we will de�ne the Maslov index of a solution.

3.1. Magnetic conjugate points and magnetic bifurcation points. Let z : [0, 1] → M
be a solution of (2.5) in (M, g); consider the magnetic Jacobi equation along z:

(3.1) D2

dt2 V = C(V ) + D( D
dtV ),

where:
(3.2) C(V ) = R(ż, V ) ż −HessB(ż, V ) + Hess B(V )?ż + R(ż, V )B,

and
(3.3) D(W ) =

(∇B)?
(
W

)−∇W B.
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Its solutions are called magnetic Jacobi �elds along z. Let Jz denote the n-dimensional
space:

(3.4) Jz =
{
J solution of (3.1) such that J(0) = 0

}
;

for t0 ∈ ]0, 1], we set:

Jz[t0] =
{
J(t0) : J ∈ Jz

} ⊂ Tz(t0)M.

The evaluation Jz 3 J 7→ J(t0) ∈ Tz(t0) is a linear map between n-dimensional spaces,
hence it is injective if and only if it is surjective. Based on this simple observation, we can
now give the following:

De�nition 3.1. A point z(t0), t0 ∈ ]0, 1] is said to be magnetic conjugate to z(0) along
z if there exists a non zero magnetic Jacobi �eld J ∈ Jz such that J(t0) = 0, i.e., if
Jz[t0] 6= Tz(t0)M . If z(t0) is magnetic conjugate to z(0) along z, the magnetic conjugate
space P[t0] is the g-orthogonal complement J0z[t0]⊥, and its dimension is called the mul-
tiplicity of the magnetic conjugate point z(t0), denoted by mul(t0). The signature of the
restriction of g to P[t0] is called the signature of z(t0), and it will be denoted by sgn(t0).
The magnetic conjugate point z(t0) is said to be a nondegenerate if such restriction is
nondegenerate.

Remark 3.2. It is not hard to prove that the nondegenerate magnetic conjugate points are
isolated, see Proposition 2.8 in [6]. In particular, t0 = 0 is an isolated magnetic conjugate
point along each solution z : [0, 1] → M of (2.5), i.e., there exists ε > 0 such that there
are no magnetic conjugate instants in ]0, ε]along z.

In analogy with the (geodesic) exponential map of (M, g), we can de�ne a magnetic
exponential map expmag of (M, g, B), de�ned on an open subset of TM containing the zero
section and taking values in M , given by:

expmag
p (v) = z(1),

where z is the unique solution of (2.5) on [0, 1] satisfying z(0) = p and ż(1) = v ∈ TpM .
The map expmag is smooth, and magnetic conjugate instants to a point p correspond to
critical values of the map expmag

p . We want to investigate the problem of establishing when
expmag

p is not injective in neighborhoods of its critical points. More precisely, we give the
following de�nition:

De�nition 3.3. Let (M, g) be a semi-Riemannian manifold, z : [0, 1] → M be a solution
of the Lorentz equation (2.5), and t0 ∈ ]0, 1[. The point z(t0) is said to be a magnetic
bifurcation point for z if there exists a sequence zn : [0, 1] → M of solutions of of the
Lorentz equation and a sequence (tn)n∈IN ⊂ ]0, 1[ satisfying the following properties:

(1) zn(0) = z(0) for all n;
(2) zn(tn) = z(tn) for all n;
(3) zn → z as n →∞;
(4) tn → t0 (and thus zn(tn) → z(t0)) as n →∞.

Remark 3.4. Applying the Inverse Function Theorem to the magnetic exponential map
expmag

p , it follows that if z(t0) is a magnetic bifurcation point along z, then necessarily z(t0)
must be magnetic conjugate to z(0) along z.
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3.2. The magnetic symplectic structure. We will now describe the symplectic struc-
ture of the tangent bundle TM of the semi-Riemannian manifold (M, g);2 denote by
π : TM → M the canonical projection.

For m ∈ M and v ∈ TmM , the tangent space TvTM can be decomposed as a direct
sum

TvTM = Verv ⊕Horv,

where Verv is the subspace of TvTM tangent to the �ber TpM , while Horv is the horizon-
tal subspace determined by the Levi�Civita connection of g. The space Verv is naturally
identi�ed with TpM , while the differential dπv : TvTM → TpM restricts to an isomor-
phism between Horv and TpM . We will henceforth identify both spaces Verv and Horv

with TmM in this fashion; for ξ ∈ TvTM , we will denote by ξver and ξhor respectively the
vertical and the horizontal components of ξ. If t 7→ v(t) ∈ TM is a differentiable curve
in TM , i.e., v(t) =

(
z(t), V (t)

)
where z is a differentiable curve in M and V is a vector

�eld along z, then v′(t)ver = ż(t) and v′(t)hor = D
dtV (t).

The canonical symplectic form of the semi-Riemannian manifold (M, g) is the closed
2-form Ω on TM de�ned by:
(3.5) Ωv(ξ, η) = g

(
ξver, ηhor

)− g
(
ξhor, ηver

)
, ξ, η ∈ TvTM.

Recalling the de�nition of the magnetic 1-form ω on M (see (2.1)), we give the follow-
ing:

De�nition 3.5. The magnetic symplectic form on TM is the closed 2-form:
(3.6) µ = Ω− π∗(dω),

where π∗(dω) is the pull-back of the 2-form dω to TM . Explicitly,
µv

(
ξ, η

)
= Ωv(ξ, η) + curl B(ξver, ηver), ξ, η ∈ TvTM.

Let now z : [0, 1] → M be a solution of (2.5) and let Jm(z) be the magnetic Jacobi
differential operator de�ned on the space of vector �elds along z. By �ow of Jm(z) we
mean the family of linear maps:

Fz(t) : Tz(0)M ⊕ Tz(0)M −→ Tz(t)M ⊕ Tz(t)M,

de�ned by:
Fz(t)

(
v1, v2

)
=

(
V (t), D

dtV (t)
)
,

where V is the unique magnetic Jacobi �eld along z satisfying the initial conditions:
V (0) = v1,

D
dtV (0) = v2.

