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ABSTRACT. The Maslov index of a Lagrangian path, under a certain transversality as-
sumption, is given by an algebraic count of the intersections of the path with a subvariety
of the Lagrangian Grassmannian called the Maslov cycle. In these notes we use the notion
of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to
determine a formula for the computation of the Maslov index in the case of a real-analytic
path having possibly non transversal intersections. Using this formula we give a general
de�nition of Maslov index for continuous curves in the Lagrangian Grassmannian, both in
the �nite and in the in�nite dimensional (Fredholm) case, and having arbitrary endpoints.
Other notions of Maslov index are also considered, like the index for pairs of Lagrangian
paths, the Kashiwara's triple Maslov index, and Hörmander's four-fold index.

We discuss some applications of the theory, with special emphasis on the study of the
Jacobi equation along a semi-Riemannian geodesic. In this context, we prove an extension
of several versions of the Morse index theorems for geodesics having possibly conjugate
endpoints.

The main results of this paper were announced in [29].
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1. INTRODUCTION

Recent extensions of classical variational theories, like for instance Morse Theory,
Ljusternik�Schnirelman theory or bifurcation theory, have shown the increasing relevance
of topological techniques in �nite or in�nite dimensional manifolds. Solutions of different
geometrical variational problems, like geodesics, minimal surfaces, harmonic maps, solu-
tions of Hamiltonian systems, etc., are classi�ed by an index, typically an integer number,
that carries both analytical and geometrical information on the solution. Jumps of the ap-
propriate index function (Morse, Conley, Maslov, spectral, etc.), that can only occur at
degeneracy instants of the second variation form, are responsible for topologically non
trivial changes in the solution space of the given variational problem. In the non positive
de�nite case, a �rst order analysis of the degeneracy instant is no longer suf�cient to detect
a jump of the index and to compute its value, so one needs a more accurate analysis beyond
the �rst derivative test, capable of reckoning �ne analytical details of the degeneracy.

In the symplectic world, a recurrent notion is that of Maslov index, that appears natu-
rally in many different contexts, especially in relation with solutions of Hamiltonian sys-
tems. The natural environment for the notion of Maslov index is the Lagrangian Grassman-
nian Λ of a �nite or in�nite dimensional symplectic space; the Maslov index is a Z-valued
homotopical invariant for continuous curves in Λ that gives an algebraic measure of the
intersections with the Maslov cycle, which is an algebraic subvariety of Λ. Under generic
circumstances, the intersections of a curve with the Maslov cycle occur at its regular part,
and they are transversal (hence isolated). In this case the computation of the Maslov in-
dex is done via well established results obtained by differential topological methods, and
its relations with the geometrical and analytical invariants of the variational problem are
clear. Typically, the non transversal case is studied by perturbative techniques, which al-
low to extend to this case the results involving quantities that are stable by uniformly small
perturbations.

There are several reasons to develop a non perturbative analysis of the non transversal
intersections, and that motivated the research exposed in this paper. In �rst place, per-
turbation arguments do not work properly when non transversal intersections occur at the
endpoints; namely, in this case arbitrarily small perturbations may destroy the intersection.
Observe that the arguments needed to prove the genericity of the transversality property in
speci�c contexts become drastically more involved (if not impossible at all) if one restricts
to �xed endpoints homotopies. For instance, in the case of periodic solutions of Hamilton-
ian systems, in order to obtain multiplicity results one needs to consider iteration formulas
for the Maslov index, and it is not evident whether transversality is generic in spaces of
inextensible paths.

Second, and more important, perturbative methods preserve global quantities, but de-
stroy the information concerning each single intersection, which of course may be relevant
in the problem under consideration. This is the case, for instance, in bifurcation theory, if
one wants to know whether a given instant bifurcates or not, and not just whether bifur-
cation occurs somewhere. Also, in semi-Riemannian geometry the presence of conjugate
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points, that correspond to intersections with the Maslov cycle obtained from the �ow of
the Jacobi deviation equation, have global geometrical implications on their own, and per-
turbing the data (i.e., the metric) would not be a very meaningful procedure. Along a semi-
Riemannian geodesic, non transversal intersections with the Maslov cycle (that may occur
only if the metric is not positive de�nite) correspond to degenerate conjugate points; the
presence of this kind of conjugate points is responsible for a series of new and interesting
phenomena in the semi-Riemannian vs. the Riemannian world, hence it deserves a spe-
ci�c analysis. The occurrence of degenerate intersections arising from semi-Riemannian
geodesics has been somewhat overlooked in the classical literature, and only recently the
relevance of such occurrences has been recognized; for a more detailed discussion on this
topic, see for instance [38, Subsection 5.4] and [48]. The result of these notes contributes
understanding such degeneracy phenomena in the real-analytic case; for instance, we give
conditions under which the exponential map is not one-to-one on any neighborhood of a
possibly degenerate semi-Riemannian conjugate point (Corollary 4.13), extending a clas-
sical Riemannian result of Morse and Littauer (see [54]).

In this paper we will be essentially interested in the notion of Maslov index associated
to geodesics and, more generally, to solutions of Hamiltonian systems. The Hamiltonian
�ow on a symplectic manifold preserves the symplectic form, and by a suitable trivializa-
tion of the tangent bundle of the manifold along a given solution we get a smooth curve in
the symplectic group of a �xed symplectic space. Likewise, the evolution of Lagrangian
initial conditions by the �ow of the Hamilton equation produces a curve in the Grassman-
nian of all Lagrangian subspaces of a �xed symplectic space. The local geometry of the
Lagrangian Grassmannian of a symplectic space, both in �nite and the in�nite dimensional
case, is the geometry of symmetric bilinear forms, and intersections with the Maslov cycle
correspond to degeneracy instants of the forms; non transversality with the Maslov cycle
corresponds, in local charts, to the fact that the corresponding curve B(t) of symmetric
bilinear forms has derivative B′(t0) which is degenerate when restricted to Ker

(
B(t0)

)
.

The Maslov index of a curve measures at each intersection the change of value of the in-
dex of the symmetric form, and a computation of this jump is studied using higher order
derivatives and the introduction of the notions of �generalized Jordan chains� and of �par-
tial signatures� at an isolated degeneracy instant. Given a smooth curve in the Lagrangian
Grassmannian having only isolated intersections with the Maslov cycle, using local charts
we associate a sequence of integers to each such intersection, and we give a formula to
compute the Maslov index of the curve in terms of these integers. The theory works well
under the assumption that the curve be real-analytic, or, more generally, when it is possible
to �nd a smoothly varying Hilbert basis of the space that diagonalizes the curve of sym-
metric forms. Important examples for the theory of Maslov index of real-analytic curves
are encountered in the study of eigenvalue problems for some differential operators, whose
solutions depend analytically on the eigenvalue; in this paper we will discuss the theory in
the case of the Morse�Sturm�Liouville equation.

The partial signatures at a degeneracy instant have appeared in several different con-
texts in the literature, associated to �jumps� of integer valued invariants, like the spectral
�ow, or the so-called eta-invariant associated to an elliptic self-adjoint operator. It is not
an easy task to establish where exactly the notion of partial signature at an isolated de-
generacy instant of a path of symmetric (or hermitian) forms has �rst appeared. To the
authors' knowledge, one of the �rst references where such notion appears is [31], where
the partial signatures are introduced as generalized multiplicities of characteristic values of
a meromorphic operator valued function.

The partial signatures appear in a paper of Rabier (ref. [49]) as an evolution of Magnus'
generalized algebraic multiplicity for nonlinear eigenvalues of operators between Banach
spaces, aiming at results in bifurcation theory. Our approach follows more closely the pa-
per by Farber and Levine [23], where the partial signatures have been used to determine
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a formula for the jumps of the so-called eta-invariant. The link between the Maslov in-
dex and the theory of partial signatures has been suggested to the authors by some recent
results of Fitzpatrick, Pejsachowicz and Recht on the bifurcation theory for strongly inde�-
nite functionals (see [28]). The main result of Rabier in [49] relates bifurcation phenomena
to generalized Jordan chains for a sequence of symmetric linear operators on �nite dimen-
sional vector spaces. The central result of [28] is, roughly speaking, that bifurcation for a
smooth family of (strongly inde�nite) functionals having a trivial branch of critical point
at which the Hessians are Fredholm, occurs at those instants when the spectral �ow of the
path of second variations jumps. Finally, a geometrical bifurcation problem in the context
of semi-Riemannian geodesics has been recently studied in [44], where it is proven that
the Maslov index of a geodesic equals the spectral �ow of the corresponding curve of in-
dex forms. An alternative approach that leads naturally to discovering a link between the
notions of spectral �ow, of Maslov index and of partial signatures is given in [40]. In this
paper, the authors introduce a new topological invariant for smooth paths of self-adjoint
Fredholm operators using a certain line integral, as in [31], that can be computed in terms
of partial signatures. In view of these results, it now appears to be the case that these
seemingly different results are indeed different aspects of the same mathematical theory.

As an application of our theory, we will discuss a very general version of the semi-
Riemannian Morse index theorem (Theorem 4.9), relating the spectral data of the Jacobi
differential operator with the spectral �ow of the index form along the geodesic, and with
the conjugate points along the geodesic. The theorem gives an equality of three different
indexes, called the spectral index, the generalized Morse index and the Maslov index of
the geodesic, which is shown to hold without any assumption on the �nal endpoint of the
geodesic. The notion of spectral index, which plays a central role in our theory, is de�ned
as the spectral �ow of the curve of index form for the eigenvalue Jacobi differential problem
as the eigenvalue runs from −∞ to 0. The dependence of this path of Fredholm forms on
the eigenvalue λ is analytic (namely, af�ne), and the method of generalized Jordan chains
can be applied directly. An explicit formula for the spectral index of a semi-Riemannian
geodesic with possibly conjugate endpoint is computed in Proposition 4.8.

Motivated by in�nite dimensional Morse theory, and by the analysis of �rst order elliptic
operators on closed manifolds, the study of relations between the Maslov index and the
spectral �ow is a quite active research �eld, and a rather extensive literature on this topic
is available nowadays. The equality between the Maslov (or the Morse) index for paths
of self-adjoint Fredholm operators has been proven in several contexts. Starting from the
celebrated Morse index theorem in Riemannian geometry, the Maslov index has been used
by Duistermaat [21] to prove an index theorem for convex Hamiltonian systems. Several
versions of the Morse index theorem were proven in the last decade in the case of geodesics
in manifolds endowed with non positive de�nite metrics and for non convex Hamiltonian
systems (see for instance [4, 30, 38, 45, 46]). Basic references on the notion of Maslov
index, from which the authors of the present paper have taken inspiration, are the articles
by Robbin and Salamon [50], by de Gosson [19], and that of Cappell, Lee and Miller
[9]; analogies and differences between the results of [9], [50] and those of the present
paper will be discussed at the beginning of Section 3. As to the notion of spectral �ow
for a path of self-adjoint Fredholm operators, the literature available is enormous, starting
from the pioneering work of Atiyah, Patodi and Singer [3]. We found particularly simple
and elegant the approach in a paper by Phillips [43], where functional calculus is used.
Phillips' de�nition of Maslov index has inspired the proof of our Proposition 3.2 that gives
an abstract method for constructing arbitrary group valued index functions for continuous
paths in topological spaces. However, for the purposes of the present paper, the most
appropriate de�nition of spectral �ow seems to be the one given in [28], that uses the
theory of relative dimension in Hilbert spaces and the cogredient action of the general
linear group; this approach is particularly useful when dealing with index and coindex of
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symmetric bilinear forms (see Proposition A.11). The notion of Maslov index has been
related to the conjugate points along a Riemannian geodesic by Morvan in [39], while
in the semi-Riemannian (i.e., non positive de�nite) case, Helfer in [32] was the �rst to
introduce the notion of Maslov index of a geodesic. The equality of the spectral index of
a path D(t) of Dirac operators on a vector bundle over an odd dimensional Riemannian
manifold M split along an hypersurface Σ and the Maslov index of the pair of curves of
Lagrangian spaces (L1(t), L2(t)) obtained as the Cauchy data spaces of D(t) has been
proven in [42] by Nicolaescu in the case of nondegenerate endpoints, extending a previous
result of Yoshida [53] in dimension 3; Yoshida�Nicolaescu's theorem has been extended
by Daniel in [14] to the possibly degenerate case. A similar result is proven by Cappell,
Lee and Miller in [11], where the authors obtain several formulas expressing the spectral
�ow of a one-parameter family of self-adjoint elliptic operators on a closed manifold as a
sum of terms computed from a decomposition of the manifold into two submanifolds. In
the in�nite dimensional case, the relationship between spectral �ow and Maslov index for
curves in the Fredholm Lagrangian Grassmannian has been studied by Booss�Bavnbek,
Furutani and Otsuki in [6, 7, 8, 27], where index theorems are proven under very general
circumstances.

Our main interest in studying connections between the Maslov index and the spectral
�ow comes from recent developments of in�nite dimensional Morse theory (see [2]), which
follows the lines of the celebrated works of Floer [24, 25, 26]. The index theorem proven
by Robbin and Salamon in [51] gives an equality between the spectral �ow of a one-
parameter family A(t) of unbounded self-adjoint operators on a Hilbert space H with the
Fredholm index of the densely de�ned operator d

dt + A(t) : L2(IR,H) → L2(IR, H).
Such result aims, as in our case, to Morse homology, where A(t) is the Hessian of a
Morse function along an orbit of the gradient �ow between two critical points. In this
case, the spectral �ow of A(t) gives the dimension of the intersection between the stable
and the unstable manifold at the endpoints; the �niteness of such dimension is a central
point in the construction of the Morse�Witten complex. A crucial assumption in Robbin
and Salamon's proof is that the limits lim

t→±∞
A(t) = A± be hyperbolic, hence invertible.

Assuming invertibility at the endpoints is an obstruction for developing Morse homology in
case of degenerate critical points, like for instance in the case of closed (semi-)Riemannian
geodesics, in which case all critical points are degenerate due to the equivariant action of
the group O(2). Our degenerate index theorem aims at providing the tools for treating
in�nite dimensional Morse theory in presence of equivariant, or otherwise well-behaved,
degenerate critical points.

It is very likely that one can obtain a somewhat simpler proof of many of the index
theorems mentioned above using the theory of partial signature discussed in this paper
along the lines of the proof of Theorem 4.9:

• a direct (�nite dimensional) homotopy argument proves the equality between the
Maslov index of the path of Lagrangians associated to the path of self-adjoint
operators and the Maslov index of a real-analytic curve obtained from the corre-
sponding eigenvalue problem;

• an in�nite dimensional homotopy argument proves the equality between the spec-
tral �ow and the �spectral index� of the data, which is the spectral �ow of a real-
analytic curve depending on the spectral parameter;

• the equality between the index of the two real-analytic curves is obtained by prov-
ing the equality of the partial signatures at each degeneracy instant.

Typically, the spectral index is the spectral �ow of a path depending af�nely on the pa-
rameter, in which case the computation of the partial signatures can be done explicitly (see
Subsection 3.9).
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The paper is ideally split into two distinct parts. Sections 2 and 3 deal with the theory
of partial signatures and its applications to the abstract index theory. Several notions of
Maslov index appearing in the literature are discussed in our framework in the spirit of
the article [9], including the Maslov index of pairs of Lagrangian paths and for symplec-
tic paths (Conley�Zehnder index), the triple index (Kashiwara's index) and the four-fold
index (Hörmander index). The notions of triple and four-fold index are given in terms of
the Maslov index for paths; it is an interesting observation that, conversely, the Maslov
index can be constructed using only the axioms of Kashiwara's index (formulas (3.16) and
(3.17)). The second part of the paper, contained in Section 4, deals with the geometric ap-
plications of the theory in the context of semi-Riemannian geodesics. The central results
are the Index Theorem 4.9 and its geometrical version Theorem 4.10, that generalize [46,
Theorem 5.2] and [13, Theorem 3.3] to the case of possibly conjugate endpoints.

Two appendices have been added at the end of the paper. Appendix A contains the basic
de�nitions and some technical results concerning functional analytical aspects of the index
theory, with special emphasis on the notion of commensurability of closed subspaces of
Hilbert spaces, relative dimension and relative index of Fredholm bilinear forms. Appen-
dix B contains the proof of the connectedness of the Grassmannian of maximal negative
subspaces of a �nite dimensional vector space endowed with a nondegenerate symmet-
ric bilinear form; such result is used in a homotopy argument employed in the proof of a
geometrical version of the index theorem (Subsection 4.8).

In order to facilitate the reading, each section of the paper has been divided into small
subsections that should help the reader to keep track of the several notions introduced and
to localize cross references.
Acknowledgements. The authors gratefully acknowledge the support given by Prof. Ja-
cobo Pejsachowicz during the development of this research project.

2. GENERALIZED SIGNATURES AT AN ISOLATED SINGULARITY

Let V be a real vector space; we will denote by Bsym(V ) be the vector space of all
symmetric bilinear forms B : V × V → IR on V . When V is endowed with a posi-
tive de�nite inner product 〈·, ·〉, we will denote by Lsym(V ) the vector space of all lin-
ear maps T : V → V that are symmetric relatively to 〈·, ·〉. There is an identi�cation
Bsym(V ) ∼= Lsym(V ) via the map T 7→ B = 〈T ·, ·〉, and such identi�cation will be
made implicitly in many parts of the paper, although in some occasion (especially when
the choice of a �xed inner product is not done explicitly) it will be convenient to maintain
a conceptual distinction between linear operators and bilinear forms. For B ∈ Bsym(V ),
denote by n−(B), n0(B) and n+(B) respectively the index, the degeneracy (or nullity)
and the coindex of B, that are respectively the number of −1's, the number of 1's and the
number of 0's in the canonical form of B as given in Sylvester's Inertia Theorem. For the
purposes of the paper, it will be interesting to introduce the notations

o
n+(B) = n+(B) + n0(B), and o

n−(B) = n−(B) + n0(B)

respectively for the extended coindex and the extended index of B. The signature σ(B) of
a bilinear form1 B is the difference n+(B) − n−(B) = o

n+(B) − o
n−(B); B is said to be

nondegenerate if n0(B) = 0. Clearly, n−(B), and n+(B) are respectively the number of
negative and of positive eigenvalues of the symmetric linear map T corresponding to B, the
degeneracy n0(B) is the multiplicity of 0 as an eigenvalue of T , and B is nondegenerate
exactly when T is an isomorphism. With a slight abuse of terminology, we will use the
notation n± (and o

n±) for symmetric linear maps, meaning the (extended) index and the

1The use of the symbol σ for the signature of a bilinear form will be used quite frequently throughout the
paper, and for this reason the customary notation σ(T ) for the spectrum of a linear operator T will be replaced
with s(T ).
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coindex of the corresponding element in Bsym(V ). Finally, by Ker(B) we will mean the
kernel of the corresponding linear map T , which can be described also as

Ker(B) =
{
w ∈ V : B(v, w) = 0 for all v ∈ V

}
.

In next two subsections we will assume that V is a �xed �nite dimensional real vector
space, and for simplicity we will assume that 〈·, ·〉 is a �xed positive de�nite inner product
on V . Also in the in�nite dimensional case, we will deal with spaces endowed with a
�xed Hilbert space inner product. The choice of a speci�c inner product is by no means
essential, and we will prove at the end that all the notions introduced are independent of
such choice (Remark 2.17).

2.1. Root functions and partial signatures at a degeneracy instant.
Let L : [t0 − ε, t0 + ε] → Lsym(V ) be a curve such that t = t0 is an isolated singular-
ity for L(t). We are interested in determining the jump of the functions n+

(
L(t)

)
and

n−
(
L(t)

)
as t passes through t0; the following elementary result is well known:

Proposition 2.1. Assume that the restriction B1 of 〈L′(t0)·, ·〉 to Ker
(
L(t0)

)
is nondegen-

erate. Then:
n+

(
L(t0 + ε)

)− n+
(
L(t0)

)
= n+(B1), n+

(
L(t0)

)− n+
(
L(t0 − ε)

)
= −n−(B1),

n+
(
L(t0 + ε)

)− n+
(
L(t0 − ε)

)
= σ(B1).

Proof. See for instance [30, Proposition 2.5]. ¤

Attempts to generalize the result of Proposition 2.1 by replacing the nondegeneracy
assumption with an assumption concerning higher order derivatives of L(t) at t = t0 in
Ker

(
L(t0)

)
fail, as the following example shows:

Example 2.2. Consider the curves B, B̃ : IR → Bsym(IR2) given by:

B(t) =
(

1 t
t t3

)
, B̃(t) =

(
1 t2

t2 t3

)
;

we have B(0) = B̃(0) and N = Ker
(
B(0)

)
= Ker

(
B̃(0)

)
= {0} ⊕ IR. Observe that

B(t)|N×N = B̃(t)|N×N for all t ∈ IR, so that the Taylor expansion of B coincides with
that of B̃ in N ; on the other hand, for ε > 0 suf�ciently small, we have:

n+
(
B(ε)

)− n+
(
B(−ε)

)
= 1− 1 = 0,

n+
(
B̃(ε)

)− n+
(
B̃(−ε)

)
= 2− 1 = 1.

We will now discuss a method for computing the jump of the coindex involving higher
order derivatives; let us recall that, given k ≥ 1, a smooth map v : ]t0 − ε, t0 + ε[ → V
is said to have a zero of order k at t = t0 if v(t0) = v′(t0) = . . . = v(k−1)(t0) = 0 and
v(k)(t0) 6= 0. In order to set up properly our framework we give the following:

De�nition 2.3. A root function for L(t) at t = t0 is a smooth map u : [t0−ε, t0 +ε] → V ,
ε > 0, such that u(t0) ∈ Ker

(
L(t0)

)
. The order ord(u) of the root function u is the

(possibly in�nite) order of zero at t = t0 of the map t 7→ L(t)u(t).

Associated to the degeneracy instant t0 for the curve L, we will now de�ne a �ltration
of vector spaces Wk ⊂ V and a sequence of bilinear forms Bk : Wk ×Wk → IR, k ≥ 1,
as follows. Set:
(2.1) Wk :=

{
u0 ∈ V : ∃ a root function u with ord(u) ≥ k and u(t0) = u0

}
,

and

(2.2) Bk(u0, v0) :=
1
k!

〈
dk

dtk

∣∣
t=t0

[
L(t)u(t)

]
, v0

〉
, u0, v0 ∈ Wk,
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where u is any root function with ord(u) ≥ k and u(t0) = u0. We will prove next that
the right hand side of the equality in (2.2) does not indeed depend on the choice of the root
function u.

Proposition 2.4. Wk is a subspace of Ker
(
L(t0)

)
, and Wk+1 ⊆ Wk for all k ≥ 1. The

bilinear forms Bk are well de�ned and symmetric for all k ≥ 1.

Proof. The �rst statement follows trivially from the de�nition of Wk.
For the second statement, observe that for u0, v0 ∈ Wk, if u(t) and v(t) are root func-

tions with ord(u), ord(v) ≥ k, u(t0) = u0, v(t0) = v0, keeping in mind that L(t)u(t) and
L(t)v(t) have vanishing derivatives of order less than or equal to k − 1 at t = t0, then:

〈
dk

dtk

∣∣
t=t0

[
L(t)u(t)

]
, v0

〉
= dk

dtk

∣∣
t=t0

〈L(t)u(t), v(t)〉
= dk

dtk

∣∣
t=t0

〈u(t),L(t)v(t)〉 =
〈
u0,

dk

dtk

∣∣
t=t0

[
L(t)v(t)

]〉
.

(2.3)

The �rst term in (2.3) does not depend on the choice of the root function v(t) and the last
term does not depend on the choice of a root function u(t). This proves at the same time
that Bk is well de�ned and that it is symmetric. ¤

Remark 2.5. Here is an alternative de�nition of the spaces Wk and of the bilinear forms
Bk. Consider the Taylor expansion of L(t) centered at t = t0:

L0 + (t− t0)L1 + (t− t0)2L2 + . . . + (t− t0)kLk + . . . ,

where Lk = 1
k!L

(k)(t0) ∈ Lsym(V ) for all k. Then, the space Wk+1 can be described
as the set of those u0 ∈ V such that there exist u1, . . . , uk ∈ V for which the following
system of linear equations is satis�ed:

(2.4)





L0u0 = 0,
L1u0 + L0u1 = 0,
L2u0 + L1u1 + L0u2 = 0,

...∑k
j=0 Lk−juj = 0.

A root function u(t) with ord(u) ≥ k + 1 and u(t0) = u0 would be given in this case by
u(t) =

∑k
j=0(t − t0)juj ; in the language of [49], a sequence (u0, u1, . . . , uk) satisfying

(2.4) is called a generalized Jordan chain for L(t) at t = t0 starting at u0. The length
of a generalized Jordan chain is de�ned to be the number of its elements; a generalized
Jordan chain (u0, . . . , uk) is said to be extendible if there exists uk+1 ∈ V such that
(u0, . . . , uk, uk+1) is a generalized Jordan chain. Thus, Wk+1 is the space of those u0 for
which there exists a generalized Jordan chain of length k + 1 starting at u0.

