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Alzheimer’s disease (AD), the most common neurodegenerative disorder associated
with dementia, is typified by the pathological accumulation of amyloid Aβ peptides
and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that
many events contribute to AD progression, including oxidative stress, inflammation,
and altered cholesterol metabolism. The brain’s high lipid content makes it particularly
vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation
and cholesterol oxidation, and the subsequent formation of end products, mainly 4-
hydroxynonenal and oxysterols, respectively from the two processes. The chronic
inflammatory events observed in the AD brain include activation of microglia and
astrocytes, together with enhancement of inflammatory molecule and free radical
release. Along with glial cells, neurons themselves have been found to contribute to
neuroinflammation in the AD brain, by serving as sources of inflammatory mediators.
Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has
been found to connect oxidative stress and inflammation in AD. Alongside oxidative
stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also
significantly contribute to neuronal damage and to progression of AD. Increasing
evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force
behind the development of AD, and that oxysterols are the link connecting the disease to
altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of
the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key
role of oxysterols in AD pathogenesis has been strongly supported by research pointing
to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death.
This review highlights the key role played by cholesterol and oxysterols in the brain in AD
pathogenesis.
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Introduction

Alzheimer’s disease (AD) is the most common age-related
neurodegenerative disorder associated with dementia, and the
progressive deterioration of mental capacities. It is a complex
disease characterized by progressive memory impairment,
cognitive deficit, and personality changes; these symptoms are
due to substantial synaptic and neuronal loss occuring in
specific brain areas, especially in the neocortex, hippocampus,
and other subcortical regions. Brains from AD patients show
distinct neuropathological features, which we now know are
the hallmarks of the disease: extracellular deposits of amyloid
β (Aβ) peptides in the form of senile plaques, Aβ deposits
in the cerebral blood vessels, and intracellular inclusion of
neurofibrillary tangles (NFT) composed of hyperphosphorylated
tau protein (Querfurth and LaFerla, 2010; Chopra et al., 2011).

One of the events that promotes AD pathogenesis is the
abnormal processing of amyloid precursor protein (APP), which
leads to excess production of Aβ peptides through the sequential
enzymatic actions of beta-site APP cleaving enzyme 1 (BACE1), a
β-secretase, and γ-secretase, both enzymes of the amiloidogenic
pathway. An imbalance between the production and clearance
of Aβ peptides in the brain, and their aggregation, cause Aβ

to accumulate, with subsequent formation of senile plaques.
Depending on the site of γ-secretase cleavage, two major forms
of Aβ are generated: a peptide of 40 amino acids (Aβ1–40), and
one of 42 amino acids (Aβ1–42). Aβ1–42 is the predominant
species of Aβ in senile plaques, and the insoluble oligomers and
intermediate amyloids are its most neurotoxic forms (Walsh
and Selkoe, 2007). Aβ oligomers are hypothesized to cause
neuronal damage and cognitive failure by generating free
radicals, as well as mitochondrial oxidative damage, synaptic
failure, and inflammatory changes in AD brains (Oddo et al.,
2003; Mattson, 2004; Reddy and Beal, 2005; Castellani et al.,
2010). Different assembly states of Aβ, and its accumulation
in different cellular compartments, can then affect critical
pathways, thereby facilitating the development of tau pathology.
Experimental evidence confirms that Aβ accumulation precedes
and drives NFT formation (Götz et al., 2001; Lewis et al.,
2001).

Besides aging, which is the most obvious risk factor for the
disease, a number of theories point to other risk factors, such as
culture, lifestyle, head injury, and genetics. Other risk factors are
associated with vascular disease, including hypercholesterolemia,
hypertension, atherosclerosis, coronary heart disease, smoking,
obesity, and diabetes (Mayeux, 2003). Some evidence suggests
that the dietary intake of homocysteine-related vitamins (vitamin
B12 and folate), antioxidants (vitamins C and E), unsaturated
fatty acids, and also a moderate alcohol intake, especially in
the form of wine, may reduce the risk of AD (Luchsinger and
Mayeux, 2004).