The following result holds:

Proposition 3.6. The �ow of the magnetic Jacobi equation (2.14) preserves the magnetic
symplectic form (3.6).

Proof. The thesis is equivalent to the fact that, if J1 and J2 are magnetic Jacobi �elds along
a solution z : [0, 1] → M of (2.5), then the quantity:

h(t) = g
(
J1,

D
dtJ2

)− g
(

D
dtJ1, J2

)
+ g

(
J1,∇J2B

)− g
(∇J1B, J2

)

2We recall that the cotangent bundle TM∗ of any differentiable manifold M is naturally a symplectic mani-
fold; however, when M is endowed with a semi-Riemannian metric g, then the symplectic structure of TM∗ can
be induced on the tangent bundle TM .
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is constant on [0, 1]. Differentiating the above expression and using the magnetic Jacobi
equation (2.14) satis�ed by J1 and J2, formulas (2.6) and all the symmetries of the curva-
ture tensor R, we get:

h′(t) = g
(
J1,

D2

dt2 J2

)− g
(

D2

dt2 J1, J2

)
+ g

(
J1,

D
dt∇J2B

)
+ g

(
D
dtJ1,∇J2B

)

− g
(

D
dt∇J1B, J2

)− g
(∇J1B, D

dtJ2

)

= − 2g
(
Hessa B(J1, J2), ż

)− g
(
R(ż, J1)B, J2

)
+ g

(
R(ż, J2) B, J1

)
=

= g
(−R(J1, J2)B + R(B, J2) J1 + R(J1, B) J2, ż

)
= 0. ¤

3.3. Flow of the magnetic Jacobi equation. We want to describe the �ow of the magnetic
Jacobi equation as a curve in the Lie group of symplectomorphisms of a �xed symplectic
space. Recall that a symplectic space is a real �nite dimensional vector space endowed
with a nondegenerate anti-symmetric bilinear form. We know from the abstract theory that
the only invariant of a symplectic space is its dimension, i.e., given any two symplectic
vector spaces there exists an isomorphism between them that preserves their symplectic
forms.

Let v1, . . . , vn be a g-orthonormal basis of Tz(0)M and consider the parallel linear
frame V1, . . . , Vn obtained by parallel transport of the vi's along z. This frame gives us
isomorphisms Tz(0)M → IRn that carry the metric tensor g to a �xed symmetric bilinear
form on IRn, still denoted by g. Since each Vi is parallel, the covariant derivative of
vector �elds along z correspond to the usual differentiation of IRn-valued maps. For each
t ∈ [0, 1], the map:

IRn ∼= Tz(t)M 3 v 7−→ R
(
ż(t), v

)
ż(t) ∈ Tz(t)M ∼= IRn

is a g-symmetric linear operator on IRn, that will be denoted by R(t); the symbol R(t) will
also denote the n× n matrix that represents R(t) in the canonical basis of IRn. Moreover,
the map:

Tz(t)M ⊕ Tz(t)M ∼= IRn ⊕ IRn 3 (v, w) 7−→ g
(
v,∇wB

)− g
(∇vB,w

) ∈ IR

is an anti-symmetric bilinear map on IRn, that will be denoted by H(t); we will also
denote with H(t) the n × n real anti-symmetric matrix that represents the linear operator
associated to the bilinear form3 H(t), i.e., such that:

(3.7) H(t)(v, w) = H(t)v · w,

where · is the Euclidean inner product on IRn. (More generally, we will always identify
bilinear maps on IRn with linear operators from IRn to IRn that realize them with respect
to the Euclidean inner product.)

We will need the derivative H ′(t) of the curve of operators H , which is computed
as follows. Let v, w be �xed, and consider vector �elds V,W such that V (t) = v and

3anti-symmetric, so that the matrix H(t) that represent the linear operator corresponding to the bilinear form
H(t) is given by H(t)ij = −H(t)(ei, ej), where (ei) is the canonical basis of IRn. The same observation must
be kept in mind also in the sequel, when we will use the matrices associated to the linear operators associated to
anti-symmetric bilinear forms.
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W (t) = w; then:

H ′(t)v · w =
d
dt

(
H(t)V (t) ·W (t)

)−H(t)V ′(t) ·W (t)−H(t)V (t) ·W ′(t)

= g
(

D
dtV,∇W B

)
+ g

(
V, D

dt∇W B
)− g

(
D
dt∇V B,W

)− g
(∇V B, D

dtW
)

− g
(

D
dtV,∇W B

)
+ g

(∇ D
dt V

B,W
)− g

(
V,∇ D

dt W
B

)
+ g

(∇V B, D
dtW

)

= g
(
v, HessB(ż, w)

)− g
(
w, HessB(ż, v)

)
.

(3.8)

Finally, consider the one-parameter family ωt of symplectic forms on IRn ⊕ IRn de�ned
by:

ωt

(
(v1, w1), (v2, w2)

)
= g(v1, w2)− g(v2, w1) + H(t)(v1, v2);

recall also that the canonical symplectic form ω of IRn ⊕ IRn is de�ned by:
ω
(
(v1, w1), (v2, w2)

)
= v1 · w2 − v2 · w1.