Non extendible Jordan chains are said to be maximal; observe that maximal generalized
Jordan chains starting at the same element u0 may have different lengths.2

The �rst equation of (2.4) tells us that u0 ∈ Ker(L0); it is immediate to observe that, if
(u0, . . . , uk) is a generalized Jordan chain for L starting at u0, then it is extendible if and
only if:

k∑

j=0

Lk+1−juj ∈ Im
(
L0

)
= Ker(L0)⊥.

Moreover, the bilinear form Bk+1 can be de�ned in terms of generalized Jordan chains by:

(2.5) Bk+1(u0, v0) =
k∑

j=0

〈
Lk+1−juj , v0

〉
,

2For instance, suppose that (u0, u1, u2) is a generalized Jordan chain starting at u0 and that ξ ∈ Ker(L0)
is such that L1ξ 6∈ Im(L0). Then (u0, u1 + ξ) is maximal.
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where (u0, u1, . . . , uk) is any generalized Jordan chain for L of length k + 1 starting
at u0. System (2.4) and formula (2.5) appear in reference [23] (see [23, (23i)] and [23,
Corollary 3.13]).

From the very de�nition of Bk, one sees immediately that we have an inclusion Wk+1 ⊂
Ker(Bk); observe in particular that if Bk is nondegenerate for some k, then Wj = (0) for
all j > k. We will show below that, in fact, Wk+1 = Ker(Bk) for all k ≥ 1 (Corol-
lary 2.10).

De�nition 2.6. For all k ≥ 1, the integer numbers

(2.6) n−k (L, t0) := n−(Bk), n+
k (L, t0) := n+(Bk), σk(L, t0) := σ(Bk)

are called respectively the k-th partial index, the k-th partial coindex, and the k-th partial
signature of L(t) at t = t0. The k-th partial extended index and coindex o

n±k(L, t0) are
de�ned similarly.

The integers n±k (L, t0), o
n±k(L, t0) and σk(L, t0) will be referred to collectively as the

�partial signatures� of the curve of bilinear forms L at the degeneracy instant t0.

Remark 2.7. It is immediate from the de�nition that W1 = Ker(L0) and that B1 coincides
with the restriction of 〈L1 ·, ·〉 (recall Proposition 2.1).

Example 2.8. Let us compute explicitly the spaces Wk, the bilinear forms Bk and the
partial signatures σk for the curves in Example 2.2 at the instant t = 0.

For L(t) =
(

1 t
t t3

)
, one computes easily:

W1 = {0} ⊕ IR, L0 =
(

1 0
0 0

)
, L1 =

(
0 1
1 0

)
, L2

(
0 0
0 0

)
.

For all u0 = (0, a), the system L1u0 + L0u1 has the unique solution u1 = (−a, 0),
i.e., W2 = W1 = {0} ⊕ IR; moreover, it is easily seen that the generalized Jordan chain(
(0, a), (−a, 0)

)
is maximal, i.e., the system L2u0+L1u1+L0u2 has no solution u2 ∈ IR2

and therefore W3 = (0).
Using (2.5) we compute:

B1

(
(0, a), (0, b)

)
=

〈
L1u0, v0

〉
= 0, ∀ a, b ∈ IR, n±1 = 0, σ1 = 0

B2

(
(0, a), (0, b)

)
=

〈
L2u0 + L1u1, v0

〉
= −ab, n+

2 = 0, n−2 = 1, σ2 = −1.

Clearly, Wk = (0), Bk = 0 and σk = 0 for all k ≥ 3.
A similar computation for L(t) =

(
1 t2

t2 t3

)
gives:

W1 = {0}⊕IR, L0 =
(

1 0
0 0

)
, L1 =

(
0 0
0 0

)
, L2 =

(
0 1
1 0

)
, L3 =

(
0 0
0 1

)
.

Set u0 = (0, a) ∈ W1; the system L1u0 + L0u1 has solutions u1 = (0, β), with β ∈ IR;
hence, W2 = W1. The system L2u0 +L1u1 +L0u2 has the unique solution u2 = (−a, 0),
and so W3 = W2. Finally, the generalized Jordan chain (u0, u1, u2) is maximal, because
the system L3u0 +L2u1 +L1u2 +L0u3 = 0 has no solution, i.e., Wk = (0) for all k ≥ 4.

Using (2.5) we compute:

B1

(
(0, a), (0, b)

)
=

〈
L1u0, v0

〉
= 0, n±1 = 0, σ1 = 0,

B2

(
(0, a), (0, b)

)
=

〈
L2u0 + L1u1, v0

〉
= 〈(a, 0), (0, b)〉 = 0, n±2 = 0, σ2 = 0,

B3

(
(0, a), (0, b)

)
=

〈
L3u0 + L2u1 + L1u2, v0

〉
=

〈
(β, a), (0, b)

〉
= ab,

n+
3 = 1, n−3 = 0, σ3 = 1.
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2.2. Computation of the partial signatures and the spectral �ow.
When V has a smoothly varying basis of eigenvectors of L(t), then the computation of the
spaces Wk and of the bilinear forms Bk can be simpli�ed as explained in the following:

Proposition 2.9. Let L : [t0−ε, t0+ε] → Lsym(V ) be a smooth curve having a unique de-
generacy instant at t = t0. Assume that the following regularity condition for the eigensys-
tem of L(t) is satis�ed: denoting by λ1(t), . . . , λn(t) the smooth functions of eigenvalues
of L(t),

(a) each non constant λi has a zero of �nite order at t = t0;
(b) there exist smooth functions vi : [t0 − ε, t0 + ε] → V , i = 1, . . . , n, of pairwise

orthogonal unit eigenvectors of the λi(t)'s.
Then, the following statements hold:

(1) Wk = span
{

vi(t0) : i ∈ {1, . . . , n} is such that λ
(j)
i (t0) = 0 for all j < k

}
;

(2) if v ∈ Wk is an eigenvector of λi(t0), where λi(t0)=λ′i(t0)= . . .=λ
(k−1)
i (t0)=

0, then Bk(v, w) = 1
k!λ

(k)
i (t0)〈v, w〉, for all w ∈ Wk;

(3) n+
(
L(t0 + ε)

)− n+
(
L(t0)

)
=

∑
k≥1

n+
k (L, t0),

n+
(
L(t0)

)− n+
(
L(t0 − ε)

)
= − ∑

k≥1

(
n−2k−1(L, t0) + n+

2k(L, t0)
)
, and

n+
(
L(t0 + ε)

)− n+
(
L(t0 − ε)

)
=

∑
k≥1

σ2k−1(L, t0),

where all the sums appearing in these formulas have at most a �nite number of
non zero terms. Similarly:
o
n+

(
L(t0 + ε)

)− o
n+

(
L(t0)

)
=

∑
k≥1

n+
k (L, t0)− dim

(
Ker(L(t0))

)
,

o
n+

(
L(t0)

)− o
n+

(
L(t0−ε)

)
=−∑

k≥1

(
n−2k−1(L,t0)+n+

2k(L,t0)
)
+dim

(
Ker(L(t0))

)
.

Proof. To prove (1) argue as follows. If i ∈ {1, . . . , n} is such that λi(t0) = λ′i(t0) =
. . . = λ

(k−1)
i (t0) = 0, then setting u0 = vi(t0) and u(t) = vi(t) it follows immediately

that u is a root function of order greater than or equal to k at t = t0 with u(t0) = u0. This
proves that vi(t0) ∈ Wk, i.e., that the span of such vi(t0)'s is contained in Wk. On the
other hand, assume that u0 ∈ Wk; let u(t) be a root function with ord(u) ≥ k, u(t0) = u0,
and set u(t) =

∑
i µi(t)vi(t). Then:

L(t)u(t) =
∑

i

µi(t)λi(t)vi(t);

from the above equality it follows easily that L(t)u(t) has a zero of order greater than
or equal to k at t = t0 if and only if the function (λiµi) has a zero of order greater
than or equal to k at t = t0 for all i. In particular, this implies that µi(t0) = 0 unless
λi(t0) = λ′i(t0) = . . . = λ

(k−1)
i (t0) = 0, which proves (1).

The proof of part (2) is immediate using the de�nition of Bk, taking a proper multiple
of vi as a root function for v.

In view of assumption (a) in the hypotheses, part (1) and (2) of the thesis, for each
k ≥ 1, the index n−(Bk) (resp., the coindex n+(Bk)) is given by the number of i's in
{1, . . . , n} such that λi(t) has a zero of order k at t = t0 and whose k-th derivative is
negative (resp., positive) at t = t0. The �ve formulas in part (3) of the thesis follow easily
from this observation; note in particular that the third formula is obtained by addition of
the �rst two. ¤

We observe that the assumptions of Proposition 2.9 are satis�ed when t 7→ L(t) is a
real-analytic map with an isolated degeneracy at t = t0. Namely, in this case both the
eigenvalues and the eigenvectors are real-analytic functions (see [34, Chapter 2, § 1]),
which implies immediately assumptions (a) and (b) in the statement. Part (1) and (2) of
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Proposition 2.9 are used as de�nition of the spaces Wk and the bilinear forms Bk in [35].
Another situation in which Proposition 2.9 can be applied is when dim

(
Ker(L0)

)
= 1,

in which case obviously the entire statement and the proof can be simpli�ed; the case of
simple eigenvalues can be treated in a much easier way by means of the Implicit Function
theorem (see for instance [5, 37]), and the occurrence of such circumstance will not be
further commented in this paper.

Observe also that part (3) of the thesis of Proposition 2.9 is a generalization of the result
of Proposition 2.1.

Corollary 2.10. Let L : [t0− ε, t0 + ε] → Lsym(V ) be any smooth curve having a unique
degeneracy instant at t = t0. Then Wk+1 = Ker(Bk) for all k ≥ 1.

Proof. If L is real analytic, the conclusion follows immediately from part (1) and part (2)
of Proposition 2.9.

Assume that L is smooth; recall from Remark 2.5 that, for each k ≥ 1, the de�nition of
the space Wk and of the bilinear form Bk depends only on L0 and the �rst k derivatives
L1, . . . ,Lk of L(t) at t = t0. In particular, the object Wj and Bj , j = 1, . . . , k do not
change if we replace L by its k-th order Taylor polynomial L̃(t) =

∑k
j=0 Lj(t − t0)j ,

which is a real-analytic map and the �rst part of the proof applies. ¤

Corollary 2.11. Under the assumptions of Proposition 2.9,

(2.7)
∑

k≥1

[
n+

k

(
L; t0

)
+ n−k

(
L; t0

)]
= dim

(
Ker(L(t0))

)
.

Proof. By Corollary 2.10, for all k ≥ 1:
n+

k

(
L; t0

)
+ n−k

(
L; t0

)
= dim(Wk)− dim(Wk+1).

The conclusion follows from an easy induction argument, keeping in mind that, under the
assumption of Proposition 2.9, Wk+1 = {0} for k suf�ciently large. ¤

Example 2.12. For L(t) =
(

1 t
t t3

)
one computes easily:

λ1(t) =
1
2
(
1+ t3−

√
1 + 4t2 − 2t3 + t6

)
, λ2(t) =

1
2
(
1+ t3 +

√
1 + 4t2 − 2t3 + t6

)
,

and:
λ1(0) = λ′1(0) = 0, λ′′1(0) = −2, v1(0) = (0, 1), λ2(0) = 1.

Using Proposition 2.9 one computes immediately:
W1 = Ker

(
L(0)

)
= {0} ⊕ IR, B1 = 0, n±1 = 0, σ1 = 0

W2 = {0} ⊕ IR, B2

(
(0, a), (0, b)

)
= −ab, n+

2 = 0, n−2 = 1, σ2 = −1,

Wk = (0) and n±k = σk = 0 for all k ≥ 3.

Taking now L(t) =
(

1 t2

t2 t3

)
, one has:

λ1(0) = 0, λ′1(0) = 0, λ′′1(0) = 0, λ′′′1 (0) = 6, λ2(0) = 1, v1(0) = (0, 1).

Hence:
W1 = {0} ⊕ IR, B1 = 0, n±1 = 0, σ1 = 0,

W2 = {0} ⊕ IR, B2 = 0, n±2 = 0, σ2 = 0,

W3 = {0} ⊕ IR, B3 =
(
(0, a), (0, b)

)
= ab, n+

3 = 1, n−3 = 0, σ3 = 1,

Wk = (0) and n±k = σk = 0 for all k ≥ 4.
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Given a curve [a, b] 3 t 7→ B(t) of symmetric bilinear forms on a �nite dimensional
vector space, the difference

o
n+

(
B(b)

)− o
n+

(
B(a)

)
= n−

(
B(a)

)− n−
(
B(b)

)

is called the spectral �ow of the curve B on [a, b], and it will be denoted by sf
(
B, [a, b]

)
.

Such de�nition will be extended to the in�nite dimensional case in next subsection.
2.3. Spectral �ow and relative dimension in Hilbert spaces. The result of Proposi-
tion 2.9 can be extended easily to analytic paths of self-adjoint Fredholm operators, after
proper rephrasing of the statement.

Let H denote a separable real Hilbert space, by Lsa the space of self-adjoint bounded
linear operators on H, and by F sa(H) the open subset of Lsa(H) of Fredholm operators. If
L : [a, b] → F sa(H) is a continuous curve, then an integer number is naturally associated
to L, called the spectral �ow of L over [a, b]. Such number, denoted by:

sf
(
L, [a, b]

)

is roughly speaking the integer given by the number of negative eigenvalues of L(a) that
become nonnegative as the parameter t goes from a to b minus the number of nonnegative
eigenvalues of L(a) that become negative. Observe that for paths of strongly inde�nite
self-adjoint operators3 both the index and the coindex functions are in�nite; we refer to
[43] for a concise introduction to the spectral �ow for a continuous path of self-adjoint
Fredholm operators, although the reader will �nd that in the literature it is most frequently
treated only the case of paths having invertible endpoints. We observe here that for paths
with degenerate endpoints there are several options for the choice of a de�nition of spectral
�ow, depending on how one wants to consider the contribution given by the kernel at the
endpoints. For the sake of consistency with our de�nition of Maslov index in the �nite
dimensional case (Corollary 3.5), we will use the in�nite dimensional analogue of the
variation of the extended coindex o

n+. Let us recall a formula proven in [28] that gives the
spectral �ow in terms of relative dimension of closed subspaces4 of a Hilbert space. If L(t)
is of the form J + K(t), where J is a self-adjoint symmetry of H (i.e., J2 = Id) and K(t)
is a compact self-adjoint operator on H, then

sf
(
L,[a, b]

)
=

dimV −(J+K(b))

(
V −(J + K(a))

)
=

dimV +(J+K(a))

(
V +(J + K(b))

)
+dim

(
Ker(J + K(b))

)−dim
(
Ker(J + K(a))

)
,

(2.8)

where V −(S) and V +(S) denote respectively the negative and the positive eigenspace5 of
the operator S. The second equality in (2.8) is proven easily using the result of Propo-
sition A.1. The computation of the spectral �ow of an arbitrary continuous path of self-
adjoint Fredholm operators is then reduced to the above case using the cogredient action
of the general linear group of H (see Subsection 2.4).
Remark 2.13. Observe that if L(a) (hence L(t) for all t) is an essentially positive operator,
i.e., its essential spectrum is contained in [0,+∞[, then

sf
(
L, [a, b]

)
= n−

(
L(a)

)− n−
(
L(b)

)
.

3i.e., whose essential spectrum is contained neither in IR+ nor in IR−.
4Two closed subspace V, W ⊂ H are commensurable if PV |W : W → V is a Fredholm operator; if V and

W are commensurable the relative dimension dimV (W ) of W with respect to V is de�ned as:
dimV (W ) = dim(W ∩ V ⊥)− dim(W⊥ ∩ V ).

Some basic facts of the theory of relative dimension of closed subspaces of Hilbert spaces will be recalled in
Appendix A.

5The negative (resp., the positive) eigenspace of a self-adjoint operator S can be de�ned, for instance, using
functional calculus as χ]−∞,0[

`
S
´

(resp., χ]0,+∞[

`
S
´
), where χI is the characteristic function.
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Likewise, if L(a) is essentially negative, then

sf
(
L, [a, b]

)
= o

n+
(
L(b)

)− o
n+

(
L(a)

)
.

The jumps of the spectral �ow of a path occur precisely at the degeneracy instants, and,
using a Galerkin approximation, the computation of the jump is reduced to a dimension
counting of �nite rank projections. Observe also that, by the �nite dimensionality of the
kernel, one can de�ne the partial signatures n±k (L, t0), o

n±k(L, t0) and σk(L, t0) at an
isolated singularity t = t0 of a path L in F sa(H) exactly as in De�nition 2.6. Given a real-
analytic path L : [t0 − ε, t0 + ε] → F sa(H) having a unique degeneracy at t = t0, then,
for t suf�ciently close to t0 and for a > 0 small enough, the intersection of [−a, a] with
the spectrum of L(t) consists of a �nite number of eigenvalues λ1(t), . . . , λN (t) having
bounded multiplicity, that are real-analytic functions of t and that vanish (possibly) only at
t = t0. In this situation, the spectral �ow of L over [t0 − ε, t0 + ε] is computed, as in the
�nite dimensional case, by looking at the change of sign of the λi's through t0. Using the
same arguments in proof of Proposition 2.9 one obtains the following:

Corollary 2.14. Let L : [t0 − ε, t0 + ε] → F sa(H) be a real-analytic curve of self-adjoint
Fredholm operators on the real separable Hilbert space H having a unique degeneracy
instant at t = t0. Then, the spectral �ow of L is computed as:

sf
(
L, [t0 − ε, t0]

)
= −

∑

k≥1

(
n−2k−1(L, t0) + n+

2k(L, t0)
)

+ dim
(
Ker(L(t0))

)
,

sf
(
L, [t0, t0 + ε]

)
=

∑

k≥1

n+
k (L, t0)− dim

(
Ker(L(t0))

)
,

sf
(
L, [t0 − ε, t0 + ε]

)
=

∑

k≥1

σ2k−1(L, t0). ¤

Explicit computations of the partial signatures of paths of self-adjoint Fredholm opera-
tors will be done in Section 3 (see Proposition 3.29 and Corollary 3.30).

We conclude this subsection with an elementary result concerning the spectral �ow of
paths of self-adjoint Fredholm operators having a common degeneracy instant at the right
end point, and at which the partial signatures differ by the sign.

Proposition 2.15. Let H1 and H2 be real separable Hilbert spaces; let be given two real
analytic paths [t0 − ε, t0] 3 t 7→ L(1)(t) ∈ F sa

(H1

)
and [t0 − ε, t0] 3 t 7→ L(2)(t) ∈

F sa
(H2

)
having a unique degeneracy instant at t = t0. Assume that there exists an iso-

morphism Z : Ker
(
L(1)(t0)

) → Ker
(
L(2)(t0)

)
such that:

(a) Z
(
Wk(L(1), t0)

)
= Wk

(
L(2), t0

)
;

(b) the pull-back Z∗
(
Bk(L(2), t0)

)
coincides with −Bk

(
L(1), t0

)
,

for all k ≥ 1. Then,

(2.9) sf
(
L(1), [t0 − ε, t0]

)
= −sf

(
L(2), [t0 − ε, t0]

)
+ dim

(
Ker(L(2)(t0))

)
.

Proof. Using Corollary 2.14, the equalities dim
(
Ker(L(1)(t0))

)
= dim

(
Ker(L(2)(t0))

)
,

n−
(
B2k−1(L(1), t0)

)
= n+

(
B2k−1(L(2), t0)

)
, n+

(
B2k(L(1), t0)

)
= n−

(
B2k(L(2), t0)

)
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and Corollary 2.10, we compute easily:

sf
(
L(1),[t0 − ε, t0]

)
+ sf

(
L(2), [t0 − ε, t0]

)
=

= 2dim
(
Ker(L(2)(t0)

)−
∑

k≥1

[
n+

(
Bk(L(2), t0)

)
+ n−

(
Bk(L(2), t0)

)]

= 2dim
(
Ker(L(2)(t0)

)−
∑

k≥1

dim
(
Wk(L(2), t0)

)
+

∑

k≥1

dim
(
Ker(Bk(L(2), t0))

)

= 2dim
(
Ker(L(2)(t0)

)−
∑

k≥1

dim
(
Wk(L(2), t0)

)
+

∑

k≥1

dim
(
Wk+1(L(2), t0)

)

= 2dim
(
Ker(L(2)(t0)

)− dim
(
W1(L(2), t0)

)
= dim

(
Ker(L(2)(t0)

)
. ¤

Clearly, a similar statement holds for the spectral �ow on an interval of the form [t0, t0+ε].

2.4. Invariance properties of the partial signatures. For the computation of the spectral
�ow of a curve of self-adjoint Fredholm operators on a real separable Hilbert space H, it
will be useful to consider the cogredient action of the general linear group GL(H) of H
on F sa(H). Recall that the cogredient action is the map:

GL(H)×F sa(H) 3 (S, T ) 7−→ S∗TS ∈ F sa(H);

for instance, it is proven in [28] that, given any curve L : [a, b] → F sa(H) of class Ck

and any symmetry J of H, there exists a curve M : [a, b] → GL(H) of class Ck such that
M(t)∗L(t)M(t)− J is compact for all t. Recall also that the spectral �ow is invariant by
the cogredience (see Corollary 2.18 below).

In view of these observations and of the result of Corollary 2.14, we are naturally led to
the following:

Proposition 2.16. Let L, L̃ : [a, b] → F sa(H) be cogredient smooth curves. If t0 ∈ ]a, b[
is an isolated degeneracy instant for the two curves, then L and L̃ have the same partial
signatures at t = t0.

Proof. Assume that L(t) = M(t)∗L̃(t)M(t), where M : [a, b] → GL(H) is a smooth
curve; denote respectively by Wk, Bk and W̃k, B̃k the objects (vector space space and
symmetric bilinear form) de�ned in Subsection 2.1 relatively to the curves L and L̃ at the
instant t = t0. Clearly, W̃1 = Ker

(
L̃(t0)

)
= M(t0)

(
W1

)
; we will prove that W̃k =

M(t0)
(
Wk

)
for all k, and that Bk is the pull-back of B̃k by the isomorphism M(t0).

To this aim, �x k ≥ 1, choose u0, v0 ∈ Wk and let u(t) and v(t) be root functions for
L(t) at t = t0 with ord(u), ord(v) ≥ k, u(t0) = u0, v(t0) = v0. Set ũ0 = M(t0)u0,
ṽ0 = M(t0)v0, ũ(t) = M(t)u(t) and ṽ(t) = M(t)v(t); in �rst place observe that:

L̃(t)ũ(t) = M(t)∗−1L(t)u(t),

which implies that ũ is a root function for L̃(t) at t = t0 with ord(ũ) ≥ k and ũ(t0) = ũ0.
This says that W̃k = M(t0)

(
Wk

)
for all k ≥ 1.

Moreover, using (2.3), we compute easily:

Bk(u0, v0) =
1
k!

dk

dtk

∣∣∣∣
t=0

〈
L(t)u(t), v(t)

〉
=

1
k!

dk

dtk

∣∣∣∣
t=0

〈
M(t)∗L̃(t)M(t)u(t), v(t)

〉

=
1
k!

dk

dtk

∣∣∣∣
t=0

〈
L̃(t)ũ(t), ṽ(t)

〉
= B̃k(ũ0, ṽ0),

which concludes the proof. ¤
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Remark 2.17. The notion of partial signatures and of spectral �ow can be given for curves
of Fredholm symmetric bilinear forms6 on a Hilbert space, by considering the associated
curve of Fredholm self-adjoint operators that realize the forms relatively to the inner prod-
uct of H. If L and L̃ are smooth curves in F sa(H) associated to the curve of Fredholm
symmetric bilinear forms B on H using two different Hilbert space inner products on H,
then L and L̃ are cogredient. It follows that the notion of partial signatures at an isolated
degeneracy instant of a curve of Fredholm symmetric bilinear forms do not depend on the
choice of a Hilbert space inner product on H.

Observe that, using Corollary 2.14, Proposition 2.16, the density of the set of real an-
alytic curves in C0

(
[a, b],F sa(H)

)
and the homotopy invariance of the spectral �ow, one

gets an alternative and simple proof of the following (see [28, Proposition 3.2]):
Corollary 2.18. The spectral �ow is invariant by cogredience. ¤

We will also be interested in a different invariance property of the partial signatures (see
Proposition 3.4):
Proposition 2.19. Let L : [a, b] → F sa(H) be a smooth curve having an isolated degen-
eracy instant at t = t0 ∈ ]a, b[. Suppose that h : [a, b] → GL(H) is a smooth curve of
isomorphisms of H such that:

(1) h(t)∗L(t) = L(t)h(t) for all t ∈ [a, b];
(2) h(t0) is the identity on Ker

(
L(t0)

)
.

Then, t0 is an isolated degeneracy instant of L̃, and the curves L and L̃ := L ◦ h have the
same partial signatures at t = t0.

