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ABSTRACT 27	  

The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the 28	  

infectivity of several viruses, including human papillomavirus type 16 (HPV-16), that exploit cell 29	  

surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was 30	  

to assess the antiviral potency of AGMA1 and its spectrum of activity against a panel of low-risk 31	  

and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent 32	  

inhibitor of mucosal HPV types (i.e., types 16,  31,  45, and  6) in pseudovirus-based neutralization 33	  

assays. The 50% inhibitory concentration was between 0.34 µg/ml and 0.73 µg/ml and no evidence 34	  

of cytotoxicity was observed. AGMA1 interacts with immobilized heparin and with cellular 35	  

heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The 36	  

findings from this study indicate AGMA1 to be a leading candidate compound for further 37	  

development as an active ingredient of a topical microbicide against HPV and other sexually 38	  

transmitted viral infections. 39	  

 40	  
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INTRODUCTION  41	  

Human papillomaviruses (HPVs) are members of the Papillomaviridae family of double-stranded 42	  

DNA, non-enveloped viruses (1). The 8-kb HPV genome is enclosed in a capsid shell comprising 43	  

major (L1) and minor (L2) structural proteins. Most of the HPVs belonging to the alpha genus are 44	  

sexually-transmitted and infect the anogenital mucosa. In the great majority of immunocompetent 45	  

individuals, HPV infection is transient causing asymptomatic epithelial infections or benign 46	  

epithelial hyperplasia. The genital warts are the most common lesions, caused mainly by HPV-6 47	  

and HPV-11. A small proportion of men and women fail to control viral infection and develop 48	  

HPV-related malignancies, including carcinoma of the cervix, vulva, vagina, penis, anus and 49	  

oropharynx. Several HPV types belonging to HPV species 7 (HPV-18, -39, -45, -59, -68) and 50	  

species 9 (HPV-16, -31, -33, -35, -52, -58, -67) can confer a high oncogenic risk. HPV-16 and 51	  

HPV-18 cause about 70% of all cases of invasive cervical cancer worldwide (followed by HPV 31, 52	  

33 and 45) (2).	  53	  

It has been estimated that more than 528,000 new cases occur every year, and in 2012 it caused 54	  

266,000 deaths worldwide. (3, 4). Eighty-five percent of cervical cancer cases occur in women 55	  

living in low socio-economic settings, primarily due to a lack of access to effective cervical cancer 56	  

screening programs. No direct anti-HPV drugs are available to cure HPV lesions, therefore the 57	  

current treatments are ablative and directed at the abnormal cells associated with HPV, rather than 58	  

at the virus itself. The development of new ways to prevent genital infections is therefore essential 59	  

in order to reduce the burden of HPV diseases. Two prophylactic vaccines are currently available: 60	  

Gardasil and Cervarix. The first, is designed to protect against oncogenic HPV types 16 and 18 and 61	  

low-risk HPV types 6 and 11, and is therefore is preventive against both cancer and genital warts 62	  

(5), the latter is designed to protect against HPV types 16 and 18 only (5). Although the protective 63	  

activity of these vaccines is undeniable, they also come with a number of limitations, such as the 64	  

lack of protection against other oncogenic HPV types, the need for a cold chain distribution and 65	  

storage, and low worldwide vaccine coverage, partly due to the very high cost of their 66	  
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administration. Additional prevention tools for HPV infections are thus required, particularly in 67	  

low-resource settings where the burden of HPV infection is highest. In this context, topical antiviral 68	  

microbicides that can prevent the attachment of the full spectrum of mucosal HPV to the epithelial 69	  

cells lining the anogenital tract would be extremely useful to complement the distribution of 70	  

prophylactic vaccines.  71	  

Primary attachment of papillomavirus particles to the cell surface is mediated through the binding 72	  

of HPV capsid proteins to the cellular heparan sulfate proteoglycans (HSPGs) (6, 7) – polyanionic 73	  

structures widely expressed on eukaryotic cells that act as receptors for many other viruses (8, 9, 74	  

10). They consist of a core protein with glycosaminoglycan (GAG) chains of unbranched sulfated 75	  

polysaccharides known as heparan sulfates (HS), which are structurally related to heparin. 76	  

Consequently, heparin and other polyanionic compounds have been reported to act as HSPG-77	  

antagonists, binding and sequestering HPV in the extracellular environment, thus hampering its 78	  

attachment to the cell surface and hence infections (11, 12 and references therein). The in vivo 79	  

effectiveness of this anti-HPV strategy was recently demonstrated using the polyanionic sugar 80	  

carrageenan (13, 14).  81	  

In addition to the virus-binding polyanionic compounds are the polycationic compounds, which 82	  

instead bind to and mask HSPGs, in turn, preventing virus attachment. We have recently shown that 83	  

AGMA1, a poly(amidoamine) (shown in Fig. 1) displays  antiviral activity against a panel of 84	  

viruses that utilize HSPG as attachment receptors including HPV (11). Its prevailing cationic nature 85	  

(15) and its spectrum of antiviral activity suggest that it could prevent virus infectivity by binding to 86	  

HSPG. The aim of the present work was to investigate the spectrum of AGMA1’s antiviral activity 87	  

against several low-risk and high-risk HPV types and to elucidate its mechanism of action. AGMA1 88	  

emerged as a broad-spectrum inhibitor of HPV infectivity that prevents HPV attachment by binding 89	  

to and masking cell surface HSPGs. 90	  

91	  
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MATERIALS AND METHODS 91	  

Materials. All solvents and reagents, unless otherwise indicated, were analytical-grade 92	  

commercial products and used as received. 2,2-Bis(acrylamido)acetic acid (BAC) was prepared as 93	  

reported in the literature and its purity (99.7%) was determined by NMR and titration (16). 94	  

Phosphate buffer solution (PBS) 10 mM was prepared using Sigma Aldrich tablets according to the 95	  

manufacturer’s instructions. D2O (99.9%) was purchased from Aldrich and used as received. 96	  

