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ABSTRACT. We give a functional analytical proof of the equality be-
tween the Maslov index of a semi-Riemannian geodesic and the spectral
�ow of the path of self-adjoint Fredholm operators obtained from the
index form. This fact, together with recent results on the bifurcation
for critical points of strongly inde�nite functionals (see [3]) imply that
each non degenerate and non null conjugate (or P -focal) point along a
semi-Riemannian geodesic is a bifurcation point.
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1. INTRODUCTION

Let (M, g) be a semi-Riemannian manifold and p ∈ M ; a point q ∈
M is conjugate to p if q is a critical value of the exponential map expp,
i.e., if the linearized geodesic map d expp is not injective at exp−1

p (q). It
is a natural question to ask whether the non injectivity at the linear level
implies non uniqueness of geodesics between two conjugate points. For
instance, two antipodal points on the Riemannian round sphere are joined
by in�nitely many geodesics; however, it is easy to produce examples of
conjugate points in complete Riemannian manifolds that are joined by a
unique geodesic.

In order to make a more precise sense of the above question, �rst one has
to observe that any information obtained from the linearized geodesic equa-
tion can only be of local character, which implies that one should not expect
to detect the existence of a �nite number of geodesics between two points
along γ by merely looking at the Jacobi equation. A similar situation oc-
curs, for instance, when studying cut points along a Riemannian geodesic,
that are not necessarily related to conjugate points. On the other hand, in a
number of situations it is desirable to have a better picture of the geodesic
behavior near a conjugate point, and in order to investigate this situation we
introduce the notion of bifurcation point:

De�nition. Let (M, g) be a semi-Riemannian geodesic, γ : [a, b] → M be
a geodesic in M and t0 ∈ ]a, b[. The point γ(t0) is said to be a bifurcation
point for γ (see Figure 1) if there exists a sequence γn : [a, b] → M of
geodesics in M and a sequence (tn)n∈IN ⊂ ]a, b[ satisfying the following
properties:

(1) γn(a) = γ(a) for all n;
(2) γn(tn) = γ(tn) for all n;
(3) γn → γ as n →∞;
(4) tn → t0 (and thus γn(tn) → γ(t0)) as n →∞.

The convergence of geodesics in condition (3) is meant in any reasonable
sense, for instance, it suf�ces to require that γ̇n(a) → γ̇(a) as n →∞.

Using the Implicit Function Theorem, it follows immediately from the
above De�nition that if γ(t0) is a bifurcation point for γ, then necessarily
γ(t0) must be conjugate to γ(a) along γ. It is interesting to observe here
that the above de�nition of bifurcation point along a geodesic has strong
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FIGURE 1. Bifurcation of geodesics.

analogies with Jacobi's original de�nition of conjugate point along an ex-
tremal of quadratic functionals (see for instance [4, De�nition 4, p. 114]).
The de�nition of bifurcation point is well understood with the example of
the paraboloid z = x2 + y2, endowed with the Euclidean metric of IR3 (see
Figure 2)

Consider in this case the geodesic γ given by the meridian issuing from
a point p distinct from the vertex of the paraboloid, with initial velocity
pointing in the negative z direction. Such meridian goes downward towards
the vertex, and then up again towards in�nite on the opposite side of the
paraboloid; this geodesic has a (unique) conjugate point q, and neighboring
geodesics starting at p intersect the meridian at points qn 6= q that tend to q,
and thus q is a bifurcation point along γ.

Under the light of the above De�nition, we reformulate the non unique-
ness geodesic problem as follows: which conjugate points along a semi-
Riemannian geodesic are bifurcation points? Several other bifurcation ques-
tions are naturally associated to semi-Riemannian geometry. For instance,
one could replace the notion of conjugate point by that of focal point along a
geodesic γ relatively to an initial submanifold P of M , and could ask which
P -focal points are limits of endpoints of geodesics starting orthogonally at
P and terminating on γ.

In this paper we use some recent results on bifurcation theory for strongly
inde�nite functionals ([3]) and on symplectic techniques for semi-Riemann-
ian geodesics ([9, 10, 11]) to give an answer to the above questions. We
outline brie�y the ideas behind the theory of Fitzpatrick, Pejsachowicz and
Recht and how their result is employed in the present paper. The most clas-
sical result on variational bifurcation (see [5]) states that bifurcation for a
smooth path of functionals having a trivial branch of critical points with
�nite Morse index (assumed nondegenerate at the endpoints) occurs at a
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FIGURE 2. Geodesics issuing at a point p of the paraboloid,
tending to the meridian through p.

given singular critical point if such singular point determines a jump of the
Morse index. The variation of the Morse index at the endpoints of a path
of essentially positive self-adjoint Fredholm operators is a homotopy in-
variant of the path; recall to this aim that the space of essentially positive
self-adjoint Fredholm operators form a contractible space, and that the in-
vertible ones have an in�nite number of connected components, which are
labelled by the Morse index. When dealing with strongly inde�nite self-
adjoint Fredholm operators, then the topology of the space becomes richer
(fundamental group isomorphic to Z), and no homotopy invariant for paths
can be de�ned by simply looking at the endpoints of the path. The spectral
�ow for a path, originally introduced by Atiyah, Patodi and Singer (see [2]),
is an integer valued invariant associated to paths of this type, and it is given,
roughly speaking, by a signed count of the eigenvalues that pass through
zero at each singular instants. The main result in [3] is that bifurcation oc-
curs at those singular instants whose contribution to the spectral �ow is non
null (See Proposition 3.2 below).



BIFURCATION OF SEMI-RIEMANNIAN GEODESICS 5

Consider now the geodesic bifurcation problem mentioned above. By a
suitable choice of coordinates in the space of paths joining a �xed point p in
M and a point variable along a given geodesic γ starting at p, the geodesic
bifurcation problem is reduced to a bifurcation problem for a smooth family
of strongly inde�nite functionals de�ned in (an open neighborhood of 0 of)
a �xed Hilbert space. The path of Fredholm operators corresponding to the
index form along the geodesic is studied, and the main result of our com-
putations is that its spectral �ow coincides, up to a sign, with another well
known integer valued invariant of the geodesic, called the Maslov index.
Under a certain nondegeneracy assumption, the Maslov index is computed
as the sum of the signatures of all conjugate points along the geodesic. Ap-
plying the theory of [3], we get that nondegenerate conjugate points with
non vanishing signature are bifurcation points; more generally, a bifurca-
tion points is found in every segment of geodesic that contains a (possibly
non discrete) set of conjugate points that give a non zero contribution to
the Maslov index. In particular, Riemannian conjugate points are always
bifurcation points, as well as conjugate points along timelike or lightlike
Lorentzian geodesics. Similar results hold for focal points to an initial non-
degenerate submanifold.

2. FREDHOLM BILINEAR FORMS ON HILBERT SPACES

In this section we will discuss the notion of index of a Fredholm bilinear
form on a Hilbert space relatively to a closed subspace. The main goal
(Proposition 2.5) is a result that gives the relative index of a form to the
difference between the index and the coindex of suitable restrictions of the
form.

2.1. On the relative index of Fredholm forms. Let H be a Hilbert space
with inner product 〈·, ·〉, and let B a bounded symmetric bilinear form on H;
there exists a unique self-adjoint bounded operator S : H → H such that
B = 〈S·, ·〉, that will be called the realization of B (with respect to 〈·, ·〉). B
is nondegenerate if its realization is injective, B is strongly nondegenerate if
S is an isomorphism. If B is strongly nondegenerate, or if more generally 0
is not an accumulation point of the spectrum of S, we will call the negative
space (resp., the positive space) of B the closed subspace V −(S) (resp.,
V +(S)) of H given by χ]−∞,0[(S) (resp., χ]0,+∞[(S)), where χI denotes the
characteristic function of the interval I . We will say that B is Fredholm if
S is Fredholm, or that B is RCPPI, realized by a compact perturbation of a
positive isomorphism, (resp., RCPNI) if S is of the form S = P +K (resp.,
S = N + K) where P is a positive isomorphism of H (N is a negative
isomorphism of H) and K is compact. Observe that the properties of being
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Fredholm, RCPPI or RCPNI do not depend on the inner product, although
the realization S and the spaces V ±(S) do.

The index (resp., the coindex) of B, denoted by n−(B) (resp., n+(B))
is the dimension of V −(S) (resp., of V +(S)); the nullity of B, denoted by
n0(B) is the dimension of the kernel of S.