Although environmental factors increase the risk of AD,
this disease can also be caused by various gene mutations
(Gatz et al., 2006). In this contest, mutation in the genes APP,
presenilin 1 (PSEN1), and presenilin 2 (PSEN2) accounts for
most cases of the familial (or early-onset) form of AD, by
increasing the production and aggregation of Aβ and amyloid

plaque formation (Tanzi and Bertram, 2005). Conversely, the
apolipoprotein E (ApoE) gene is an important genetic risk factor
for the sporadic (or late-onset) form of AD (Raber et al., 2004).
The contribution of other candidate genes is probably less
important, and none has been verified. A possible explanation for
this difficulty in clarifying the genetic background might be that
the sporadic form of AD is not a uniform disease entity, and that
several susceptibility-enhancing genes may act in concert, each
conferring only a small increase in risk, in a complex interaction
with environmental factors.

However, although the pathophysiology of AD is still not
clearly understood, considerable evidence indicates that many
events participate in the development and progression of
the disease, including oxidative stress, inflammation, glial cell
activation, dysregulation of metal ions and calcium, presence
of ApoEε4, altered cholesterol metabolism, and dysregulation
of intercellular communication among brain cells (Quintanilla
et al., 2012).

Oxidative Stress in AD Pathogenesis

It has been extensively reported that free radicals are
pathologically important in neurodegenerative diseases, and
that the brain tissue is exposed to oxidative damage during the
development of AD, already from its early onset (Smith et al.,
2000, 2010; Mariani et al., 2005; Zhu et al., 2005; Reynolds
et al., 2007). Because age is a significant risk factor for AD, it
is also widely accepted that oxidative stress increases with age
leading to the accumulation of oxidative damage in biomolecules
(Butterfield and Kanski, 2001; Martin and Grotewiel, 2006; Jacob
et al., 2013).

The brain is particularly vulnerable to oxidative damage for
numerous reasons, but chiefly because it utilizes about 25% of
the respired oxygen, with a consequent increase of free radicals;
it also contains high concentrations of catalytic iron and lipids,
which are easily oxidized by free radicals. Further, the brain
contains relatively low levels of antioxidants and antioxidant
defense enzymes, and is thus not very efficient at removing free
radicals (Ansari and Scheff, 2010; Mazzetti et al., 2015). Because
the brain has a high lipid content, it is extremely vulnerable
to oxidative species, with the consequent enhancement of lipid
peroxidation and cholesterol oxidation, and the subsequent
formation of end products, mainly 4-hydroxynonenal and
oxysterols, respectively from the two processes (Sottero et al.,
2009; Reed, 2011).

Within the brain, neurons are the cells most vulnerable
to excess reactive oxygen species (ROS) and reactive nitrose
species (RNS), and their survival depends on the antioxidant
action of astrocytes. Astrocytes are very important for normal
brain function, because of their ability to actively promote
neuroprotection, in particular by releasing glutathione, which
protects neurons from oxidative stress (Shih et al., 2003).
However, neurons can also defend themselves through an
intrinsic mechanism of antioxidant defense involving the glucose
metabolism (Fernandez-Fernandez et al., 2012).

AD brains display high levels of oxidative stress, and a direct
association between free radical generation and the presence of
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Aβ plaques has been shown both in living AD mouse models
and in human AD tissue (McLellan et al., 2003). However,
it is still not clear whether oxidative stress is a cause or a
consequence of the neuropathology associated with AD (Zhu
et al., 2007; Bonda et al., 2010; Smith et al., 2010; Luque-
Contreras et al., 2014). In support of its being a cause, it
has been proposed that oxidative stress precedes the onset of
clinical and pathological AD symptoms, including Aβ deposition,
NFT formation, vascular malfunction, and cognitive decline
(Nunomura et al., 2001; Praticò et al., 2001). In this connection,
in a triple-transgenic mouse model of AD, mimicking AD
progression in humans, the levels of antioxidants (glutathione
and vitamin E) were found to be decreased, and the extent of lipid
peroxidation increased, before the appearance of senile plaques
and NFT (Resende et al., 2008). Moreover, as a prominent
early event, oxidative stress is believed to contribute to tau
hyperphosphorylation in neurons (Su et al., 2010) and, of note,
it has been observed that neuritic and cored amyloid plaques
show evidence of oxidatively modified Aβ (Head et al., 2002).
Conversely, Aβ is a potent promoter of oxidative stress, since
it is a potent generator of both ROS (Ding et al., 2007) and
RNS (Combs et al., 2001). Within the Aβ sequence, it has
been suggested that methionine 35 plays an important role in
promoting oxidative activity. When this amino acid is replaced
by cysteine, the oxidative stress induced by Aβ is greatly
attenuated (Butterfield and Boyd-Kimball, 2005; Butterfield et al.,
2013). In this connection, it has also been proposed that the
amyloid oligomers may insert themselves into the lipid bilayer,
causing lipid peroxidation and, consequently, oxidative damage
to proteins and other biomolecules (Butterfield et al., 2001).
Aβ oligomers are, indeed, the strongest inducers of oxidative
stress among all Aβ species (Tamagno et al., 2006; Naylor
et al., 2008). Generation of free radicals, altered membrane
properties, as well as disturbed calcium homeostasis, may
also underlie the apoptotic effect of Aβ oligomers (Malaplate-
Armand et al., 2006). It has also been observed, not only in
cultured neurons but also in vivo using the double transgenic
model of AD (APP/PS1), that Aβ causes an increase in
oxidative stress that leads to phosphorylation of p38, which
in turn phosphorylates tau at its T231 residue (Giraldo et al.,
2014).