Proof. Condition (1) guarantees that L̃ is a smooth curve in F sa(H). Condition (2) tells us
that t0 is an isolated degeneracy instant for L̃, and that

W1 = Ker
(
L(t0)

)
= Ker

(
L̃(t0)

)
= W̃1.

If u0 ∈ W1 and u(t) is a root function for L starting at u0, then ũ(t) = h(t)−1 ◦ u(t) is a
root function for L̃ starting at h(t0)−1u0 = u0, and ord(u) = ord(ũ) because L(t)u(t) =
L̃(t)ũ(t). This proves that Wk = W̃k for all k. Finally, using (2.2), the equality Bk = B̃k

is easily checked by:
Bk(u0, v0) =

〈
dk

dtk

∣∣
t=0

Lu, v0

〉
=

〈
dk

dtk

∣∣
t=0

L̃ũ, v0

〉
= B̃k(u0, v0).

This concludes the proof. ¤
Arguing as above, we get the following invariance property for the spectral �ow:

Corollary 2.20. Let L, h and L̃ be as in Proposition 2.19, assuming that assumption (2)
holds for all t0 ∈ [a, b]. Then, sf(L, [a, b]) = sf(L̃, [a, b]). ¤
2.5. Spectral �ow of restrictions. Let us conclude this chapter with a few simple obser-
vations on the computation of the partial signatures of restrictions of Fredholm bilinear
forms. Let us assume that L : [−ε, ε] → F sa(H) is a real-analytic map and let us denote by
S(t) = 〈L(t)·, ·〉 the corresponding map of symmetric bilinear forms. Let V1, V2 ⊂ H
be closed subspaces such that the restrictions S1(t) = S(t)|V1 and S2(t) = S(t)|V2

are Fredholm, and let us assume that t = 0 is a degeneracy instant for both S1 and S2.
Obviously, in general it will be sf

(
S1, [−ε, ε]

) 6= sf
(
S2, [−ε, ε]

)
, even in the case that

Ker
(
S1(0)

)
= Ker

(
S2(0)

) ⊂ V1 ∩ V2. On the other hand, if Wk(S1, 0) = Wk(S2, 0)
for all k ≥ 1, then obviously it must be n±k (S1, 0) = n±k (S2, 0) for all k ≥ 1, hence
sf

(
S1, [−ε, ε]

)
= sf

(
S2, [−ε, ε]

)
for ε > 0 small enough. This follows easily from the

6A bilinear form B on a Hilbert spaceH is said to be Fredholm if it is realized by a Fredholm operator onH.
Such notion does not indeed depend on the choice of a Hilbert space inner product onH.
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observation that the derivatives of Si coincide with the restriction to Vi of the derivatives
of S, i = 1, 2.

Assuming that S(t) has a degeneracy instant at t = 0 on H, it is an interesting question
to ask how to �nd a �minimal� closed subspace V ofH containing Ker

(
S(0)

)
and with the

property that the restriction of S(t) to V has the same partial signatures at t = 0. Denote by
vi(t), i = 1, . . . , N = dim

(
Ker(S(0))

)
, a smooth orthonormal family of unit eigenvectors

corresponding to the eigenvalues λi(t) of Si(t) such that λi(0) = 0. Examining the proof
of Proposition 2.9 suggests that the desired subspace V can be obtained by considering
the span of all the vectors vi(0), together with their derivatives v′i(0), v′′i (0), . . . , v

(ri)
i (0),

where i = 1, . . . , N and ri > 0 is such that λ
(ri−1)
i (0) and λ

(ri)
i (0) 6= 0. Such a space V is

�nite dimensional, and repeating the argument at each degeneracy instant of a real-analytic
path in F sa(H) we have obtained the following:
Proposition 2.21. Given any real-analytic path L : [a, b] → Lsa(H) there exists a �nite
dimensional subspace V of H such that, denoting by S(t) the bilinear form 〈L(t)·, ·〉 on
H and by S̃(t) its restriction to V , then S and S̃ have precisely the same degeneracy
instants in [a, b], and n±k (S, t0) = n±k (S̃, t0) for all degeneracy instant t0. In particular,
sf

(
S, [a, b]

)
= sf

(
S̃, [a, b]

)
. ¤

Example 2.22. Let us consider a real separable Hilbert space H, a self-adjoint isomor-
phism g : H → H and a g-symmetric Fredholm operator T : H → H, i.e., T is such
that 〈gT ·, ·〉 is a symmetric bilinear form on H; assume that 0 is (an isolated point) in the
spectrum of T . Consider the following real-analytic path of Fredholm self-adjoint opera-
tors on H: L(t) = gT − tg, t ∈ [−ε, ε]; then, t = 0 is an isolated degeneracy instant for
L. It is not hard to see that T has Fredholm index 0, that there exists n0 > 0 such that
Ker(Tn) = Ker(Tn0) for all n ≥ n0, with Ker(Tn0) a �nite dimensional subspace of
H (see Proposition 3.29). If S(t) denotes the symmetric bilinear form 〈L(t)·, ·〉 on H and
S̃(t) its restriction to Ker(Tn0), then n±k (S, 0) = n±k (S̃, 0) for all k ≥ 1. To see this ob-
serve that a sequence (u0, u1, . . . , uk) of vectors inH, with u0 ∈ Ker(T ), is a generalized
Jordan chain for S at t = 0 iff Tur = ur−1 for all r = 1, . . . , k. This in particular implies
T rur ∈ Ker(T ), i.e., ur ∈ Ker(T r+1) for all r, which proves our assertion.

3. ON THE MASLOV INDEX OF LAGRANGIAN PATHS

We will apply the result of Section 2 to the study of the Maslov index of a path in
the Lagrangian Grassmannian of a symplectic space. Our �rst goal is to give a general
de�nition of Maslov index for arbitrary continuous curves which is invariant by homo-
topies with endpoints varying in a stratum of the Maslov cycle and additive by concate-
nation. Such number will depend on the choice of a Lagrangian L0 that is used to de�ne
the Maslov cycle, except for the case of closed paths (Corollary 3.20). There are several
de�nitions of Maslov index available in the literature, not always equivalent. Duister-
maat's de�nition of Maslov index in [21] does not depend on the choice of L0, but it is
not additive by concatenation. A semi-integer valued Maslov index, which has the two
properties above has been introduced by Robbin and Salamon in [50] by considering �rst
regular curves having transversal intersections with the Maslov cycle and then extend-
ing by homotopy invariance. The de�nition of Maslov index given by de Gosson (see
[16, 17, 18, 19, 20]) is based on the notion of Leray's index for pairs in the universal cov-
ering of the Lagrangian Grassmannian Λ. Booss�Bavnbek and Furutani have given in [6]
a functional analytical de�nition of Maslov index, both in the �nite and in�nite dimen-
sional case, of a Fredholm Lagrangian paths. This is obtained by de�ning a one-parameter
operator family of operators associated to the path, whose spectrum oscillates on the unit
circle around eiπ in the complex plane, and giving an appropriate algebraic count of the
passages through a �xed gauge. The construction is done locally, and then patched together
following Phillips' de�nition of spectral �ow in [43]. A simple relation holds between the
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indices of Robbin/Salamon and Booss�Bavnbek/Furutani for smooth transversal paths (see
[6, Section 2]). We simplify greatly the approach of [6] using a van Kampen type theo-
rem for the fundamental groupoid of a topological space (Proposition 3.2), that reduces the
proof of the well-de�niteness of the Maslov index to a simple local compatibility condition
in the space of symmetric bilinear forms (Proposition 3.4). In turn, the latter compatibility
condition is proven as an immediate application of our partial signature theory; it should
also be emphasized that our construction allows to de�ne index functions taking values in
arbitrary groups. We start with an abstract result on how to construct group-valued homo-
morphisms on the fundamental groupoid of a topological space, and then we will study the
case of Lagrangian paths. Several other notions of Maslov index will be discussed in the
last part of the Section.
3.1. An abstract index theory for continuous paths. Let X be a topological space. We
denote by π(X) the fundamental homotopy groupoid of X , i.e., the set of all �xed-endpoint
homotopy classes [γ] of continuous paths γ : [0, 1] → X , endowed with the partial binary
operation of concatenation ¦, i.e., [γ] · [µ] = [γ ¦ µ], where γ ¦ µ is de�ned by γ ¦ µ(t) =
γ(2t), for t ∈ [

0, 1
2

]
and γ ¦µ(t) = µ(2t− 1), for t ∈ [

1
2 , 1

]
; obviously the concatenation

[γ] · [µ] is de�ned whenever γ(1) = µ(0). If γ : [a, b] → X is a continuous path de�ned on
an arbitrary compact interval [a, b], we will identify γ with the curve [0, 1] 3 t 7→ γ

(
t(b−

a)+a
)
, and we will write [γ] ∈ π(X). Given a group G then by a G-valued homomorphism

φ on π(X) we mean a map φ : π(X) → G such that φ
(
[γ] · [µ]

)
= φ

(
[γ]

)
φ
(
[µ]

)
, for all

[γ], [µ] ∈ π(X) with γ(1) = µ(0).
Example 3.1. Given an arbitrary map τ : X → G then one can de�ne a G-valued homo-
morphism on π(X) by setting φ

(
[γ]

)
= τ

(
γ(0)

)−1
τ
(
γ(1)

)
, for all [γ] ∈ π(X).

We will now discuss the existence (and the uniqueness) of a group valued homomor-
phism de�ned globally on the fundamental groupoid of a topological space, once that the
values of such homomorphism are given on �short� curves. The following proposition is a
van Kampen type result for the fundamental groupoid of a topological space; the proof pre-
sented takes inspiration on the construction of the spectral �ow given in [43, Proposition 3].
Recall that the classical statement of van Kampen's theorem in elementary algebraic topol-
ogy gives the fundamental group π1(X) of a topological space X as the quotient of a free
product of fundamentals groups π1(Ui), where {Ui}i∈I is an open cover of X . Such quo-
tient is characterized by a universal property concerning the existence and uniqueness of
an extension φ : π1(X) → G of a family of group homomorphisms φi : π1(Ui) → G,
provided that some compatibility assumption on the φi is satis�ed. This is precisely the
spirit of our fundamental groupoid version of this result:
Proposition 3.2. Let X be a topological space, G a group and X =

⋃
i∈I Ui an open

cover of X . Assume that it is given a G-valued homomorphism φi on π(Ui) for each i ∈ I
such that φi

(
[γ]

)
= φj

(
[γ]

)
for all [γ] ∈ π(Ui ∩ Uj) and all i, j ∈ I . Then, there exists a

unique G-valued homomorphism φ on π(X) such that φ
(
[γ]

)
= φi

(
[γ]

)
for all γ ∈ π(Ui)

and all i ∈ I .
Proof. Let γ : [0, 1] → X be a continuous curve; by compactness there exists a partition
0 = t0 < t1 < . . . < tN+1 = 1 of the interval [0, 1] and a map r : {0, 1, . . . , N} → I
such that γ

(
[tk, tk+1]

) ⊂ Ur(k) for all k = 0, . . . , N (the choice of both the partition and
the map r is highly non unique). De�ne:
(3.1) φ̃(γ) := φr(0)

([
γ|[t0,t1]

]) · φr(1)

([
γ|[t1,t2]

]) · . . . · φr(N)

([
γ|[tN ,tN+1]

])
;

in order to have a well-de�ned map on π(X) we need to show that the value φ̃(γ) does
not depend on the choice of the partition (tk)k and of the function r as above. In �rst
place, one observes that passing to a �ner partition does not change the value of φ̃, by
the concatenation multiplicativity of the maps φi. Secondly, if for some k it happens that
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FIGURE 1. The curves de�ned in the proof of Proposition 3.2

γ
(
[tk, tk+1]

) ⊂ Ui ∩ Uj , then φi

([
γ|[tk,tk+1]

])
= φj

([
γ|[tk,tk+1]

])
, so that the value of φ̃

does not depend on the choice of the function r. Finally, given two different partitions of
[0, 1], one can �nd a third partition which is �ner than both of them, and by what has been
observed, this implies that φ̃ is well de�ned.

Uniqueness is also clear, since the concatenation multiplicativity implies that (3.1) must
hold.

As to the homotopy invariance, observe �rst that the multiplicativity by concatenation
and the homotopy invariance of the φi's imply that:

• if γ is a constant curve, then φ̃(γ) = 0;
• if γ− denotes the backwards reparameterization of γ, then φ̃(γ−) = φ̃(γ)−1.

Assume that p, q are points of X and H : [0, 1] × [0, 1] → X is a continuous map with
H(s, 0) = p and H(s, 1) = q for all s ∈ [0, 1]. Set γ0 = H(0, ·) and γ1 = H(1, ·); we
want to prove that φ̃(γ0) = φ̃(γ1). Choose partitions 0 = s0 < s1 < . . . < sN+1 = 1
and 0 = t0 < t1 < . . . < tM+1 = 1 of the interval [0, 1] such that, for all k = 0, . . . , N
and all j = 0, . . . , M , the image H

(
[sk, sk+1] × [tj , tj+1]

)
is contained in some Ui. For

all k = 0, . . . , N + 1, set γsk
= H(sk, ·); we will prove that φ̃(γsk

)
= φ̃

(
γsk+1

)
for all k,

which will conclude the argument. De�ne the following curves (see Figure 1):

τk,j = H(·, tj)
∣∣∣
[sk,sk+1]

,

γk,j = γsk

∣∣
[tj ,tj+1]

, k = 0, . . . , N, j = 0, . . . , M,

and
γ̃sk

= γk,0 ¦ τk,1 ¦ τ−k,1 ¦ γk,1 ¦ τk,2 ¦ τ−k,2 ¦ . . . ¦ τk,M ¦ τ−k,M ¦ γk,M .

Clearly, φ̃(γsk
) = φ̃(γ̃sk

), because φ̃(τk,j ¦ τ−k,j) = 0 for all j. Moreover, γk,0 ¦ τk,1 is ho-
motopic with �xed endpoints to γk+1,0 in some Ui, τ−k,1¦γk,1¦τk,2 is homotopic with �xed
endpoints to γk+1,1 in some other Ui, etc., and τ−k,M ¦ γk,M is homotopic with �xed end-
points to γk+1,M in still some other Ui. Since the φi's are invariant by �xed endpoint ho-
motopies, the multiplicativity by concatenation once more implies that φ̃(γ̃sk

) = φ̃(γsk+1).
The desired map φ is thus obtained by setting φ

(
[γ]

)
= φ̃(γ). ¤

Example 3.3. Assume that X =
⋃

i∈I Ui is an open cover of X and that for each i ∈ I

one is given a map τi : Ui → G such that the map Ui ∩ Uj 3 g 7→ τi(g)−1τj(g) ∈ G is
constant on each arc-connected component of Ui ∩ Uj , for all i, j ∈ I . By Example 3.1
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and Proposition 3.2, there exists a unique G-valued homomorphism φ on π(X) such that
φ
(
[γ]

)
= τi

(
γ(0)

)−1
τi

(
γ(1)

)
for all γ ∈ π(Ui) and all i ∈ I .

3.2. Charts on the Lagrangian Grassmannian of a symplectic space. Throughout this
subsection, (V, ω) will denote a �nite dimensional symplectic space, i.e., V is a real vector
space, and ω is a nondegenerate skew-symmetric bilinear form on V ; set dim(V ) = 2n.
The symplectic group Sp(V, ω) is the closed subgroup of GL(V ) consisting of those linear
maps on V that preserve ω.

Recall that a Lagrangian subspace of V is an n-dimensional subspace L ⊂ V on which
ω vanishes. The set of all Lagrangian subspaces of V , denoted by Λ, has the structure of
a compact, real-analytic submanifold of the Grassmannian of all n-dimensional subspaces
of V . The dimension of Λ equals 1

2n(n + 1), and a real-analytic atlas on Λ is given as
follows.

For all L ∈ Λ and k ∈ {0, . . . , n}, set:

Λk(L) =
{
L′ ∈ Λ : dim(L ∩ L′) = k

}
;

in particular, Λ0(L) is the set of all Lagrangian subspaces that are transversal to L, and it
is a dense open subset of Λ. Given a pair L0, L1 ∈ Λ of complementary Lagrangians, i.e.,
L0 ∩ L1 = {0}, then one de�nes a map:

ϕL0,L1 : Λ0(L1) −→ Bsym(L0)

as follows. Any Lagrangian L ∈ Λ0(L1) is the graph of a unique linear map T : L0 → L1;
then, ϕL0,L1 is de�ned to be the restriction of the bilinear map ω(T ·, ·) to L0 × L0. It is
easy to see that, due to the fact that L is Lagrangian, such bilinear map is symmetric.
Observe that:

(3.2) Ker
(
ϕL0,L1(L)

)
= L ∩ L0, ∀L ∈ Λ0(L1).

The collection of all ϕL0,L1 , when (L0, L1) runs in the set of all pairs of complementary
Lagrangians, is a real-analytic atlas on Λ. If L1 and L′1 are complementary to a given L0,
then the transition function:

ϕL0,L′1 ◦ ϕ−1
L0,L1

: ϕL0,L1

(
Λ0(L′1)

) ⊂ Bsym(L0) −→ Bsym(L0)

is given by:

(3.3) ϕL0,L′1 ◦ ϕ−1
L0,L1

(B) = B ◦ (
Id + (π′0|L1) ◦ ρ−1

L0,L1
◦B

)−1
,

where π′0 : L0⊕L′1 → L0 is the projection onto the �rst summand, and ρL0,L1 : L1 → L∗0
is the map v 7→ ω(v, ·)|L0 , which is an isomorphism. Observe that in formula (3.3) the
bilinear form B is seen as a map L0 → L∗0. The map Id + (π′0|L1) ◦ ρ−1

L0,L1
◦ B is an

automorphism of L0 whose inverse, denoted by h, satis�es B ◦ h = h∗ ◦B; observe that h
is the identity on Ker(B).

Recall that every symplectic space is isomorphic IRn⊕IRn∗ endowed with the standard
symplectic form:

ω0

(
(v, α), (w, β)

)
= β(v)− α(w).

More generally, given Lagrangians L0, L1 ⊂ V with L0 ∩ L1 = {0}, then there exists a
symplectic isomorphism φ : V → IRn ⊕ IRn∗ (i.e., the pull-back φ∗ω0 coincides with ω)
such that φ(L0) = {0} ⊕ IRn∗ and φ(L1) = IRn ⊕ {0}.

3.3. Maslov index of a symplectic path. Let now L0 be a �xed Lagrangian in Λ.
The L0-Maslov index of a continuous curve γ with endpoints in Λ0(L0) can be de�ned

in terms of the �rst relative homology group of the pair
(
Λ,Λ0(L0)

)
(see [38, 46]). We will

give an alternative and more general de�nition of Maslov index in the case of continuous
curves in Λ with arbitrary endpoints.
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Proposition 3.4. Given Lagrangians L0, L1, L
′
1 in V with L1, L

′
1 ∈ Λ0(L0), then the

map:
Λ0(L1) ∩ Λ0(L′1) 3 L 7−→ o

n+
(
ϕL0,L′1(L)

)− o
n+

(
ϕL0,L1(L)

) ∈ Z
is constant on each connected component of the open set Λ0(L1) ∩ Λ0(L′1) ⊂ Λ.

Proof. In �rst place we observe that Ker
(
ϕL0,L′1(L)

)
= L ∩ L0 = Ker

(
ϕL0,L1(L)

)
,

hence
o
n+

(
ϕL0,L′1(L)

)− o
n+

(
ϕL0,L1(L)

)
= n+

(
ϕL0,L′1(L)

)− n+
(
ϕL0,L1(L)

)
.

As we have observed, it is not restrictive to assume that V = IRn ⊕ IRn∗ is the standard
symplectic space, L0 = {0} ⊕ IRn∗ and L1 = IRn ⊕ {0}. Then L′1 is of the form:

L′1 =
{
(v, Zv) : v ∈ IRn

}
,

where Z : IRn → IRn∗ is some symmetric linear map. Given L ∈ Λ0(L1), we set
B = ϕL0,L1(L) ∈ Bsym(IRn∗); it is easily checked that L ∈ Λ0(L′1) if and only if
Id− ZB is invertible and that B̃ = ϕL0,L′1(L) is given by:

(3.4) B̃ = B(Id− ZB)−1.

The proof will be completed once we show that n+(B̃) − n+(B) is constant on each
connected component of the open set B ⊂ Bsym(IRn∗) consisting of those B with Id−ZB

invertible, where B̃ is de�ned by (3.4). Given B0 and B1 in some connected component
of B then we can �nd a real-analytic curve B : [0, 1] → B, with B(0) = B0, B(1) = B1.
Setting B̃(t) = B(t) ◦ h(t), with h(t) :=

(
Id−ZB(t)

)−1, then B̃ : [0, 1] → Bsym(IRn∗)
is a real-analytic curve of symmetric bilinear forms; observe that h(t) is the identity on
Ker(B(t)) for all t ∈ [0, 1]. So, by Proposition 2.19, n±k (B, t0) = n±k (B̃, t0), σk(B, t0) =
σk(B̃, t0) for all t0 ∈ [0, 1] and for all k ∈ IN . From Proposition 2.9, part (3) it follows
that:

n+
(
B(1)

)− n+
(
B(0)

)
= n+

(
B̃(1)

)− n+
(
B̃(0)

)
.

Hence n+
(
B̃(1)

)−n+
(
B(1)

)
= n+

(
B̃(0)

)−n+
(
B(0)

)
, which concludes the proof. ¤

From Proposition 3.2, Example 3.3 and Proposition 3.4 we obtain immediately:

Corollary 3.5. For all L0 ∈ Λ, there exists a unique Z-valued groupoid homomorphism
µL0 on π(Λ) such that:

(3.5) µL0

(
[γ]

)
= o

n+
(
ϕL0,L1(γ(1))

)− o
n+

(
ϕL0,L1(γ(0))

)

for all continuous curve γ : [0, 1] → Λ0(L1) and for all L1 ∈ Λ0(L0). ¤

Remark 3.6. From what has been observed in the proof of Proposition 3.4, it is clear that
the result of Corollary 3.5 holds also if one replaces the extended coindex o

n+ with the
coindex n+ in (3.5). When the endpoints of γ are transversal to L0, then such distinction
does not affect the value of µL0 , while in the case of degenerate endpoints the function
µL0 obtained using the coindex would give a different value. The choice of one or another
de�nition is merely a matter of personal taste; on the other hand, such choice should be
made consistently with the choice of a notion of spectral �ow in the case of degenerate
endpoints. In our case, the Maslov index de�ned in Corollary 3.5 is such that, when applied
to the case of Riemannian geodesics (see Subsection 4.2), it gives the total number of
conjugate points along the geodesic, including that possibly occurring at the �nal instant.

De�nition 3.7. Given any continuous curve γ in Λ, the integer µL0(γ) := µL0([γ]) will
be called the L0-Maslov index (or simply, the Maslov index when the choice of L0 is clear
from the context) of the curve γ.
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Observe that the homotopy invariance implies, in particular, that µL0(γ) is independent
on the parameterization of γ. We collect in the following statement the main properties of
the integer valued map µL0 , whose proof follows almost immediately from the de�nition:

Lemma 3.8. The Maslov index µL0 satis�es the following properties:
(1) replacing the symplectic form ω by −ω produces a change in the sign of µL0 ;
(2) given a continuos curve γ : [a, b] → Λ, if dim

(
γ(t) ∩ L0

)
is constant on [a, b],

then µL0(γ) = 0;
(3) if H : [a, b]× [c, d] → Λ is a continuous map, then:

µL0

(
t 7→ H(t, c)

)
+ µL0

(
s 7→ H(b, s)

)
= µL0

(
t 7→ H(t, d)

)
+ µL0

(
s 7→ H(a, s)

)
;

(4) (symplectic invariance) if φ : (V, ω) → (V ′, ω′) is a symplectomorphism and
γ : [a, b] → Λ(V, ω) is continuous, then:

µL0(γ) = µφ(L0)

(
φ ◦ γ

)
;

(5) (symplectic additivity) if γ : [a, b] → (V, ω) and γ̃ : [a, b] → (Ṽ , ω̃) are continu-
ous, L0 ∈ Λ(V, ω) and L̃0 ∈ Λ(Ṽ , ω̃), then

µL0⊕eL0

(
γ ⊕ γ̃) = µL0(γ) + µeL0

(γ̃). ¤

It will be useful to single out the following additional properties of the Maslov index:

Corollary 3.9. The Maslov index µL0 satis�es also the following:
(a) If γ1, γ2 : [a, b] → Λ are continuous curves that are homotopic by a homotopy

with free endpoints in some Λk(L0), i.e., there exists a continuous map H : [0, 1]×
[a, b] → Λ such that H(0, ·) = γ1, H(1, ·) = γ2, and with dim

(
H(s, a) ∩ L0

)
and dim

(
H(s, b) ∩ L0

)
constant on [0, 1], then µL0(γ1) = µL0(γ2);

(b) if γ1 and γ2 are continuous loops in Λ that are freely homotopic, then µL0(γ1) =
µL0(γ2);

(c) if [a, b] 3 t 7→ φ(t) is a continuous curve in the symplectic group Sp(V, ω) such
that φ(t)

(
L0) = L0 for all t, and γ : [a, b] → Λ is continuous, then:

µL0(γ) = µL0

(
t 7→ φ(t)(γ(t))

)
.