If B is RCPPI (resp., RCPNI), then both its nullity n0(B) and its index
n−(B) (resp., and its coindex n+(B)) are �nite numbers.

Given a closed subspace W ⊂ H , the B-orthogonal complement of W ,
denoted by W⊥B , is the closed subspace of H:

W⊥B =
{
x ∈ H : B(x, y) = 0 for all y ∈ W

}
;

clearly,
W⊥B = S−1(W⊥).

If B is Fredholm, S is its realization and W ⊂ H is any subspace, then the
following properties hold:

(1) B is nondegenerate iff it is strongly nondegenerate;
(2) n0(B) < +∞;
(3) (W⊥B)⊥B = W + Ker(S);
(4) if W is closed, then W + W⊥B is closed;
(5) if W is closed and B|W (i.e., the restriction of B to W × W ) in

nondegenerate, then also B|W⊥B is nondegenerate and H = W ⊕
W⊥B .

Let us now recall a few basic things on the notion of commensurability
of closed subspaces (see reference [1] for more details). Let V, W ⊂ H
be closed subspaces and let PV and PW denote the orthogonal projections
respectively onto V and W . We say that V and W are commensurable if
PV −PW is a compact operator. Equivalently, V and W are commensurable
if both PW⊥PV and PV ⊥PW are compact; if V and W are commensurable
the relative dimension dimV (W ) of W with respect to V is de�ned as:

dimV (W ) = dim(W ∩ V ⊥)− dim(W⊥ ∩ V ).

Clearly, if V and W are commensurable, then V ⊥ and W⊥ are commensu-
rable, and:

dimV ⊥(W⊥) = −dimV (W ).

The notion of commensurability of subspaces does not depend on the choice
of an Hilbert space inner product in H .
Proposition 2.1. Let S, T be linear bounded self-adjoint operators on H
whose difference K = S − T is compact. Then V −(S) (resp., V +(S)) is
commensurable with V −(T ) (resp., with V +(T )).

Conversely, assume that S is a bounded self-adjoint Fredholm operator
on H , and let H = W− ⊕W + be an orthogonal decomposition of H such
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that W− is commensurable with V −(S) and W + is commensurable with
V +(S). Then there exists an invertible self-adjoint operator T on H such
that V −(T ) = W−, V +(T ) = W + and such that S − T is compact.

Proof. See [1, Proposition 2.3.2 and Proposition 2.3.5]. ¤

Lemma 2.2. Let B be a Fredholm symmetric bilinear form on the Hilbert
space H and let W ⊂ H be a closed subspace. Then, the following are
equivalent:

(a) B|W is RCPNI and B|W⊥B is RCPPI;
(b) there exists a Hilbert space inner product 〈·, ·〉 on H such that W

is commensurable with V −(S), where S is the realization of B with
respect to 〈·, ·〉.

Proof. Assume that (b) holds; �x a Hilbert space inner product 〈·, ·〉 in H
and let S be the realization of B with respect to 〈·, ·〉 so that W is com-
mensurable with V −(S). Then W⊥ is commensurable with V −(S)⊥ =
V +(S) ⊕ Ker(B). Moreover, since Ker(B) is �nite dimensional, then
W⊥ is also commensurable with V +(S). By Proposition 2.1, there exists
an invertible self-adjoint operator T : H → H such that V −(T ) = W ,
V +(T ) = W⊥, and with S = T + K, with K compact. It follows easily
that B|W is RCPNI (namely, if P denotes the orthogonal projection onto
W , the realization of B|W is PS|W = (PT + PK)|W = (T + PK)|W ),
and B|W⊥ is RCPPI. Observe in particular that W ∩ W⊥B = Ker(B|W )
is �nite dimensional. To prove that B|W⊥B is RCPPI we argue as follows;
denote by P the orthogonal projection onto W and by P⊥ = 1 − P the
orthogonal projection onto W⊥. As we have observed, W⊥B = S−1(W⊥);
hence, for all x, y ∈ W⊥B we have:

B(x, y) = 〈Sx, y〉 = 〈Sx, P⊥y〉 = 〈SPx, P⊥y〉+ 〈SP⊥x, P⊥y〉 =

= 〈P⊥KPx, y〉+ 〈P⊥TP⊥x, y〉+ 〈P⊥KP⊥x, y〉.

(2.1)

In the above equality we have used the fact that W and W⊥ are T -invariant.
From (2.1) we deduce that B|W⊥B is represented by a compact perturbation
of the operator T̃ : W⊥B → W⊥B given by T̃ = P⊥BP⊥TP⊥|W⊥B (where
P⊥B is the orthogonal projection onto W⊥B ) which is positive semi-de�nite.
The kernel of T̃ is easily computed as the �nite dimensional space W⊥B ∩
T−1

(
W ∩W⊥B

)
; it follows that T̃ is a compact perturbation of a positive

isomorphism of W⊥B , which proves that (b) implies (a).
Conversely, if B|W is RCPNI and B|W⊥B is RCPPI, then clearly W1 =

W ∩ W⊥B is �nite dimensional; let W̃ be any closed complement of W1

in W . It follows that B|fW is nondegenerate, which implies that we have a
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direct sum decomposition H = W̃⊕W̃⊥B . If 〈·, ·〉 is any Hilbert space inner
product for which W̃ and W̃⊥B are orthogonal, then it is easily checked that
the corresponding realization S of B is such that V −(S) is commensurable
with W .

This concludes the proof. ¤

Assume now that B is a symmetric bilinear form, S is its realization; if
W is closed subspace of H which is commensurable with V −(S), the one
de�nes the relative index of B with respect to W , denoted by indW (B), the
integer number:

indW (B) = dimW

(
V −(S)

)
.

Again, the relative index is independent of the inner product, and the fol-
lowing equality holds:

indW (B) = sup
{
dimW (V ) : V is commensurable with V −(S)

}
.

2.2. Computation of the relative index. A subspace Z of H is said to be
isotropic for the symmetric bilinear form B of B|Z ≡ 0.

Lemma 2.3. Let B be a RCPPI symmetric bilinear form on H , and let
Z ⊂ H be an isotropic subspace of B. Then:

n−(B) = n−
(
B|Z⊥B

)
+ dim(Z).

Proof. Since B is RCPPI, then the index n−(B) is �nite, and so dim(Z)
and n−

(
B|Z⊥B

)
are �nite. Clearly, Z ⊂ Z⊥B ; let U ⊂ Z⊥B be a closed

subspace such that Z⊥B = Z ⊕ U , so that B|U is nondegenerate and H =
U ⊕ U⊥B . Moreover:

n−(B) = n−
(
B|U

)
+ n−

(
B|U⊥B

)
.

Since Z is isotropic, then n−
(
B|U

)
= n−

(
B|Z⊥B

)
; to conclude the proof

we need to show that n−
(
B|U⊥B

)
= dim(Z). To this aim, observe �rst

that dim(U⊥B) = 2dim(Z). Namely, dim(U⊥B) = codim(U); moreover,
codimZ⊥B (U) = dim(Z), and codim(Z⊥B) = dim(Z). Thus, keeping in
mind that the dimension of an isotropic subspace is less than or equal to the
index and the coindex, we have:

n−
(
B|U⊥B

)
+ n+

(
B|U⊥B

)
= dim(U⊥B) = 2 dim(Z)

≤ n−
(
B|U⊥B

)
+ n+

(
B|U⊥B

)
,

which proves that n−
(
B|U⊥B

)
= n+

(
B|U⊥B

)
= dim(Z) and concludes the

proof. ¤
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Lemma 2.4. Let B be a nondegenerate Fredholm symmetric bilinear form
on H and W ⊂ H be a closed subspace such that B|W⊥B is RCPPI. Let W̃
be any closed complement1 of W ∩W⊥B in W . Then the following identity
holds:

n−
(
B|fW⊥B

)
= n−

(
B|W⊥B

)
+ dim

(
W ∩W⊥B

)
.