Conventional heparin (13.6 kDa) was from Laboratori Derivati Organici S.p.A. (Milan, Italy). 97	  

Heparinase II, a glycosidase that digests the glycosaminoglycan (GAG) moiety of HSPGs (17) was 98	  

from Sigma-Aldrich (St Louis, MO). 99	  

 100	  

Synthesis of AGMA1. AGMA1 (Fig 1) was prepared as previously reported (18). Briefly, 101	  

Agmatine sulfate (2.000 g, 8.5 mmol) and lithium hydroxide monohydrate (0.360, 8.5 mmol) were 102	  

added to a solution of 2,2-bisacrylamidoacetic acid (1.689 g, 8.5 mmol) and lithium hydroxide 103	  

monohydrate (0.360 g, 8.5 mmol) in distilled water (2.8 mL). This mixture was maintained under a 104	  

nitrogen atmosphere and occasionally stirred for 78 h. At the end of this period, it was diluted with 105	  

water (100 mL), acidified with hydrochloric acid to pH 4-4.5, and then ultrafiltered through 106	  

membranes with a nominal cutoff of 5000. The fractions retained in each case were freeze-dried and 107	  

the product obtained as a white powder. Yields: 1.9 g. 108	  

AGMA1,  = 7800,  = 10100, and PD = 1.29. 109	  

Since AGMA1 is available in polydisperse preparations with average molecular mass not 110	  

unequivocally determinable, we will quantitatively refer to the compound in µg/ml (11), with the 111	  

exception of the calculation of the Kd (dissociation constant) value by Scatchard’s analysis of the 112	  

SPR data.  113	  

 114	  
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Preparation of biotinylated AGMA1 115	  

Biotinylated AGMA1 was prepared in two steps, (a) and (b), by reacting biotin N-116	  

hydroxysuccinimide ester (biotinNHS) with modified AGMA1 carrying approximately 8% 2-117	  

aminoethyl substituted units, in turn prepared by substituting in part agmatine with mono-tert-boc 118	  

ethylenediamine in the polymerization recipe and then cleaving the protective group.  119	  

Step (a): 2,2-bisacrylamidoacetic acid (5.0005 g), lithium hydroxide (1.0644 g) and mono-tert-boc 120	  

ethylenediamine (0.285 mL) were dissolved in distilled water (20mL), stirred until clear and then 121	  

allowed to stand 24 hrs at room temperature (20°C) in the dark. After this time, agmatine sulphate 122	  

(5.500 g) and lithium hydroxide (0.9936 g) were added under stirring, the resultant mixture was let 123	  

standing as above for further 120 hrs, then diluted with water, acidified to pH 5 with hydrochloric 124	  

acid and ultrafiltered through a membrane of nominal cut-off 3000. The product was retrieved by 125	  

lyophilizing, dissolving in 2M hydrochloric acid (50 mL) and stirring 2 hrs at r.t. under a slow 126	  

stream of nitrogen to favor eliminating the reaction by-product. The resultant aminated AGMA1 127	  

was then isolated as above. Yield 4.735 g.  128	  

Step (b): aminated AGMA1 (0.500 g) was dissolved in water (25 mL), the solution brought to pH 129	  

9.0 with dilute sodium hydroxide, dropwise added with a solution of biotinNHS (0.035 g) in DMSO 130	  

(2 mL) and stirred 5 hrs at r.t. The reaction mixture was then acidified to pH 4.5, and the product 131	  

isolated as in the previous cases by diluting with distilled water, ultrafiltering and lyophilizing. 132	  

Yield 330 mg.  133	  

AGMA1,  = 8400,  = 11900, and PD = 1.42. 134	  

Size exclusion chromatography (SEC) traces were obtained with a Knauer Pump 1000 equipped 135	  

with a Knauer Autosampler 3800, TSKgel G4000 PW and G3000 PW TosoHaas columns 136	  

connected in series, a light scattering (LS) Viscotek 270 Dual Detector, a Waters 486 UV detector 137	  

operating at 230 nm, and a Waters 2410 differential refractometer. The mobile phase was a 0.1 M 138	  
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Tris buffer pH 8.00 ±0.05 with 0.2 M sodium chloride. The flow rate was 1 mL/min and sample 139	  

concentration 1% w/w.  140	  

 141	  

HPV PsV production. Plasmids and 293TT cells, used for pseudovirus (PsV) production, were 142	  

kindly provided by John Schiller (National Cancer Institute, Bethesda, MD) or bought from 143	  

Addgene (Cambridge, MA). Detailed protocols and plasmid maps for this study can be obtained 144	  

from http://home.ccr.cancer.gov/lco/protocols.asp. HPV-16, HPV-31, HPV-45, HPV-6, and bovine 145	  

papillomavirus type 1 (BPV-1) PsVs were produced according to previously described methods 146	  

(19). Briefly, 293TT cells were transfected with plasmids expressing the papillomavirus major and 147	  

minor capsid proteins (L1 and L2, respectively), together with a reporter plasmid expressing the 148	  

secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP), named pYSEAP or pfwB, 149	  

respectively. HPV-16, HPV-6, and BPV-1 PsVs were produced using bicistronic L1/L2 expression 150	  

plasmids (p16sheLL, p6sheLL, and pSheLL, respectively). Capsids were allowed to mature 151	  

overnight in cell lysate; the clarified supernatant was then loaded on top of an Optiprep density 152	  

gradient of 27 to 33 to 39% (Sigma-Aldrich, St. Louis, MO) at room temperature for 3 h. The 153	  

material was centrifuged at 28,000 rpm for 18h at room temperature in an SW41.1 rotor (Beckman 154	  

Coulter, Inc., Fullerton, CA) and then collected by bottom puncture of the tubes. 155	  

Fractions were inspected for purity in 10% sodium dodecyl sulfate (SDS)–Tris–glycine gels, titrated 156	  

on 293TT cells to test for infectivity by SEAP or GFP detection, and then pooled and frozen at -157	  