In this setup, the linear map Fz(t) can be seen as a linear automorphism of IRn ⊕ IRn,
and Proposition 3.6 tells us that the pull-back of ωt by Fz(t) coincides with ω0. The
matrices representing the linear operator associated to the symplectic forms ωt and ω in
the canonical basis of IRn ⊕ IRn are given in n× n blocks by:

ωt
∼=

(
H(t) −g

g 0

)
, ω ∼=

(
0 −I
I 0

)
,

where g denotes the (constant) symmetric matrix representing the bilinear form g on IRn

and I is the identity operator on IRn. In terms of matrices, we have:
(3.9) Fz(t)∗ ωt Fz(t) = ω0.

where now ∗ denotes the adjoint with respect to the Euclidean product.
For each t ∈ [0, 1], let us consider consider the automorphism L(t) : IRn ⊕ IRn →

IRn ⊕ IRn whose matrix in n× n blocks is:

(3.10) L(t) =
(

I 0
− 1

2H(t) g

)
;

observe that L0 is invariant by L(t) for all t:
(3.11) L(t)(0, w) = (0, gw), ∀w ∈ IRn.

Let us de�ne the following isomorphisms:
(3.12) Ψ(t) = L(t) ◦ Fz(t) ◦ L(0)−1 : IRn ⊕ IRn → IRn ⊕ IRn

It is easy to see that (3.12) preserves the canonical symplectic form ω.

3.4. The Maslov index. We will assume henceforth that z is a solution of (2.5) such that
t = 1 is not magnetic conjugate along z. Recalling the de�nition of the Lagrangian plane
L0 = {0} ⊕ IRn, it follows easily that an instant t0 ∈ ]0, 1[ is magnetic conjugate along
z if and only if

(Fz(t0)L0

) ∩ L0 6= {0}. Moreover, since L(t) preserves L0, this is also
equivalent to the fact that

(
Ψ(t0)L0

) ∩ L0 6= {0}. Observe that, since Ψ preserves the
symplectic form ω, then t 7→ Ψ(t)L0 is a curve of Lagrangian spaces in the symplectic
space (IR2n, ω).

The geometry of the Grassmannian of all Lagrangian subspaces of a symplectic space
is well known (see for instance [12] and the references therein); we recall here brie�y
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some basic facts. Denote by Λ the set of all Lagrangian subspaces of (IR2n, ω) and by
` : [0, 1] → Λ the smooth curve in Λ given by:
(3.13) `(t) = Ψ(t)L0,

and for k = 1, . . . , n we set:

Λk =
{
L ∈ Λ : dim(L ∩ L0) = k

}
, Λ≥1 =

n⋃

k=1

Λk.

Each Λk is a connected embedded real-analytic submanifold of Λ having codimension
1
2k(k + 1) in Λ; the set Λ≥1 =

⋃n
k=1 Λk is an algebraic variety whose regular part is

Λ1. Observe that Λ1 has codimension 1 in Λ, and it has a canonical transverse orientation
associated to the symplectic form ω. The �rst relative singular homology group with coef-
�cients in Z, H1

(
Λ, Λ \ Λ0

)
, is in�nite cyclic, and can be canonically described in terms

of the symplectic form ω.

De�nition 3.7. Let z be a solution of (2.5) such that t = 1 is not magnetic conjugate.
Then, the Maslov index of z, denoted by iMaslov(z), is the integer number:

iMaslov(z) := µL0(`|[ε,1]),

where `(t) = Ψ(t)L0 and ε > 0 is chosen in such a way that there are no magnetic
conjugate instants along z in ]0, ε] (recall Remark 3.2).

Observe that our de�nition of iMaslov(z) does not indeed depend on the choice of a
parallel trivialization of TM along z.

3.5. Computation of the Maslov index. We will now develop a technique to compute
the value of the Maslov index of a solution z. To this aim, we recall a few results from
references [20, 21, 22], where the authors study the Maslov index of a special class of
differential systems, called symplectic differential systems.

Denote by Sp(IR2n, ω) the Lie group of all automorphisms of IR2n that preserve ω, and
let sp(IR2n, ω) be its Lie algebra. It is easy to prove that sp(IR2n, ω) consists of all 2n×2n
real matrices X that can be written in n× n blocks as:

X =
(

α β
γ −α∗

)
,

where α, β, γ, δ : IRn → IRn are linear operators, with β and γ self-adjoint. In the lan-
guage of [20], a symplectic differential system is a �rst order linear system of differential
equation in IR2n of the form:

(3.14) d
dt

(
w1

w2

)
= X(t)

(
w1

w2

)

with X : [0, 1] → sp(IR2n, ω) a curve in the Lie algebra sp(IR2n, ω) whose upper right
block β(t) is invertible for all t.
Given such a system, its fundamental matrix4 Ψ(t) is a curve in the Lie group Sp(IR2n, ω),
and, provided that the �nal instant t = 1 is not conjugate, a Maslov index of the system
(3.14) with initial conditions:
(3.15)

(
w1(0), w2(0)

) ∈ L0

is de�ned in analogy with the theory exposed in Subsection 3.4. An instant t0 ∈ ]0, 1]
is conjugate for the system (3.14) with initial conditions (3.15) if there exists a non zero

4i.e., Ψ(t) is de�ned by Ψ(t)
`
w1(0), w2(0)

´
=
`
w1(t), w2(t)

´
for all solution (w1, w2) of (3.14).
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solution (w1, w2) of (3.14) and (3.15) such that w1(t0) = 0. The signature of a conjugate
instant t0 in this context is de�ned to be the signature of the restriction of the bilinear form
(h, k) 7→ β(t0)h · k to the space
(3.16)
A[t0] =

{
w2(t0) : (w1, w2) is a solution of (3.14) and (3.15) satisfying w1(t0) = 0

}
.

Whenever such restriction is nondegenerate, then the conjugate instant t0 is said to be non-
degenerate, and nondegenerate conjugate instants are isolated. One of the central results
for symplectic differential systems ([20, Theorem 2.3.3]) tells us that the Maslov index of
(3.14)�(3.15) is given by the sum of the signatures of all its conjugate instants, provided
that every conjugate instant is nondegenerate.