Proof. (a) and (b) follow easily from part (3) of Lemma 3.8. Observe indeed that, if
H denotes the given homotopy between γ1 and γ2, then the curves s 7→ H(a, s) and
s 7→ H(b, s) coincide in the case (b) of freely homotopic loops; they are curves in Λk(L0)
for some �xed k in the case (a), so their Maslov index vanishes by Lemma 3.8 part (2).

To prove (c), observe that the curve t 7→ φ(t)(γ(t)) is homotopic to the curve t 7→
φ(a)(γ(t)) by the homotopy:

H(s, t) = φ
(
(1− s)t

)(
γ(t)

)
.

Since φ(t)(L0) = L0 for all t, by part (4) of Lemma 3.8 it follows that

µL0

(
t 7→ φ(a)(γ(t))

)
= µL0

(
t 7→ φ(t)(γ(t))

)
.

Moreover, the above homotopy is by curves with endpoints varying in some �xed Λk(L0),
and the conclusion follows from part (a). ¤

The above de�nition of Maslov index generalizes that in [38, 46], where µL0 had been
de�ned in terms of the �rst relative homology group H1(Λ, Λ0(L0)). Some properties
of µL0 that were discussed in [38, 46] using homological techniques and functoriality
properties will have to be reproven in this more general context; to this aim we will now
discuss a method for computing µL0(γ) when γ is a real-analytic curve.
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3.4. Partial signatures and Maslov index. We have seen that the computation of the
Maslov index of a curve in Λ is reduced using local charts to the study of the jumps of
the extended coindex of curves of symmetric bilinear forms, and this is where the result of
Proposition 2.9 comes about.

Assume that γ : [a, b] → Λ is a smooth curve. From (3.2) it is clear that the jumps of
the coindex of ϕL0,L1(γ) occur precisely at those instants t ∈ ]a, b[ when γ(t) intersects
the set:

ΣL0 :=
⋃

k≥1

Λk(L0).

We will call ΣL0 the Maslov cycle with vertex at L0. We remark here that each Λk(L0) is
an embedded submanifold of Λ, but that ΣL0 is not a submanifold of Λ. Assume that t0 ∈
]a, b[ is an isolated intersection of γ with ΣL0 and choose any Lagrangian L1 ∈ Λ0(L0)
which is transversal also to γ(t0). By continuity, L1 is transversal to γ(t) for t near t0,
and we can de�ne a smooth curve [t0 − ε, t0 + ε] 3 t 7→ ϕL0,L1

(
γ(t)

) ∈ Bsym(L0), for
ε > 0 small enough. As we have observed, such a curve has an isolated degeneracy instant
at t = t0, and we can de�ne the sequences:

n−k (γ, t0; L0, L1),
o
n−k (γ, t0;L0, L1), n+

k (γ, t0;L0, L1),
o
n+

k (γ, t0; L0, L1), σk(γ, t0; L0, L1), k ≥ 1,

respectively as the partial (extended) indexes, partial (extended) coindexes and partial sig-
natures of the curve of symmetric bilinear forms ϕL0,L1 ◦ γ at t = t0.

Lemma 3.10. The integers n±k (γ, t0; L0, L1), o
n±k (γ, t0;L0, L1) and σk(γ, t0; L0, L1) do

not depend on the choice of the Lagrangian L1.

Proof. Choose two Lagrangian spaces L1, L
′
1 ∈ Λ0

(
γ(t0)

) ∩ Λ0(L0) and set L(t) =
ϕL0,L1

(
γ(t)

)
, L̃(t) = ϕL0,L′1

(
γ(t)

)
for t suf�ciently near t0.

Using formula (3.3) we get that L̃(t) = L(t)h(t), where h(t) is a curve of automor-
phisms of L0 such that h(t0) is the identity on Ker

(
L(t0)

)
= γ(t0) ∩ L0. The conclusion

follows immediately from Proposition 2.19. ¤

We are now entitled to talk about the L0-partial signatures n±k (γ, t0; L0), o
n±k(γ, t0;L0)

and σk(γ, t0; L0) at an isolated intersection of γ with ΣL0 , without specifying the choice
of a Lagrangian L1.

Proposition 3.11. Let γ : [a, b] → Λ be a real-analytic curve which is not entirely con-
tained in the Maslov cycle ΣL0 . Then, the L0-Maslov index of γ is given by:

(3.6)

µL0(γ) =
∑

t0∈γ−1
(
ΣL0

)
t0∈]a,b[


∑

k≥1

σ2k−1

(
γ, t0; L0)


 + dim

(
γ(b) ∩ L0

)− dim
(
γ(a) ∩ L0

)

+
∑

k≥1

n+
k (γ, a; L0)−

∑

k≥1

(
n−2k−1(γ, b; L0) + n+

2k(γ, b;L0)
)
,

where all the sums on the right hand side of (3.6) have a �nite number of non zero terms.

Proof. In �rst place we observe that γ has at most a �nite number of intersections with
ΣL0 ; namely, in local coordinates ϕL0,L1 , such intersections correspond to zeroes of the
real-analytic function t 7→ det

(
ϕL0,L1(γ(t)

)
. Such function is not identically zero be-

cause γ is not entirely contained in the Maslov cycle.
From the de�nition, given such a curve γ, its Maslov index µL0(γ) is given by the sum

of the jumps of the coindex function of ϕL0,L1 ◦ γ at the instants in γ−1
(
ΣL0

)
, and the
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conclusion follows readily from part (3) of Proposition 2.9, observing that
Ker

(
ϕL0,L1 ◦ γ(t)

)
= γ(t) ∩ L0. ¤

We have proven in Corollary 3.9 that, given a continuous curve of Lagrangians γ :
[a, b] → Λ and a continuous curve of symplectomorphisms φ : [a, b] → Sp(V, ω) such that
φ(t)(L0) = L0 for all t, the L0-Maslov index of the curves t 7→ γ(t) and t 7→ φ(t)(γ(t))
coincide. We will conclude this subsection with the proof that, in the smooth case, also all
the partial signatures of the curves t 7→ γ(t) and t 7→ φ(t)(γ(t)) at each intersection with
the Maslov cycle coincide:
Lemma 3.12. Let γ : [a, b] → Λ a continuous curve and t0 ∈ [a, b] such that γ(t0) ∈
ΣL0 , and let φ : [a, b] → Sp(V, ω) be a smooth curve of symplectomorphisms such that
φ(t)(L0) = L0 for all t. Denote by γ̃ the curve in Λ given by γ̃(t) = φ(t)

(
γ(t)

)
; then

γ̃(t0) ∈ ΣL0 and all the partial signatures of γ̃ at t0 coincide with those of γ.

Proof. Since φ(t0) is an isomorphism and φ(t0)(L0) = L0, then φ(t0)
(
Λk(L0)

)
=

Λk(L0) for all k, hence γ̃(t0) ∈ ΣL0 . To prove the invariance of the partial signatures, let
us choose a Lagrangian L1 ∈ Λ0(L0) ∩ Λ0

(
γ(t0)

)
; observe that then L′1 = φ(t0)(L1) ∈

Λ0(L0)∩Λ0

(
φ(t0)(γ(t0))

)
. The partial signatures of γ at t0 are computed using the curve

of symmetric bilinear forms B(t) = ϕL0,L1 ◦ γ(t) on L0, while the partial signatures of γ̃

at t0 are computed using the curve B̃(t) = ϕL0,L′1 ◦ γ̃(t), for t near t0.
Set C(t) = ϕL0,φ(t)(L1)

(
φ(t)(γ(t))

) ∈ Bsym(L0); an immediate calculation using the
very de�nition of the charts ϕL0,L1 shows that C(t) is the pull-back of the bilinear form
ϕL0,L1 ◦ γ(t) by the isomorphism φ(t)−1 : L0 → L0. By Proposition 2.16, the curves
B(t) and C(t) have the same partial signatures at the degeneracy instant t0.

Recalling formula (3.3), we compute:
B̃(t) = ϕL0,L′1 ◦ γ̃(t) = ϕL0,L′1 ◦ ϕ−1

L0,φ(t)(L1)

(
C(t)

)
= C(t)

(
Id + Z(t)C(t)

)−1
,

where Z(t) : L∗0 → L0 is a homomorphism depending smoothly on t. Observing that
h(t) =

(
Id + Z(t)C(t)

)−1 is the identity on Ker
(
C(t)

)
, the conclusion follows from

Proposition 2.19. ¤
3.5. In�nite dimensional Lagrangian Grassmannians. Let us now consider an in�nite
dimensional, separable real Hilbert space H with inner product 〈·, ·〉 endowed with a sym-
plectic form ω; let J : H → H be the corresponding almost complex structure, i.e.,
ω = 〈J ·, ·〉. Then, J is an anti-symmetric bounded operator on H such that J2 = −1. A
(necessarily closed) subspace L of H will be called Lagrangian if L = L⊥ω = (JL)⊥.

Recall that a pair (V1, V2) of closed subspaces ofH is called a Fredholm pair if V1 ∩V2

is �nite dimensional and if the sum V1 + V2 is closed and it has �nite codimension in H.
Given a pair (L0, L1) of complementary Lagrangian subspaces ofH (i.e., L0∩L1 = (0)

and L0 + L1 = H), then one can de�ne a real-analytic chart ϕL0,L1 on Λ0(L1) and taking
values in Lsa(L0) by setting ϕL0,L1(L) = P0JS, where S : L0 → L1 is the unique
bounded operator whose graph in L0 ⊕ L1 is L, and P0 : H → L0 is the orthogonal
projection.

Observe that Ker
(
ϕL0,L1(L)

)
= L ∩ L0; more generally, it is not hard to prove that

(L0, L) is a Fredholm pair if and only if ϕL0,L1(L) ∈ F sa(L0) for some, hence for all,
L1 ∈ Λ0(L0) ∩ Λ0(L). In particular, the set FΛ of all Lagrangian subspaces L of H
such that (L0, L) is Fredholm, is an open submanifold of the manifold Λ of all Lagrangian
subspaces of H.7 The entire theory described in subsection 3.2 concerning the Lagrangian
Grassmannian of a symplectic space extends from the �nite dimensional case to the case
of the Fredholm Lagrangian Grassmannian of an in�nite dimensional symplectic space; in
particular, formulas of the type (3.3) hold for the transition maps ϕL0,L′1 ◦ ϕ−1

L0,L1
.

7In the in�nite dimensional case, the full Lagrangian Grassmannian Λ is contractible (see for instance [42]).
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In order to de�ne the notion of Maslov index for continuous paths in FΛ, we prove the
analogue of Corollary 3.5 for the in�nite dimensional case:

Proposition 3.13. There exists a uniqueZ-valued groupoid homomorphism µL0 on π(FΛ)
such that:
(3.7) µL0

(
[γ]

)
= sf

(
ϕL0,L1 ◦ γ, [a, b]

)
,

for all Lagrangian L1 complementary to L0 and for all continuous curve γ : [a, b] → FΛ
having image contained in Λ0(L1).

Proof. Using the result of Proposition 3.2, it suf�ces to show that the right hand side in
formula (3.7) gives a well de�ned Z-valued groupoid homomorphism on π

(
Λ0(L1)

)
, and

that
sf

(
ϕL0,L1 ◦ γ, [a, b]

)
= sf

(
ϕL0,L′1 ◦ γ, [a, b]

)

if γ has image in Λ0(L1) ∩ Λ0(L′1).
This last equality follows easily from the formula of the transition maps (3.3) and the

corresponding invariance property for the spectral �ow stated in Corollary 2.20.
As to the �rst part of the proof, the claim is equivalent to the fact that the spectral

�ow is invariant by �xed-endpoints homotopies and additive by concatenation. These facts
are proven in [28] in the case that γ has endpoints in Λ0(L0), i.e., that ϕL0,L1 ◦ γ has
invertible endpoints. The very same proof in [28], which uses formula (2.8) and it is based
on an argument of homotopy lifting in �ber bundles, holds for the general case of possibly
degenerate endpoints. ¤

Following closely the theory in subsection 3.4 one de�nes partial indexes, coindexes
and signatures at an isolated intersection of a smooth curve γ : [a, b] → FΛ with the
Maslov cycle ΣL0 , and as in the �nite dimensional case one obtains the following:

Proposition 3.14. Let γ : [a, b] → FΛ be a real-analytic curve whose image is not entirely
contained in the Maslov cycle. Then, the Maslov index µL0(γ) is given by (3.6). ¤
3.6. On the notion of Maslov index for pairs of Lagrangian paths. There exists in the
literature a slightly different notion of Maslov index for pairs (γ1, γ2) of continuous curves
γ1, γ2 : [a, b] → Λ (see for instance [9]), as an integer valued measure of the set of instants
t ∈ [a, b] at which the Lagrangians γ1(t) and γ2(t) are not transversal. Using our partial
signatures theory, we will discuss below the de�nition of Maslov index for such pairs;
we will consider, as in [9], the case of arbitrary pairs (γ1, γ2) without any transversality
assumption at the endpoints.

For all L0 ∈ Λ, consider the real-analytic �bration βL0 : Sp(2n, IR) −→ Λ:
(3.8) βL0(φ) = φ(L0);

given any curve γ : [a, b] → Λ of class Ck, k = 1, . . . ,∞, ω, it can be lifted to a curve
ψ : [a, b] → Sp(2n, IR) of class Ck, i.e., γ(t) = ψ(t)(L0) for all t ∈ [a, b]. We will call
such a curve ψ a L0-lifting of γ. Observe that, given two curves γ1, γ2 : [a, b] → Λ and
any L0-lifting ψ : [a, b] → Sp(V, ω) of γ2, the non transversality instants for the curves
γ1 and γ2 correspond to the intersections of the curve t 7→ ψ(t)−1(γ1(t)) with the Maslov
cycle ΣL0 .

In order to de�ne the Maslov index of a pair (γ1, γ2) one needs the following:

Lemma 3.15. Let L0 ∈ Λ be �xed, let (γ1, γ2) : [a, b] → Λ × Λ be a pair of continuous
curves in Λ, and let ψ : [a, b] → Sp(2n, IR) be any L0-lifting of γ2. Then, the Maslov
index µL0

(
t 7→ ψ(t)−1(γ1(t))

)
does not depend on the choice of ψ. Moreover, if L̃0 is

another �xed Lagrangian and ψ̃ : [a, b] → Sp(2n, IR) is a continuous curve such that
γ2(t) = ψ̃(t)(L̃0), then

µL0

(
t 7→ ψ(t)−1γ1(t)

)
= µeL0

(
t 7→ ψ̃(t)−1γ1(t)

)
.
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Likewise, if γ1 and γ2 are smooth curves, and t0 is an isolated non transversality instant
for γ1 and γ2, then the L0-partial signatures of the curve t 7→ ψ(t)−1γ1(t) at t = t0 do
not depend on the choice of the Lagrangian L0 and of the L0-lifting ψ of γ2.

Proof. If ψ1, ψ2 : [a, b] → Sp(2n, IR) are any two continuous L0-liftings of γ2, then
clearly φ(t) = ψ2(t)−1ψ1(t) is a continuous curve in Sp(2n, IR) such that φ(t)(L0) = L0

for all t. Using part (c) of Lemma 3.9 we obtain:

µL0

(
t 7→ ψ2(t)−1(γ1(t))

)
=µL0

(
t 7→ φ(t)ψ1(t)−1(γ1(t))

)
=µL0

(
t 7→ ψ1(t)−1(γ1(t))

)
,

which proves the independence on the lifting.
The proof of the second part of the statement follows from the symplectic invariance

of the Maslov index (part (4) of Lemma 3.8). Namely, choose a symplectomorphism h ∈
Sp(2n, IR) such that L0 = h(L̃0), let ψ̃ : [a, b] → Sp(2n, IR) be a continuous L̃0-lifting
of γ2(t), and set ψ(t) = ψ̃(t)h−1, so that ψ is an L0-lifting of γ2(t). Then:

µL0

(
t 7→ ψ(t)−1(γ1(t))

)
= µL0

(
t 7→ hψ̃(t)−1(γ1(t))

)

= µh−1(L0)

(
t 7→ ψ̃(t)−1(γ1(t))

)
= µeL0

(
t 7→ ψ̃(t)−1(γ1(t))

)
,

which concludes the proof of the �rst part of the statement. The proof of the last statement
is totally analogous, and it uses the invariance property of the partial signatures discussed
in Lemma 3.12. ¤

We can now give the following:

De�nition 3.16. The Maslov index µ(γ1, γ2) of a pair (γ1, γ2) : [a, b] → Λ of continuous
curves in Λ is the L0-Maslov index of the curve t 7→ ψ(t)−1γ2(t), where L0 ∈ Λ is
any �xed Lagrangian and ψ : [a, b] → Sp(V, ω) is any L0-lifting of γ2. If γ1 and γ2

are smooth and t0 ∈ [a, b] is an isolated non transversality instant for γ1 and γ2, then the
partial signatures of the pair (γ1, γ2) at t = t0, denoted by n±k (γ1, γ2, t0), o

n±k (γ1, γ2, t0)
and σk(γ1, γ2, t0), are de�ned as the corresponding L0-partial signatures of the symplectic
path t 7→ ψ(t)−1(γ2(t)) at t = t0, where L0 is any Lagrangian and ψ : [a, b] → Sp(V, ω)
any smooth L0-lifting of γ2.

The Maslov index of a pair (γ1, γ2) of continuous curves in the Lagrangian Grassman-
nian of a symplectic space (V, ω) is better described in terms of the Maslov index of a single
curve in a suitably �doubled� symplectic space V 2. Given (V, ω), denote by (V 2, ω2) the
symplectic space V ⊕ V endowed with the symplectic form ω2 = ω ⊕ (−ω):

ω2((v1 ⊕ v2), (v3 ⊕ v4)) = ω(v1, v3)− ω(v2, v4).

Clearly, if L1, L2 are two Lagrangians in (V, ω), then L1 ⊕ L2 is Lagrangian in (V 2, ω2),
i.e., there is an injection Λ(V, ω) × Λ(V, ω) into Λ(V 2, ω2); moreover, the diagonal ∆ ⊂
V ⊕ V is Lagrangian in (V 2, ω2).

We will look at the Maslov index of curves in Λ(V 2, ω2) computed relatively to the
Lagrangian ∆. An easy calculations shows that, if L0 ∈ Λ(V, ω) and γ : [a, b] → Λ(V, ω)
is continuous, then,

(3.9) µ∆

(
t 7→ γ(t)⊕ L0

)
= µL0

(
t 7→ γ(t)

)
.

Proposition 3.17. Let γ1, γ2 : [a, b] → Λ(V, ω) be a pair of continuous curves; then,

(3.10) µ(γ1, γ2) = µ∆(γ1 ⊕ γ2).

Moreover, if γ1 and γ2 are smooth and if t0 ∈ [a, b] is an isolated non transversality instant
for γ1 and γ2, then the partial signatures of the pair (γ1, γ2) at t = t0 coincide with the
corresponding ∆-partial signatures of the curve t 7→ γ1(t)⊕ γ2(t) ∈ Λ(V 2, ω2).
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Proof. Choose a Lagrangian L0 ∈ Λ(V, ω) and a continuous L0-lifting φ : [a, b] →
Sp(V, ω) of γ2(t). Clearly, φ(t)−1⊕φ(t)−1 ∈ Sp(V 2, ω2) and φ(t)−1⊕φ(t)−1(∆) = ∆
for all t. Hence, using part (c) of Corollary 3.9 and formula (3.9), we get:

µ∆(γ1 ⊕ γ2) = µ∆

(
t 7→ φ(t)−1(γ1(t))⊕ φ(t)−1(γ2(t))

)

= µ∆

(
t 7→ φ(t)−1(γ1(t))⊕ L0

)
= µL0

(
t 7→ φ(t)−1(γ1(t))

)
= µ(γ1, γ2).

This proves the �rst statement of the thesis; the last statement is proven similarly, using
Lemma 3.12. ¤

We will collect below a few properties of the map (γ1, γ2) 7→ µ(γ1, γ2):

Proposition 3.18. The Maslov index for pairs of curves in Λ satis�es the following:
(1) the induced map µ : π(Λ)⊕ π(Λ) → Z is a groupoid homomorphism;
(2) µ is anti-symmetric: µ(γ1, γ2) = −µ(γ2, γ1);
(3) if γ : [a, b] → Λ is a continuous curve and L0 ∈ Λ is �xed, then µ(γ, L0) =

µL0(γ).

Proof. (1) is proven observing that µ = µ∆ ◦ i, where i : π(Λ)⊕ π(Λ) → π(Λ×Λ) is the
groupoid homomorphism induced by the immersion Λ(V, ω)× Λ(V, ω) ↪→ Λ(V 2, ω2).

(2) follows from (1) and (4) of Lemma 3.8, observing that the map V 2 3 x ⊕ y 7→
y ⊕ x ∈ V 2 is an anti-symplectomorphism that preserves ∆.

(3) follows immediately from Proposition 3.17 and formula (3.9). ¤

The homotopy invariance of the Maslov index for pairs of Lagrangian paths can be used
to obtain a series of interesting facts, otherwise not so evident, about the Maslov index for
single curves in Λ. Here is an example:

Lemma 3.19. Let γ1, γ2 : [a, b] → Λ be a pair of continuous curves. The following
equality holds:
(3.11) µγ1(a)(γ2)− µγ1(b)(γ2) = µγ2(b)(γ1)− µγ2(a)(γ1).

Proof. Consider the continuous map
[a, b]× [a, b] 3 (s, t) 7−→ H(s, t) = γ1(s)⊕ γ2(t) ∈ Λ(V 2, ω2)

and apply part (3) of Lemma 3.8. The conclusion follows easily from Proposition 3.18. ¤

Corollary 3.20. If γ : [a, b] → Λ is a continuous loop, then the value of µL0(γ) does not
depend on the choice of L0.

Proof. Choose any two Lagrangians L0, L1 ∈ Λ, and any continuous curve γ2 : [a, b] → Λ
with γ2(a) = L0 and γ2(b) = L1. Set γ1 = γ and apply Lemma 3.19 to γ1 and γ2. Since
γ1 is a loop, the left hand side of (3.11) vanishes, yielding:

µL0(γ) = µL1(γ),

which was to be proven. ¤

3.7. On the Maslov triple and four-fold indexes. Let us now discuss a different notion of
Maslov index, originally due to Kashiwara (see [36]), and further investigated by Cappell,
Lee and Miller in [9, Section 8].

Assume that (V, ω) is a �xed (�nite dimensional) symplectic space; given three La-
grangians L1, L2, L3 ∈ Λ(V, ω), the Maslov triple index τV (L1, L2, L3) is de�ned as the
signature of the (symmetric bilinear form associated to the) quadratic form Q : L1⊕L2⊕
L3 → IR given by:

Q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1).

It is proven in [9, Section 8] that τV is the unique integer valued map on Λ × Λ × Λ
satisfying the following properties:
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[P1] (skew symmetry) If σ is a permutation of the set {1, 2, 3},
τV (Lσ(1), Lσ(2), Lσ(3)) = sign(σ) τV (L1, L2, L3);

[P2] (symplectic additivity) given symplectic spaces (V, ω), (Ṽ , ω̃), and Lagrangians
L1, L2, L3 ∈ Λ(V, ω), L̃1, L̃2, L̃3 ∈ Λ(Ṽ , ω̃), then:

τV⊕eV (L1 ⊕ L̃1, L2 ⊕ L̃2, L3 ⊕ L̃3) = τV (L1, L2, L3) + τeV (L̃1, L̃2, L̃3);

[P3] (symplectic invariance) if φ : (V, ω) → (Ṽ , ω̃) is a symplectomorphism, then:
τV (L1, L2, L3) = τeV (φ(L1), φ(L2), φ(L3));

[P4] (normalization) if V = IR2 is endowed with the canonical symplectic form8, and
L1 = IR(1, 0), L2 = IR(1, 1), L3 = IR(0, 1), then

τV (L1, L2, L3) = 1.

We will now proceed to a geometrical description of the triple index τV using the notion
of Maslov index for paths; we will introduce to this aim a four-fold index, i.e. a map

q : Λ× Λ× Λ× Λ −→ Z.

Lemma 3.21. Given four Lagrangians L0, L1, L
′
0, L

′
1 ∈ Λ and any continuous curve

γ : [a, b] → Λ such that γ(a) = L′0 and γ(b) = L′1, then the value of the quantity
µL1(γ)− µL0(γ) does not depend on the choice of γ.

Proof. An easy application of Corollary 3.20. ¤

An analogous result has been proven by Robbin and Salamon for their half-integer
valued Maslov index (see [50, Theorem 3.5]). We are now entitled to give the following:

De�nition 3.22. Given four Lagrangians L0, L1, L
′
0, L

′
1 ∈ Λ, the four-fold Maslov index

q(L0, L1; L′0, L
′
1) is the integer number µL1(γ) − µL0(γ), where γ : [a, b] → Λ is any

continuous curve with γ(a) = L′0 and γ(b) = L′1.