80°C until needed. The L1 protein content of PsV stocks was determined by comparison with 158	  

bovine serum albumin standards in Coomassie-stained SDS-polyacrylamide gels. 159	  

 160	  

Cell culture. The human cervical carcinoma cell lines SiHa, HeLa, and C33A were grown as 161	  

monolayers in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco-BRL, Gaithersburg, MD) 162	  

supplemented with heat-inactivated 10% fetal calf serum (FCS; Gibco- BRL) and Glutamax-I 163	  

(Invitrogen, Carlsbad, CA). The 293TT cell line, derived from human embryonic kidney cells 164	  
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transformed with the simian virus 40 (SV40) large T antigen, was cultured in the medium described 165	  

above supplemented with nonessential amino acids. 293TT cells allow high levels of protein to be 166	  

expressed from vectors containing the SV40 origin due to over-replication of the expression 167	  

plasmid (20). Wild-type Chinese hamster ovary cells (CHO)-K1 cells and GAG-deficient A745 168	  

CHO cells (21) were kindly provided by J.D. Esko (University of California, La Jolla, CA) and 169	  

grown in Ham’s F-12 medium supplemented with 10% FCS. 170	  

	  171	  

SEAP-based PsV neutralization assays. 293TT cells were seeded in 96-well tissue culture-treated 172	  

flat-bottom plates at a density of 25,000 cells/well in 100 µl of DMEM without phenol red (Life 173	  

Technologies, Inc., Gaithersburg, MD) and with 10% heat-inactivated FBS, 1% glutamate, 1% 174	  

nonessential amino acids, 1 % antibiotic-antimycotic solution (Zell Shield, Minerva Biolabs GmbH, 175	  

Berlin, Germany) and 10 mM HEPES (neutralization buffer). The following day, to generate dose-176	  

response curves, diluted PsV stocks (80 µl/well) were combined with 20 µl of serially diluted 177	  

compound. The 100-µl PsV-compound mixture was transferred to the cell monolayers and 178	  

incubated for 72 h at 37°C at a final concentration of PsV equal to approximately 1 ng/ml L1 (about 179	  

750 capsid equivalents of L1/cell) (22). Following incubation, 50-µl aliquots of supernatant were 180	  

collected and the SEAP content in the clarified supernatant determined using a Great Escape SEAP 181	  

chemiluminescence kit 2.0 (BD Clontech, Mountain View, CA) as directed by the manufacturer. 182	  

Thirty minutes after the addition of the substrate, samples were read using a Wallac 1420 Victor 183	  

luminometer (PerkinElmer Life and Analytical Sciences, Inc., Wellesley, MA). 184	  

The 50% inhibitory concentration (IC50) values and the 95% confidence intervals (CIs) were 185	  

determined using the Prism program (GraphPad Software, San Diego, CA). 186	  

GFP-based assays. Cells were seeded in 96-well plates at a density of 25,000 cells/well in 100 µl 187	  

of DMEM supplemented with 10% FBS. The next day, serial dilutions of AGMA1 were added to 188	  

pre-plated cells together with dilutions of PsV stock. After 72 h of incubation at 37°C fluorescent 189	  

cells were counted on an inverted Zeiss LSM510 fluorescence microscope. 190	  
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Virus inactivation assay. Diluted PsV containing GFP stock and the test compounds at a 191	  

concentration of 3.6 µg/ml were added to MEM and mixed in a total volume of 100 µl. The virus 192	  

compound mixtures were incubated for 2 h at 37°C or 4°C then serially diluted to the non-inhibitory 193	  

concentration of test compound, and the residual viral infectivity was determined.  194	  

Attachment assay. Serial dilutions of AGMA1 were mixed with HPV-16–SEAP PsV (1 ng/ml L1) 195	  

and then added to cooled 293TT cells in 96-well plates and incubated for 2 h at 4°C to ensure PsV 196	  

attachment but not entry. After two gentle washes, cells were shifted to 37°C, and SEAP activity 197	  

was measured in the cell culture supernatants 72 h after PsV inoculation. 198	  

Pre-attachment assays. 293TT cell monolayers in 96-well plates were incubated with serial 199	  

dilutions of AGMA1 for 2 h at 4°C. After removal of the compound and a gentle wash, HPV-16–200	  

SEAP PsVs (1 ng/ml L1) were added to the cells for 2 h at 4°C. After two gentle washes, the cells 201	  

were shifted to 37°C, and SEAP activity was measured in the cell culture supernatants 72 h after 202	  

PsV inoculation. Alternatively HeLa cells were incubated with a fixed dose of AGMA1 for 1 h at 203	  

37°C. After removal of the compound and a gentle wash, cells were overlaid with medium for 204	  

different times (23, 5, 3 or 1 h(s)) and then infected with 16–GFP PsV (1 ng/ml L1). Fluorescence 205	  

was evaluated in the cell culture 72 h after PsV inoculation. 206	  

Post-attachment assay. HeLa cell monolayers in 96-well plates were incubated with HPV-16–GFP 207	  

PsV (1 ng/ml L1) for 2 h at 37°C, followed by two gentle washes to remove unbound virus. Serial 208	  

dilutions of AGMA1 were added to cultures after washout of the inoculums or after 2 or 4 h. 209	  

Fluorescence was evaluated in the cell culture 72 h after PsV inoculation. 210	  

Entry assay. HeLa cell monolayers in 96-well plates were incubated with HPV-16–GFP PsV (1 211	  

ng/ml L1) for 2 h at 4°C, followed by two gentle washes to remove unbound virus. Serial dilutions 212	  

of AGMA1 were then added to the cultures, which were shifted to 37C and incubated for 5 h to 213	  

allow viral entry. After this incubation, cells were washed with PBS at pH 10.5 (23) to remove the 214	  
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un-entered virus and two washes with normal medium to restore the physiological pH. Fluorescence 215	  

was evaluated in the cells 72 h after PsV inoculation. 216	  

Post-entry assay. HeLa cell monolayers in 96-well plates were incubated with HPV-16–GFP PsV 217	  