Associated to each symplectic differential system (3.14) with coef�cient matrix X =(
A B
C D

)
whose upper right n × n block B is invertible, one associates a bounded sym-

metric bilinear form IX (see [20]), the index form of the symplectic system, given by:

IX(v, w) =
∫ 1

0

[
B−1(v′ −Av, w′ −Aw) + C(v, w)

]
dt,

de�ned in the space of H1 vector �elds v on [0, 1] satisfying the Lagrangian initial condi-
tions (3.15).

The theory of Maslov index for the solutions of the magnetic equation (2.5) �ts into
the theory of symplectic differential systems. In order to apply the results of [22] to this
case we will show that the curve in the symplectic group Ψ(t) given in (3.12) arises from
a symplectic system which is naturally associated to the magnetic Jacobi equation.

Consider the magnetic Jacobi equation (2.14) that, recalling (3.1), (3.2) and (3.3) can
be written in the form of system:

(3.17)
{

v′1 = v2

v′2 = C(v1) + D(v2);

(3.17) will be called the magnetic Jacobi system. The space J0z consists of solutions of
(3.17) that satisfy the initial conditions:

(3.18)
(
v1(0), v2(0)

) ∈ L0.

Again, identifying each tangent space Tz(t)M with IRn by means of a parallel trivi-
alization of TM along z, we will think of (3.17) as a differential system in IR2n, with
coef�cient matrix given in n× n blocks by:

(3.19) R =
(

0 I
C D

)
,

where C(t), D(t) : IRn → IRn are the linear operators corresponding respectively to (3.2)
and (3.3). Recalling the de�nition of the anti-symmetric operator H(t) given in (3.7) and
its derivative H ′(t) computed in (3.8), from (3.2) and (3.3) we obtain:

(3.20) gC− C∗g = H ′, D = g−1H.
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The �rst equality in (3.20) is obtained using (2.6) and the �rst Bianchi identity as follows:
(gC− C∗g)v · w = −g

(
HessB(ż, v), w

)
+ g

(
Hess B(ż, w), v

)
+ 2g

(
HessaB(v, w), ż

)

+ g
(
R(ż, v) B, w

)− g
(
R(ż, w) B, v

)

= −g
(
HessB(ż, v), w

)
+ g

(
Hess B(ż, w), v

)

+ g
(
R(v, w)B, ż

)
+ g

(
R(w, B) v, ż

)
+ g

(
R(B, v) w, ż

)

= −g
(
HessB(ż, v), w

)
+ g

(
Hess B(ż, w), v

)
= H ′(t)v · w.

The second equality in (3.20) is immediate.
The following key Proposition 3.8 proved in [6], which gives the link between the theory

of symplectic differential systems and the electromagnetic Jacobi equation is as follows:

Proposition 3.8. Consider the isomorphism L : H1([0, 1], IR2n) → H1([0, 1], IR2n) de-
�ned by:

(3.21) L

(
v1

v2

)
(t) = L(t)

(
v1(t)
v2(t)

)

where L(t) is the 2n× 2n matrix given in (3.10), and set:
(

w1

w2

)
= L

(
v1

v2

)
.

Then, (v1, v2) is a solution of the magnetic Jacobi system (3.17) if and only if (w1, w2) is
a solution of the symplectic differential system:

(3.22) d
dt

(
w1

w2

)
= X

(
w1

w2

)
,

whose coef�cient matrix X : [0, 1] → sp(IR2n, ω) is given by:

(3.23) X =




1
2g−1H g−1

(gC)s + 1
4Hg−1H 1

2Hg−1


 ,

where (gC)s = 1
2

(
gC + C∗g

)
. Moreover,

(a) the Lagrangian initial conditions (3.18) for (v1, v2) correspond to the initial con-
ditions (3.15) for (w1, w2);

(b) the conjugate instants of the magnetic Jacobi system (3.17) coincide with those of
the symplectic (3.22), and they have the same signatures;

(c) a conjugate instant t0 ∈ ]0, 1] is nondegenerate for (3.17) if and only if it is
nondegenerate for (3.22);

(d) the second variation Hess Fp,q(z) (2.8) correspond to the index form IX of the
symplectic differential system (3.22).

Proof. A straightforward computation gives:
d
dt

(
w1

w2

)
= L′

(
v1

v2

)
+ L

d
dt

(
v1

v2

)
= (L′ + LR)L−1

(
w1

w2

)
.

Setting X = (L′ + LR)L−1, formula (3.23) is easily obtained from (3.10), (3.19) and
(3.20).

The statements (a) and (c) in the thesis are easily proven using the fact that the La-
grangian space L0 is L(t)-invariant for all t (formula (3.11)), and observing that, if t0 is a
conjugate instant, then L(t0) carries the magnetic conjugate plane P[t0] to gP[t0] = A[t0]
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(see (3.16)). As to the equality of the signatures of conjugate instants, observe that the sig-
nature of the restriction of g−1 to gP[t0] equals the signature of the restriction of g to P[t0].
The equality between the Hessian HessFp,q(z) and the index form IX of the symplectic
system (3.22) is obtained by a straightforward direct calculation. ¤

We observe that, since H is anti-symmetric, formula (3.23) de�nes indeed a matrix X
in sp(IR2n, ω).

Corollary 3.9. Let z be a solution of (2.5) such that the instant t = 1 is not magnetic
conjugate along z. Then, the Maslov index iMaslov(z) equals the Maslov index of the sym-
plectic system (3.22) with initial conditions (3.15). Moreover, if all the magnetic conjugate
instants along z are nondegenerate, then the Maslov index of z equals the sum of the sig-
natures of all the magnetic conjugate instants along z:

iMaslov(z) =
∑

t magnetic conjugate
sgn(t).

Proof. It follows immediately from [20, Theorem 2.3.3] and Proposition 3.8. ¤

4. SPECTRAL FLOW AND BIFURCATION

In this section we will recall (without proofs) a few basic facts on spectral �ow, relative
dimension and bifurcation for strongly inde�nite variational problems. Basic references
for a detailed exposition of the material contained in this section are: [1, 10, 18, 19].