The four-fold Maslov index q, also known in the literature as the Hörmander's index,
satis�es some symmetries that resemble those satis�ed by the curvature tensor of a sym-
metric connection:

Proposition 3.23. Let L0, L1, L
′
0, L

′
1, L ∈ Λ be �ve Lagrangians. The following identities

hold:
(a) q(L0, L1;L′0, L

′
1) = −q(L1, L0;L′0, L

′
1);

(b) q(L0, L1;L′0, L
′
1) = −q(L0, L1;L′1, L

′
0);

(c) q(L0, L1;L′0, L
′
1) = −q(L′0, L

′
1;L0, L1);9

(d) q(L0, L1;L′0, L) + q(L0, L1; L,L′1) = q(L0, L1; L′0, L
′
1).

Proof. (a) and (b) are obvious by the de�nition of q, while (d) is simply the additivity by
concatenation of the Maslov index. Part (c) follows easily from Lemma 3.19. ¤

A whole series of different identities satis�ed by the four-fold index q are easily ob-
tained by combining the equalities above; for instance:
(3.12) q(L0, L1; L′0, L

′
1) = −q(L′1, L

′
0; L1, L0).

8i.e., ω((x1, y1), (x2, y2)) = x1y2 − x2y1
9the curvature tensor R of a symmetric connection satis�es the identity

R(x0, x1; x′0, x′1) = R(x′0, x′1; x0, x1),

and in turn, such symmetry leads to the Bianchi identity for R. In the case of the Maslov four-fold index, the
anti-symmetry (c) leads to the cocycle identity (3.15).
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We can now establish the relation between the four-fold Maslov index q and the Maslov
triple index τV . Let us de�ne q : Λ× Λ× Λ → Z by:

(3.13) q(L0, L1, L2) := q(L0, L1; L2, L0).

Observe that the function q is completely determined by q, because of the following iden-
tity:

(3.14) q(L0, L1; L′0, L
′
1) = q(L0, L1;L′0, L0) + q(L0, L1; L0, L

′
1)

= q(L0, L1, L
′
0)− q(L0, L1, L

′
1),

however, the symmetries of the four-fold Maslov index are easier to detect thanks to the
clear geometrical meaning of q.

Proposition 3.24. The map q coincides with the Maslov triple index τV .

Proof. By uniqueness, it suf�ces to prove that q satis�es the properties [P1], [P2], [P3] and
[P4] above. [P2] and [P3] are easily checked using respectively the symplectic additivity
and the symplectic invariance of the Maslov index of paths. [P4] is also easily checked by
an explicit calculation, whose details are omitted. Property [P1], the skew-symmetry, is the
non obvious part of the statement; it suf�ces to prove the two equalities q(L0, L1, L2) =
−q(L0, L2, L1) and q(L0, L1, L2) = −q(L1, L0, L2). The �rst of the two equalities is
obtained using (3.12), while the second is obtained as follows:

q(L1, L0, L2) = q(L1, L0; L2, L1)

= q(L1, L0; L2, L0) + q(L1, L0;L0, L1) = q(L1, L0; L2, L0) = −q(L0, L1, L2).

This concludes the proof. ¤

Using Proposition 3.23, it is easy to check that q satis�es the following cocycle identity
(see [9, p. 163]):

(3.15) q(L1, L2, L3) = q(L1, L2, L4) + q(L2, L3, L4) + q(L3, L1, L4).

Let us conclude our discussion on the triple and the four-fold index with the observation
that it is possible to give an alternative construction of the Maslov index for Lagrangian
paths using only the function q (or q). Namely, assume that one is given two �xed La-
grangians L0, L1 ∈ Λ and a continuous curve γ : [a, b] → Λ whose image is contained in
Λ0(L1), i.e., γ(t) is transversal to L1 for all t ∈ [a, b]. In this case µL1(γ) = 0, and thus the
quadruple index q(L0, L1; γ(a), γ(b)) coincides with the negative Maslov index−µL0(γ).
In the general case, the interval [a, b] admits a �nite partition t0 = a < t1 < . . . < tM = b
such that γ

(
[ti−1, ti]

)
is contained in Λ0(Li), for some Li ∈ Λ and i ∈ {1, . . . ,M}, and

by the concatenation additivity:

(3.16) µL0(γ) = −
M∑

i=1

q
(
L0, Li; γ(ti−1), γ(ti)

)
.

Clearly, the choice of the partition (ti)M−1
i=1 and of the Lagrangians (Li)M

i=1 is not unique.
Using (3.14) we get:

(3.17) µL0(γ) =
M∑

i=1

[
q
(
L0, Li, γ(ti)

)− q
(
L0, Li, γ(ti−1)

)]
.

3.8. Maslov index of symplectic paths. Let Φ : [a, b] → Sp(V, ω) be a continuous curve;
it is easy to see that, for each t ∈ [a, b], the graph Gr

(
Φ(t)

)
is a Lagrangian subspace of the

symplectic space (V 2, ω2) de�ned in Subsection 3.6. We can therefore give the following:
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De�nition 3.25. Given a continuous curve Φ in the symplectic group Sp(V, ω), the Maslov
index iMaslov(Φ) of Φ is the ∆-Maslov index of the curve t 7→ Gr

(
Φ(t)

) ∈ Λ(V 2, ω2):

iMaslov(Φ) := µ∆

(
t 7→ Gr(Φ(t))

)
.

The ∆-Maslov index of a symplectic path Φ is also known in the literature as the
Conley�Zehnder index of Φ (see [12, 50, 52]).

Recall that each L0 ∈ Λ(V, ω) gives a smooth map βL0 : Sp(V, ω) → Λ(V, ω) (de�ned
in (3.8)), and, with the help of the four-fold Maslov index q, we can compare the Maslov
index of the curve Φ with the L0-Maslov index of the curve βL0 ◦ Φ : [a, b] → Λ(V, ω).
To this aim, we �rst give the following:

Lemma 3.26. Let Φ : [a, b] → Sp(V, ω) be a continuous curve and let L0, L1, L
′
1 ∈

Λ(V, ω) be �xed. Then:

µL0

(
βL0 ◦ Φ

)− µL0

(
βL′1 ◦ Φ

)
= q

(
L1, L

′
1; Φ(a)−1(L0), Φ(b)−1(L0)

)
.

Proof. Using the Maslov index for pairs and the symplectic invariance, we compute as
follows:

µL0

(
βL1 ◦Φ

)
= µ

(
βL1 ◦Φ, L0

)
= µ

(
L1, t 7→ Φ(t)−1(L0)

)
= −µL1

(
t 7→ Φ(t)−1(L0)

)
.

Similarly,
µL0

(
βL′1 ◦ Φ

)
= −µL′1

(
t 7→ Φ(t)−1(L0)

)
.

The conclusion follows easily from the de�nition of q. ¤

Proposition 3.27. Let Φ : [a, b] → Sp(V, ω) be a continuous curve and L0, `0 ∈ Λ(V, ω)
be �xed. Then:

iMaslov(Φ) + µL0

(
β`0 ◦ Φ

)
= q

(
∆, L0 ⊕ `0; Gr

(
Φ(a)−1

)
,Gr

(
Φ(b)−1

))
.

In particular, if Φ is a loop, then iMaslov(Φ) = −µL0(β`0 ◦ Φ).

Proof. We compute:
iMaslov(Φ) = µ∆

(
t 7→ (Id⊕ Φ(t)(∆)

)

and, using the properties of the Maslov index for pairs of curves,

µL0

(
β`0 ◦ Φ

)
= −µ∆

(
t 7→ L0 ⊕ β`0 ◦ Φ(t)

)
= −µ∆

(
t 7→ (Id⊕ Φ(t))(L0 ⊕ `0)

)
.

The result follows now easily applying Lemma 3.26 to the curve t 7→ Id ⊕ Φ(t) ∈
Sp(V 2, ω2) and to the Lagrangians ∆, L0 ⊕ `0 ∈ Λ(V 2, ω2). ¤

3.9. Spectral �ow of af�ne paths. Let us now discuss an application of Proposition 3.11
that will be used to compute the spectral �ow of af�ne paths (Proposition 3.29, Corol-
lary 3.30), and in the spectral index theorem (Subsection 4.5):

Example 3.28. Let V be a real, �nite dimensional vector space, g : V × V → IR a
nondegenerate symmetric bilinear form, and T : V → V a nilpotent (Tn = 0) linear
g-symmetric endomorphism (i.e., such that the bilinear form gT := g(T ·, ·) is symmetric)
of V . For a subspace W ⊂ V , denote by W⊥g the g-orthogonal space to W , de�ned by

W⊥g =
{
v ∈ V : g(v, w) = 0 for all w ∈ W

}
.

For all k = 1, . . . , n, de�ne a vector space Wk = T k−1
(
Ker(T k)

)
and a bilinear form

Bk : Wk ×Wk → IR by:
Bk(a, b) = g(c, b),
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where a = T k−1(c). Using the identities:10

(3.18)
Ker(Tα)⊥g = Im(Tα), Im(Tα) ∩Ker(T β) = Tα

(
Ker(Tα+β)

)
, ∀α, β = 1, . . . , n,

it is not hard to see directly that Wk ⊇ Wk+1, that Bk is a well de�ned symmetric bilinear
form on Wk, and that Wk+1 = Ker(Bk) for all k; in particular, Bn is nondegenerate.
We get to the same conclusions indirectly observing that the spaces Wk and the bilinear
forms Bk can be obtained using the construction of Section 2 (Remark 2.5) applied to the
real-analytic path of symmetric bilinear forms

[−ε, ε] 3 λ 7−→ B(λ) = gT − λg ∈ Bsym(V )

at the isolated singularity λ = 0.
Using the homotopy invariance of the Maslov index, we will now show that the follow-

ing identities hold:
∑

k≥1

(
n−(B2k−1) + n+(B2k)

)
= o

n−(gT )− n−(g) = n+(g)− n+
(
gT

)
,

∑

k≥1

n+(Bk) = o
n−(gT )− n+(g) = n−(g)− n+

(
gT

)
,

∑

k≥1

σ(B2k−1) = −σ(g).

(3.19)

By Corollary 2.14,
∑

k≥1

(
n−(B2k−1) + n+(B2k)

)
= dim(KerT )− sf

(
B, [−ε, 0]

)
,

∑

k≥1

n+(Bk) = dim(KerT ) + sf
(
B, [0, ε]

)
,

∑

k≥1

σ(B2k−1) = sf
(
B, [−ε, ε]

)
.

To prove the equalities (3.19), consider the two-parameter map
[0, 1]× [−ε, ε] 3 (r, λ) 7−→ `(r, λ) = rgT − λg ∈ Bsym(V );

observe that B(λ) = `(1, λ), and that the bilinear forms `(r,−ε), `(r, ε) are nondegenerate
for all r ∈ [0, 1], because 0 is the unique eigenvalue of T . It follows (see Figure 2))

sf
(
B, [−ε, 0]

)
= sf

(
`(0, ·), [−ε, 0]

)
+ sf

(
`(·, 0), [0, 1]

)
,

sf
(
B, [0, ε]

)
= −sf

(
`(·, 0), [0, 1]

)
+ sf

(
`(0, ·), [0, ε]

)
.

An immediate computation gives:
sf

(
`(0, ·), [−ε, 0]

)
= o

n+(0)− o
n+(εg) = dim(V )− n+(g) = n−(g),

sf
(
`(·, 0), [0, 1]

)
= o

n+(gT )− o
n+(0) = o

n+(gT )− dim(V ) = −n−(gT ),

sf
(
`(0, ·), [0, ε]

)
= o

n+(−εg)− o
n+(0) = n−(g)− dim(V ) = −n+(g),

from which equalities (3.19) follow easily.

Proposition 3.29. LetH be a real, separable Hilbert space, g : H → H an invertible self-
adjoint linear operator and T : H → H a linear Fredholm operator such that gT = T ∗g.
Then:

10The second identity in (3.18) holds for any linear operator T on any vector space V . The �rst one needs
the assumption that T is g-symmetric and, in addition, that dim(V ) < +∞, or, if V is an in�nite dimensional
Hilbert space, that g is strongly nondegenerate on V (i.e., realized by a self-adjoint isomorphism of V ) and that
T is a Fredholm operator of index 0. Identities (3.18) will be used also in the proof of Propositions 3.29 and 3.31
under these more general assumptions.
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FIGURE 2. The curves of symmetric bilinear forms used in Exam-
ple 3.28. In the picture, γ1 is the curve [−ε, 0] 3 λ 7→ B(λ), γ2 is
the curve [0, ε] 3 λ 7→ B(λ), γ3 is the curve [−ε, 0] 3 λ 7→ `(0, λ), γ4

is the curve [0, 1] 3 r 7→ `(r, 0) and γ5 is the curve [0, ε] 3 λ 7→ `(0, λ)

(1) dim
( ⋃

n≥1 Ker(Tn)
)

< +∞, i.e., there exists n0 ≥ 0 such that Ker(Tn) =
Ker(Tn0) for all n ≥ n0 and dim

(
Ker(Tn0)

)
< +∞;

(2) the bilinear form 〈g·, ·〉 is nondegenerate on Ker
(
Tn0

)
;

(3) there are no degeneracy instants t 6= 0 near 0 for the af�ne path t 7→ L(t) =
gT − tg of self-adjoint Fredholm operators, and for ε > 0 small enough:

sf
(
L, [−ε, 0]

)
= n+

(BT
)− n+(B) + dim(KerT ) = o

n+
(BT

)− n+(B),

sf
(
L, [0, ε]

)
= n−(B)− n+

(BT
)− dim(KerT ) = n−(B)− o

n+
(BT

)
,

sf
(
L, [−ε, ε]

)
= −σ(B),

(3.20)

where B = 〈g·, ·〉|Ker(T n0 ) and BT = 〈gT ·, ·〉|Ker(T n0 ).

Proof. We start observing that if Ker(T ) = {0} then the entire statement is trivial; we
observe also that, since g is an isomorphism, the equality gT = T ∗g implies that T is a
Fredholm operator of index 0.11 If Ker(T ) 6= {0}, t = 0 is an isolated degeneracy instant
of L(t), because 0 must be isolated in the spectrum of the Fredholm operator T . As in
Example 3.28, the spaces Wk and the bilinear forms Bk can be computed explicitly as:

Wk = T k−1
(
Ker(T k)

)
, Bk(x, y) = g(z, y),

where x, y ∈ Wk and T k(z) = x. Since the path L is real-analytic, then there exists
n0 ∈ IN such that Wn0 6= {0}, Bn0 is nondegenerate on Wn0 , and Wn = {0} for n >
n0. The equality Wn = {0} clearly implies Ker(Tn) = Ker(Tn−1), hence Ker(Tn) =
Ker(Tn0) for all n ≥ n0, which proves part (1). Consider now u ∈ Wn0 , u 6= 0. If
x = Tn0−1(u) 6= 0, then, since Bn0 is nondegenerate, there exists y ∈ Wn0 such that
g(u, y) = Bn0(x, y) 6= 0. On the other hand, if u ∈ Ker(Tn0−1) and g(u, v) = 0 for all
v ∈ Ker(Tn0), then, recalling the identities (3.18):

u ∈ Ker(Tn0−1) ∩Ker(Tn0)⊥g =

Ker(Tn0−1) ∩ Im(Tn0) = Tn0
(
Ker(T 2n0−1)

)
= Tn0

(
Ker(Tn0)

)
= {0},

11Recall that the index ind(T ) of a Fredholm operator T is the integer dim
`
Ker(T )

´ − codim
`
Im(T )

´
;

in particular, the index of an isomorphism is zero. Composition of Fredholm operators is Fredholm, and the
Fredholm index is additive by composition; moreover, ind(T ∗) = −ind(T ). The equality gT = T ∗g implies
ind(T ) = ind(g) + ind(T ) = ind(gT ) = ind(T ∗g) = ind(g) + ind(T ∗) = −ind(T ), hence ind(T ) = 0.
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which proves part (2). Finally, part (3) is obtained immediately from Example 3.28 (for-
mulas (3.19)) and from Corollary 2.14 by considering the restriction of g and T to the
space V = Ker(Tn0) (which is clearly invariant by T ), and observing that the spectral
�ow of the path t 7→ gT − tg on H coincides with the spectral �ow of its restriction12 to
Ker(Tn0) (see Example 2.22, Subsection 2.5). ¤

We can now compute the spectral �ow of arbitrary af�ne paths of self-adjoint Fredholm
operators:

Corollary 3.30. Let A and K be self-adjoint operators on H, with A invertible and K
compact. Assume that λ0 ∈ IR \ {0} and that λ−1

0 is in the spectrum of −A−1K, so that
λ0 is an isolated singularity of the af�ne path λ 7→ S(λ) = A + λK in F sa(H). Then, for
ε > 0 small enough:

sf
(
S, [λ0 − ε, λ0]

)
= n+(B2)− n+(B1) + dim

(
Ker(A + λ0K)

)
= o

n+(B2)− n+(B1),

sf
(
S, [λ0, λ0 + ε]

)
= n−(B1)− n+(B2)− dim

(
Ker(A + λ0K)

)
= n−(B1)− o

n+(B2),

sf
(
S, [λ0 − ε, λ0 + ε]

)
= −σ(B1),

(3.21)

where B1 = 〈A·, ·〉|Hλ0
, B2 = 〈(A + λ0K)·, ·〉|Hλ0

, and Hλ0 is the �nite dimensional
subspace of H given by

Hλ0 =
⋃

n≥1

Ker
(
A−1K + 1

λ0
Id

)n
.

Proof. Assume �rst λ0 > 0; by the cogredient invariance, for λ near λ0 the spectral �ow
of S(λ) equals the spectral �ow of

1
λS(λ) = ( 1

λ − 1
λ0

)A + A
(
A−1K + 1

λ0
Id

)
.

To obtain (3.21), set t = 1
λ0
− 1

λ , g = A, T = A−1K + 1
λ0

Id and apply Proposition 3.29
to this setup. Observe that the identities (3.18) can now be used because T is Fredholm of
index 0 (it is a compact perturbation of the isomorphism 1

λ0
Id).

The proof in the case λ0 < 0 is obtained from the previous case, replacing λ0 with−λ0

and K with−K, observing that the de�nition of the objects B1, B2 andHλ0 are unchanged
when both λ0 and K are taken with the opposite sign. ¤

Using similar arguments, one proves the following version of Proposition 3.29, which
is better suited to study the case of Fredholm bilinear forms obtained from unbounded
operators paired with compact bilinear forms. Recall that a densely de�ned linear operator
T is said to be discrete if for some (hence for all) λ not in the spectrum s(T ) of T , the
resolvent (T − λ)−1 is a compact operator; the spectrum of a discrete operator T is a
discrete subset of C, and every element in the spectrum is an eigenvalue of T (see [22,
Chapter 19]).

Proposition 3.31. Let H be a separable Hilbert space, D2 ⊂ D1 ⊂ H be dense algebraic
subspaces, each of which is endowed with a Hilbert space structure that makes each in-
clusion a bounded operator, and the inclusion of D2 into H compact. Let G : H → H be
a self-adjoint isomorphism and T : D2 → H a G-symmetric Fredholm operator of index
0. Assume that the symmetric bilinear form 〈GT ·, ·〉 de�ned on D2 admits a (bounded)
Fredholm extension ĝT to D1. Then:

(1) T is a discrete operator (and therefore its spectrum s(T ) consists of eigenvalues
of T ).

Assume further that the following regularity property holds: if x ∈ D1 and z ∈ H are such
that ĝT (x, y) = 〈Gz, y〉 for all y ∈ D2, then x ∈ D2 (and necessarily Tx = z). Then:

12here, by restriction of a linear operator L we mean the restriction of the corresponding bilinear form 〈L·, ·〉.
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(2) for all λ ∈ s(T ) ∩ IR, the generalized eigenspace Hλ =
⋃

n≥1 Ker
(
(T − λ)n

)
is

�nite dimensional, and the restriction of ĝ = 〈G·, ·〉 to Hλ is nondegenerate;
(3) for any compact interval [a, b], the spectral �ow of the path of self-adjoint Fred-

holm operators [a, b] 3 λ 7→ S(λ) = ĝT − λĝ ∈ F sa(D1) is given by:
(3.22)
sf

(
[S, [a, b]

)
= n−

(
ĝ|Ha

)− o
n+

(
ĝT

a |Ha

)−
∑

λ0∈s(T )∩]a,b[

σ
(
ĝ|Hλ0

)
+ o

n+
(
ĝT

b |Hb

)−n+
(
ĝ|Hb

)

where ĝT
λ =

〈
G(T − λ)·, ·〉.

Proof. Let λ be an element13 in s(T ) and consider the Fredholm self-adjoint operator Sλ =
G(T −λ) : D2 → H; to prove that T is discrete, observe that (T −λ)−1 = S−1

λ G and that
G is a compact operator on D2, due to the fact that the inclusion of D2 into H is compact.
This proves (1).

Parts (2) and (3) are now proven repeating verbatim the proof of Proposition 3.29, keep-
ing in mind the following:

(a) the regularity property implies that Ker(S(λ)) = Ker(T−λ) for all λ ∈ [a, b], and
that, for all λ0 ∈ s(T ) ∩ [a, b], the spaces Wk obtained from the partial signatures
construction for the curve S(λ) at the degeneracy instant λ0 are given by (T −
λ0)k−1

(
Ker(T − λ0)k

)
for all k ≥ 1;

(b) the identities (3.18) can be used in this context thanks to the assumption that T is
Fredholm of index 0 and that G is a self-adjoint isomorphism.

Formula (3.22) is obtained easily from (3.20) using the additivity by concatenation of the
spectral �ow. ¤

4. SEMI-RIEMANNIAN GEODESICS

As an application of the theory discussed, we will now describe how the partial signature
method can be applied to the study of the Maslov index of a semi-Riemannian geodesic.

The semi-Riemannian geodesic problem is a central example of strongly inde�nite vari-
ational problem to which some recent extension of the classical Morse theory (see [2]), as
well as of the bifurcation theory (see [28, 44]), can be applied to obtain global geometrical
results. In these theories, the Maslov index of a geodesic plays the role of a generalized
Morse index, and it is an essential point to understand how to compute it in terms of the
conjugate points along the geodesic. In the Riemannian case, the well-known Morse in-
dex theorem gives the equality between the number of conjugate points along the geodesic
and the Morse index of the geodesic action functional, which is also equal to the number
of negative eigenvalues of the Jacobi differential operator. We will establish a similar re-
sult for the semi-Riemannian case, where suitable de�nitions of �Morse index�, �number
of conjugate points� and �number of negative eigenvalues� have to be introduced. More
precisely, we will de�ne the following notions associated to a semi-Riemannian geodesic:

• Maslov index, as an appropriate count of the conjugate points (Subsection 4.1);
• generalized Morse index, as the spectral �ow of the path of index forms along the

geodesic (Subsection 4.4);
• spectral index, as an appropriate count of the nonpositive eigenvalues of the Jacobi

differential operator (Subsection 4.5).
We will prove the equality of the three integer numbers in the general case (Theorem 4.9),
extending the results of [13, 30, 32, 38, 46] to the case of degenerate endpoints.

Two different notions of index are used in the classical literature to count conjugate
points. The geometric index, i.e., the sum of the multiplicities of the conjugate points,

13for the sake of precision, the argument presented here works for only for real λ's. For the complex case, one
needs to consider the complexi�cation of H endowed with the inner product given by the sesquilinear extension
of 〈·, ·〉, and the complex linear extensions of T and of G.
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which is not a very meaningful notion outside the Riemannian or the causal Lorentzian
context, and the conjugate index (as in [32], or focal index in [38]), that coincides with the
Maslov index in the case of nondegenerate (see Subsection 4.1) conjugate points. In spite
of the fact that such nondegeneracy holds generically, the conjugate index is not a good
measure of the conjugate points (see [38, §5.4] and Subsection 4.7 below).

4.1. Conjugate points and Maslov index. Let us recall brie�y the de�nition of Maslov
index for a semi-Riemannian geodesic; the background material for this section can be
found in references [32, 38, 46].

Let (M, g) be an n-dimensional semi-Riemannian manifold, ∇ the covariant deriva-
tive of the Levi�Civita connection of g and R its curvature tensor, chosen with the sign
convention: R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ].

Given a geodesic θ : [0, 1] → M , the Jacobi equation along θ is the second order
linear equation V ′′ = R(θ̇, V )θ̇ for vector �elds V along θ; here prime means covariant
differentiation along θ. Solutions of the Jacobi equation are called Jacobi �elds. Let us
recall that t0 ∈ ]0, 1] is sad to be a conjugate instant along θ if there exists a non zero
Jacobi �eld V such that V (0) = V (t0) = 0. The multiplicity mul(t0) of a conjugate
instant t0 is de�ned to be the dimension of the vector space of all Jacobi �elds V satisfying
V (0) = V (t0) = 0; for all conjugate instant t0, mul(t0) ≤ n− 1.