(1 ng/ml L1) for 2 h at 4°C, followed by two gentle washes to remove unbound virus. The cells 218	  

were then shifted to 37°C for 5 h  to allow viral entry. After this incubation, cells were washed with 219	  

PBS at pH 10.5 (23) to remove un-entered virus and then washed twice with normal medium to 220	  

restore the physiological pH. Serial dilutions of AGMA1 were then added to the cells. Fluorescence 221	  

was evaluated in the cells 72 h after PsV inoculation. 222	  

Cell viability assay. Cells were seeded at a density of 25,000/well in 96-well plates; the next day, 223	  

they were treated with serially diluted peptide compounds to generate dose-response curves. After 224	  

72 h of incubation, cell viability was determined using the CellTiter 96 Proliferation Assay Kit 225	  

(Promega, Madison, WI, USA), according to the manufacturer’s instructions. Absorbances were 226	  

measured using a Microplate Reader (Model 680, BIORAD) at 490 nm. 50% cytotoxic 227	  

concentration (CC50) values and 95% confidence intervals (CIs) were determined using Prism 228	  

software (GraphPad Software, San Diego, CA). 229	  

Electron microscopy. An aliquot of diluted HPV-PsV preparation was allowed to adsorb for about 230	  

3 min on carbon and formvar-coated grids and then rinsed several times with water. Grids were 231	  

negatively stained with 0.5% uranyl acetate and excess fluid removed with filter paper. 232	  

Observations and photographs were made using a CM 10 electron microscope (Philips, Eindhoven, 233	  

The Netherlands). 234	  

Attachment and pre-treatment followed by Western blot. HeLa cells were seeded at a density of 235	  

300,000/well in 6-well plates; the next day they were treated with a fixed dose of AGMA1 or 236	  

heparin (i.e. 100 µg/ml) 2 h before or during the 4 h infection period at 4°C. Following incubation, 237	  

cells were washed with cold medium to ensure the removal of unbound virus; cells were then 238	  



	   11	  

collected and lysed. The lysate proteins were separated by SDS-PAGE and transferred to a 239	  

polyvinylidene difluoride (PVDF) membrane. L1 was detected using mouse monoclonal antibody 240	  

(Ab30908, Abcam, Cambridge, UK) at a 1:2000 dilution, followed by anti-mouse IgG-HRP (Santa 241	  

Cruz Biotechnology Inc.). Actin was detected using mouse monoclonal antibody (Anti-actin 242	  

MAB1501R, Millipore), followed by anti-mouse IgG-HRP (Santa Cruz Biotechnology Inc.).  243	  

AGMA1/cell-associated HSPG binding assays. Monolayers of CHO-K1 cells, GAG-deficient 244	  

A745 CHO-K1 cells or HeLa cells in 96-well plates were incubated for 2 h at 4°C in phosphate-245	  

buffered saline (PBS) containing 0.1 mg/ml CaCl2, 0.1 mg/ml MgCl2, and 0.1% gelatin, with sub-246	  

saturating concentrations of biotinylated AGMA1 (b-AGMA1) (0.01 µg/mL or 0.1 µg/ml) in the 247	  

absence or presence of heparin (10 µg/ml). At the end of incubation, cells were washed with PBS, 248	  

and the amount of cell-associated b-AGMA1 determined with horseradish peroxidase-labeled 249	  

streptavidin (1/5,000) and the chromogenic substrate ABTS (Kierkegaard & Perry Laboratories, 250	  

Gaithersburg, MD). In some experiments, cell monolayers were washed with PBS containing 2 M 251	  

NaCl, a treatment known to remove cationic polypeptides from cell surface HSPGs (Urbinati, 252	  

2004). Alternatively, cells were incubated with heparinase II (15mU/ml) for 1 h at 37°C, or left 253	  

untreated, before the binding assay.  254	  

SPR assay. Surface plasmon resonance (SPR) measurements were performed on a BIAcore X 255	  

instrument (GE Healthcare, Milwaukee, WI), using a research grade CM3 sensorchip. The reagents 256	  

1-ethyl-3-(3-diaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 257	  

were purchased from GE Healthcare and used according to recommended protocols. 258	  

To study the interaction of AGMA1 with heparin, the latter was immobilized on a BIAcore 259	  

sensorchip as described previously (24). Briefly, a CM3 sensorchip (GE Healthcare) previously 260	  

activated with 50 µl of a mixture containing 0.4 M EDC and 0.1 M NHS was coated with 261	  

streptavidin. Heparin was biotinylated at its reducing end and immobilized onto the streptavidin-262	  

coated sensorchip. These experimental conditions allowed the immobilization of  80 resonance 263	  
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units (RU), equal to 5.8 fmol/mm2 of heparin. A sensorchip coated with streptavidin alone was used 264	  

to evaluate the nonspecific binding of AGMA1 to the sensorchip and for blank subtraction. The 265	  

compound was resuspended in 10 mM HBS-EP buffer (HEPES buffer, pH 7.4, containing 150 mM 266	  

NaCl, 3 mM EDTA, 0.005% surfactant P20) and injected over the heparin or streptavidin surfaces 267	  

for 4 min (to allow its association with immobilized heparin) and then washed until dissociation 268	  

was observed. After every run, the sensorchip was regenerated by injection of 2 M NaCl. The Kd 269	  

(dissociation constant) was calculated using the Koff/Kon ratio or by Scatchard’s analysis of the 270	  