Proof. We start with the observation that Ker
(
B|W

)
= Ker

(
B|W⊥B

)
=

W ∩W⊥B ; this implies in particular that B|fW and B|fW⊥B
are nondegener-

ate. Since B|W⊥B is RCPPI, then n−
(
B|W⊥B

)
and dim(W ∩ W⊥B) = n

are �nite numbers.
Since codimfW⊥B

(
W⊥B

)
= n, then:

n−
(
B|fW⊥B

) ≤ n−
(
B|W⊥B

)
+ n,

from which it follows that n−
(
B|fW⊥B

)
is �nite; moreover, B|fW⊥B

is RCPPI.
The conclusion now follows easily from Lemma 2.3, applied to the bilinear
form B|fW⊥B

and the isotropic space Z = W ∩W⊥B . ¤
We are �nally ready to give our central result concerning the computation

of the relative index of a Fredholm bilinear form B in terms of index and
coindex of suitable restrictions of B:
Proposition 2.5. Let B be a Fredholm symmetric bilinear form on H , S its
realization and let W ⊂ H be a closed subspace which is commensurable
with V −(S). Then the relative index indW (B) is given by:
(2.2) indW (B) = n−

(
B|W⊥B

)− n+

(
B|W

)
.

Proof. Assume �rst that B is nondegenerate on W ; then have a direct sum
decomposition H = W ⊕ W⊥B . The relative indW (B) does not change
if we change the inner product of H; we can therefore assume that W and
W⊥B are orthogonal subspaces of H . Then, S = S−⊕S+, where S− : W →
W is the realization of B|W and S+ : W⊥B → W⊥B is the realization of
B|W⊥B . Moreover, V −(S) = V −(S−)⊕V −(S+). An immediate calculation
yields:

indW (B) = dim
(
V −(S) ∩W⊥B

)− dim
(
V −(S)⊥ ∩W

)

= dim
(
V −(S) ∩W⊥B

)− codimW

(
V −(S−)

)

= dim
(
V −(S+)

)− codimW

(
V −(S−)

)

= n−
(
B|W⊥B

)− n+

(
B|W

)
.

Let us consider now the case that B|W is degenerate; by Lemma 2.2, B|W
is RCPNI, and so dim

(
W ∩W⊥B

)
= n < +∞. Set W̃ =

(
W ∩W⊥B

)⊥ ∩
1for instance, W̃ is the orthogonal complement of W ∩W⊥B in W with respect to any

inner product.
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W , so that B|fW is nondegenerate; moreover, V −(S) is commensurable with
W̃ , because it has �nite codimension in W . We can then apply the �rst part
of the proof, and we obtain:
(2.3) indfW (B) = n−

(
B|fW⊥B

)− n+

(
B|fW

)
.

Clearly,
(2.4) n+

(
B|fW

)
= n+

(
B|W

)
;

moreover, by de�nition of relative index:
(2.5) indfW (B) = indW (B) + n.

Finally, by Lemma 2.2, B|W⊥B is RCPPI, and by Lemma 2.4:
(2.6) n−

(
B|fW⊥B

)
= n−

(
B|W⊥B

)
+ n.

Formulas (2.3), (2.4), (2.5) and (2.6) yield (2.2) and conclude the proof. ¤

3. ON THE SPECTRAL FLOW OF A PATH OF SELF-ADJOINT FREDHOLM
OPERATORS

In this section we will recall some facts from the theory of variational
bifurcation for strongly inde�nite functionals. The basic reference for the
material presented is [3]; as to the de�nition and the basic properties of the
spectral �ow we refer to the nice article by Phillips [8], from which we will
borrow some of the notations.

3.1. Spectral �ow. Let us consider an in�nite dimensional separable real
Hilbert space H . We will denote by B(H) and K(H) respectively the alge-
bra of all bounded linear operators on H and the closed two-sided ideal
of B(H) consisting of all compact operators on H; the Calkin algebra
B(H)/K(H) will be denoted byQ(H), and π : B(H) → Q(H) will denote
the quotient map. The essential spectrum σess(T ) of a bounded linear oper-
ator T ∈ B(H) is the spectrum of π(T ) in the Calkin algebra Q(H). Let
F(H) and F sa(H) denote respectively the space of all Fredholm (bounded)
linear operators on H and the space of all self-adjoint ones. An element
T ∈ F sa(H) is said to be essentially positive (resp., essentially negative) if
σess(T ) ⊂ IR+ (resp., if σess(T ) ⊂ IR−), and strongly inde�nite if it is neither
essentially positive nor essentially negative.

The symbols F sa
+(H), F sa

−(H) and F sa
∗ (H) will denote the subsets of

F sa(H) consisting respectively of all essentially positive, essentially neg-
ative and strongly inde�nite self-adjoint Fredholm operators on H . These
sets are precisely the three connected components of F sa(H); F sa

+(H) and
F sa
−(H) are contractible, whileF sa

∗ (H) is homotopically equivalent to the di-
rect limit U(∞) = limn U(n), and it has in�nite cyclic fundamental group.
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Given a continuous path S : [0, 1] → F sa
∗ (H) with S(0) and S(1) invert-

ible, the spectral �ow of S, denoted by sf(S), is an integer number which is
given, roughly speaking, by the net number of eigenvalues that pass through
zero in the positive direction from the start of the path to its end. There ex-
ist several equivalent de�nitions of the spectral �ow in the literature; we
like to mention here the de�nition given in [8] using functional calculus,
and that reduces the problem to a simple dimension counting of �nite rank
projections.

More precisely, let χI denote the characteristic function of the interval I;
for all S ∈ F sa

∗ (H) there exists a > 0 and a neighborhood U of S in F sa
∗ (H)

such that the map T 7→ χ[−a,a](T ) is norm continuous in U , and it takes
values in the set of projections of �nite rank. Denote by C0

#

(
[0, 1],F sa

∗ (H)
)

the set of all continuous paths S : [0, 1] → F sa
∗ (H) such that S(0) and S(1)

are invertible. Given S ∈ C0
#

(
[0, 1],F sa

∗ (H)
)
, then by the above property

one can choose a partition 0 = t0 < t1 < . . . < tN = 1 of [0, 1] and positive
numbers a1, . . . , aN such that the maps t 7→ χ[−ai,ai]

(
S(t)

)
are continuous

and of �nite rank on [ti−1, ti] for all i. The spectral �ow of the path S is
de�ned to be the sum:

n∑
i=1

[
rk

(
χ[0,ai](S(ti))

)− rk
(
χ[0,ai](S(ti−1))

)]
,

where rk is the rank of a projection. With the above formula, the spectral
�ow is well de�ned, i.e., it does not depend on the choice of the partition (ti)
and of the positive numbers (ai), and the map sf : C0

#

(
[0, 1],F sa

∗ (H)
) → Z

has the following properties:
• it is additive by concatenation;
• if S ∈ C0

#

(
[0, 1],F sa

∗ (H)
)

is such that S(t) is invertible for all t,
then sf(S) = 0;

• it is invariant by homotopies with �xed endpoints;
• the induced map sf : π1

(F sa
∗ (H)

) → Z is an isomorphism.
For the purposes of the present paper, it will be useful to give a different

description of the spectral �ow, which follows the approach in [3]. As we
have observed, F sa

∗ (H) is not simply connected, and therefore no non trivial
homotopic invariant for curves inF sa

∗ (H) can be de�ned only in terms of the
value at the endpoints. However, in [3] it is shown that the spectral �ow can
be de�ned in terms of the endpoints, provided that the path S has the special
form S(t) = J + K(t), where J is a �xed symmetry of H and t 7→ K(t)
is a path of compact operators. By a symmetry of the Hilbert space H it is
meant an operator J of the form

J = P+ − P−,
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where P+ and P− are the orthogonal projections onto in�nite dimensional
closed subspaces H+ and H− of H such that H = H+ ⊕H−; assume that
such a symmetry J has been �xed.