By a parallel trivialization of the tangent bundle TM along θ (or of the normal bundle
θ̇⊥ in the non lightlike case), then the metric g can be seen as a constant nondegenerate
bilinear form on IRn, and the Jacobi equation becomes simply V ′′ = RV , where now the
prime symbol denotes the standard derivative of IRn-valued maps, and R(t) is a smooth
curve of g-symmetric endomorphisms of IRn. We will implicitly identify vector �elds
along θ with IRn-valued maps via such trivialization. Let us consider the �ow of the
Jacobi equation, which is the smooth curve of isomorphisms

Φt : IR2n → IR2n

de�ned by:
Φt

(
V (0), V ′(0)

)
=

(
V (t), V ′(t)

)
,

for all solutions V of V ′′(t) = R(t)V (t). An immediate calculation shows that Φt pre-
serves the symplectic form ωg

(
(v1, v2), (w1, w2)

)
= g(v1, w2)− g(v2, w1), hence we get

a smooth curve in the Lie group Sp(IR2n, ωg).
Setting L0 = {0} ⊕ IRn, which is Lagrangian relatively to ωg, we get a smooth curve

γ(t) = Φt(L0) in the Lagrangian Grassmannian of (IR2n, ωg). Conjugate points along θ
correspond to instants t0 at which γ(t0) is not transversal to L0, and the Maslov index of
θ, denoted by iMaslov(θ), is de�ned to be the sum:
(4.1) iMaslov(θ) = µL0(γ) + n−(g),

where µL0(γ) is the L0-Maslov index µL0 of the curve γ, as de�ned in subsection 3.3.
Such de�nition does not depend on the choice of a parallel trivialization of TM along θ; a
proof of this fact in the case that the �nal endpoint θ(1) is not conjugate is proven in [46],
while for the general case the proof will be done in Lemma 4.2 below.

Remark 4.1. It should be observed that the curve γ obtained by the above construction
from the Jacobi equation along a semi-Riemannian geodesic θ : [0, 1] → M is not entirely
contained in the Maslov cycle. This is due to the well known fact that, although γ always
intersects the Maslov cycle at the initial instant t = 0 (i.e., t = 0 is always a conjugate
instant in a trivial sense), there are no conjugate instants in ]0, ε] for ε > 0 small enough
(see for instance [38, Proposition 2.7]). Based on this observation, the Maslov index of a
semi-Riemannian geodesic θ whose �nal endpoint θ(1) is not conjugate had been de�ned
in references [32, 38, 46, 48] as the Maslov index of the restriction γ|[ε,1], in order to
exclude the contribution of the initial conjugate instant. Such contribution can be computed
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easily using the theory below, and it is equal to −n−(g) (see formula 4.4), i.e., for ε > 0
small enough:
(4.2) µL0(γ) = µL0

(
γ|[ε,1]

)− n−(g),

which shows that the de�nition of iMaslov(θ) given in (4.1) is consistent with that of refer-
ences [32, 38, 46, 48]. Observe that in the Riemannian case iMaslov(θ) = µL0(γ)

It is well known that conjugate points along θ can accumulate away from the instant
t = 0 (see [48]) unless g is positive (or negative!) de�nite. Nevertheless, when (M, g) is
real-analytic, then so is also every solution V of the Jacobi equation along θ and also the
curve γ above, and this implies that there is only a �nite number of conjugate points.

Let θ(t0), t0 ∈ ]0, 1], be a conjugate point along θ and de�ne:
J[t0] =

{
J(t0) : J ∈ J},

where:
(4.3) J =

{
J : J is a Jacobi �eld along θ, with J(0) = 0

}
;

observe that J is an n-dimensional vector space. Then, since γ(t0) is conjugate, J[t0] 6=
IRn, and the signature σ(t0) of the conjugate point θ(t0) is de�ned to be the signature of
the restriction of g to J[t0]⊥, where now ⊥ denotes orthogonality relative to g; an easy
argument shows that the following equality holds:

J[t0]⊥ =
{
J ′(t0) : J ∈ J, J(t0) = 0

}
.

It is also easy to see that, for all conjugate instant t0 along θ:

mul(t0) = dim
(
J[t0]⊥

)
= codim

(
J[t0]

)
.

When the restriction of g to J[t0]⊥ is nondegenerate, then θ(t0) is said to be a nonde-
generate conjugate point. Nondegenerate conjugate points correspond to transversal in-
tersections of the curve γ with the Maslov cycle ΣL0 ; if all the conjugate points along θ
are nondegenerate, and if the �nal instant t = 1 is not conjugate, then the Maslov index
iMaslov(θ) equals the sum of the signatures of all conjugate instants in ]0, 1[ along θ. Using
the theory developed in the present paper we are now able to compute the Maslov index
of any geodesic without any nondegeneracy assumption and any assumption on the �nal
instant t = 1.

4.2. Partial signatures at a conjugate instant and Maslov index. It is natural to de�ne
n−k (θ, t0) ( o

n−k (θ, t0)), n+
k (θ, t0) ( o

n+
k (θ, t0)) and σk(θ, t0) respectively as the k-th partial

(extended) index, (extended) coindex and signature of the curve γ at t0. For the sake of
precision, we must show that these quantities do not depend on the choice of a trivialization
of TM :

Lemma 4.2. Let γ, γ̃ : [0, 1] → Λ be curves associated to the semi-Riemannian geodesic
θ by two different trivializations of the tangent bundle TM along θ. Then, for all conjugate
instant t0, the partial signatures of γ and γ̃ at t0 coincide.

Proof. The conclusion follows easily from Lemma 3.12, observing that the curves γ and
γ̃ are related by the formula γ̃(t) = ς

(
γ(t)

)
, where ς is a �xed symplectomorphism of

(IR2n, ωg). More precisely, if T : IRn → IRn is the isomorphism relating the two different
trivializations of TM along θ, then ς is given by:

ς(x, y) = (Tx, g−1T ∗−1y). ¤

A method for computing the partial signatures of a geodesic at a conjugate instant will
be given in Subsection 4.3. Using Proposition 3.11 and formulas (4.1), (4.2) we obtain
immediately:
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Proposition 4.3. If (M, g) is a real-analytic semi-Riemannian manifold and θ : [0, 1] →
M is a geodesic in M , then the Maslov index of θ is given by:

iMaslov(θ) =

∑

t0 conjugate instant in ]0,1[


∑

k≥1

σ2k−1(θ, t0)


−

∑

k≥1

[
n−2k−1(θ, 1) + n+

2k(θ, 1)
]

+ mul(1).

In particular, the de�nition of Maslov index of θ does not depend on the choice of the
trivialization of TM along θ. ¤

Observe that if g is Riemannian, i.e., positive de�nite, then for all conjugate instant t0
along θ, B1(θ, t0) is positive de�nite, hence its signature coincides with the multiplicity
of t0 as a conjugate instant. It follows that Bk(θ, t0) = 0 for all k ≥ 2, and the Maslov
index of θ is equal to the sum of the multiplicities of all the conjugate instants along θ in
]0, 1]. Likewise, for any semi-Riemannian metric g, B1(θ, 0) coincides with the metric g on
Tθ(0)M , which is nondegenerate hence Bk(θ, 0) = 0 for all k > 1, and the contribution to
the Maslov index µL0(γ) given by the initial instant 0 can be computed from formula (3.6):
(4.4) n+

(
B1(θ, 0)

)− dim
(
Tθ(0)M

)
= n+(g)− n = −n−(g).

4.3. Computation of the partial signatures at a conjugate instant. We will now give
an operational method for computing the partial signatures of a geodesic θ : [0, 1] → M at
a conjugate instant t0 ∈ ]0, 1]:

Proposition 4.4. Assume that the map J 3 J 7→ J ′(t0) ∈ IRn is injective (hence an
isomorphism); then the partial signatures of θ at t0 coincide with the partial signatures of
the curve B of symmetric bilinear forms on J given by:
(4.5) Bt(J1, J2) = g

(
J1(t), J ′2(t)

)
.

Similarly, if T : IRn → IRn is a g-symmetric isomorphism of IRn such that the map
J 3 J 7→ J(t0)−TJ ′(t0) ∈ IRn is injective, then the partial signatures of θ at t0 coincide
with the partial signatures of the curve B of symmetric bilinear forms on J given by:
(4.6) Bt(J1, J2) = g

(
J1(t), J ′2(t)− T−1J2(t)

)
.

Proof. The condition that the map S : J → IRn, S(J) = J ′(t0), be an isomorphism is
equivalent to the transversality of the Lagrangian

γ(t0) = Φt0(L0) =
{(

J(t0), J ′(t0)
)

: J ∈ J}

(recall that Φ has been de�ned in Subsection 4.1 as the �ow of the Morse�Sturm equation
V ′′ = RV ) with the Lagrangian L1 = IRn ⊕ {0}. Let us use the chart ϕL0,L1 around
γ(t0) (Subsection 3.2), and let us identify the space J with L0 via the map:
(4.7) L0 3 v 7−→ Jv ∈ J
where Jv is the unique Jacobi �eld in J determined by the initial condition J ′(0) = v. A
straightforward calculation shows that ϕL0,L1 ◦ γ is given by:
(4.8) ϕL0,L1 ◦ γ(t)(v1, v2) = g

(
JS−1(v1)(t0), v2

)
, t ∼ t0.

The conclusion follows from Proposition 2.16, observing that (4.5) and (4.8) are cogredi-
ent:

Bt(v1, v2) = ϕL0,L1 ◦ γ(t)
(
Sv1, Sv2

)
.

Similarly, the proof of the second part of the statement reduces to a straightforward
direct calculation of ϕL0,eL1

◦ γ, where L̃1 =
{
(Tw, w) : w ∈ IRn

}
= Gr(T−1). Note

that L̃1 is Lagrangian because T is g-symmetric, transversal to L0 because T is invertible,
and transversal to γ(t0) due to the assumption that J 3 J 7→ J(t0) − TJ ′(t0) ∈ IRn is
injective. ¤
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Clearly, different choices of the isomorphism T as in the assumptions of Proposition 4.4
produce cogredient curves of bilinear forms as in (4.6), so that the partial signatures of (4.6)
do not depend on the choice of the isomorphism T . Observe that the set of isomorphisms T
as in the assumptions of Proposition 4.4 is diffeomorphic to Λ0

(
γ(t0)

)∩Λ0(L0)∩Λ0(L1),
which is a dense open subset of Λ by Baire's theorem.

Using Proposition 4.4, the computation of the Maslov index of a geodesic reduces to
simple computations involving the curvature tensor and its derivatives. For instance, in
the case of a simple conjugate instant t0 (i.e., a conjugate instant of multiplicity one), if
J ∈ J is a nontrivial Jacobi �eld vanishing at t0, then the derivatives of the map h(t) =
g
(
J(t), J ′(t)

)
at t = t0 are given by:

h′(t0) = g
(
J ′(t0), J ′(t0)

)
, h′′(t0) = g

(
J ′(t0), R(t0)J ′(t0)

)
,

h(3)(t0) = g
(
J ′(t0), R′(t0)J ′(t0)

)
, . . . , h(k)(t0) = g

(
J ′(t0), R(k−2)(t0)J ′(t0)

)
, . . .

From Proposition 4.4 we also get the following result:
Corollary 4.5. Let t0 ∈ ]0, 1] be a conjugate instant along θ and let J0 ∈ J be such that
J0(t0) = 0; set v0 = J ′0(0). Then, v0 ∈ Bk if and only if there exists a smooth curve
v : ]t0 − ε, t0 + ε[ → Tθ(0)M with v(t0) = v0 such that the map ]t0 − ε, t0 + ε[ 3 t 7→
Jv(t)(t) has a zero of order greater than or equal to k at t = t0.
Proof. Choose a g-symmetric linear operator T : IRn → IRn as in the second part of
Proposition 4.4 and consider the corresponding path of bilinear forms Bt as in (4.6). Ob-
serve that when J runs in J, t 7→ J ′(t) − T−1J(t) is a smooth map that takes arbitrary
values in IRn at t = t0. Using this fact, an easy induction argument on k shows that a
curve t 7→ Jt in J is a root function of order greater than or equal to k for Bt at t = t0 if
and only if the map t 7→ Jt(t) has a zero of order greater than or equal to k at t = t0. This
concludes the proof. ¤
4.4. A generalized Morse index. For all t ∈ ]0, 1], de�ne Ht as the Sobolev space
H1

0

(
[0, t], IRn); let Sθ

t be the bounded symmetric bilinear form on Ht given by:

(4.9) Sθ
t (V, W ) =

∫ t

0

[
g
(
V ′(s),W ′(s)

)
+ g

(
R(s)V (s),W (s)

)]
ds,

where g is a nondegenerate symmetric bilinear form on IRn and t 7→ R(t) is a smooth curve
of g-symmetric endomorphisms of IRn. The objects g and R are obtained respectively from
the metric g and the curvature tensor R of g via a parallel trivialization of TM along θ.
By identifying the spaces Ht with H1 via the map ht : Ht → H1, (htV )(s) = V (ts),
we get a smooth curve of bounded symmetric bilinear forms S̄θ

t on H1 obtained by the
push-forward of Sθ

t by ht. More explicitly:

S̄θ
t (V, W ) =

∫ 1

0

[
1
t g

(
V ′(s),W ′(s)

)
+ tg

(
R(ts)V (s),W (s)

)]
ds, V,W ∈ H1.

The kernel Nt of S̄θ
t , which is clearly given by the image of Ker(Sθ

t ) by ht, consists of
smooth vector �elds V on [0, 1] such that V (0) = V (1) = 0 and satisfying the linear
equation:

V ′′(s) = t2R(ts)V (s), s ∈ [0, 1].
The map ]0, 1] 3 t 7→ S̄θ

t is a smooth map of Fredholm bounded symmetric bilinear forms
on H1, and the map: Sθ

t := tS̄θ
t :

(4.10) Sθ
t (V, W ) =

∫ 1

0

[
g
(
V ′(s),W ′(s)

)
+ t2g

(
R(ts)V (s),W (s)

)]
ds,

admits a real-analytic extension to t = 0 obtained by setting:

Sθ
0 (V, W ) =

∫ 1

0

g
(
V ′(s),W ′(s)

)
ds.
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It is easy to prove that, for ε > 0 small enough, Sθ
t is nondegenerate for all t ∈ [0, ε],

hence:

Ker
(Sθ

0

)
= {0} and sf

(Sθ, [0, 1]
)

= sf
(Sθ, [ε, 1]

)
= sf

(
S̄θ, [ε, 1]

)
.

De�nition 4.6. The generalized Morse index of θ is de�ned as:

iMorse(θ) := dim
(
Ker(Sθ

1 )
)− sf

(Sθ, [0, 1]
)
.

Recalling Remark 2.13, if (M, g) is Riemannian, then the generalized Morse index of
θ coincides with the extended Morse index of the geodesic action functional at the critical
point θ.

We observe here that, for all t ∈ ]0, 1], Sθ
t is realized by a compact perturbation of

Sθ
0 , which in turn is realized by a self-adjoint symmetry of the Hilbert space Hθ. Hence,

formula (2.8) can be used to compute the spectral �ow of Sθ, and we get:

(4.11) iMorse(θ) = dim
(
Ker(Sθ

1 )
)− dimV−(Sθ

1 )

(
V −(Sθ

0 )
)

= dimV+(Sθ
0 )

(
V +(Sθ

1 )
)
.

4.5. The spectral index. Important classes of examples where one can apply the Maslov
index theory for real-analytic curves arises naturally when one studies certain eigenvalue
problems for ODE's, whose solutions depend analytically on the eigenvalue by standard
regularity results.

We will consider in what follows the case of Morse�Sturm�Liouville equation in IRn,
whose spectral index is given as the Maslov index of a certain curve parameterized by the
spectral parameter λ. In this case, each negative (real) eigenvalue of the equation gives a
contribution to the Maslov index, and it is possible to compute explicitly the bilinear forms
Bk at each eigenvalue.

Let us consider a nondegenerate symmetric bilinear form g : IRn × IRn → IR and a
continuous map [0, 1] 3 t 7→ R(t) of g-symmetric endomorphisms of IRn. The Morse�
Sturm�Liouville equation with data (g and) R is given by:

(4.12) −v′′ + (R− λ)v = 0,

where v : [0, 1] → IRn and λ ∈ IR. The corresponding differential operator, denoted by
Jλ:

Jλ = − d2

dt2
+ (R− λ),

de�ned on the domainD = H1
0

(
[0, 1], IRn

)∩H2
(
[0, 1], IRn

)
, is an unbounded and, unless

g is positive or negative de�nite, non normal linear operator. We will consider the following
symmetric bounded and nondegenerate bilinear form ĝ on L2

(
[0, 1], IRn

)
:

ĝ(v, w) =
∫ 1

0

g
(
v(t), w(t)

)
dt.

It is easy to see that Jλ is ĝ-symmetric:

Iθ
λ(v, w) := ĝ

(
Jλv, w

)
=

∫ 1

0

[
g
(
v′(t), w′(t)

)
+g

(
(R(t)−λ)v(t), w(t)

)]
dt = ĝ

(
v, Jλw

)
,

for all v, w ∈ D; in particular, Iθ
0 = ĝ(J0·, ·) coincides with the index form Sθ

1 as de�ned
in 4.9. Moreover, it is easy to see that Iθ

λ is a Fredholm bilinear form for all λ (it is a
compact perturbation of Iθ

0 ).
The spectral properties of J0 have been studied in [13], we will recall here some facts:

J0 is discrete (i.e., it has compact resolvent), its spectrum s(J0) is a discrete subset of the
strip: {

z ∈ C : <(z) ≥ −‖R‖∞, |=(z)| ≤ ‖R‖∞
}
,

where ‖R‖∞ denotes the supremum norm of R.
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De�nition 4.7. The spectral index ispectral(θ) of the geodesic θ is de�ned to be integer:

(4.13) ispectral(θ) = dim
(
Ker(Iθ

0 )
)− sf

(
Iθ
λ, [−M0, 0]

)
,

where M0 > ‖R‖∞.

Both the generalized Morse index iMorse(θ) and the spectral index ispectral(θ) do not depend
on the choice of the parallel trivialization of TM along θ; this fact can be proven directly,
or obtained as a consequence of Theorem 4.9.

As an easy application of Proposition 3.31, we obtain the following:

Proposition 4.8. The generalized eigenspace Hλ =
⋃

n≥1 Ker
(
(λ − J0)n

)
is �nite-

dimensional for all λ ∈ s(J0), and the restriction of ĝ to Hλ is nondegenerate. The
spectral index of θ is given by:

(4.14) ispectral(θ) = n+
(
ĝ|H0

)− n+
(
Iθ
0 |H0

)
+

∑

λ∈s(J0)
λ∈]−∞,0[

σ
(
ĝ|Hλ

)
.

Proof. Apply Proposition 3.31 to the Hilbert spaces

H = L2
(
[0, 1], IRn

)
, D2 = H2

(
[0, 1], IRn

)∩H1
0

(
[0, 1], IRn

)
, D1 = H1

0

(
[0, 1], IRn

)
,

the operator T = J0, and the self-adjoint isomorphism G : H → H given by pointwise
composition with the (constant) symmetric endomorphism g of IRn.

Observe that − d2

dt2 : D2 → H is and isomorphism, and T is a compact perturbation of
such isomorphism, hence a Fredholm operator of index 0. As to the �regularity� condition
assumed in the hypotheses of Proposition 3.31, in our case it follows easily from the fact
that, using standard bootstrap arguments, if v ∈ H1

0

(
[0, 1], IRn

)
is such that there exists

z ∈ H1
0

(
[0, 1], IRn

)
with

∫ 1

0

g(v′, w′) dt =
∫ 1

0

g(z, w) dt

for all w ∈ H1
0

(
[0, 1], IRn

)
, then v ∈ H2

(
[0, 1], IRn

)
.

In order to obtain (4.14) from (3.22) keep in mind that the boundary term corresponding
to λ = −M0 is null, because −M0 6∈ s(J0). ¤

Observe that when g is Riemannian, then J0 is indeed self-adjoint, Hλ = Ker(λ− J0),
in particular Sθ

1 |H0 = 0 and thus n+
(Sθ

1

∣∣
H0

)
= 0. Moreover, since ĝ is positive de�nite,

n+
(
ĝ|Hλ

)
= σ

(
ĝ|Hλ

)
= dim

(
Ker(λ − J0)

)
, and n−(ĝ) = 0; this shows that in the

Riemannian case the spectral index of θ coincides with the extended Morse index of the
index form Sθ

1 = Iθ
0 .

4.6. The index theorem. Before we get into the aimed index theorem, we will need to
introduce the following notation. For all λ ∈ IR, let Φλ : [0, 1] → Sp(IR2n, ωg) denote
the �ow of the Morse�Sturm�Liouville equation (4.12), i.e., Φλ(t) : IR2n → IR2n is the
linear isomorphism de�ned by:

Φλ(t)
(
v(0), v′(0)

)
=

(
v(t), v′(t)

)
,

for all solutions v of (4.12).
We choose M0 > ‖R‖∞ and we consider the curve ` : [−M0, 0] → Λ:

(4.15) `(λ) = Φλ(1)
(
L0

)
.

Observe that λ is real-analytic; moreover, the intersections of ` with the Maslov cycle occur
precisely at each real nonpositive eigenvalue of the Jacobi differential operators J0.

Everything is now ready to state and prove the following:
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Theorem 4.9 (Index Theorem in the Degenerate Case). Let (M, g) be a semi-Riemannian
manifold and θ : [0, 1] → M a geodesic. Then:

iMaslov(θ) = ispectral(θ) = iMorse(θ).

Proof. The equality ispectral(θ) = iMorse(θ) is proven by an in�nite dimensional homotopy
argument. Namely, consider the two-parameter smooth map C of symmetric bilinear forms
in H1

0

(
[0, 1], IRn

)
:

(4.16) C(t, λ)(V, W ) =
∫ 1

0

[
g
(
V ′(s),W ′(s)

)
+ t2g

(
(R(ts)− λ)V (s),W (s)

)]
ds,

(t, λ) ∈ [0, 1]× [−M0, 0].
Observe that, by de�nition, −ispectral(θ) + dim

(
Ker(C(1, 0))

)
equals the spectral �ow

of the curve [−M0, 0] 3 λ 7→ C(1, λ), while −iMorse(θ) + dim
(
Ker(C(1, 0))

)
equals the

spectral �ow of [0, 1] 3 t 7→ C(t, 0). The equality ispectral(θ) = iMorse(θ) follows from the
�xed-endpoints homotopy invariance and the additivity by concatenation of the spectral
�ow, observing that the maps [−M0, 0] 3 λ 7→ C(0, λ) and [0, 1] 3 t 7→ C(t,−M0) have
null spectral �ow, due to the fact that C(0, λ) and C(t,−M0) are always nondegenerate.

By a similar homotopy argument in Λ, one proves that iMaslov(θ) equals the Maslov index
of the curve ` de�ned in (4.15). Namely, iMaslov(θ) is by de�nition the Maslov index of the
curve γ given by [ε, 1] 3 t 7→ Φ0(t)(L0), and the two-parameter map [ε, 1]× [−M0, 0] 3
(t, λ) 7→ Φλ(t)(L0) ∈ Λ gives a continuous homotopy between γ and `. In this case,
observe that the curve [ε, 1] 3 t 7→ Φ−M0(t)(L0) does not intersect the Maslov cycle for
all ε ≥ 0, while the curve [−M0, 0] 3 λ 7→ Φλ(ε)(L0) does not intersect the Maslov cycle
provided that ε > 0 is chosen suf�ciently small.

Finally, the crucial part of the proof consists in showing that ispectral(θ) equals iMaslov(`);
in this case a direct homotopy argument cannot be used, because ispectral(θ) is the negative
spectral �ow of the path of Fredholm bilinear forms λ 7→ C(1, λ) on H1

0 ([0, 1], IRn), while
iMaslov(`) is the Maslov index of a curve in Λ. However, as we have observed both curves
are real-analytic, and they have precisely the same degeneracy instants.

Observe that for this equality one can use the partial signatures theory, since both in-
tegers are Maslov indexes of real-analytic paths: for each eigenvalue λ0 ∈ [−M0, 0], we
prove that the spaces Wk+1 and the bilinear forms Bk+1 obtained from the two construc-
tions coincide, up to the sign.

Let λ0 ∈ [−M0, 0] be a degenerate value for λ 7→ C(1, λ) and let T : IRn → IRn be a
g-symmetric linear endomorphism such that the Lagrangian L′1 = Gr(T−1) is transversal
to Φ(1, λ0)(L0). Let us consider the following real analytic path λ 7→ Bλ of Fredholm
symmetric bilinear forms:

Bλ(V,W ) =
∫ 1

0

[
g
(
V ′,W ′) + g

(
(R− λ)V,W

)]
ds− g

(
V (1), T−1W (1)

)

de�ned on the Hilbert space:

H =
{
V ∈ H1([0, 1], IRn) : V (0) = 0

}
.