4.1. On the relative index of Fredholm forms. Let H be a Hilbert space with inner
product 〈·, ·〉, and let B a bounded symmetric bilinear form on H; there exists a unique
self-adjoint bounded operator S : H → H such that B = 〈S·, ·〉, that will be called the
realization of B (with respect to 〈·, ·〉). B is nondegenerate if its realization is injective, B is
strongly nondegenerate if S is an isomorphism. If B is strongly nondegenerate, or if more
generally 0 is not an accumulation point of the spectrum of S, we will call the negative
space (resp., the positive space) of B the closed subspace V −(S) (resp., V +(S)) of H
given by χ]−∞,0[(S) (resp., χ]0,+∞[(S)), where χI denotes the characteristic function of
the interval I . We will say that B is Fredholm if S is Fredholm, or that B is RCPPI,
realized by a compact perturbation of a positive isomorphism, (resp., RCPNI) if S is of
the form S = P + K (resp., S = N + K) where P is a positive isomorphism of H (N
is a negative isomorphism of H) and K is compact. Observe that the properties of being
Fredholm, RCPPI or RCPNI do not depend on the inner product, although the realization
S and the spaces V ±(S) do.

The index (resp., the coindex) of B, denoted by n−(B) (resp., n+(B)) is the dimension
of V −(S) (resp., of V +(S)); the nullity of B, denoted by n0(B) is the dimension of the
kernel of S.

If B is RCPPI (resp., RCPNI), then both its nullity n0(B) and its index n−(B) (resp.,
and its coindex n+(B)) are �nite numbers.

Given a closed subspace W ⊂ H , the B-orthogonal complement of W , denoted by
W⊥B , is the closed subspace of H:

W⊥B =
{
x ∈ H : B(x, y) = 0 for all y ∈ W

}
;

clearly,
W⊥B = S−1(W⊥).

Let us now recall a few basic things on the notion of commensurability of closed sub-
spaces. Let V, W ⊂ H be closed subspaces and let PV and PW denote the orthogonal
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projections respectively onto V and W . We say that V and W are commensurable if the
restriction to V of the projection PW is a Fredholm operator from V to W . It is an easy
exercise to show that commensurability is an equivalence relation in the Grassmannian of
all closed subspaces of H; observe in particular that, identifying each Hilbert space with
its own dual, the adjoint of the operator PW |V : V → W is precisely PV |W : W → V . If
V and W are commensurable the relative dimension dimW (V ) of V with respect to W is
de�ned as the Fredholm index ind

(
PV |W : W → V

)
, which is equal to:

dimW (V ) = ind
(
PW |V : V → W

)
= dim(W⊥ ∩ V )− dim(W ∩ V ⊥).

Clearly, if V and W are commensurable, then V ⊥ and W⊥ are commensurable, and:

dimW⊥(V ⊥) = −dimW (V ) = dimV (W ).

The commensurability of closed subspaces and the relative dimension do not depend on
the choice of a Hilbert space inner product on H .

The relative index of a Fredholm bilinear form B can be computed in terms of index
and coindex of suitable restrictions of B:

Proposition 4.1. Let B be a Fredholm symmetric bilinear form on H , S its realization and
let W ⊂ H be a closed subspace which is commensurable with V −(S). Then the relative
index indW (B) is given by:

(4.1) indW (B) = n−
(
B|W⊥B

)− n+

(
B|W

)
.

Proof. See [19, Proposition 2.6]. ¤

4.2. Spectral �ow. Let us consider an in�nite dimensional separable real Hilbert space H .
We will denote by B(H) andK(H) respectively the algebra of all bounded linear operators
on H and the closed two-sided ideal of B(H) consisting of all compact operators on H;
the Calkin algebra B(H)/K(H) will be denoted by Q(H), and π : B(H) → Q(H) will
denote the quotient map. The essential spectrum σess(T ) of a bounded linear operator T ∈
B(H) is the spectrum of π(T ) in the Calkin algebra Q(H). Let F(H) and F sa(H) denote
respectively the space of all Fredholm (bounded) linear operators on H and the space of
all self-adjoint ones. An element T ∈ F sa(H) is said to be essentially positive (resp.,
essentially negative) if σess(T ) ⊂ IR+ (resp., if σess(T ) ⊂ IR−), and strongly inde�nite if it
is neither essentially positive nor essentially negative.

The symbols F sa
+(H), F sa

−(H) and F sa
∗ (H) will denote the subsets of F sa(H) consisting

respectively of all essentially positive, essentially negative and strongly inde�nite self-
adjoint Fredholm operators on H . These sets are precisely the three connected components
ofF sa(H); F sa

+(H) andF sa
−(H) are contractible, whileF sa

∗ (H) is homotopically equivalent
to U(∞) = limn U(n), and it has in�nite cyclic fundamental group.

Given a continuous path S : [0, 1] → F sa
∗ (H) with S(0) and S(1) invertible, the spec-

tral �ow of S on the interval [0, 1], denoted by sf(S, [0, 1]), is an integer number which
is given, roughly speaking, by the net number of eigenvalues that pass through zero in
the positive direction from the start of the path to its end. There exist several equivalent
de�nitions of the spectral �ow in the literature; for the purposes of the present paper, we
give a description of the spectral �ow, which follows the approach in [10]. As we have ob-
served, F sa

∗ (H) is not simply connected, and therefore no non trivial homotopic invariant
for curves in F sa

∗ (H) can be de�ned only in terms of the value at the endpoints. However,
in [10] it is shown that the spectral �ow can be de�ned in terms of the endpoints, provided
that the path S has the special form S(t) = J + K(t), where J is a �xed symmetry of H
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and t 7→ K(t) is a path of compact operators. By a symmetry of the Hilbert space H it is
meant an operator J of the form

J = P+ − P−,

where P+ and P− are the orthogonal projections onto in�nite dimensional closed sub-
spaces H+ and H− of H such that H = H+ ⊕H−; assume that such a symmetry J has
been �xed.