Denote by Bo(H) the group of all invertible elements of B(H). There is
an action of Bo(H) on F sa(H) given by:

Bo(H)×F sa(H) 3 (M, S) 7−→ M∗SM ∈ F sa(H);

this action preserves the three connected components of F sa(H). Two ele-
ments in the same orbit are said to be cogredient; the orbit of each element
in F sa

∗ (H) meets the af�ne space J + K(H), i.e., given any S ∈ F sa
∗ (H)

there exists M ∈ Bo(H) such that M∗SM = J + K, where K is compact.
Moreover, using a suitable �ber bundle structure and standard lifting argu-
ments, it is shown in [3] that if t 7→ S(t) ∈ F sa

∗ (H) is a path of class Ck,
k = 0, . . . , +∞, then one can �nd a Ck curve t 7→ M(t) ∈ Bo(H) such that
M(t)∗S(t)M(t) = J + K(t), where t 7→ K(t) is a Ck curve of compact
operators. Among the central results of [3] the authors prove that the spec-
tral �ow of a path of strongly inde�nite self-adjoint Fredholm operators is
invariant by cogredience, and that for paths that are compact perturbation
of a �xed symmetry the spectral �ow is given as the relative dimension of
the negative eigenspaces at the endpoints:
Proposition 3.1. Let S : [0, 1] → F sa

∗ (H) be a continuous path such that
S(0) and S(1) are invertible, denote by B(t) = 〈S(t)·, ·〉 the corresponding
bilinear form on H , and let M : [0, 1] → Bo(H) be a continuous curve with
L(t) := M(t)∗S(t)M(t) of the form J + K(t), with K(t) compact for all t.
Then:

(1) sf(S) = sf(L);
(2) sf(L) = ind

V −
(

L(1)
)(

B(0)
)

= dim
(
V −

(
L(0)

) ∩ V +
(
L(1)

))− dim
(
V +

(
L(0)

) ∩ V −
(
L(1)

))
.

Proof. See [3, Proposition 3.2, Proposition 3.3]. ¤
Observe that, since dimW (V ) = −dimV (W ), the equality in part (2) of

Proposition 3.1 can be rewritten as:
(3.1) sf(L) = −ind

V −
(

L(0)
)(

B(1)
)

3.2. Bifurcation for a path of strongly inde�nite functionals. Let H be a
real separable Hilbert space, U ⊂ H a neighborhood of 0 and fλ : U → IR
a family of smooth (i.e., of class C2) functionals depending smoothly on
λ ∈ [0, 1]. Assume that 0 is a critical point of fλ for all λ ∈ [0, 1]. An
element λ∗ ∈ [0, 1] is said to be a bifurcation value if there exists a sequence
(λn)n in [0, 1] and a sequence (xn)n ∈ U such that:
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(1) xn is a critical point of fλn for all n;
(2) xn 6= 0 for all n and lim

n→∞
xn = 0;

(3) lim
n→∞

λn = λ∗.
The main result concerning the existence of a bifurcation value for a path
of strongly inde�nite functionals is the following:
Proposition 3.2. Let S(λ) = d2fλ(0) be the continuous path of self-adjoint
Fredholm operators on H given by the second variation of fλ at 0. Assume
that S takes values in F sa

∗ (H) for all λ ∈ [0, 1], and that S(0) and S(1) are
invertible. If sf(S) 6= 0, then there exists a bifurcation value λ∗ ∈ ]0, 1[.
Proof. See [3, Theorem 1]. ¤

It is obvious that, being a local notion, bifurcation can be de�ned also
in the case of a smooth family of C2-functionals fλ, λ ∈ [a, b], de�ned
on (an open subset of) a Hilbert manifold Ω, in the case that there exists
a common critical point z ∈ Ω for all the fλ's. Using local charts around
z (and thus identifying the tangent spaces at each point near z with a �xed
Hilbert space) one sees immediately that the result of Proposition 3.2 holds
also in this setting. On the other hand, global existence results for nontrivial
branches of critical points in the linear case cannot be extended directly to
the case of manifolds.

4. ON THE MASLOV INDEX

We will henceforth consider a smooth manifold M endowed with a semi-
Riemannian metric tensor g; by the symbol D

dt
we will denote the covariant

differentiation of vector �elds along a curve in the Levi�Civita connection
of g, while R will denote the curvature tensor of this connection chosen with
the sign convention: R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]. Set n = dim(M).

4.1. Semi-Riemannian conjugate points. Let γ : [0, 1] → M be a geo-
desic in (M, g); consider the Jacobi equation for vector �elds along γ:
(4.1) D2

dt2
J −R(γ̇, J) γ̇ = 0.

Let J denote the n-dimensional space:
(4.2) J =

{
J solution of (4.1) such that J(0) = 0

}
.

A point γ(t0), t0 ∈ ]0, 1] is said to be conjugate to γ(0) if there exists a non
zero J ∈ J such that J(t0) = 0.

Set J[t0] =
{
J(t0) : J ∈ J

}
; the codimension of J[t0] in Tγ(t0)M is

called the multiplicity of the conjugate point γ(t0), denoted by mul(t0). The
signature of the restriction of g to the g-orthogonal complement J[t0]⊥ is
called the signature of γ(t0), and will be denoted by sgn(t0). The conjugate
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point γ(t0) is said to be nondegenerate if such restriction is nondegenerate;
clearly, if g is Riemannian (i.e., positive de�nite) then every conjugate point
is nondegenerate and its signature coincides with its multiplicity (the same
is true for conjugate points along timelike or lightlike Lorentzian geodesics,
see the proof of Corollary 5.6).

It is well known that nondegenerate conjugate points are isolated, while
the distribution of degenerate conjugate points can be quite arbitrary (see
[11]).

4.2. The Maslov index: geometrical de�nition. Let v1, . . . , vn be a g-
orthonormal basis of Tγ(0)M and consider the parallel frame V1, . . . , Vn ob-
tained by parallel transport of the vi's along γ. This frame gives us isomor-
phisms Tγ(t)M → IRn that carry the metric tensor g to a �xed symmetric
bilinear form on IRn, still denoted by g. Observe that, by the choice of a
parallel trivialization of the tangent bundle TM along γ, covariant differ-
entiation for vector �elds along γ corresponds to standard differentiation of
IRn-valued maps, and the Jacobi equation (4.1) becomes the Morse�Sturm
system:
(4.3) J ′′ = RJ,

where R is a smooth curve of g-linear endomorphisms of IRn.
Consider the space IRn ⊕ IRn∗ endowed with the canonical symplectic

form
ω
(
(v1, α1), (v2, α2)

)
= α2(v1)− α1(v2), v1, v2 ∈ IRn, α1, α2 ∈ IRn∗.

We denote by Sp(2n, IR) the symplectic group of IRn ⊕ IRn∗, i.e., the Lie
group of all symplectomorphisms of IRn ⊕ IRn∗; by sp(2n, IR) we denote
the Lie algebra of Sp(2n, IR). Recall that a Lagrangian subspace L of
IRn ⊕ IRn∗ is an n-dimensional subspace on which ω vanishes. We de-
note by Λ the Lagrangian Grassmannian of IRn ⊕ IRn∗ which is the set of
all Lagrangian subspaces of IRn⊕ IRn∗. The Lagrangian Grassmannian is a
1
2
n(n+1)-dimensional compact and connected real-analytic embedded sub-

manifold of the Grassmannian of all n-dimensional subspaces of IRn⊕IRn∗.
Given a Morse�Sturm system (4.3) we set:
(4.4) `(t) =

{(
J(t), gJ ′(t)

)
: J ∈ J} ⊂ IRn ⊕ IRn∗,

for all t ∈ [0, 1]. In formula (4.4) we think of g as a linear map from IRn to
IRn∗; this kind of identi�cation will be made implicitly when necessary in
the rest of the paper. We denote by t 7→ Φ(t) the �ow of the Morse�Sturm
system (4.3), i.e., for every t ∈ [0, 1], Φ(t) is the unique linear isomorphism
of IRn ⊕ IRn∗ such that

Φ(t)
(
J(0), gJ ′(0)

)
=

(
J(t), gJ ′(t)

)
,
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for every solution J of (4.3). Observe that Φ is a C1 curve is the general
linear group of IRn⊕IRn∗ satisfying the matrix differential equation Φ′(t) =
X(t)Φ(t) with initial condition Φ(a) = Id, where X is given by:

(4.5) X(t) =

(
0 g−1

gR(t) 0

)
.

The g-symmetry of R implies that X is a curve in sp(2n, IR) and hence Φ
is actually a C1 curve in Sp(2n, IR). Set L0 = {0} ⊕ IRn∗ and consider the
smooth map:
(4.6) β : Sp(2n, IR) −→ Λ

de�ned by β(Φ) = Φ(L0). We have:
(4.7) ` = β ◦ Φ;

in particular ` is a C1 curve in the Lagrangian Grassmannian Λ.
By our construction, conjugate points along γ correspond to the conju-

gate instants of the Morse�Sturm system (4.3), i.e., instants t0 ∈ ]0, 1] such
that there exists a non zero solution J of (4.3) with J(0) = J(t0) = 0.
Observe that an instant t0 ∈ ]0, 1] is conjugate iff `(t) is not transversal
to L0, in which case the multiplicity of t0 coincides with the dimension of
`(t) ∩ L0. For k = 0, 1, . . . , n we set:

Λk(L0) =
{
L ∈ Λ : dim(L ∩ L0) = k

}
and Λ≥1(L0) =

n⋃

k=1

Λk(L0).