Observe that the restriction of Bλ to H1
0

(
[0, 1], IRn

)
coincides with C(1, λ), while the

restriction of Bλ to the �nite dimensional space:

Jλ :=
{
J ∈ C2

(
[0, 1], IRn

)
: J ′′ = (R− λ)J, J(0) = 0

} ⊂ H
gives the symmetric bilinear form Dλ : Jλ × Jλ → IR:

Dλ(J1, J2) = g
(
J1(1), J ′2(1)− T−1J2(1)

)
.

Thus, recalling Proposition 4.4, if κλ : L0 → Jλ is the isomorphism v 7→ Jv , where Jv

is the unique element of Jλ satisfying J ′v(0) = v, we consider the pull-back (κλ)∗(Dλ),
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which is the symmetric bilinear form D̃λ : L0 × L0 → IR given by:

D̃λ(v, w) := Bλ

(
κλ(v), κλ(w)

)
= ϕL0,L′1

(
`(λ)

)
(v, w),

for all v, w ∈ L0. We observe that:
Ker

(
C(1, λ0)

)
= Jλ0 ∩H1

0

(
[0, 1], IRn

)
= Ker(Dλ0) = κλ0

(
Ker(D̃λ0)

)
.

Our aim is to show that, for all k ≥ 0,
(4.17) Wk

(
C(1, λ); λ0

)
= κλ0

(
Wk

(
D̃λ; λ0

))
,

and that:
(4.18) Bk

(
C(1, λ); λ0

)
= −(κλ0)

∗(Bk

(
D̃λ; λ0

))
,

for all eigenvalue λ0 ∈ [−M0, 0]. Recalling Proposition 2.15, the equality ispectral(θ) =
iMaslov(`) will follow at once from (4.17) and (4.18).

Let k ≥ 1 be �xed, and choose v0 ∈ L0; if λ 7→ vλ is a root function of order greater
than or equal to k for D̃λ at λ = λ0, and such that vλ0 = v0, then by Corollary 4.5 the map
λ 7→ κλ(vλ)(1) has a zero of order greater than or equal to k at λ = λ0. Thus, the map
λ 7→ J̃λ ∈ H1

0

(
[0, 1], IRn

)
de�ned by:

J̃λ(t) = Jλ(t)− tJλ(1),

where
Jλ = κλ(vλ),

is a root function of order greater than or equal to k for C(1, λ) at λ = λ0, with J̃λ0 =
κλ0(v0). For, an easy computation shows that for all W ∈ H1

0

(
[0, 1], IRn

)
:

C(1, λ)
(
J̃λ,W

)
= −

∫ 1

0

tg
(
(R(t)− λ)Jλ(1),W (t)

)
dt.

This shows that we have an inclusion that Wk

(
C(1, λ); λ0

) ⊃ κλ0

(
Wk

(
D̃λ;λ0

))
.

To prove the opposite inclusion, we use the result of part (1) in Proposition 2.9 arguing
as follows. Choose a positive de�nite inner product g+ in IRn and let A : IRn → IRn

the g-symmetric automorphism such that g+ = g(A·, ·); de�ne the following Hilbert space
inner product in H1

0

(
[0, 1], IRn

)
:

〈〈V,W 〉〉 :=
∫ 1

0

g+
(
V ′(t),W ′(t)

)
dt =

∫ 1

0

g
(
AV ′(t),W ′(t)

)
dt.

Let λ 7→ Lλ ∈ F sa
(
H1

0

(
[0, 1], IRn

))
be the real-analytic path of self-adjoint operators

that realize C(1, λ) with respect to the above inner product, and let λ 7→ σ(λ) ∈ IR,
λ 7→ Vλ ∈ H1

0

(
[0, 1], IRn

)
be real-analytic maps such that:

• Lλ(Vλ) = σ(λ)Vλ for all λ;
• σ has a zero of order greater than or equal to k at λ = λ0.

Then, for all W ∈ H1
0

(
[0, 1], IRn

)
the following equality holds:

∫ 1

0

[
g
(
(Id− σ(λ)A)V ′

λ(t),W ′(t)
)

+ g
(
R(t)− λ)Vλ(t), W (t)

)]
dt = 0,

from which it follows that Vλ is a map of class C2 that satis�es the �perturbed� Jacobi
equation:

V ′′
λ =

(
Id− σ(λ)A

)−1(R− λ)Vλ.

Observe that for λ near λ0, the operator Id− σ(λ)A is invertible. Observe that also Vλ0 is
in Ker

(
C(1, λ0)

)
, and by Proposition 2.9, the space Wk+1

(
C(1, λ); λ0

)
is generated by

such functions Vλ0 . The map λ 7→ vλ = V ′
λ(0) ∈ L0 is real-analytic, and we claim that it is

a root function for D̃λ at λ = λ0 of order greater than or equal to k, with κλ0(vλ0) = Vλ0 .
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By Corollary 4.5, to prove our assertion it suf�ces to show that the map λ 7→ κλ(vλ)(1) ∈
IRn has a zero of order greater than or equal to k at λ = λ0. To prove this fact, observe
that Jλ = κλ(vλ) is the solution of the equation J ′′λ = (R − λ)Jλ satisfying Jλ(0) = 0
and J ′λ(0) = vλ. For λ near λ0, say λ ∈ [λ0 − δ, λ0 + δ], δ > 0, we set:

B(λ) =
∞∑

n=1

σ(λ)n−1An,

so that (Id− σ(λ)A)−1 = Id + σ(λ)B(λ); then, for s ∈ [0, 1]:
∣∣Vλ(s)−Jλ(s)

∣∣ ≤
∫ s

0

∣∣V ′
λ(τ)− J ′λ(τ)

∣∣ dτ ≤
∫ s

0

dτ

∫ τ

0

∣∣V ′′
λ (r)− J ′′λ (r)

∣∣ dr

=
∫ s

0

dτ

∫ τ

0

∣∣(R(r)− λ)(Vλ(r)− Jλ(r)) + σ(λ)B(λ)(R(r)− λ)Vλ

∣∣ dr

=
∫ s

0

dr

∫ s

r

∣∣(R(r)− λ)(Vλ(r)− Jλ(r)) + σ(λ)B(λ)(R(r)− λ)Vλ

∣∣ dτ

=
∫ s

0

(s− r)
∣∣(R(r)− λ)(Vλ(r)− Jλ(r)) + σ(λ)B(λ)(R(r)− λ)Vλ

∣∣ dr

≤
∫ s

0

∣∣(R(r)− λ)(Vλ(r)− Jλ(r))
∣∣ + |σ(λ)|∣∣B(λ)(R(r)− λ))Vλ(r)

∣∣ dr

≤ d0

∫ s

0

∣∣(Vλ(r)− Jλ(r))
∣∣ dr + d1|σ(λ)|,

where:
d0 = max

r∈[0,1]
λ∈[λ0−δ,λ0+δ]

‖R(r)− λ Id‖, d1 = max
r∈[0,1]

λ∈[λ0−δ,λ0+δ]

‖B(λ)(R(r)− λ Id)‖ · |Vλ(r)|.

From Gronwall's Lemma, we then obtain:
‖Vλ − Jλ‖∞ ≤ d1e

d0 |σ(λ)|,
and since Vλ(1) = 0, it follows that Jλ(1) has a zero of order greater than or equal to k.
This argument shows that we have an inclusion Wk

(
C(1, λ); λ0

) ⊂ κλ0

(
Wk

(
D̃λ; λ0

))
and (4.17) is proven.

Finally, we will now prove equality (4.18); it will suf�ce to show that, given root func-
tions λ 7→ uλ, vλ ∈ L0 of order greater than or equal to k for D̃λ at λ = λ0, then:

(4.19) dk

dλk

∣∣∣
λ=λ0

D̃λ

(
uλ, vλ

)
= − dk

dλk

∣∣∣
λ=λ0

C(1, λ)
(
J̃

(1)
λ , J̃

(2)
λ

)
,

where:
J̃

(1)
λ (t) = J

(1)
λ (t)− tJ

(1)
λ (1), J̃

(2)
λ (t) = J

(2)
λ (t)− tJ

(2)
λ (1),

and
J

(1)
λ = κλ(uλ), J

(2)
λ = κλ(vλ).

A direct computation gives:

D̃λ

(
uλ, vλ

)
= g

(
J

(1)
λ (1), (J (2)

λ )′(1)− T−1J
(2)
λ (1)

)
,

and since g
(
J

(1)
λ (1), T−1J

(2)
λ (1)

)
has a zero of order greater than or equal to 2k at λ = λ0,

it follows:

(4.20) dk

dλk

∣∣∣
λ=λ0

D̃λ

(
uλ, vλ

)
=

dk

dλk

∣∣∣
λ=λ0

g
(
J

(1)
λ (1), (J (2)

λ )′(1)
)
.

On the other hand, integration by parts yields the following:

C(1, λ)
(
J̃

(1)
λ , J̃

(2)
λ

)
= −

∫ 1

0

t g
(
(R(t)− λ)J (1)

λ (1), J̃ (2)
λ (t)

)
dt;
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and, again because of the fact that g
(
J

(1)
λ (1), J (2)

λ (1)
)

has a zero of order greater than or
equal to 2k at λ = λ0, we get:

dk

dλk

∣∣∣
λ=λ0

C(1, λ)
(
J̃

(1)
λ , J̃

(2)
λ

)

= − dk

dλk

∣∣∣
λ=λ0

∫ 1

0

tg
(
(R(t)− λ)J (1)

λ (1), J (2)
λ (t)

)
dt

= − dk

dλk

∣∣∣
λ=λ0

∫ 1

0

tg
(
J

(1)
λ (1), (R(t)− λ)J (2)

λ (t)
)
dt

= − dk

dλk

∣∣∣
λ=λ0

∫ 1

0

tg
(
J

(1)
λ (1), (J (2)

λ )′′(t)
)
dt

=
dk

dλk

∣∣∣
λ=λ0

[ ∫ 1

0

g
(
J

(1)
λ (1), (J (2)

λ )′(t)
)
dt− g

(
J

(1)
λ (1), (J (2)

λ )′(1)
)]

=
dk

dλk

∣∣∣
λ=λ0

[
g
(
J

(1)
λ (1), J (2)

λ (1)
)− g

(
J

(1)
λ (1), (J (2)

λ )′(1)
)]

= − dk

dλk

∣∣∣
λ=λ0

g
(
J

(1)
λ (1), (J (2)

λ )′(1)
)
.

(4.21)

Comparison of (4.20) and (4.21) give (4.19), and the proof is concluded. ¤

4.7. On a counterexample for the equality of the conjugate and the Maslov index.
The sum of the signatures of the conjugate points along a geodesic in a real-analytic semi-
Riemannian manifold is called the conjugate index in reference [32] (or focal index in
reference [38]). It was erroneously stated in [32] that the conjugate index is equal to the
Maslov index of a semi-Riemannian geodesic, and in [38, Subsection 5.4] the authors have
given a counterexample to such equality, occurring in the case of a degenerate conjugate
point along a Lorentzian spacelike geodesic. Using the results of the present paper we are
now able to have a better view of the phenomenon.
Recall that the counterexample mentioned consists in a spacelike geodesic θ : [−ε, ε]→ M ,
where M is a real-analytic three-dimensional Lorentzian manifold, ε > 0, having a unique
conjugate point at t = 0. By a parallel transport of the normal bundle θ̇⊥ along θ, and
using suitable coordinate systems in the Lagrangian Grassmannian as explained above, the
Maslov index of θ is computed as the spectral �ow through t = 0 of the curve of symmetric
bilinear forms on IR2 given by:

[−ε, ε] 3 t 7−→ L(t) =
(

x(t) z(t)
z(t) y(t)

)
,

where:

x(t) = −2t3 − 54
5

t5, y(t) = −1− 6t + 18t2 − 54t3, z(t) = −3t2.

One computes easily:

L0 =
(

0 0
0 −1

)
, L1 =

(
0 0
0 −6

)
, L2 =

(
0 3
3 18

)
, L0 =

(−2 0
0 −54

)
,

hence W1 = Ker(L0) = IR ⊕ {0} and B1 = 〈L1·, ·〉|W1 = 0, and t = 0 is a degenerate
conjugate instant having signature equal to 0. Nevertheless, the Maslov index of θ, which
is equal to the spectral �ow of L, is easily computed as:

n+
(
L(ε)

)− n+
(
L(−ε)

)
= −1,

providing a counterexample for the equality between the Maslov and the conjugate index
in the case of degenerate conjugate points. An elementary direct computation gives:

W2 = IR⊕ {0}, B2 = 0, W3 = IR⊕ {0}, B3

(
(α, 0), (β, 0)

)
= −2αβ,
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hence σ1 = σ2 = 0, σ3 = −1 and σk = 0 for all k > 3. Obviously, iMaslov(θ) equals the
sum

∑
k≥1 σk(θ, 0), as it must be in compliance with Proposition 4.3.

4.8. A geometrical version of the semi-Riemannian index theorem. Using an abstract
result on the computation of the relative index of Fredholm bilinear forms, we will now
give a geometrical version of the index theorem, in the spirit of the semi-Riemannian index
theorem in [46]. The Maslov index of a semi-Riemannian geodesic can be computed as the
difference between the index and the coindex of suitable restrictions of the index form Sθ

1

(4.9); this version of the index theorem gives a link with variational problems and aims at
developments of Morse homology in the in�nite dimensional Hilbert manifold of all paths
in M joining two �xed points, as in [30, 47].

Let (M, g) be a semi-Riemannian manifold, set k = n−(g). Let θ : [0, 1] → M be a
geodesic; a maximal negative distribution along θ is a smooth family Dt ⊂ Tθ(t)M of k-
dimensional subspaces, t ∈ [a, b], such that g|Dt is negative de�nite for all t. By �smooth�,
we mean that Dt is the span of Y1(t), . . . , Yk(t) for all t ∈ [0, 1], where Y1, . . . , Yk is a
family of smooth vector �elds along θ; such a family Y1, . . . , Yk will be called a frame for
D. Associated to each choice of a maximal negative distribution D along θ one can de�ne
two closed spaces of variational vector �elds along θ: the space of vector �elds along θ
taking values in D, denoted by Q, and the space of vector �elds along θ that are �Jacobi in
the directions of D�, denoted by K. More precisely, denote by Hθ the space of all vector
�elds of Sobolev class H1 along θ vanishing at the endpoints; �x a frame Y1, . . . , Yk for
D and de�ne:
Q =

{
v ∈ Hθ : v(t) ∈ Dt, for all t ∈ [0, 1]

}
,

K =
{
v ∈ Hθ : g(v′, Yi) is of class H1, g(v′, Yi)′ = g(v′, Y ′

i ) + g
(
R(θ̇, v) θ̇, Yi

) ∀ i
}
.

Observe that a vector �eld v of class C2 along θ belongs toK if and only if v′′−R(θ̇, v)θ̇ is
pointwise orthogonal toD, i.e., �elds inK are interpreted as �Jacobi �elds in the directions
ofD�; geometrical and analytical descriptions of the spacesQ and K can be found in [46].

Proposition 4.10. The restriction Sθ
1 to K has �nite index, and the restriction of Sθ

1 to Q
has �nite coindex; moreover, the following equality holds
(4.22) iMorse(θ) = n−

(
Sθ

1 |K
)− n+

(
Sθ

1 |Q
)

+ dim
(
Ker(Sθ

1)
)
.

Proof. The restriction of Sθ
1 to Q is realized by a compact perturbation of a negative

isomorphism of Q ([46, Corollary 5.25]), hence it has �nite coindex. The restriction
of Sθ

1 to K is realized by a compact perturbation of a positive isomorphism of K ([45,
Lemma 2.6.6]), hence it has �nite coindex. Moreover, an immediate calculation shows
that K = Q⊥Sθ

1 .
By Lemma A.8, Q is commensurable with V −(Sθ

1 ), and using the abstract result of
Proposition A.11, the relative dimension dimQ

(
V −(Sθ

1 )
)

can be computed as:

(4.23) dimQ
(
V −(Sθ

1 )
)

= n−
(
Sθ

1 |K
)− n+

(
Sθ

1 |Q
)
,

where V −(Sθ
1 ) is the negative eigenspace of the realization of Sθ

1 relatively to any Hilbert
structure on Hθ. In order to compute the left hand side in equality (4.23), we will �rst
show that its value does not depend on the choice of a maximal negative distribution along
θ.

The idea to prove the independence of the relative index from the choice of a maximal
negative distribution consists in showing that any two maximal negative distributions can
be joined by a �continuous� selection of maximal negative distributions, and that the rela-
tive index depends �continuously� on such selection. Let us make the argument formal, as
follows. In �rst place, using a parallel trivialization of the tangent bundle TM along θ, the
problem is reduced to studying the equality of the relative dimensions:

dimQ0

(H0) and dimQ1

(H0),
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where
• H0 is a closed subspace (∼= V −(Sθ

1 )) of the Sobolev space H = H1
0

(
[a, b], IRn

)
(∼= Hθ)

• g is a �xed nondegenerate symmetric bilinear form on IRn of index k;
• denoting by G−k (n) the Grassmannian of all k-dimensional subspaces of IRn on

which g is negative de�nite, D0,D1 : [a, b] → G−k (n) are continuous curves;
• Qi =

{
v ∈ H : v(t) ∈ Di(t) for all t ∈ [a, b]

}
, i = 0, 1, are closed subspaces of

H that are commensurable to Q0 and Q1.
The set G−k (n) is open in the Grassmannian Gk(n), and it is an arc-connected set (see
Appendix B); hence, the curves D0 and D1 are homotopic. Choose a continuous map
[a, b] × [0, 1] 3 (t, s) 7→ Dt,s ∈ G−k (n) such that Dt,i = Di

t for i = 0, 1 and for all
t ∈ [a, b], and for all s ∈ [0, 1] set:

Qs =
{
v ∈ H : v(t) ∈ Ds,t for all t ∈ [a, b]

}
;

using the argument above, Qs is commensurable with V −(Sθ
1 ) for all s.

Let us prove that the map s 7→ Qs is a continuous family of closed subspaces of H
(see Appendix A), i.e., that Qs is the image of a �xed closed subspace Q∗ of H via a
continuous family of isomorphisms φs : H → H. For all �xed S∗ ∈ G−k (n), the map
GL(n, IR) 3 U 7→ U(S∗) ∈ Gk(n) is a smooth �bration; choose a continuous lifting
[a, b]× [0, 1] 3 (t, s) 7→ Ut,s ∈ GL(n, IR) of the map (t, s) 7→ Dt,s, i.e.,

Ut,s(S∗) = Dt,s, ∀ (t, s) ∈ [a, b]× [0, 1].

Finally, de�ne
Q∗ =

{
v ∈ H : v(t) ∈ S∗ for all t ∈ [a, b]

}
,

and for all s ∈ [0, 1] let φs : H → H be the isomorphism given by:

φs(x)(t) = Ut,s

(
x(t)

)
, x ∈ H;

clearly, φs(Q∗) = Qs for all s, and s 7→ φs ∈ GL(H) is continuous. This proves that
s 7→ Qs is a continuous family of closed subspaces of H, and thus, by Corollary A.5,
dimQs(H0) is constant.

Once the independence on the choice of the maximal negative distribution has been
established, to prove equality (4.23) we will now choose a maximal negative distribution
D− = {D−

t }t∈[0,1] which is obtained by the parallel transport along θ of a maximal neg-
ative subspace of Tθ(0)M ; let us also denote by D+ = {D+

t }t∈[0,1] a maximal positive
distribution along θ which is obtained by the parallel transport along θ of a maximal posi-
tive subspace of Tθ(0)M . In order to compute the left hand side of (4.23) we will also have
to choose a Hilbert space inner product in Hθ; to this aim, a convenient choice is to set:

〈V, W 〉 =
∫ 1

0

g+
t

(
V ′(t),W ′(t)

)
dt, V, W ∈ Hθ,

where g+
t is the unique positive de�nite inner product on Tθ(t)M for which D+

t and D−t
are orthogonal spaces, that coincides with g on D+

t and with −g on D−t . It is easy to see
that, with such choice, the spaceQ is precisely the negative eigenspace of Sθ

0 , and recalling
(4.11), we compute easily:

dimQ
(
V −(Sθ

1 )
)

= dimV −(Sθ
0 )

(
V −(Sθ

1 )
)

= −dimV −(Sθ
1 )

(
V −(Sθ

0 )
)

= iMorse(θ)− dim
(
Ker(Sθ

1 )
)
.

(4.24)

Equality (4.22) follows immediately from (4.23) and (4.24). ¤
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4.9. Bifurcation of geodesics at a conjugate instant. As a further application of our
theory, we will discuss brie�y a simple consequence of Proposition 4.3 obtained using
recent results in bifurcation theory for strongly inde�nite variational problems (see [28]).

Let us recall the de�nition of bifurcation for a smooth family of functionals at a common
critical point. Given a family {fr}r∈[c,d] of smooth functionals on some Hilbert space H
depending smoothly on the parameter r, assume that x = 0 is a critical point for fr for
all r ∈ [c, d]. Consider the set C =

{
(x, r) : dfr(x) = 0

}
endowed with the relative

topology of H× [c, d] and assume that the segment D = {0} × [c, d] is entirely contained
in C, i.e., that x = 0 is a critical point for fr for all r ∈ [c, d]. An instant r0 ∈ [c, d]
is said to be a bifurcation point for the family {fr} if (0, r0) is an accumulation point
for C \ D, i.e., if there exists a sequence (rn)n in [c, d] tending to r0 and a sequence
(xn)n∈IN ⊂ H \ {0} tending to 0 such that dfrn

(xn) = 0 for all n. Assume that for some
(hence for all) r ∈ [c, d], the Hessian d2fr(0) is a (self-adjoint) Fredholm operator onH. A
suf�cient condition for the existence of a bifurcation instant in the strongly inde�nite case
has been proven recently in [28]: if sf

(
d2fr(0), [c, d]

) 6= 0, then there exists a bifurcation
instant for {fr}r in [c, d]. This result can be applied to the case of bifurcation of semi-
Riemannian geodesics; let us recall from [44] the de�nition of bifurcation point along a
semi-Riemannian geodesic.

De�nition 4.11. Let (M, g) be a semi-Riemannian manifold, θ : [0, 1] → M be a geodesic
in M and t0 ∈ ]0, 1[. The point θ(t0) is said to be a bifurcation point along θ if there exists
a sequence θn : [0, 1] → M of geodesics in M and a sequence (tn)n∈IN ⊂ ]0, 1[ satisfying
the following properties:

(1) θn(0) = θ(0) for all n;
(2) θn(tn) = θ(tn) for all n;
(3) θn → θ as n →∞;
(4) tn → t0 (and thus θn(tn) → θ(t0)) as n →∞.

An immediate application of the inverse function theorem tells us that bifurcation points
occur necessarily at conjugate instants, however, in the non Riemannian (or causal Lorentz-
ian) case it is not clear which conjugate points determine bifurcation. Note that if θ(t0)
is a bifurcation point along θ, then the exponential map expθ(0) in not one-to-one on any
neighborhood of t0θ

′(0) in Tθ(0)M .
Conditions for the bifurcation at a nondegenerate conjugate instant have been discussed

in [44]; using the theory of partial signatures it is now an easy game to extend the result to
the possibly degenerate real-analytic case:

Proposition 4.12. Let (M, g) be a real-analytic semi-Riemannian manifold, let θ : [0, 1] →
M be a geodesic and let t0 ∈ ]0, 1[ be a conjugate instant along θ. If the sum of the odd
partial signatures

∑
k≥1 σ2k−1(θ, t0) is different from 0, then θ(t0) is a bifurcation point

along θ.

Proof. By a standard local construction (see [44, Section 5.1] for details), the geodesic
bifurcation problem is cast into a bifurcation problem for a smooth family of functionals
de�ned in a neighborhood of 0 in a �xed Hilbert space H. The spectral �ow of the cor-
responding path of second variations is precisely generalized Morse index, whose jumps,
by Theorem 4.9, occur at those conjugate instants giving a non zero contribution to the
Maslov index, i.e., those conjugate instants t0 ∈ ]0, 1[ along θ such that, for ε > 0 small
enough, iMaslov

(
θ|[0,t0−ε]

) 6= iMaslov

(
θ|[0,t0+ε]

)
. The conclusion follows easily from Proposi-

tion 4.3. ¤
The result of Proposition 4.12 gives an important link between the theory of bifurcation,

for which the method of partial signatures was originally conceived, and the theory of
Maslov index in the context of semi-Riemannian and symplectic geometry. Moreover,
as an easy application of Proposition 4.12, we get an extension of a classical result of
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Morse and Littauer (see Warner's proof in [54]) that the exponential map of a Riemannian
manifold is never one-to-one on any neighborhood of a conjugate point.

Corollary 4.13. Let (M, g) be a real-analytic semi-Riemannian manifold, let θ : [0, 1] →
M be a geodesic having a conjugate instant t0 ∈ ]0, 1[ such that

∑
k≥1 σ2k−1(θ, t0) 6= 0.