Denote by Bo(H) the group of all invertible elements of B(H). There is an action of
Bo(H) on F sa(H) given by:

Bo(H)×F sa(H) 3 (M, S) 7−→ M∗SM ∈ F sa(H);

this action preserves the three connected components ofF sa(H). Two elements in the same
orbit are said to be cogredient; the orbit of each element in F sa

∗ (H) meets the af�ne space
J+K(H), i.e., given any S ∈ F sa

∗ (H) there exists M ∈ Bo(H) such that M∗SM = J+K,
where K is compact. Moreover, using a suitable �ber bundle structure and standard
lifting arguments, it is shown in [10] that if t 7→ S(t) ∈ F sa

∗ (H) is a path of class
Ck, k = 0, . . . , +∞, then one can �nd a Ck curve t 7→ M(t) ∈ Bo(H) such that
M(t)∗S(t)M(t) = J + K(t), where t 7→ K(t) is a Ck curve of compact operators.
Among the central results of [10] the authors prove that the spectral �ow of a path of
strongly inde�nite self-adjoint Fredholm operators is invariant by cogredience, and that for
paths that are compact perturbation of a �xed symmetry the spectral �ow is given as the
relative dimension of the negative eigenspaces at the endpoints:

Proposition 4.2. Let S : [0, 1] → F sa
∗ (H) be a continuous path such that S(0) and S(1)

are invertible, denote by B(t) = 〈S(t)·, ·〉 the corresponding bilinear form on H , and let
M : [0, 1] → Bo(H) be a continuous curve with L(t) := M(t)∗S(t)M(t) of the form
J + K(t), with K(t) compact for all t. Then:

(1) sf(S, [0, 1]) = sf(L, [0, 1]);
(2) sf(L, [0, 1]) = ind

V −
(
L(1)

)(
B(0)

)

= dim
(
V −

(
L(0)

) ∩ V +
(
L(1)

))− dim
(
V +

(
L(0)

) ∩ V −
(
L(1)

))
.

Proof. See [10, Proposition 3.2, Proposition 3.3]. ¤

Observe that, since dimW (V ) = −dimV (W ), the equality in part (2) of Proposition 4.2
can be rewritten as:
(4.2) sf(L, [0, 1]) = −ind

V −
(
L(0)

)(
B(1)

)

4.3. Bifurcation for a path of strongly inde�nite functionals. Let H be a real separable
Hilbert space, U ⊂ H a neighborhood of 0 and fλ : U → IR a family of smooth (i.e., of
class C2) functionals depending smoothly on λ ∈ [0, 1]. Assume that 0 is a critical point
of fλ for all λ ∈ [0, 1]. An element λ∗ ∈ [0, 1] is said to be a bifurcation value if there
exists a sequence (λn)n in [0, 1] and a sequence (xn)n ∈ U such that:

(1) xn is a critical point of fλn for all n;
(2) xn 6= 0 for all n and lim

n→∞
xn = 0;

(3) lim
n→∞

λn = λ∗.
The main result concerning the existence of a bifurcation value for a path of strongly
inde�nite functionals is the following:
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Proposition 4.3. Let S(λ) = d2fλ(0) be the continuous path of self-adjoint Fredholm
operators on H given by the second variation of fλ at 0. Assume that S takes values in
F sa
∗ (H) for all λ ∈ [0, 1], and that S(0) and S(1) are invertible. If sf(S, [0, 1]) 6= 0, then

there exists a bifurcation value λ∗ ∈ ]0, 1[.

Proof. See [10, Theorem 1]. ¤

5. BIFURCATION FOR SOLUTIONS OF THE LORENTZ FORCE EQUATIONS

We will now apply the abstract theory on variational bifurcation to the case of the mag-
netic action functional (2.2). The �rst step is to reduce the magnetic variational problem
into an abstract analytical setup of a smooth family of functionals on a neighborhood of 0
in a �xed real separable Hilbert space. We will then apply the results of Sections 2 and 4
to obtain the desired bifurcation result for solutions of the Lorentz force equation.

5.1. The analytical setup. Let z : [0, 1] → M be a solution of (2.5), with p = z(0) and
q = z(1); let us consider again a g-orthonormal basis v1, . . . , vn of Tγ(0)M and assume
that the �rst k vectors v1, . . . , vk generate a g-negative space, while the vk+1, . . . , vn gen-
erate a g-positive space. Let us consider again the parallel transport of the vi's along γ, that
will be denoted by V1, . . . , Vn. Observe that, since parallel transport is an isometry, then,
for all t ∈ [0, 1], the vectors V1(t), . . . , Vk(t) generate a g-negative subspace of Tγ(t)M ,
that will be denoted by D−

t , and Vk+1(t), . . . , Vn(t) generate a g-positive subspace of
Tγ(t)M , denoted by D+

t .
We �x a positive number ε0 < 1 such that there are no conjugate points to p along γ

in the interval ]0, ε0]. Finally, let us de�ne an auxiliary positive de�nite inner product on
each Tγ(t)M , that will be denoted by gR, by declaring that the basis V1(t), . . . , Vn(t) be
orthonormal.