SPR values of RU at equilibrium (directly proportional to the moles of bound ligand) as a function 271	  

of the ligand concentration in solution.  272	  

273	  
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RESULTS 273	  

Characterization of purified HPV-16 PsV.  274	  

HPV-16 was chosen as a pivotal model virus because it is the most frequent genotype identified in 275	  

cervical carcinomas (25). First of all, we evaluated the quality of the HPV-16–SEAP PsV 276	  

preparations by SDS-PAGE and electron microscopy analysis. As shown in Fig. 2A, a major band 277	  

migrating at 55 kDa was detected by Coomassie brilliant blue staining (lane 1) and was confirmed 278	  

to be the L1 major capsid protein by Western blot analysis with anti-L1 antibody (lane 2). No L1-279	  

reactive proteolytic degradation products were observed at molecular masses below 55 kDa. Figure 280	  

2B shows an electron micrograph of the same PsV stock. The PsV particles exhibited an average 281	  

diameter of 50 to 60 nm, similar to that of an authentic HPV capsid, and appeared as individual, 282	  

well-defined particles with no aggregation. When observed at a higher magnification, the particles 283	  

appeared to be well-assembled, icosahedral capsids (Fig.2B, inset). Similar results were obtained 284	  

with the other PsV types used in this study (data not shown). 285	  

 286	  

Inhibition of HPV-16 PsV infectivity in different cell lines by AGMA1. 287	  

The ability of AGMA1 to block HPV-16 PsV infection was tested on several cell lines. 293TT cells 288	  

are preferred for PsV inhibition assays based on SEAP expression because high levels of the SV40 289	  

large T antigen in these cells allow for the over-replication of the SEAP reporter plasmid. 290	  

Moreover, the analysis was extended to cell lines derived from the uterine cervix (i.e. SiHa, HeLa, 291	  

and C33A), the major anatomical target for high-risk HPV infection. Unlike 293TT, these cell lines 292	  

do not express the SV40 large T antigen, resulting in very low levels of SEAP protein expression. 293	  

Therefore, we employed GFP as a reporter gene because it allows reliable analyses of cell types in 294	  

which the reporter plasmid does not over-replicate. GFP-expressing PsV were also tested in 293TT 295	  

and the IC50 values compared to those obtained with SEAP-expressing PsV. As reported in Table 1, 296	  

AGMA1 inhibited the infectivity of HPV-16 PsV in all cell lines tested with IC50 values between 297	  

0.38 µg/ml - 0.53 µg/ml. Of note, the results show that the IC50 values obtained from cells infected 298	  
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with GFP- or SEAP-expressing PsV are comparable. Cell viability assays performed under identical 299	  

culture conditions for antiviral assays (i.e. cell density and time of incubation with the compound) 300	  

demonstrated that AGMA1 did not affect cell viability at any concentration tested (i.e. up to 300 301	  

µg/ml). 302	  

 303	  

The inhibitory activity of AGMA1 in not papillomavirus type restricted. 304	  

To assess whether the inhibitory activity of AGMA1 was papillomavirus type-specific, the assays 305	  

were repeated in 293TT cells using two additional high-risk HPV types (i.e. HPV-31 and HPV-45), 306	  

one low-risk type (HPV-6) and the bovine papillomavirus type 1 (BPV-1 PsV). The results shown 307	  

in Table 2 demonstrate that AGMA1 inhibits the infection of all the papillomaviruses tested with a 308	  

similar potency indicating that its inhibitory activity is not type-restricted. 309	  

 310	  

AGMA1 does not inactivate HPV PsV particles.  311	  

To assess whether the inhibitory activity was a consequence of a direct inactivation of PsV particles 312	  

by AGMA1 we performed a viral inactivation assay. As shown in Fig. 3, the virus titers of samples 313	  

treated with AGMA1 did not significantly differ to those determined in untreated samples (P>0.05), 314	  

indicating that AGMA1 does not inactivate HPV particles. 315	  

 316	  

AGMA1 interacts with the cell surface via HSPGs.  317	  

The polycationic nature of AGMA1 (15, 18) and its demonstrated capacity to selectively inhibit 318	  

HSPG dependent viruses (11) suggested that AGMA1 could inhibit HPV infection by interacting 319	  

with cell surface HSPGs. To investigate this hypothesis, we first investigated the effective capacity 320	  

of AGMA1 to bind to the cell surface via HSPGs. To this end, in a first set of experiments, we 321	  

exploited the CHO cell model. As shown in Fig. 4A, the binding of b-AGMA1 to A745 CHO-K1 322	  



	   15	  

(cell mutants with defective HSPG synthesis) is significantly reduced with respect to wild type 323	  

CHO-K1 cells. Moreover, the binding of AGMA1 to wild type CHO-K1 cells could be reduced to a 324	  

level comparable or even lower than those measured in A745 CHO-K1 cells by: i) a 2 M NaCl 325	  

wash, a treatment known to disrupt the binding of cationic molecules to HSPGs (24); ii) the 326	  

presence of a molar excess of heparin, a structurally related HSPG antagonist; or iii) cell treatment 327	  

with heparinase, an enzyme that removes the heparan sulfate chains from cell surface-associated 328	  

HSPGs (Fig. 4B). 329	  

We thus wondered whether the HSPG-dependence of AGMA1 binding to cell surfaces also held in 330	  

relation to cervix adenocarcinoma epithelial cells. To this end, we evaluated the binding of b-331	  

AGMA1 to HeLa cells. As shown in Fig. 4C, b-AGMA1 binds to the surface of HeLa cells in a 332	  

dose-dependent and saturable manner. Also, the binding could be inhibited by a 2M NaCl wash, by 333	  

heparin, or by heparinase treatment, thus confirming its dependence on surface-associated HSPGs 334	  

(Fig. 4D).   335	  

To confirm further the interaction of AGMA1 with HSPGs, we evaluated its capacity to bind to 336	  

heparin (a structurally similar molecule) immobilized on a BIAcore sensorchip – a “cell-free” 337	  

model that resembles the interaction of cationic proteins with cell surface HSPGs (26). In a typical 338	  

experiment, increasing concentrations of AGMA1 were injected over the heparin surface, and a set 339	  

of sensograms obtained (Fig. 4E). An association rate constant (Kon) equal to 5.3 x 104 M-1 s-1 and 340	  

a slow dissociation rate constant (Koff) equal to 1.2 x 10-3 s-1 characterized the interaction of 341	  