Each Λk(L0) is a connected real-analytic embedded submanifold of Λ hav-
ing codimension 1

2
k(k + 1) in Λ; the set Λ≥1(L0) is not a submanifold,

but it is a compact algebraic subvariety of Λ whose regular part is Λ1(L0).
The conjugate instants of the Morse�Sturm system are the instants when
` crosses Λ≥1(L0). The Maslov index of a curve in Λ with endpoints in
Λ0(L0) is de�ned as an intersection number of the curve with the algebraic
variety Λ≥1(L0). The intersection theory needed in this context can for in-
stance be formalized by an algebraic topological approach. Namely, the �rst
singular relative homology group H1(Λ, Λ0(L0)) with integer coef�cients is
in�nite cyclic and a generator can be canonically described in terms of the
symplectic form ω.

De�nition 4.1. Let l : [a, b] → Λ be a continuous curve with endpoints in
Λ0(L0). The Maslov index of l, denoted by iMaslov(l), is the integer number
corresponding to the homology class de�ned by l in H1(Λ, Λ0(L0)).

The Maslov index of curves in Λ is additive by concatenation, since the
same property holds for the relative homology class.
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If ` is the curve de�ned in (4.4) then the initial endpoint `(0) = L0 is
not in Λ0(L0); if t = 1 is conjugate then a similar problem occur, i.e.,
`(1) 6∈ Λ0(L0). However, it is known that there are no conjugate instants in
a neighborhood of t = 0 and hence we can give the following:
De�nition 4.2. Assume that γ(1) is not conjugate. The Maslov index of the
geodesic γ, denoted iMaslov(γ), is de�ned as the Maslov index of the curve
`|[ε,1], where ε > 0 is chosen such that there are no conjugate instants in
]0, ε].

The Maslov index of a geodesic can be computed as an algebraic count
of the conjugate points. In order to make this statement precise, let us recall
a few more facts about the geometry of the Lagrangian Grassmannian. For
L ∈ Λ, there exists a natural identi�cation

TLΛ ∼= Bsym(L)

of the tangent space TLΛ with the space Bsym(L) of symmetric bilinear
forms on L. Given a C1 curve l : [a, b] → Λ we say that l has a nonde-
generate intersection with Λ≥1(L0) at t = t0 if l(t0) ∈ Λ≥1(L0) and the
symmetric bilinear form l′(t0) is nondegenerate on the space l(t0) ∩ L0; in
case l(t0) ∈ Λ1(L0) then the intersection is nondegenerate precisely when
it is transversal in the standard sense of differential topology. Nondegener-
ate intersections with Λ≥1(L0) are isolated; in case all intersections of a C1

curve l with Λ≥1(L0) are nondegenerate, we have the following differential
topological method to compute the Maslov index:
Theorem 4.3. Let l : [a, b] → Λ be a C1 curve with endpoints in Λ0(L0)
having only nondegenerate intersections with Λ≥1(L0). Then l has only a
�nite number of intersections with Λ≥1(L0) and the Maslov index of l is
given by:

iMaslov(l) =
∑

t∈]a,b[

sgn
(
l′(t)|l(t)∩L0

)
.

Proof. See [6, Section 3]. ¤
We now want to apply Theorem 4.3 to the curve ` de�ned in (4.4); to this

aim, we �rst have to compute the derivative of `. Using local coordinates in
Λ one can compute the differential of the map β as:
(4.8) dβ(Φ) · A = ω(AΦ−1·, ·)|Φ(L0) ∈ Bsym(Φ(L0)),

for all Φ ∈ Sp(2n, IR) and all A ∈ TΦSp(2n, IR).
Theorem 4.4. If γ(t0) is a nondegenerate (hence isolated) conjugate point
along γ, t0 ∈ ]0, 1[, then for ε > 0 small enough:

iMaslov(γ|[0,t0+ε]) = iMaslov(γ|[0,t0−ε]) + sgn(t0).
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If γ(1) is not conjugate, and if all the conjugate points along γ are nonde-
generate, then the Maslov index of γ is given by:

iMaslov(γ) =
∑

t∈]0,1[

sgn(t0).

Proof. Using the additivity by concatenation of the Maslov index of curves
in Λ, the result is an easy consequence of Theorem 4.3, where formulas
(4.5), (4.7) and (4.8) are used to compute `′(t)|`(t)∩L0 . ¤
4.3. The Maslov index as a relative index. We will now relate the Maslov
index of a geodesic with the spectral �ow of the path of Fredholm operators
obtained from the index form.

Given a geodesic γ : [0, 1] → M , the index form is the bounded symmet-
ric bilinear form I de�ned on the space Hγ of all vector �elds of Sobolev
class H1 along γ and vanishing at the endpoints given by:

I(V, W ) =

∫ 1

0

[
g
(

D
dt

V, D
dt

W
)

+ g
(
R(γ̇, V ) γ̇, W

)]
dt.

The index form I is a Fredholm form on Hγ which is realized by a strongly
inde�nite self-adjoint Fredholm operator on Hγ when g is neither positive
nor negative de�nite.

Set k = n−(g); a maximal negative distribution along γ is a smooth
selection ∆ = (∆t)t∈[0,1] of k-dimensional subspaces of Tγ(t)M such that
g|∆t is negative de�nite for all t. Given a maximal negative distribution ∆
along γ, denote by S∆ the closed subspace of Hγ given by:

(4.9) S∆ =
{

V ∈ Hγ : V (t) ∈ ∆t, for all t ∈ [0, 1]
}

.

The I-orthogonal space to S∆ has been studied in [10], and it can be charac-
terized as the space of vector �elds V along γ that are �Jacobi in the direc-
tions of ∆�, i.e., such that D2

dt2
V −R(γ̇, V ) γ̇ is g-orthogonal to ∆ pointwise

(see [10, Section 5]).
Proposition 4.5. The restriction I|S∆ is RCPNI and the restriction I|(S∆)⊥I

is RCPPI. Moreover, if γ(1) is not conjugate, the index of I relatively to S∆

equals the Maslov index of γ:
(4.10) indS∆(I) = iMaslov(γ).

Proof. The �rst statement in the thesis is proven in [10, Prop. 5.25], the
second statement is proven in [7, Lemma 2.6.6]. Equality (4.10) follows
from Proposition 2.5 and the semi-Riemannian Morse index theorem [10,
Theorem 5.2], that gives us the equality:

iMaslov(γ) = n−
(
I
∣∣
(S∆)⊥I

)
− n+

(
I
∣∣
S∆

)
. ¤
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5. THE GEOMETRICAL BIFURCATION PROBLEM

Let γ : [0, 1] → M be a geodesic in (M, g), with p = γ(0) and q = γ(1);
let us consider again a g-orthonormal basis v1, . . . , vn of Tγ(0)M and as-
sume that the �rst k vectors v1, . . . , vk generate a g-negative space, while
the vk+1, . . . , vn generate a g-positive space. Let us consider again the paral-
lel transport of the vi's along γ, that will be denoted by V1, . . . , Vn. Observe
that, since parallel transport is an isometry, then, for all t ∈ [0, 1], the vec-
tors V1(t), . . . , Vk(t) generate a g-negative subspace of Tγ(t)M , that will be
denoted by D−

t , and Vk+1(t), . . . , Vn(t) generate a g-positive subspace of
Tγ(t)M , denoted by D+

t .
We �x a positive number ε0 < 1 such that there are no conjugate points

to p along γ in the interval ]0, ε0]. Finally, let us de�ne an auxiliary posi-
tive de�nite inner product on each Tγ(t)M , that will be denoted by gR, by
declaring that the basis V1(t), . . . , Vn(t) be orthonormal.