For all s ∈ [ε0, 1], let Ωs denote the manifold of all curves x : [0, s] → M of Sobolev
class H1 such that x(0) = z(0) = p and x(s) = z(s). Now let us consider the following
energy functional Fs : Ωs → IR, de�ned by:

(5.1) Fs(z) =
∫ s

0

[1
2
g(ż, ż) + g(B, ż)

]
dt;

it is easy to see that Fs is smooth, and its critical points are precisely the solutions of (2.5)
from p to z(s). For each x ∈ Ωs, the tangent space TxΩs is identi�ed with the Hilbertable
space:

TxΩs =
{
V vector �eld along x of class H1 : V (0) = 0, V (s) = 0

}
;

Let ρ > 0 be a positive number, assume for the moment that ρ is less than the injectivity
radius of M at z(s) for all s ∈ [ε0, 1]; a further restriction for the choice of ρ will be given
in what follows. LetW be the open ball of radius ρ centered at 0 in H1

0 ([0, 1], IRn) ∼= TzΩ1

and, for all s ∈ [ε0, 1], let Ws be the neighborhood of 0 in H1
0 ([0, s], IRn) ∼= TzΩs given

by the image of W by the reparameterization map Φs de�ned by:
(5.2) H1

0 ([0, 1], IRn) 3 V 7−→ V (s−1·) ∈ H1
0 ([0, s], IRn).

Finally, for all s ∈ [ε0, 1], let W̃s be the subset of Ωs obtained as the image of Ws by the
map:

V 7−→ EXP(V ),
where
(5.3) EXP(V )(t) = expz(t) V (t).
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Since expz(t) is a local diffeomorphism between a neighborhood of 0 in Tz(t)M and a
neighborhood of z(t) in M , it is easily seen that the positive number ρ above can be chosen
small enough so that, for all s ∈ [ε0, 1], W̃s is an open subset of Ωs (containing γ) and
EXP is a diffeomorphism between Ws and W̃s.

In conclusion, we have a family of diffeomorphisms Ψs : W → W̃s:
Ψs = EXP ◦ Φs,

and we can de�ne a family (fs)s∈[ε0,1] of smooth functionals on W by setting:
fs = Fs ◦Ψs;

observe that Ψs(0) = z|[0,s] for all s.
Proposition 5.1. (fs)s is a smooth family of functionals on W . For each s ∈ [ε0, 1], a
point x ∈ W is a critical point of fs if and only if Ψs(x) is a solution of (2.5) in M from p

to z(s) in W̃s. In particular, 0 is a critical point of fs for all s, and every solutions of the
Lorentz equation in M from p to z(s) suf�ciently close to z in the H1-topology is obtained
from a critical point of fs in W . The second variation of fs at 0 is given by the bounded
symmetric bilinear form Is on H1

0 ([0, 1], IRn) de�ned by:
(5.4)

Is[V, W ] =
∫ 1

0

[1
s
g
(
V ′(t), W ′(t)

)
+ g

(
R1

s(t)V (t),W (t)
)

+ sg
(
R2

s(t)V (t), W (t)
)
dt

where R1 is the family of g-symmetric endomorphisms of IRn corresponding to the third
and forth term in the equation (2.8), and where R2 is the path of g-symmetric endomor-
phisms of IRn corresponding to the remaining terms in (2.8).
Proof. The smoothness of s 7→ fs follows immediately from the smoothness of the ex-
ponential map and of the reparameterization map s 7→ Φs. Since Ψs is a diffeomorphism
for all s, the critical points of fs are precisely the inverse image through Ψs of the critical
points of Fs, and the second statement of the thesis is clear from our construction. As to
the second variation of fs at 0, formula (5.4) is easily obtained from the classical second
variation formula for the action functional Fs at the critical point z|[0,s] with the change of
variable t = τs−1. ¤

Now let z : [0, 1] → M be a solution of (2.5), and let us consider the second variation
formula given in Proposition 2.4. We recall that this is a Fredholm form on TzΩp,q which
is realized by a strongly inde�nite self-adjoint Fredholm operator.

Set k = n−(g); a maximal negative distribution along z is a smooth selection ∆ =
(∆t)t∈[0,1] of k-dimensional subspaces of Tγ(t)M such that g|∆t is negative de�nite for
all t. Given a maximal negative distribution ∆ along γ, denote by S∆ the closed subspace
of TzΩp,q given by:

(5.5) S∆ =
{

V ∈ TzΩp,q : V (t) ∈ ∆t, for all t ∈ [0, 1]
}

.

We will now relate the Maslov index of a solution of (2.5) with a difference of index
and coindex of restrictions of Fredholm operators arising by the second variation of the
magnetic action functional.
Proposition 5.2. The restriction of Hess Fp,q(z) to S∆ is RCPNI and the restriction of
HessFp,q(z) to (S∆)⊥ is RCPPI. Moreover, if z(1) is not magnetic conjugate, the index
of HessFp,q(z) relatively to S∆ equals the Maslov index of z:
(5.6) indS∆(Hess Fp,q(z)) = iMaslov(z).
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Proof. The �rst statement in the thesis is proven in [22, Prop. 5.25], the second statement
is proven in [20, Lemma 2.6.6]. Equality (5.6) follows from Proposition 4.1 and the semi-
Riemannian index theorem for Hamiltonian systems [20], that gives us the equality:

iMaslov(z) = n−
(
Hess Fp,q

∣∣
(S∆)⊥

)
− n+

(
HessFp,q

∣∣
S∆

)
. ¤

Proposition 5.2 gives us the link between the notion of bifurcation for a smooth family
of functionals and the bifurcation problem for the solutions of the Lorentz force equation.

We will now compute the spectral �ow of the smooth curve of strongly inde�nite self-
adjoint Fredholm operators on H1

0 ([0, 1], IRn) associated to the curve of symmetric bilinear
forms (5.4).

Lemma 5.3. For all s ∈ [ε0, 1], the bilinear form Is of (5.4) is realized by a bounded self-
adjoint Fredholm operator Ss on H1

0 ([0, 1], IRn). If z(1) is not conjugate to z(0) along z,
then the endpoints of the path
(5.7) [ε0, 1] 3 s 7−→ Ss ∈ F sa

∗
(
H1

0 [0, 1], IRn)
)

are invertible.