AGMA1 with immobilized heparin. Thus, the AGMA1-heparin interaction occurs with a relatively 342	  

high affinity [dissociation constant (Kd) calculated independently of AGMA1 concentration as 343	  

Koff/Kon equal to 22.6 nM]. Finally, equilibrium binding data from Fig. 4E were used to generate 344	  

the saturation curve shown in Fig. 4F, which was in turn used to calculate a Kd value independent 345	  

from kinetic parameters; a Kd  equal to 17 nM was obtained, thus very similar to that calculated 346	  

above.  347	  
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AGMA1 blocks HPV binding to host cells through a direct interaction with cells.  348	  

Having demonstrated the interaction between AGMA1 and HSPGs, we wanted to examine whether 349	  

AGMA1 exerted its inhibitory activity by blocking HPV attachment. To this end, pre-attachment 350	  

and attachment assays were performed. As shown in Fig. 5A and 5B, under both these experimental 351	  

conditions AGMA1 strongly inhibited HPV-16 infection, with IC50 values of 2.21 µg/ml and 1.01 352	  

µg/ml, respectively. This result suggests that the antiviral activity depended on the AGMA1 353	  

capacity to prevent virus binding to the cell surface. To verify this hypothesis, a Western blot 354	  

analysis was carried out to detect the HPV particles bound to cells treated with AGMA1 before or 355	  

during the PsV inoculum. In the same assay, heparin was used as a reference compound, being a 356	  

known inhibitor of HPV attachment. As shown in Figure 5C, pre-treatment with AGMA1 totally 357	  

prevented the binding of HPV-16 PsV. By contrast, heparin was only slightly active when added 358	  

before virus inoculum. Instead, when the compounds were added during infection at 4°C (Figure 359	  

5D), they were both able to inhibit HPV binding. These results support the hypothesis that AGMA1 360	  

prevents HPV attachment through a direct interaction with cells, instead of binding to the virus 361	  

particle as heparin does. 362	  

To explore further the inhibitory activity of AGMA1 when added to the cells before infection, we 363	  

performed a pre-treatment assay in which the virus inoculum was added 23, 5, 3, or 1 hour(s) after 364	  

exposure of the cells to 100 µg/ml or 33 µg/ml of AGMA1 for 1 hour and then washed. As shown in 365	  

Fig 6, addition of the virus inoculum 5, 3, or 1 h after AGMA1 pretreatment resulted in an almost 366	  

complete suppression of infection (>97%) for all doses of AGMA1, whereas  at 23 h post-treatment 367	  

a 76.7% inhibition and a 45.2% inhibition was observed in cells treated with 100 µg/ml or 33 µg/ml, 368	  

respectively.  369	  

 370	  

 371	  

 372	  



	   17	  

AGMA1 displaces HPV-16 bound to cells.  373	  

It has been previously reported that HPV exhibits slow entry kinetics, with an average half-time of 374	  

12 h for HPV16 (27). We therefore used post-attachment assays to investigate whether AGMA1 375	  

could displace bound HPV PsV. We first performed an entry assay in which the virus was incubated 376	  

with cells for 2 h at 4°C, a condition that allows viral attachment but not entry. Immediately after 377	  

the removal of the virus inoculum, AGMA1 was added to the cells and the temperature shifted to 378	  

37°C to allow viral entry. Five hours later – a time sufficient to let a detectable amount of PsVs 379	  

enter the cells – the bound but not entered viruses were detached by washing with PBS at pH 10.5 380	  

(23). The IC50 determined for AGMA1 in the entry assay was 2.07 µg/ml, demonstrating its ability 381	  

to displace PsV particles already bound to cells. By contrast, when AGMA1 was added after the 382	  

washout with PBS pH 10.5 (post-entry assay) no reduction of reporter gene expression (Fig 7A) 383	  

could be observed. Moreover, we tested the inhibitory activity of AGMA1 when it was added to the 384	  

cells 2 or 4 h after the removal of the PsV inoculum (Fig 7B) and demonstrated that a 60% 385	  

inhibitory activity was still present at 4 h post-infection at the highest dose tested (i.e. 100 µg/ml). 386	  

387	  
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DISCUSSION 387	  

The wide distribution of HSPGs on eukaryotic cells and their strong interactive capacity has made 388	  

them attractive adhesion molecules for viruses, such as HPV, HSV, and HIV (10, 12, 28, 29). On 389	  

the molecular level, cationic viral proteins, determinants of infectivity, interact with the negatively 390	  

charged sulfate groups present on the GAG chains of HSPGs (8). In the case of HPV, the basic 391	  

domains on the L1 and L2 capsid proteins mediate the initial interaction between the virus and the 392	  

HSPGs (30, 31). This interaction has therefore been put forward as being a suitable molecular target 393	  

for virus attachment inhibitors with the scope of developing novel topical microbicides for the 394	  

prevention of sexually transmitted HPV infections. The present study shows the prevailingly 395	  

cationic polymer AGMA1 to be a broad spectrum inhibitor of HPV attachment and demonstrates 396	  

that its inhibitory activity depends on its capacity to bind to cellular HSPGs. The latter feature is 397	  

supported by biochemical, genetic, pharmacological and enzymatic evidence herein presented. We 398	  

observed that the binding of AGMA1 to HSPG-deficient A745 CHO-K1 cells is reduced with 399	  

respect to wild type CHO-K1 cells. Moreover, washing with 2M NaCl, known to disrupt the 400	  

electrostatic bonds between various proteins and heparin/HSPGs (24), displaced AGMA1 from the 401	  

cell surface. Finally, heparin, a structural analog of HSPG GAG chains, competed with cell surface 402	  