Mitochondrial dysfunction is another feature of AD
pathogenesis (Castellani et al., 2002). Defects in the
mitochondria are typically defects of the electron transport
chain; these contribute both to the hyperproduction of
a variety of ROS, and to the deficiency of several key
enzymes responsible for oxidative metabolism that, in turn,
cause cell damage and eventual death (Cottrell et al., 2001).
Moreover, it has been shown that oxidative species, through
mitochondrial impairment, cause tau hyperphosphorylation
leading to neuron and synapse loss (Melov et al., 2007).
Mitochondrial dysfunction and oxidative damage have
been investigated in triple-transgenic mice that develop
both Aβ and tau disorders. These mice exhibited increased
oxidative stress, manifested by increased hydrogen peroxide
production and lipid peroxidation (Yao et al., 2009; Reddy,
2011).

APP and Aβ have also been associated with dysfunctional
consequences for mitochondrial homeostasis and cell death
(Manczak et al., 2006). APP impairs mitochondrial energy
metabolism, thus causing mitochondrial abnormalities leading
to ROS production (Anandatheerthavarada et al., 2003);
accumulation of APP in the mitochondrial import channel
then potentially inhibits mitochondrial import (Reddy et al.,
2004). Aβ is also considered a potent mitochondrial poison,
especially affecting the synaptic pool. It appears that Aβ enters
the mitochondria, induces free radical generation, disrupts the
electron transport chain, and ultimately causes mitochondrial
dysfunction (Mungarro-Menchaca et al., 2002). Aβ, then, inhibits
key mitochondrial enzymes in the brain and in isolated
mitochondria (Caspersen et al., 2005; Reddy and Beal, 2008), and
cytochrome c oxidase is also specifically attacked (Crouch et al.,
2005). A recent study on the transgenic mouse brain confirmed
that Aβ accumulates in neuronal mitochondria, thus affecting
mitochondrial function, as shown by increased mitochondrial
permeability, the decline of both respiratory function and
cytochrome c oxidase activity, and increased mitochondrial
oxidative stress (Du et al., 2010).

An association between ApoEε4 and oxidative stress-
mediated damage in AD has been also suggested. Despite playing
a beneficial role, by maintaining lipid homeostasis and redox
balance, ApoE can also contribute to oxidative damage in an
isoform-dependent manner, the ApoEε4 isoform being the most
harmful in AD (Luque-Contreras et al., 2014). The ApoEε4
genotype is also involved in mitochondrial dysfunction (Chang
et al., 2005), and might be a risk for potential antioxidant system
loss in AD (Shea et al., 2002).