5.1. Reduction to a standard bifurcation problem. For all s ∈ [ε0, 1],
let Ωs denote the manifold of all curves x : [0, s] → M of Sobolev class H1

such that x(0) = γ(0) = p and x(s) = γ(s). It is well l known that Ωs has
the structure of an in�nite dimensional Hilbert manifold, modeled on the
Hilbert space H1

0 ([0, s], IRn). The geodesic action functional Fs : Ωs → IR,
de�ned by:

(5.1) Fs(x) =
1

2

∫ s

0

g(ẋ, ẋ) dt,

is smooth, and its critical points are precisely the geodesics in M from p
to γ(s). For each x ∈ Ωs, the tangent space TxΩs is identi�ed with the
Hilbertable space:

TxΩs =
{
V vector �eld along x of class H1 : V (0) = 0, V (s) = 0

}
;

we choose the following Hilbert space inner product on each TxΩs:

(5.2) 〈V, W 〉 =

∫ s

0

gR

(
D
dt

V, D
dt

W
)
dt, V,W ∈ TxΩs.

Convention. In what follows, each tangent space TγΩs will be identi�ed
with the Hilbert space H1

0 ([0, s], IRn) via the parallel frame V1, . . . Vn:

(5.3) H1
0 ([0, s], IRn) 3 (f1, . . . , fn) ∼=

n∑
i=1

fiVi ∈ TγΩs.

Since the frame V1, . . . Vn is parallel, the semi-Riemannian metric g is car-
ried by the isomorphism (5.3) into a �xed symmetric bilinear form g on IRn,
covariant differentiation along γ is carried into standard differentiation of
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curves in IRn, and the inner product (5.2) becomes the standard H1
0 -inner

product in H1
0 ([0, s], IRn):

(5.4) 〈V,W 〉 =

∫ s

0

gR(V
′,W ′) dt, V,W ∈ H1

0 ([0, s], IRn).

Similarly, the subspaces D−
t and D+

t of Tγ(t)M are carried to constant sub-
spaces denoted respectively D− and D+. Moreover, the curvature tensor R
along γ is carried by the isomorphism (5.3) into a smooth curve t 7→ R(t)
of g-symmetric endomorphisms of IRn.

For ε0 ≤ s1 ≤ s2 ≤ 1 and x ∈ Ωs2 , there is an obvious isometric
embedding TxΩs1 → TxΩs2 obtained by extension to 0 in ]s1, s2], but for
our purposes we will need a deeper identi�cation of (suitable open subsets
of) all the Hilbert manifolds Ωs. Towards this goal, we do the following
construction. Let ρ > 0 be a positive number, assume for the moment that
ρ is less than the injectivity radius of M at γ(s) for all s ∈ [ε0, 1]; a further
restriction for the choice of ρ will be given in what follows. Let W be the
open ball of radius ρ centered at 0 in H1

0 ([0, 1], IRn) ∼= TγΩ1 and, for all
s ∈ [ε0, 1], let Ws be the neighborhood of 0 in H1

0 ([0, s], IRn) ∼= TγΩs

given by the image of W by the reparameterization map Φs de�ned by:

(5.5) H1
0 ([0, 1], IRn) 3 V 7−→ V (s−1·) ∈ H1

0 ([0, s], IRn).

Finally, for all s ∈ [ε0, 1], let W̃s be the subset of Ωs obtained as the image
of Ws by the map:

V 7−→ EXP(V ),

where

(5.6) EXP(V )(t) = expγ(t) V (t).

Since expγ(t) is a local diffeomorphism between a neighborhood of 0 in
Tγ(t)M and a neighborhood of γ(t) in M , it is easily seen that the positive
number ρ above can be chosen small enough so that, for all s ∈ [ε0, 1],
W̃s is an open subset of Ωs (containing γ) and EXP is a diffeomorphism
between Ws and W̃s.

In conclusion, we have a family of diffeomorphisms Ψs : W → W̃s:

Ψs = EXP ◦ Φs,

and we can de�ne a family (fs)s∈[ε0,1] of smooth functionals on W by set-
ting:

fs = Fs ◦Ψs;

observe that Ψs(0) = γ|[0,s] for all s.
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Proposition 5.1. (fs)s is a smooth family of functionals on W . For each
s ∈ [ε0, 1], a point x ∈ W is a critical point of fs if and only if Ψs(x) is a
geodesic in M from p to γ(s) in W̃s. In particular, 0 is a critical point of
fs for all s, and every geodesic in M from p to γ(s) suf�ciently close to γ
in the H1-topology is obtained from a critical point of fs in W . The second
variation of fs at 0 is given by the bounded symmetric bilinear form Is on
H1

0 ([0, 1], IRn) de�ned by:

(5.7) Is(V, W ) =

∫ 1

0

[1

s
g
(
V ′(t),W ′(t)

)
+ sg

(
R(st)V (t), W (t)

)]
dt.

Proof. The smoothness of s 7→ fs follows immediately from the smooth-
ness of the exponential map and of the reparameterization map s 7→ Φs.
Since Ψs is a diffeomorphism for all s, the critical points of fs are precisely
the inverse image through Ψs of the critical points of Fs, and the second
statement of the thesis is clear from our construction. As to the second
variation of fs at 0, formula (5.7) is easily obtained from the classical sec-
ond variation formula for the geodesic action functional Fs at the geodesic
γ|[0,s]:

d2Fs(γ)[V, W ] =

∫ s

0

[
g
(
V ′(t),W ′(t)

)
+ g

(
R(t)V (t),W (t)

)]
dτ

with the change of variable t = τs−1. ¤
Proposition 5.1 gives us the link between the notion of bifurcation for

a smooth family of functionals and the geodesic bifurcation problem dis-
cussed in the introduction.

5.2. Conjugate points and bifurcation. We will now compute the spec-
tral �ow of the smooth curve of strongly inde�nite self-adjoint Fredholm
operators on H1

0 ([0, 1], IRn) associated to the curve of symmetric bilinear
forms (5.7).
Lemma 5.2. For all s ∈ [ε0, 1], the bilinear form Is of (5.7) is realized
by a bounded self-adjoint Fredholm operator Ss on H1

0 ([0, 1], IRn). If 0 <
n−(g) < n, then Ss is strongly inde�nite. If γ(1) is not conjugate to γ(0)
along γ, then the endpoints of the path

[ε0, 1] 3 s 7−→ Ss ∈ F sa
∗
(
H1

0 [0, 1], IRn)
)

are invertible.

Proof. The bilinear form Is in (5.7) is symmetric and bounded in the H1-
topology, hence Ss is self-adjoint and bounded. The bilinear form G on
H1

0 ([0, 1], IRn) de�ned by (V,W ) 7→ 1
s

∫ 1

0
g(V ′,W ′) dt is realized by an

invertible operator, because g is nondegenerate. The difference Is − G is
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realized by a self-adjoint compact operator on H1
0 ([0, 1], IRn), because it

is clearly continuous in the C0-topology, and the inclusion H1
0 ↪→ C0 is

compact. This proves that Ss is Fredholm.
Fix now s ∈ ]ε0, 1], s0 ∈ ]ε0, s[ and, assuming that 0 < n−(g) < n,

choose v+ and v− in IRn with g(v+, v+) > 0 and g(v−, v−) < 0. Let
J+ (resp., J−) be the unique Jacobi �eld along γ such that J+(s0) = v+

(resp., J−(s0) = v−). An easy computations shows that, for all f ∈
H1

0 ([0, s], IRn), the following equalities hold:

Is(fJ+, fJ+) =

∫ s

0

(f ′)2g(J+, J+), Is(fJ−, fJ−) =

∫ s

0

(f ′)2g(J−, J−).

It follows in particular that Is is positive de�nite on the in�nite dimensional
subspace of H1

0 ([0, s], IRn) consisting of vector �elds of the form fJ+, with
f having a �xed small support around s0, and Is is negative de�nite on the
space of vector �elds of the form fJ−. Hence, Ss is strongly inde�nite.

Since Ss is Fredholm of index zero, then Ss is invertible if and only it is
injective, i.e., if and only if Is has trivial kernel, that is, if and only if γ(s) is
not conjugate to γ(0) along γ. Hence, the last statement in the thesis comes
from the fact that both γ(ε0) and γ(1) are not conjugate to γ(0) along γ. ¤

Lemma 5.3. The smooth path Î of bounded symmetric bilinear forms
]0, 1] 3 s 7→ Îs := s · Is

has a continuous extension to 0 which is obtained by setting:

Î0(V, W ) =

∫ 1

0

g(V ′,W ′) dt.

For all s ∈ [0, 1], let Ŝs be the realization of Îs and assume that γ(1) is not
conjugate to γ(0) along γ.

The spectral �ow of the path Î : [0, 1] → F sa
∗ ([0, 1], IRn) is equal to the

spectral �ow of the path S : [ε0, 1] → F sa
∗ ([0, 1], IRn).