HSPGs for AGMA1 binding. Importantly, both of these treatments have previously been 403	  

demonstrated to act selectively on HSPG binding events, leaving the interactions of other proteins 404	  

with their receptors unaffected (24, 32). Finally, the direct removal of HSPG GAG chains using the 405	  

enzyme heparinase significantly reduced the binding of AGMA1 to cell surfaces.  However, 406	  

heparinase treatment did not completely abolish the binding of AGMA1 to the cell, suggesting that 407	  

other surface receptors, as yet unidentified, may exist able to interact with the polymer. 408	  

AGMA1’s interaction with the cell surface is further supported by the observation that AGMA1 409	  

prevents virus binding even when administered before virus inoculum (pre-treatment assays). By 410	  

contrast,  heparin, a known attachment inhibitor that interacts directly with the virus particle rather 411	  
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than with the cells, only prevents viral binding when in the presence of the virus (Fig 5). 412	  

Interestingly, AGMA1 suppresses infection even when it is added to cell cultures after the virus 413	  

attachment has already occurred (Fig 7), indicating that AGMA1 may be able to displace HPV 414	  

particles that are bound to cells but not yet internalized (due to their slow entry kinetics). Taken 415	  

together, these results identify valuable properties of AGMA1 as a topical microbicide that could 416	  

potentially prevent HPV infections if applied before or immediately after sexual intercourse.  417	  

Joyce and coworkers reported that virus-like particles composed of HPV L1 protein bind to heparin 418	  

with an affinity that is comparable to those of other heparin-binding proteins (30). Interestingly, the 419	  

SPR binding assays performed here also showed that AGMA1 binds to heparin with an affinity 420	  

(Kd: 17.0-22.6 nM) that is comparable to those of many other heparin-binding viral proteins (10). 421	  

Taken together, these data suggest that the binding of AGMA1 to HSPGs in vivo might occur with 422	  

an affinity that is comparable to that of HPV itself, resulting in efficient competition between 423	  

AGMA1 and the virus for cell interaction. In turn, this results in an equally efficient inhibition of 424	  

HPV infection, as shown by the very low value of IC50, calculated for the inhibitory activity of 425	  

AGMA1 (0.34 - 0.74 µg/ml) (Table 2). Besides affinity, another interesting binding feature 426	  

displayed by the AGMA1/heparin interaction is its slow dissociation rate (Koff), which identifies 427	  

the formation of very stable complexes between the polymer and heparin. Again, a similar, slow 428	  

Koff  has been calculated for the HPV/heparin interaction (30). These similarities may be 429	  

tentatively explained by the multimeric nature shared by the polymer and HPV, both exposing 430	  

multiple binding domains on their surface for the HSPG GAG chains (themselves presenting 431	  

multiple binding sites for their ligands). This kind of situation very often leads to the establishment 432	  

of cooperative interactions. Briefly, cooperativity is a form of allostery in which a macromolecule 433	  

(AGMA1 or HPV) has more than one binding site, and interaction with a receptor (HSPGs) at one 434	  

site increases its affinity at the contiguous site, stabilizing the complex (10). In vivo, the formation 435	  

of stable complexes between AGMA1 and HSPGs may result in extended inhibitory activity; i.e. 436	  
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once the polymer is bound to HSPGs it may be able to keep them masked and prevent virus 437	  

interaction for prolonged periods of time. Those considerations nicely correlate to the observation 438	  

that, once bound to the cell surface, AGMA1 retains its inhibitory activity when cells are challenged 439	  

with HPV infection 3, 5 and even 23 hours after initial exposure to the polymer (Fig 6).  440	  

Additional properties of AGMA1 make it appealing for further development as an active 441	  

pharmaceutical ingredient of topical microbicides. AGMA1 is water-soluble, biodegradable and 442	  

biocompatible. Its preparation process is simple, easily scalable and environmentally friendly,  443	  

taking place in water or alcohols, at room temperature and without the need for added catalysts (33). 444	  

Its activity is not papillomavirus type-restricted, since it extends across three HPV species 445	  

belonging to the alpha genus of the Papillomaviridae family. Indeed, AGMA1 has been found to be 446	  

active against three high-risk oncogenic types, namely HPV-16, HPV-31 (species 9), and HPV-45 447	  

(species 7), and one low-risk type (HPV-6) belonging to species 10. Of note, HPV-31 and HPV-45, 448	  

whose worldwide prevalence in cervical cancer is about 4% and 6%, respectively, (34) are not 449	  

included in the bivalent or quadrivalent vaccines. Interestingly, the fact that AGMA1 is active 450	  

against HPV-31, whose attachment does not appear to be dependent on HSPG (35), suggests that an 451	  

additional, as yet unidentified, mechanism of anti-HPV activity exists. The finding that AGMA1 is 452	  

even active against BPV-1, which is phylogenetically distant from alpha- papillomaviruses (36), 453	  

further supports its broad-spectrum activity. Since the existing prophylactic vaccines are HPV type 454	  

restricted, a broad-spectrum microbicide could be a useful adjuvant to vaccination programs, 455	  

especially in resource-limited settings were the burden of HPV infections is greatest. 456	  

Moreover, AGMA1 was recently reported to inhibit HSV-1 and HSV-2 infectivity (11). This 457	  

finding supports its use in conditions in which the concomitant infection of various sexually 458	  

transmitted viruses may occur, such as in the case of HSV-2 infection, which enhances the 459	  

transmission of HIV-1 infection (37). In turn, HIV infection-driven immunodeficiency causes a well 460	  

documented increase in HPV and HSV infections (38, 39). Of note, HIV is also a HSPG-dependent 461	  
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virus (9), and may also, therefore, be sensitive to AGMA1.  462	  