Alterations in cerebrovascular regulation have recently
been ascribed to the early stages of AD, and the vascular
endothelium is also a target for oxidative stress leading to
endothelium dysfunction (Iadecola, 2004; Park et al., 2008).
Chronic hypoperfusion may thus play an important role in
the pathophysiology of AD, because it induces oxidative stress,
and over time this damage could initiate mitochondrial failure
(Sochocka et al., 2013). A recent study has shown that inhibition
of NADPH oxidase activity can mitigate cognitive impairment
in rodent models of hypoperfusion (Kim et al., 2012). Oxidative
stress is intimately associated with neuroinflammation, and there
has been found to be a vicious circle connecting oxidative
stress and inflammation in AD (Rosales-Corral et al., 2010;
Quintanilla et al., 2012; Joshi and Praticò, 2015). It has been
observed that the redox status modulates inflammatory factors
involvement in signaling processes, which are critical mediators
of oxidative stress and inflammation, causing neurodegeneration
(Mrak and Griffin, 2005; Kierdorf et al., 2010). Activation of
glial cells and increased cytokine production is also induced by
oxidative stress and, in turn, glial activation leads to the release
of other neurotoxic factors such as ROS and nitric oxide (NO),
which further exacerbate neuronal damage (Town et al., 2005;
Block et al., 2007; Michelucci et al., 2009; von Bernhardi et al.,
2010). Consequently, the resultant cellular damage amplifies
the inflammatory response, with glial activation and leukocyte
recruitment, leading to further inflammation in the AD brain
(Figure 1).
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FIGURE 1 | A vicious circle connects oxidative stress, inflammation, and
neurodegeneration in Alzheimer’s disease (AD). Oxidative stress damage
and inflammatory response are closely associated with AD, causing
neurodegeneration. Oxidative stress induces activation of microglia and
astrocytes with a consequent increase of pro-inflammatory mediator production
and, in turn, glial activation leads to toxic radical release, exacerbating neuronal

damage. Consequently, the resultant cellular damage amplifies the inflammatory
response, with glial activation and leukocyte recruitment, leading to further
inflammation in the AD brain. The release of inflammatory cytokines leads to
amyloid plaque and neurofibrillary tangle (NFT) formation, that triggers
inflammatory molecule release and causes neuronal damage, with consequent
neurodegeneration.

Inflammation in AD Pathogenesis

Besides oxidative stress damage, inflammatory responses are
also closely associated with AD pathology. Inflammation
occurs in pathologically vulnerable regions of the AD brain,
with increased expression of acute-phase proteins and pro-
inflammatory molecules, which create a chronic and self-
sustaining inflammatory process, involving activated glia cells,
and stressed neurons (Mrak and Griffin, 2005; Perry et al.,
2010; Morales et al., 2014). Thus chronic inflammation plays
a basic role in the progression of neuropathological changes
in AD, resulting in neuronal dysfunction and death. The
importance of neuroinflammation has emerged from several
studies of AD brains, which have evidenced the activation and
proliferation of glial cells, together with enhanced release of
inflammatory mediators (cytokines, chemokines, growth factors,
and other mediators) and free-radical-mediated oxidative

stress (ROS, NO, and other radicals) (Glass et al., 2010;
Heneka et al., 2010; McGeer and McGeer, 2010; Holmes
and Butchart, 2011; Azizi and Mirshafiey, 2012; Rubio-Perez
and Morillas-Ruiz, 2012; Lyman et al., 2014; Figueiredo-
Pereira et al., 2015). Microglia are key players in the disease
process, and once activated they present cell-surface antigens
commonly present on monocytes and macrophages (Latta
et al., 2014). Microglial activation thus leads to the initiation
of an innate immune response, dominated by the release
of pro-inflammatory cytokines (Town et al., 2005; Mrak,
2012; Weitz and Town, 2012). Incidental to this is also the
phagocytosis of fibrils and large aggregates of Aβ, suggesting
an initial neuroprotective defense mechanism (D’Andrea et al.,
2004; Colton and Wilcock, 2010). Further, microglia can also
secrete a number of soluble factors, such as glia-derived
neurotrophic factor, which are potentially beneficial to the
survival of neurons (Liu and Hong, 2003). Although the
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initial purpose of microglial activation is to counteract the
detrimental effects induced by the pathological features, it
subsequently leads to the release of high concentrations of
neurotoxic factors, such as inflammatory molecules, NO, ROS,
proteolitic enzymes, complementary factors, and excitatory
amino acids, which further exacerbate cell damage (Michelucci
et al., 2009). Moreover, in later stages of the disease, the
overproduction of inflammatory cytokines makes the microglia
phagocytically inactive, especially against insoluble oligomers
and high concentrations of Aβ (Hickman et al., 2008; Krabbe
et al., 2013).