Proof. From (5.7) we get:

(5.8) Îs(V, W ) =

∫ 1

0

[
g
(
V ′(t),W ′(t)

)
+ s2g

(
R(st)V (t), W (t)

)]
dt

for all s ∈ ]0, 1], and this formula proves immediately the �rst statement in
the thesis.

The cogredience invariance of sf implies that multiplication by a positive
map does not change the spectral �ow; in particular, the spectral �ow of
Ŝ and of S on the interval [ε0, 1] coincide. Since Ŝs is invertible for all
s ∈ [0, ε0], the spectral �ow of S on [ε0, 1] coincide with the spectral �ow
of Ŝ on [0, 1]. ¤
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We are now ready to compute the spectral �ow of the path S:

Proposition 5.4. Assume that γ(1) is not conjugate to γ(0) along γ. Then
the spectral �ow of the path S is equal to −iMaslov(γ).

Proof. We will compute the spectral �ow of the path Ŝ on the interval [0, 1];
to this aim, we will use part (2) of Proposition 3.1. We will show that
Ŝs has the form J + Ks for all s ∈ [0, 1], where J is a �xed symmetry
of H1

0 ([0, 1], IRn) and Ks is a self-adjoint compact operator. Consider the
following closed subspaces of H1

0 ([0, 1], IRn):
H− =

{
v ∈ H1

0 ([0, 1], IRn) : v(t) ∈ D− for all t ∈ [0, 1]
}
,

H+ =
{
v ∈ H1

0 ([0, 1], IRn) : v(t) ∈ D+ for all t ∈ [0, 1]
}
.

In the language of subsection 4.3, D− corresponds to a maximal negative
distribution, and the space H− corresponds to the space S∆ of (4.9).

Clearly, H1
0 ([0, 1], IRn) = H− ⊕ H+; moreover, since D− and D+ are

gR-orthogonal, it follows that H− and H+ are orthogonal subspaces with
respect to the inner product (5.4). Set J = P+ − P−, where P+ and P−
are the orthogonal projections onto H+ and H− respectively. Recalling that
D− and D+ are g-orthogonal, and that g = gR on D+ and g = −gR on D−,
we have:

〈JV,W 〉 =

∫ 1

0

g(V ′,W ′) dt,

for all V, W ∈ H1
0 ([0, 1], IRn), and thus:

J = Ŝ0.

As we have observed in the proof of Lemma 5.7, the difference Ks = Ŝs−J
is a compact operator, and it is computed explicitly from (5.8) as:

〈KsV, W 〉 = s2

∫ 1

0

g
(
R(st)V (t),W (t)

)
dt, V, W ∈ H1

0 ([0, 1], IRn).

Clearly, V −(Ŝ0) = H−. We can then use formula (3.1), obtaining that the
spectral �ow of the path Ŝ is given by the relative index:

sf(Ŝ) = −indH−
(
Î1

)
= −indH−

(
I1

)
= −indS∆(I).

The conclusion follows from Proposition 4.5. ¤

Corollary 5.5. Assume that γ(t0) is a nondegenerate conjugate point along
γ. If sgn(t0) 6= 0, then γ(t0) is a bifurcation point along γ. More generally,
if 0 < t0 < t1 ≤ 1 are non conjugate instants along γ, if iMaslov

(
γ|[0,t0]

) 6=
iMaslov

(
γ|[0,t1]

)
then there exists at least one bifurcation instant t∗ ∈ ]t0, t1[.
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Proof. By the very same argument used in the proof of Proposition 5.4, for
all nonconjugate instant s ∈ ]ε0, 1] along γ, the spectral �ow of the path
S on the interval [ε0, s] equals the Maslov index iMaslov(γ|[0,s]). If t0 is a
nondegenerate (hence isolated) conjugate instant, using the additivity by
concatenation of sf, from Theorem 4.4, for all ε > 0 small enough we then
have that the spectral �ow of S in the interval [t0 − ε, t0 + ε] is given by:

sf(S, [t0 − ε, t0 + ε]) = sf(S, [ε0, t0 + ε])− sf(S, [ε0, t0 − ε])

= −iMaslov(γ|[0,t0+ε]) + iMaslov(γ|[0,t0−ε]) = −sgn(t0).

The conclusion follows from Proposition 3.2 and Proposition 5.1. The proof
of the second statement in the thesis is analogous. ¤
Corollary 5.6. If (M, g) is Riemannian, or if (M, g) is Lorentzian and γ is
causal (i.e., timelike or lightlike), then every conjugate point along γ is a
bifurcation point.
Proof. The signature of every conjugate point along a Riemannian mani-
fold coincides with its multiplicity; the same is true for causal Lorentzian
geodesic. To see this, assume that γ is a causal Lorentzian geodesic and
t0 ∈ ]0, 1] is a conjugate instant along γ; the �eld tγ̇(t) is in J, hence J[t0]⊥
is contained in γ̇(t0)

⊥. If γ is timelike, then γ̇(t0)
⊥ is spacelike, hence

sgn
(
g|J[t0]⊥

)
= dim

(
J[t0]⊥

)
= mul(t0). If γ is lightlike, then g is posi-

tive semi-de�nite on γ̇(t0)
⊥; to prove that it is positive de�nite on J[t0]⊥ it

suf�ces to show that γ̇(t0) does not belong to J[t0]⊥. To see this, choose a
Jacobi �eld J ∈ J along γ with the property that D

dt
J(0) is not orthogonal

to γ̇(0). It is easily see that the functions t 7→ g
(
J(t), γ̇(t)

)
is af�ne, and it

is zero at t = 0. If it were 0 at t0 then it would identically vanish, which is
impossible because its derivative g

(
D
dt

J(t), γ̇(t)
)

does not vanish at t = 0.
It follows that γ̇(t0) is not orthogonal to J(t0), hence γ̇(t0) 6∈ J[t0]⊥. ¤

6. FINAL REMARKS

6.1. Focal points. Assume that γ : [0, 1] → M is a geodesic in the semi-
Riemannian manifold (M, g), and let P ⊂ M be a smooth submanifold
with γ(0) ∈ P and γ̇(0) ∈ Tγ(0)P

⊥. We will assume that P is nonde-
generate at γ(0), i.e., that g|Tγ(0)P is nondegenerate. Recall that the second
fundamental form of P at γ(0) in the normal direction γ̇(0) is the symmetric
bilinear form SP

γ̇(0) : Tγ(0)P × Tγ(0)P → IR given by:

SP
γ̇(0)(v, w) = g

(∇vW, γ̇(0)
)
,

where W is any local extension of w to a vector �eld in P . A P -Jacobi �eld
along γ is a Jacobi �eld J satisfying the initial conditions:
(6.1) J(0) ∈ Tγ(0)P, g

(
D
dt

J(0), ·) + SP
γ̇(0)

(
J(0), ·) = 0 on Tγ(0)P.
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P -Jacobi �elds are interpreted geometrically as variational vector �elds
along γ corresponding to variations of γ by geodesics that start orthogo-
nally at P . A P -focal point along γ is a point γ(t0) for which there exists
a non zero P -Jacobi �eld J such that J(t0) = 0. Observe that the notion
of conjugate point coincides with that of P -focal point in the case that P
reduces to a single point of M . Theorems 4.3 and 4.4 hold also in this case,
mutatis mutandis.

The notions of multiplicity and signature of a P -focal point, as well as
the notion of nondegeneracy, are given in perfect analogy with the same
notions for conjugate points (Subsection 4.1) by replacing the space J of
(4.2) with the space JP :

JP =
{
J solution of (4.1) satisfying (6.1)

}
.

Also the de�nition of Maslov index of γ relatively to the initial submanifold
P , that will be denoted by iPMaslov(γ), is analogous to the de�nition of Maslov
index of a geodesic in the �xed endpoints case (Subsection 4.2). Namely,
for the correct de�nition Maslov index relative to the initial submanifold P
it suf�ces to rede�ne the curve ` given in (4.4) as:

`(t) =
{(

J(t), gJ ′(t)
)

: J ∈ JP

}

and repeat verbatim the de�nitions in Subsection 4.2.