In conclusion, our results identify AGMA1 as a lead compound for further development as an active 463	  

pharmaceutical ingredient of a topical microbicide against HPV and other sexually transmitted viral 464	  

infections. Preclinical efficacy and toxicology studies are ongoing to assess the clinical potential of 465	  

this inhibitor. 466	  

467	  
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FIGURE LEGENDS 607	  

Fig 1. Chemical structure of AGMA1. 608	  

 609	  

Fig 2. Characterization of purified HPV-16–SEAP PsV. (A) An aliquot of purified PsV 610	  

preparation was analyzed by SDS-PAGE with Coomassie brilliant blue staining (lane 1) or 611	  

immunoblotted with an anti-L1 antibody (lane 2). (B) Electron micrograph of a purified PV 612	  

preparation (bar 100 nm); inset shows a pseudovirus at higher magnification. 613	  

 614	  

Fig 3. AGMA1 does not inactivate HPV PsV particles. HPV PsVs were incubated with 3.6 µg/ml 615	  

of AGMA1 for 2 h at 4°C or 37°C. Mixtures were then titrated on HeLa cells at high dilutions such 616	  

that the concentration of compound was not active. The titers, expressed as ffu/ml, show means and 617	  

SEMs for triplicates. 618	  

 619	  

Fig 4. Binding of AGMA-1 to heparin and HSPGs. A) Wild type CHO-K1 cells and HSPGs-620	  

deficient A745 CHO-K1 cells were incubated with b-AGMA1 (0.01 µg/ml) and washed with PBS. 621	  

B) In parallel experiments, wild type CHO-K1 cells were: i) incubated with b-AGMA1 alone and 622	  

then washed with PBS containing 2 M NaCl; ii) incubated with b-AGMA1 in the presence of a 623	  

molar excess (10 µg/ml) of heparin; or iii) pre-treated with heparinase before b-AGMA1 incubation. 624	  

HeLa cells were incubated with increasing concentrations of b-AGMA1 (panel C) or with 0.1 µg/ml 625	  

b-AGMA1 and subjected to the three different treatments described above (panel D). Then, the 626	  

amount of cell-associated b-AGMA was measured. In panel B and D, data are expressed as percent 627	  

of b-AGMA1 bound to control cells. E) Overlay of blank-subtracted sensorgrams generated by the 628	  

injection of AGMA1 onto sensorchip-immobilized heparin. F) Saturation curves of the binding of 629	  

AGMA1 to sensorchip-immobilized heparin. The saturation curves were obtained using the values 630	  

of RU bound at equilibrium, calculated from the sensorgrams reported in panel E. 631	  



	   30	  

Fig 5. AGMA1 inhibits HPV binding. In the pre-treatment assay, AGMA1 was added to cells for 632	  

2 h at 4°C, it was then washed out and HPV16 PsVs added. SEAP activity was evaluated 72 h later 633	  

(A). In the attachment assay (B), AGMA1 and HPV16 PsVs were co-incubated on cells at 4°C for 2 634	  

h, followed by a washout and 72 h incubation. The results show means and SEMs for triplicates. 635	  

Figure C presents a Western blot directed against L1 after 2 h pre-treatment with AGMA1 and 636	  

heparin at 100 µg/ml followed by a washout and addition of HPV16 PsVs for 4 h at 4°C and 637	  

subsequent lysis. Figure D presents a Western blot directed against L1 after an incubation on cells 638	  

of AGMA1 and heparin (100 µg/ml) with HPV16 PsVs for 4 h at 4°C with subsequent lysis. 639	  

 640	  

Fig 6. AGMA1 prevents HPV infection for extended periods following its removal. 641	  

Cells were pre-treated with AGMA1 for 1h at 37°C at fixed doses of 100 µg/ml and 33 µg/ml, 642	  

followed by washout; at different time points post washout (23, 5, 3, or 1 h) cells were then infected 643	  

with HPV-16 PsVs. After 72 h incubation, infection was evaluated. The results show means and 644	  

SEMs for triplicates 645	  

 646	  

Fig 7.  AGMA1 is able to detach HPV from the cell surface. 647	  

In the entry assay, HPV-16–GFP PsVs were added to cells for 2 h at 4°C then washed out to 648	  

remove unbound virus. AGMA1 was then added and the cells incubated for 5 h at 37°C to allow 649	  

viral entry. The cells were then washed with PBS pH 10.5 to remove everything that remained 650	  

outside the cell; 72 h after viral inoculum, GFP expression was evaluated. In the post-entry assay, 651	  

AGMA1 was not added before but after the 5 h incubation at 37°C and the washout with PBS pH 652	  

10.5 (A). In the post-treatment assay (B), AGMA1 was added 0, 2 or 4 h after the removal of the 653	  

PsV inocula; GFP expression was evaluated 72 h later. The results show means and SEMs for 654	  

triplicates.  655	  





Table 1. AGMA1 antiviral activity against HPV-16 in different cell lines. 

           

Cell line IC50 * (µg/ml) 95% CI**  CC50*** (µg/ml)  SI  

293TT (SEAP) 0.53 0.51-0.54 >300 >566 

293TT (GFP) 0.38 0.30-0.48 >300 >785 

Hela 0.38 0.28-0.52 >300 >777 

Siha 0.38  0.34-0.42  >300 >779 

C33A 0.49  0.38-0.63 >300 >606 

 

*   IC50: 50% inhibitory concentration  

**  95% CI: 95% confidence interval 

***CC50: 50% cytotoxic concentration  

Values are means and CIs for three separate determinations.	  

 



Table 2. AGMA1 antiviral activity against different types of Papillomaviruses 

           

Cell line IC50 * (µg/ml) 95% CI**  CC50*** (µg/ml)  SI  

HPV-16 0.53  0.51-0.55 >300 >566 

HPV-31 0.36 0.28-0.46 >300 >836 

HPV-45 0.74 0.70-1.80 >300 >407 

HPV-6 0.54 0.36-0.81 >300 >553 

BPV-1 0.34 0.23-0.50 >300 >875 

 

*   IC50: 50% inhibitory concentration  

**  95% CI: 95% confidence interval 

***CC50: 50% cytotoxic concentration  

Values are means and CIs for three separate determinations.	  

 