Then, the exponential map expθ(0) is not injective on any neighborhood of t0θ̇(0).
In particular, the result holds true if (M, g) is Riemannian, or if (M, g) is Lorentzian

and θ is nonspacelike. ¤

APPENDIX A. RELATIVE INDEX OF FREDHOLM BILINEAR FORMS
ON HILBERT SPACES

The goal of this appendix is to provide the reader with a formal proof of a result (Propo-
sition A.11) that gives the relative index of a form as the difference between the index and
the coindex of suitable restrictions of the form. A large portion of the material presented is
borrowed from [44, Section 2].

Let H be a Hilbert space with inner product 〈·, ·〉; we will denote by Lin(H) the space
of all bounded linear operators on H and by GL(H) the group of invertible operators
in Lin(H). Let B a bounded symmetric bilinear form on H; there exists a unique self-
adjoint bounded operator S : H → H such that B = 〈S·, ·〉, that will be called the
realization of B (with respect to 〈·, ·〉). B is nondegenerate if its realization is injective,
B is strongly nondegenerate if S is an isomorphism. If B is strongly nondegenerate, or
if more generally 0 is not an accumulation point of the spectrum of S (for instance, if S
is Fredholm), we will call the negative eigenspace (resp., the positive eigenspace) of B
the closed subspace V −(S) (resp., V +(S)) of H given by χ]−∞,0[(S) (resp., χ]0,+∞[(S)),
where χI denotes the characteristic function of the interval I . The spaces V −(S) and
V +(S) are S-invariant, and they are both orthogonal and B-orthogonal. We will say that
B is Fredholm if S is Fredholm, or that B is RCPPI, realized by a compact perturbation of
a positive isomorphism, (resp., RCPNI) if S is of the form S = P +K (resp., S = N +K)
where P is a positive isomorphism of H (N is a negative isomorphism of H) and K is
compact. The properties of being Fredholm, RCPPI or RCPNI do not depend on the inner
product, although the realization S and the spaces V ±(S) do.

If B is RCPPI (resp., RCPNI), then both its nullity n0(B) and its index n−(B) (resp.,
and its coindex n+(B)) are �nite numbers. Given a closed subspace W ⊂ H, the B-
orthogonal complement of W , denoted by W⊥B , is the closed subspace of H:

W⊥B =
{
x ∈ H : B(x, y) = 0 for all y ∈ W

}
= S−1(W⊥).

If B is Fredholm, and let S be its realization and W ⊂ H is any subspace, then the
following properties hold:

• B is nondegenerate iff it is strongly nondegenerate;
• n0(B) < +∞;
• (W⊥B )⊥B = W + Ker(S);
• if W is closed and B|W (i.e., the restriction of B to W ×W ) in nondegenerate,

then also B|W⊥B is nondegenerate and H = W ⊕W⊥B .
Let us now recall a few basic things on the notion of commensurability of closed sub-

spaces (see reference [1] for more details). Let V, W ⊂ H be closed subspaces and let PV

and PW denote the orthogonal projections respectively onto V and W . We say that V and
W are commensurable if the restriction to V of the projection PW is a Fredholm operator
from V to W .

It is an easy exercise to show that commensurability is an equivalence relation in the
Grassmannian of all closed subspaces of H; observe in particular that, identifying each
Hilbert space with its own dual, the adjoint of the operator PW |V : V → W is precisely
PV |W : W → V . If V and W are commensurable the relative dimension dimW (V ) of V
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with respect to W is de�ned as the Fredholm index ind
(
PV |W : W → V

)
, which is equal

to:
dimW (V ) = ind

(
PW |V : V → W

)
= dim(W⊥ ∩ V )− dim(W ∩ V ⊥).

Clearly, if V and W are commensurable, then V ⊥ and W⊥ are commensurable, and:
dimW⊥(V ⊥) = −dimW (V ) = dimV (W ).

The commensurability of closed subspaces and the relative dimension do not depend on
the choice of a Hilbert space inner product on H.

Using the basic properties of Fredholm index, it is easy to prove the following:

Proposition A.1. Let V, W ⊂ H be closed commensurable subspaces, and let V ′, W ′ be
�nite dimensional subspaces such that V ′ ⊂ V ⊥ and W ′ ⊂ W⊥. Then, V + V ′ and
W + W ′ are commensurable, and

dimW+W ′(V + V ′) = dimW (V ) + dim(V ′)− dim(W ′). ¤

Let us recall that a family {St}t∈[a,b] of closed subspaces of a Hilbert space is said
to be continuous if for all t0 ∈ [a, b] there exists ε > 0, a closed subspace S ⊆ H and
a continuous map ]t0 − ε, t0 + ε[ 3 t 7→ φt ∈ GL(H) such that φt(S) = St for all t.
Such a map t 7→ φt will be called a local trivialization of the family St around t0. The
relative dimension is continuous with respect to this notion of continuity for paths of closed
subspaces. In order to prove this, it is useful to characterize continuous families of closed
subspaces in terms of graphs of continuous families of linear operators:

Lemma A.2. Let [a, b] 3 t 7→ St be a continuous family of closed subspaces of H. Then,
for all t0 ∈ [a, b] there exists an orthogonal decompositionH = W0⊕W1 ofH into closed
subspaces, and a continuous map de�ned around t0, t 7→ Lt ∈ Lin(W0,W1) of bounded
linear operators from W0 to W1 such that St = Gr(Lt) for all t.

Proof. Choose a closed subspace S ⊂ H, a local trivialization t 7→ φt of St around t0,
with φt(S) = St; set W0 = St0 , W1 = W⊥

0 . Denote by πi : H → Wi the orthogonal
projection, i = 0, 1, and de�ne:

Lt =
(
π1 ◦ φt|S

) ◦ (
π0 ◦ φt|S

)−1
.

Observe that π0 ◦ φt0 |S : S → W0 is an isomorphism, and by continuity, π0 ◦ φt|S :
S → W0 is an isomorphism for t near t0. Clearly, t 7→ Lt is continuous, and an easy
computation shows that Gr(Lt) = St for all t. ¤

Lemma A.3. Let H = W0 ⊕W1 be an orthogonal direct sum. The map Lin(W0,W1) →
Lin(H) given by L 7→ PGr(L) is continuous.

Proof. A straightforward computation gives:
PGr(L)(x0 + x1) =

(
(I + L∗L)−1(x0 + L∗x1), L(I + L∗L)−1(x0 + L∗x1)

)
,

for x0 ∈ W0, x1 ∈ W1. The conclusion follows easily. ¤

Corollary A.4. If t 7→ St ⊂ H is a continuous family of closed subspaces, then the map
t 7→ PSt ∈ Lin(H) is continuous.

Proof. It follows immediately from Lemmas A.2 and A.3. ¤

Corollary A.5. Let [a, b] 3 t 7→ Vt ⊂ H and [c, d] 3 s 7→ Ws ⊂ H be continuous families
of closed subspaces, and let (t0, s0) ∈ [a, b] × [c, d] be such that Vt0 is commensurable
with Ws0 . Then, Vt is commensurable with Ws and the relative dimension dimWs(Vt)
is constant for (s, t) near (s0, t0); if Vt is commensurable with Ws for all s and t, then
dimWs(Vt) is constant on [a, b]× [c, d].
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Proof. Choose closed subspaces V, W ⊂ H and local trivializations φt and ψs such that
φt(V ) = Vt and ψs(W ) = Ws for (t, s) near (t0, s0). Since the Fredholm index is additive
by composition, and the Fredholm index of an isomorphism is 0, then:

dimWs
(Vt) = ind

(
PWs

|Vt
: Vt → Ws

)
= ind

(
ψ−1

s ◦ PWs
◦ φt|V : V → W

)
.

The conclusion follows observing that the set of Fredholm operators is open, the map
(s, t) 7→ ψ−1

s ◦ PWs ◦ φt is continuous (Corollary A.4), and the Fredholm index is locally
constant. ¤

Compact perturbations preserve the commensurability class of positive and negative
eigenspaces of Fredholm operators:

Proposition A.6. Let S, T be linear bounded self-adjoint operators onH whose difference
K = S−T is compact. Then V −(S) (resp., V +(S)) is commensurable with V −(T ) (resp.,
with V +(T )). Conversely, assume that S is a bounded self-adjoint Fredholm operator
on H, and let H = W− ⊕ W+ be an orthogonal decomposition of H such that W− is
commensurable with V −(S) and W+ is commensurable with V +(S). Then there exists an
invertible self-adjoint operator T on H such that V −(T ) = W−, V +(T ) = W+ and such
that S − T is compact.

Proof. See [1, Proposition 2.3.2 and Proposition 2.3.5]. ¤

Let us now study under which conditions a closed subspace W ⊂ H is commensurable
with the negative eigenspace of a Fredholm symmetric bilinear form B on H.

Lemma A.7. Let H be a Hilbert space with inner product 〈·, ·〉, let S : H → H be a
self-adjoint Fredholm operator and set B = 〈S·, ·〉. Let W ⊂ H be a closed subspace
with the following properties:

(a) B|W is strongly negative de�nite, i.e., there exists k > 0 such that −B(x, x) ≥
k‖x‖2 for all x ∈ W ;

(b) B|W⊥B is positive semi-de�nite, i.e., B(x, x) ≥ 0 for all x ∈ W⊥B .
Then W is commensurable with V −(S), and dimW

(
V −(S)

)
= 0.

Proof. Set H− = V −(S) and H+ = Ker(S)⊕ V +(S), so that H = H− ⊕H+, the direct
sum being orthogonal and also B-orthogonal; let P− : H → H− be the orthogonal projec-
tion. Observe that H− and H+ are S-invariant; assumption (a) means that the restriction
S−|H− : H− → H− is a negative isomorphism, i.e., its spectrum is contained in ]−∞, 0[;
moreover, by (a), W ∩H+ = {0}, and, by (b), W⊥B ∩H− = {0}. The thesis is equivalent
to the condition that the restriction P−|W : W → H− be an isomorphism, which is what
we will prove now.

In �rst place, observe that P−|W is injective, because Ker
(
P−|W

)
= H+ ∩W = {0}.

Next, P−|W has dense image, because its adjoint PW |H− is injective: Ker
(
PW |H−

)
=

W⊥ ∩ H− = {0}. For, if x ∈ W⊥ ∩ H−, since the restriction S|H− : H− → H− is
an isomorphism, then x = Sy for some y ∈ H−, and for all w ∈ W it is B(y, w) =
〈Sy, w〉 = 〈x, w〉 = 0, so that y ∈ W⊥B ∩H− = {0}, i.e., x = 0.

Finally, we must prove that P−|W has closed image; it suf�ces to show that there exists
β > 0 such that ‖P−(x)‖2 ≥ β‖x‖2 for all x ∈ W . To this aim, de�ne:

k = inf
y∈W,‖y‖=1

−B(y, y) > 0,

and let x ∈ W be �xed with ‖x‖ = 1, x = x− + x+, x− ∈ H−, x+ ∈ H+. Then,
B(x−, x−) ≤ B(x−, x−) + B(x+, x+) = B(x, x) ≤ −k;

moreover, since B is strongly negative de�nite on H−, then −B is a Hilbert space inner
product on H− equivalent to 〈·, ·〉, hence there exists α > 0 such that:

−B(y, y) ≤ α‖y‖2, ∀ y ∈ H−.
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From the last two inequalities we obtain:

‖P−(x)‖2 = ‖x−‖2 ≥ k

α
> 0,

which concludes the proof. ¤

Lemma A.8. Let B be a Fredholm symmetric bilinear form on the Hilbert space H and
let W ⊂ H be a closed subspace. Then, the following are equivalent:

(a) B|W is RCPNI and B|W⊥B is RCPPI;
(b) W is commensurable with V −(S), where S is the realization of B.

In particular, condition (b) is independent on the choice of an inner product on H.

Proof. Assume that W is commensurable with V −(S); then W⊥ is commensurable with
V −(S)⊥ = V +(S) ⊕ Ker(B). Moreover, since Ker(B) is �nite dimensional, then W⊥

is also commensurable with V +(S). By Proposition A.6, there exists an invertible self-
adjoint operator T : H → H such that V −(T ) = W , V +(T ) = W⊥, and with S =
T + K, with K compact. It follows easily that B|W is RCPNI (namely, if P denotes
the orthogonal projection onto W , the realization of B|W is PS|W = (PT + PK)|W =
(T + PK)|W ), and B|W⊥ is RCPPI. Observe in particular that W ∩W⊥B = Ker(B|W )
is �nite dimensional. To prove that B|W⊥B is RCPPI we argue as follows; denote by P
the orthogonal projection onto W and by P⊥ = 1−P the orthogonal projection onto W⊥.
As we have observed, W⊥B = S−1(W⊥); hence, for all x, y ∈ W⊥B we have:

B(x, y) = 〈Sx, y〉 = 〈Sx, P⊥y〉 = 〈SPx, P⊥y〉+ 〈SP⊥x, P⊥y〉 =

= 〈P⊥KPx, y〉+ 〈P⊥TP⊥x, y〉+ 〈P⊥KP⊥x, y〉.(A.1)

In the above equality we have used the fact that W and W⊥ are T -invariant. From (A.1) we
deduce that B|W⊥B is represented by a compact perturbation of the operator T̃ : W⊥B →
W⊥B given by T̃ = P⊥BP⊥TP⊥|W⊥B (where P⊥B is the orthogonal projection onto
W⊥B ) which is positive semi-de�nite. The kernel of T̃ is easily computed as the �nite
dimensional space W⊥B ∩ T−1

(
W ∩W⊥B

)
; it follows that T̃ is a compact perturbation

of a positive isomorphism of W⊥B , which proves that (b) implies (a).
Conversely, assume that B|W is RCPNI and B|W⊥B is RCPPI. Using functional calcu-

lus, write W = W0 ⊕W1, with W0 and W1 orthogonal and B-orthogonal, B|W0 strongly
negative de�nite, B|W1 positive semi-de�nite, and dim(W1) < +∞; then,

H = W0 ⊕W⊥B
0 .

Clearly, W⊥B ⊂ W⊥B
0 ; we claim that W⊥B has �nite codimension in W⊥B

0 . Namely,

W⊥B
0 ∩W⊥B

1 ⊂ W⊥B ⊂ W⊥B
0 ,

and since W⊥B
1 has �nite codimension inH, W⊥B

0 ∩W⊥B
1 (and a fortiori W⊥B ) has �nite

codimension14 in W⊥B
0 . Since B|W⊥B is RCPP, it follows that also B|

W
⊥B
0

is RCPPI, and
again we can write W⊥B

0 as a B-orthogonal direct sum W2 ⊕ W3 with B|W2 negative
de�nite, B|W3 positive semi-de�nite, and dim(W2) < +∞.

Set Z := W0 ⊕ W2; then B|Z is strongly negative de�nite; moreover, Z⊥B = W3,
hence B|Z⊥B is positive semi-de�nite; by Lemma A.7, Z is commensurable with V −(S)
Since W0 has �nite codimension in Z, then W0 and Z are commensurable, and since W0

has �nite codimension in W , then W0 and W are commensurable. By transitivity, W is
commensurable with V −(S), and the proof is concluded. ¤

14If X is a vector space, and S, Y ⊂ X subspaces. If S has �nite codimension in X , then S ∩ Y has
�nite codimension in Y . Namely, codimY (S ∩ Y ) equals the dimension of the image of Y by the projection
X → X/S onto the �nite dimensional space X/S.
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Assume now that B is a symmetric bilinear form, S is its realization; if W is closed
subspace of H which is commensurable with V −(S), the one de�nes the relative index of
B with respect to W , denoted by indW (B), the integer number:

indW (B) = dimW

(
V −(S)

)
.

A subspace Z ofH is said to be isotropic for the symmetric bilinear form B if B|Z ≡ 0.

Lemma A.9. Let B be a RCPPI nondegenerate symmetric bilinear form on H, and let
Z ⊂ H be an isotropic subspace of B. Then:

n−(B) = n−
(
B|Z⊥B

)
+ dim(Z).

Proof. Since B is RCPPI, then the index n−(B) is �nite, and so n−
(
B|Z⊥B

)
and dim(Z)

are �nite. Clearly, Z ⊂ Z⊥B ; let U ⊂ Z⊥B be a closed subspace such that Z⊥B = Z⊕U ,
so that B|U is nondegenerate and H = U ⊕ U⊥B . Moreover:

n−(B) = n−
(
B|U

)
+ n−

(
B|U⊥B

)
.

Since Z is isotropic, then n−
(
B|U

)
= n−

(
B|Z⊥B

)
; to conclude the proof we need

to show that n−
(
B|U⊥B

)
= dim(Z). To this aim, observe �rst that dim(U⊥B ) =

2dim(Z). Namely, dim(U⊥B ) = codim(U); moreover, codimZ⊥B (U) = dim(Z), and
codim(Z⊥B ) = dim(Z). Thus, keeping in mind that the dimension of an isotropic sub-
space of a nondegenerate symmetric bilinear form is less than or equal to the index and the
coindex, we have:

n−
(
B|U⊥B

)
+ n+

(
B|U⊥B

)
= dim(U⊥B ) = 2 dim(Z) ≤ n−

(
B|U⊥B

)
+ n+

(
B|U⊥B

)
,

which proves that n−
(
B|U⊥B

)
= n+

(
B|U⊥B

)
= dim(Z) and concludes the proof. ¤

Lemma A.10. Let B be a nondegenerate Fredholm symmetric bilinear form on H and
W ⊂ H be a closed subspace such that B|W⊥B is RCPPI. Let W̃ be any closed comple-
ment of W ∩W⊥B in W . Then the following identity holds:

n−
(
B|fW⊥B

)
= n−

(
B|W⊥B

)
+ dim

(
W ∩W⊥B

)
.

Proof. We start with the observation that Ker
(
B|W

)
= Ker

(
B|W⊥B

)
= W ∩W⊥B ; this

implies in particular that B|fW and B|fW⊥B
are nondegenerate. Since B|W⊥B is RCPPI,

then n−
(
B|W⊥B

)
and dim(W ∩W⊥B ) = n are �nite numbers.

Since codimfW⊥B

(
W⊥B

)
= n, then:

n−
(
B|fW⊥B

) ≤ n−
(
B|W⊥B

)
+ n,

from which it follows that n−
(
B|fW⊥B

)
is �nite; moreover, B|fW⊥B

is RCPPI. The con-
clusion now follows easily from Lemma A.9, applied to the nondegenerate bilinear form
B|fW⊥B

and the isotropic space Z = W ∩W⊥B . ¤

Proposition A.11. Let B be a Fredholm symmetric bilinear form on H, S its realization
and let W ⊂ H be a closed subspace which is commensurable with V −(S). Then the
relative index indW (B) is given by:

(A.2) indW (B) = n−
(
B|W⊥B

)− n+
(
B|W

)
.

Proof. Assume �rst that B is nondegenerate on W ; then we have a direct sum decomposi-
tionH = W ⊕W⊥B . The relative indW (B) does not change if we change the inner prod-
uct ofH; we can therefore assume that W and W⊥B are orthogonal subspaces ofH. Then,
S = S− ⊕ S+, where S− : W → W is the realization of B|W and S+ : W⊥B → W⊥B



ON THE MASLOV INDEX IN THE DEGENERATE CASE 52

is the realization of B|W⊥B . Moreover, V −(S) = V −(S−) ⊕ V −(S+). An immediate
calculation yields:

indW (B) = dim
(
V −(S) ∩W⊥B

)− dim
(
V −(S)⊥ ∩W

)

= dim
(
V −(S) ∩W⊥B

)− codimW

(
V −(S−)

)

= dim
(
V −(S+)

)− codimW

(
V −(S−)

)

= n−
(
B|W⊥B

)− n+
(
B|W

)
.

Let us consider now the case that B|W is degenerate; by Lemma A.8, B|W is RCPNI,
and so dim

(
W ∩W⊥B

)
= n < +∞. Set W̃ =

(
W ∩W⊥B

)⊥∩W , so that B|fW is nonde-
generate; moreover, V −(S) is commensurable with W̃ , because it has �nite codimension
in W . We can then apply the �rst part of the proof, and we obtain:

(A.3) indfW (B) = n−
(
B|fW⊥B

)− n+
(
B|fW

)
.

Clearly,

(A.4) n+
(
B|fW

)
= n+

(
B|W

)
;

moreover, by de�nition of relative index:

(A.5) indfW (B) = indW (B) + n.

Finally, by Lemma A.8, B|W⊥B is RCPPI, and by Lemma A.10:

(A.6) n−
(
B|fW⊥B

)
= n−

(
B|W⊥B

)
+ n.

Formulas (A.3), (A.4), (A.5) and (A.6) yield (A.2) and conclude the proof. ¤

APPENDIX B. CONNECTEDNESS OF THE GRASSMANNIAN OF g-NEGATIVE
SUBSPACES.

We will prove brie�y in this appendix that, given a nondegenerate bilinear form g on IRn

having index k and denoting by G−k (n) the open subset of the Grassmannian Gk(n) con-
sisting of those k-dimensional planes in IRn on which g is negative de�nite, then G−k (n)
is (arc) connected. The non trivial case is when 0 < k < n. Clearly, it is not restrictive to
assume, as we will, that g is the bilinear form whose matrix representation in the canonical
basis of IRn is given by:

g =
(−Ik 0

0 In−k

)
;

the group of isometries of g will be denoted by O(n, k):

O(n, k) =
{
A ∈ GL(n, IR) : A∗gA = g

}
=

{
A ∈ GL(n, IR) : gA∗g = A−1

}
,

and its Lie algebra by so(n, k):

so(n, k) =
{
H ∈ gl(n, IR) : gH + H∗g = 0

}
.

To prove our assertion we will show that the connected component of the identity of
O(n, k) acts transitively on G−k (n). Given A ∈ O(k, n), denote by Aup and Alow respec-
tively the upper left k × k block of A and the lower right (n − k) × (n − k) block of A;
it is easy to see that both Aup and Alow are invertible, and we will show that the sign of the
determinant of the two blocks distinguish the connected components of O(k, n):

Lemma B.1. If 0 < k < n, O(k, n) has four connected components. The connected
component of the identity consists of those A ∈ O(k, n) such that det(Aup) and det(Alow)
are positive.
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Proof. The four components are determined by the choice of the signs of det(Aup) and
det(Alow). These sets are clearly open; let us prove that they are connected. Denote by
by Sym(n) the vector space of n× n symmetric matrices, and by Sym+(n) the subset of
the positive de�nite ones; recall that the exponential map gives a diffeomorphism exp :
Sym(n) → Sym+(n). Consider the diffeomorphism:

(B.1) GL(n, IR)
∼=−→ O(n)× Sym+(n)

given by the polar decomposition A 7→ (U,P ), U = A|A|−1, P = |A|. It is easy to
see that, given A ∈ GL(n, IR), A belongs to O(k, n) if and only if U(A) and P (A) do.
Namely, using the fact that g2 = I, if gA∗g = A−1, then gPU∗g = (gPg)(gU∗g) =
P−1U−1 and so (gUg)(gP−1g) = UP = A. By the uniqueness of the polar decomposi-
tion, gUg = U and gP−1g = P , i.e., U,P ∈ O(n, k).

Observe the following:
(1) O(n, k) ∩O(n) = O(k)×O(n− k);
(2) from the uniqueness of the square root, it follows easily that if A ∈ O(n, k) ∩

Sym+(n), then A
1
2 ∈ O(n, k);

(3) if H ∈ Sym(n), then H ∈ so(n, k) if and only if exp(H) ∈ O(n, k).15

Thus, the restriction of the diffeomorphism (B.1) is a diffeomorphism:
(
O(k)×O(n− k)

)× (
so(n, k) ∩ Sym(n)

) ∼=−→ O(n, k),

given by (U,Z) 7→ U exp(Z). The conclusion follows easily from the observation that
so(n, k) ∩ Sym(n) is a vector space, hence contractible, and from the fact that, for r > 0,
O(r) has exactly two connected components determined by the sign of the determinant.

¤

Corollary B.2. The connected component of the identity of O(n, k) acts transitively on
G−k (n); in particular, G−k (n) is arc-connected.

Proof. Let S ∈ G−k (n) be �xed arbitrarily; let us show that there exists T in the connected
component of the identity of O(n, k) such that T

(
IRk⊕{0}) = S. Set S′ = S⊥g , choose a

g-orthonormal basis b1, . . . , bk of S, a g-orthonormal basis bk+1, . . . , bn if S′ and, denoting
by e1, . . . , en the canonical basis of IRn, let T̃ ∈ GL(n) be such that T̃ (ei) = bi for all
i = 1, . . . , n. Clearly, T̃ ∈ O(n, k), because it send a g-orthonormal basis into another g-
orthonormal basis; moreover, T̃

(
IRk ⊕ {0}) = S. Replacing b1 with −b1 in the choice of

an orthonormal basis of S has the effect of changing the sign of the determinant of the upper
left block k × k of the matrix representation of T̃ in the canonical basis, while replacing
bk+1 with −bk+1 has the effect of changing the sign of the lower right (n− k)× (n− k)
block of such matrix. In conclusion, the appropriate choice for the sign of b1 and bk+1 can
be made to ensure that the corresponding operator T̃ belongs to the connected component
of the identity of O(n, k), and this concludes the proof. ¤
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