Proof. The bilinear form Is in (5.4) is symmetric and bounded in the H1-topology, hence
Ss is a bounded self-adjoint operator. The bilinear form G on H1

0 ([0, 1], IRn) de�ned
by (V,W ) 7→ 1

s

∫ 1

0
g(V ′, W ′) dt is realized by an invertible operator, because g is non-

degenerate. The difference Is − G is realized by a self-adjoint compact operator on
H1

0 ([0, 1], IRn), because it is clearly continuous in the C0-topology, and the inclusion
H1

0 ↪→ C0 is compact. This proves that Ss is Fredholm.
Since Ss is Fredholm of index zero, then Ss is invertible if and only it is injective, i.e.,

if and only if Is has trivial kernel, that is, if and only if z(s) is not conjugate to z(0) along
z. Hence, the last statement in the thesis comes from the fact that both z(ε0) and z(1) are
not conjugate to z(0) along z. ¤

Lemma 5.4. The smooth path Î of bounded symmetric bilinear forms
]0, 1] 3 s 7→ Îs := s · Is

has a continuous extension to 0 which is obtained by setting:

Î0(V,W ) =
∫ 1

0

g(V ′, W ′) dt.

For all s ∈ [0, 1], let Ŝs be the realization of Îs and assume that z(1) is not conjugate to
z(0) along z.

The spectral �ow of the path Î : [0, 1] → F sa
∗ ([0, 1], IRn) is equal to the spectral �ow of

the path S : [ε0, 1] → F sa
∗ ([0, 1], IRn) given in (5.7).

Proof. From (5.4) we get:
(5.8)

Îs[V, W ] =
∫ 1

0

[
g
(
V ′(t),W ′(t)

)
+ sg

(
R1

s(t)V (t),W (t)
)

+ s2g
(
R2

s(t)V (t),W (t)
)

for all s ∈ ]0, 1], and this formula proves immediately the �rst statement in the thesis.
The cogredience invariance of sf implies that multiplication by a positive map does not

change the spectral �ow; in particular, the spectral �ow of Ŝ and of S on the interval [ε0, 1]
coincide. Since Ŝs is invertible for all s ∈ [0, ε0], the spectral �ow of S on [ε0, 1] coincide
with the spectral �ow of Ŝ on [0, 1]. ¤
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5.2. Bifurcation at magnetic conjugate points. We are now ready to compute the spec-
tral �ow of the path S in (5.7) using the Morse index theorem [22, 16]:
Proposition 5.5 (Morse Index Theorem for the Magnetic Action Functional). Assume that
z(1) is not magnetic conjugate to z(0) along z. Then the spectral �ow of the path S is
equal to −iMaslov(z).
Proof. It follows from Proposition 3.8, Proposition 4.1, Proposition 4.2, Proposition 5.1,
Proposition 5.2 and the Morse Index Theorem for symplectic differential systems in [22,
Theorem 6.4]. ¤
Corollary 5.6. Assume that z(t0) is a nondegenerate magnetic conjugate point along a
solution z of (2.5). If sgn(t0) 6= 0, then z(t0) is a bifurcation point along z. More gener-
ally, if 0 < t0 < t1 ≤ 1 are non magnetic conjugate instants along z, if iMaslov

(
z|[0,t0]

) 6=
iMaslov

(
z|[0,t1]

)
then there exists at least one bifurcation instant t∗ ∈ ]t0, t1[.

Proof. By the very same argument used in the proof of Proposition 5.5, for all noncon-
jugate instant s ∈ ]ε0, 1] along z, the spectral �ow of the path S on the interval [ε0, s]
equals the Maslov index iMaslov(z|[0,s]). If t0 is a nondegenerate (hence isolated) conjugate
instant, using the additivity by concatenation of sf , for all ε > 0 small enough we then
have that the spectral �ow of S in the interval [t0 − ε, t0 + ε] is given by:

sf(S, [t0 − ε, t0 + ε]) = sf(S, [ε0, t0 + ε])− sf(S, [ε0, t0 − ε])

= −iMaslov(z|[0,t0+ε]) + iMaslov(z|[0,t0−ε]) = −sgn(t0).

The conclusion follows from Corollary 3.9, Proposition 4.3 and Proposition 5.1. The proof
of the second statement in the thesis is analogous. ¤

We have the analogue of a classical result of Morse and Littauer for the exponential map
of a Riemannian manifold (see [25]):
Corollary 5.7. If z(t0) is a nondegenerate magnetic conjugate point along a solution z of
(2.5), with sgn(t0) 6= 0, then the magnetic exponential map expmag

z(0) is not injective on any
neighborhood of t0ż(t0) in Tz(0)M . ¤
5.3. Final remarks. We have seen that the Maslov index of a solution of the Lorentz force
equation in the nondegenerate case is given by the sum of the signatures at each magnetic
conjugate instant (Corollary 3.9). This result is analogous to a similar result holding in
the case of semi-Riemannian geodesics (see for instance [23]). For causal (i.e., nonspace-
like) Lorentzian geodesic, an elementary argument shows that every conjugate point is
nondegenerate, and that its signature is positive, and it coincides with its multiplicity. In
particular, every conjugate point along a causal Lorentzian geodesic is a bifurcation point
(see [19]). In site of this analogy, and also of the fact that, as in the geodesic case, also solu-
tions of the Lorentz equation do preserve their causal character (Lemma 2.2), it is not clear
whether conjugate points along timelike or lightlike solutions of (2.5) are nondegenerate,
or isolated.

It is an interesting open question to prove or disprove by means of counterexamples that
magnetic conjugate points along Lorentzian timelike or lightlike solutions are isolated, and
that their signature is positive and equal to the multiplicity.

In the real analytic case, where conjugate instants are necessarily isolated, a more de-
tailed analysis of the degeneracies mentioned can be carried out in terms of higher order
Taylor expansion of the symplectic path near an intersection with the Maslov cycle, in
the spirit of [24]. The interested reader may �nd details of this construction for the semi-
Riemannian geodesic problem in [12].
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