De�nition 6.1. A point γ(t0), t0 ∈ ]0, 1[, along a geodesic γ : [0, 1] → M
starting orthogonally at P is said to be a bifurcation point relatively to the
initial submanifold P (see Figure 3) if there exists a sequence (pn)n in P
converging to γ(0), a sequence of normal vectors Nn ∈ TpnP⊥ converging
to γ̇(0) in the normal bundle TP⊥ (so that the geodesic t 7→ exppn

(tNn)
converges to γ) and a sequence (tn)n in [0, 1] converging to t0 such that
exppn

(tn ·Nn) belongs to γ
(
[0, 1]

)
.

The geodesic starting orthogonally at P and terminating at the point γ(s)
are critical points of the geodesic action functional Fs in (5.1) in the man-
ifold ΩP

s of all curves x : [0, s] → M of Sobolev class H1 with x(0) ∈ P
and x(s) = γ(s). For x ∈ ΩP

s , the tangent space TxΩ
P
s is identi�ed with the

space of vector �elds V of class H1 along x such that V (0) ∈ Tx(0)P and
V (s) = 0. For each s ∈ ]0, 1], the second variation of Fs at γ|[0,s] is given
by the symmetric bounded bilinear form IP

s on TγΩ
P
s given by:

(6.2)
IP
s (V, W ) =

∫ s

0

g( D
dt

V, D
dt

W ) + g
(
R(γ̇, V )γ̇, W

)
dτ − SP

γ̇(0)

(
V (0), W (0)

)
.
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P γ

γn

γ(t0)

pn

Nn

FIGURE 3. Bifurcation of geodesics starting orthogonally at
a submanifold P , occurring at a P -focal point along γ.

Using a parallely transported orthonormal basis along γ, we will identify2

the tangent space TγΩ
P
s with the Hilbert space H1

P([0, s], IRn) of all maps
V : [0, s] → IRn of class H1 such that V (0) ∈ P and V (s) = 0, where
P a subspace of IRn corresponding to Tγ(0)P by the above identi�cation
of Tγ(0)M with IRn, and S is the bilinear form on P corresponding to the
second fundamental form SP

γ̇(0). The space H1
P([0, 1], IRn) will be endowed

with the following Hilbert space inner product:

〈V, W 〉P =

∫ s

0

gR(V
′,W ′) dt + gR

(
V (0),W (0)

)
.

In order to reduce the focal bifurcation problem to a standard bifurcation
setup, we need to modify slightly the construction done in Subsection 5.1;
this is due to the fact that the map EXP as de�ned in (5.6), when evalu-
ated on vector �elds V ∈ TγΩ

P
s , does not produce3 a curve starting on P .

However, the reader will quickly convince himself that the exponential map
expγ(t) in the de�nition of EXP in (5.6) can be equivalently replaced by
the exponential map ẽxpγ(t) of just about any other metric g̃ on (an open
neighborhood of γ in) M . Such replacement will not alter any of the re-
sults discussed insofar. In order to obtain a well de�ned map EXP that
sends an open neighborhood of 0 in TγΩ

P
s diffeomorphically onto an open

neighborhood of γ|[0,s] in ΩP
s , it will then suf�ce to use the exponential map

ẽxp of a (Riemannian) metric g̃ de�ned in an open subset U ⊂ M contain-
ing γ([0, 1]) with the property that P is totally geodesic relatively to g̃ near
γ(0). Such a metric g̃ is easily found in a neighborhood of γ(0) in M using

2Such identi�cation is done in perfect analogy with what discussed in the Convention
on page 18.

3Observe indeed that expγ(0) v 6∈ P in general for v ∈ Tγ(0)P .
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a submanifold chart for P around γ(0), and then extended using a partition
of unity. Once this has been clari�ed, the reduction of the focal bifurcation
problem to a standard bifurcation setup is done in perfect analogy with what
discussed in Subsection 5.1: for all s ∈ ]0, 1], an open neighborhood W̃s

of γ|[0,s] in ΩP
s is identi�ed via EXP and a reparameterization map with a

�xed open neighborhood W of 0 in H1
P([0, 1], IRn). This identi�cation car-

ries γ|[0,s] to 0 for all s, and the family (Fs) of geodesic action functionals
on W̃s to a smooth curve of functionals fs on W . For all s ∈ ]0, 1], the
second variation of fs at 0 is identi�ed with a symmetric bilinear form IP

s

on H1
P([0, 1], IRn) given by:

IP
s (V, W ) =

∫ 1

0

[1

s
g
(
V ′(t),W ′(t)

)
+ sg

(
R(st)V (t),W (t)

)]
dt+

−S(
V (0),W (0)

)
.(6.3)

The smooth family of bilinear form ÎP
s := s · IP

s , given by:

ÎP
s (V,W ) =

∫ 1

0

[
g
(
V ′(t),W ′(t)

)
+ s2g

(
R(st)V (t),W (t)

)]
dt+

−sS(
V (0),W (0)

)

has a continuous extension to s = 0.
Choose a maximal negative distribution ∆ along γ and de�ne the space

S∆ as in (4.9); the semi-Riemannian index theorem [10, Theorem 5.2] tells
us that in this case, the P -Maslov index iPMaslov(γ) is given by:
(6.4) iPMaslov(γ) = n−

(
IP
1 |(S∆)

⊥I1

)− n+

(
IP
1 |S∆

)− n−
(
g|Tγ(0)P

)
,

where n−
(
g|Tγ(0)P

)
is the index of the restriction of g to Tγ(0)P . Recall that

this restriction is assumed nondegenerate, and, by continuity, g will be also
nondegenerate when restricted to tangent spaces of P at points near γ(0).
In particular, the index n−

(
g|TqP

)
is constant for q near γ(0) in P .

Using Proposition 3.1 (recall formula (3.1)), from (6.4) we get that the
spectral �ow of the path Ŝ of Fredholm operators realizing the bilinear form
ÎP
s in H1

P([0, 1], IRn) with respect to the inner product 〈·, ·〉P is given by:

sf(Ŝ) = −iPMaslov(γ)− n−
(
g|Tγ(0)P

)
.

The above construction and arguments analogous to those used in the
proofs of Corollary 5.5 and Corollary 5.6 give us the following conclusion:
Proposition 6.2. Let (M, g) be a semi-Riemannian manifold, P ⊂ M a
smooth submanifold and γ : [0, 1] → M starting orthogonally on P ; as-
sume that P is nondegenerate at γ(0). Then, every non degenerate P -focal
point with non zero signature is a bifurcation point relatively to the initial
submanifold P . More generally, given an interval [a, b] ⊂ ]0, 1] such that
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iPMaslov
(
γ|[0,a]

) 6= iPMaslov
(
γ|[0,b]

)
, then there exists at least one bifurcation

point relatively to the initial submanifold P along γ|]a,b[.
If (M, g) is Riemannian, or if (M, g) is Lorentzian and γ is causal, then

every P -focal point along γ is a bifurcation point relatively to P . ¤

6.2. Branching points along geodesics. A stronger property than bifur-
cation can be de�ned for a point γ(t0) along a semi-Riemannian geodesic
γ by requiring the existence of a whole homotopy of geodesics γs, s ∈ I
where I ⊂ IR is a right or a left neighborhood of t0, such that γs(a) = γ(a),
γs(s) = γ(s), γs 6= γ and γs → γ as s → t0. This is for instance the case
of the conjugate point along a meridian of the paraboloid mentioned in the
Introduction. A point for which such stronger bifurcation property holds
is called a branching point along γ. Using a classical Lyapunov-Schmidt
reduction and the implicit function theorem, it is easy to prove that sim-
ple (i.e., multiplicity 1) nondegenerate conjugate points along geodesics are
branching points.

6.3. Bifurcation by geodesics with a �xed causal character. A differ-
ent bifurcation problem in the context of semi-Riemannian geodesics may
be formulated by requiring that the non trivial branch of geodesics have a
�xed causal character. This is particularly interesting in the case of lightlike
geodesics in Lorentzian manifolds, where light bifurcation may be used to
model the so-called gravitational lensing problem in General Relativity. We
observe here that the result of Corollary 5.6 does not apply to this situation.

6.4. Bifurcation at an isolated degenerate conjugate point. As we have
observed ([6, 11]), degenerate conjugate points along a semi-Riemannian
geodesic may accumulate; however, when the metric is real-analytic, an
easy argument shows that conjugate points must necessarily be isolated.
In the real-analytic case, the result of Corollary 5.5 can be generalized to
the case of arbitrary conjugate points in terms of root functions and partial
multiplicities, in the spirit of [12].
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