A growing body of evidence also suggests that the central
nervous system (CNS) and systemic inflammation cannot be
viewed in isolation. Systemic inflammation might exarcerbate
behavioral symptoms and accelerate AD progression by
increasing the production of local pro-inflammatory cytokines
and chemokines, as well as of ROS and NO (Holmes, 2013).
The detrimental effects of peripheral inflammatory molecules in
the brain of AD patients chiefly occur because these mediators
can easily enter the brain, together with infiltrating leukocytes,
thanks to increased permeability of the blood-brain barrier
(BBB) as the disease progresses (Leoni et al., 2003; Popescu et al.,
2009; Takeda et al., 2014). Attention is also now being paid to
the participation of Toll-like receptors (TLRs) in inflammation
and neurodegeneration. The recruitment of TLRs contributes
to inflammation by amplifying the release of inflammatory
molecules, thus playing an important role in the impact of
inflammation on neuronal function and death (Drouin-Ouellet
and Cicchetti, 2012).

However, it also remains unclear in the case of inflammation
whether this process is a cause or a consequence of AD.
Clinical and experimental studies support the appearance of
neuroinflammatory changes already at the early stages of AD,
even before the formation of extracellular Aβ deposits and
intracellular NFT accumulation (Sheng et al., 2000). The release
of pro-inflammatory cytokines and enzymes could affect the
normal behavior of neuronal cells, leading to cell dysfunction
and abnormalities such as Aβ peptides and NFT accumulation,
events in the pathway leading to neuronal degeneration.
Inflammatory molecules, and a number of stress conditions,
enhance APP levels and the amyloidogenic processing of APP
to induce Aβ1–42 peptide production. This, in turn, inhibits
the formation of the soluble APP fraction that seems to
have a neuronal protective effect (Fassbender et al., 2000;
Misonou et al., 2000). Conversely, it has been demonstrated
that intraneuronal Aβ and soluble Aβ oligomers activate
microglia in the earliest stages of AD, even before senile
plaque and NFT formation, in particular when cells are stressed
(Ferretti and Cuello, 2011; Khandelwal et al., 2011). Moreover,
Aβ and NFT have also been shown to trigger the release
by activated glia cells of pro-inflammatory mediators, free
radicals, and other neurotoxic substances, implying that the
development of AD leads to the initiation of several self-
propagating cycles (Vukic et al., 2009; Morales et al., 2013).
Fibrillar Aβ can also activate microglia by binding to cell
membranes via specific receptors, including a multi-receptor
complex involving CD36, α6β1-integrin, and CD47 (Verdier

et al., 2004; Yu and Ye, 2015), while the disruption of the
APP gene and of its proteolytic products delays and decreases
microglial activation (DeGiorgio et al., 2002). Once activated,
microglia may also recruit and activate astrocytes, which
actively enhance the inflammatory response to extracellular
Aβ deposits (Jo et al., 2014). Aggregated amyloid fibrils and
neurotoxic inflammatory molecules, secreted by glial cells,
intensify neuronal dysfunction and death, either alone or in
concert (Brown and Bal-Price, 2003; Findeis, 2007). In this
context, activated glia cells and the released inflammatory
molecules, together with other components of the immune
response, are often present in proximity to neurons and areas
of amyloid plaque (Abbas et al., 2002; Serrano-Pozo et al.,
2013). Of note, microglia have also been suggested to be
preferentially associated with certain types of amyloid deposits
(D’Andrea et al., 2004). Furthermore, astrocytes are known
to play a critical role in Aβ clearance, in providing trophic
support to neurons, and in forming a protective barrier between
Aβ deposits and neurons. The presence of large numbers
of astrocytes associated with Aβ plaques suggests that these
lesions induce the release of chemotactic molecules that mediate
astrocyte recruitment. However, it has been suggested that
astrocytes could also be a source for Aβ peptides, because
they overexpress BACE1 in response to chronic stress (Roßner
et al., 2005; Wang et al., 2011). While Aβ has been widely
demonstrated to be pro-inflammatory, the association between
microglial activation and tau pathology development is still
not supported by direct evidence, since neurofibrillary disorder
occurs both in the presence and absence of neuroinflammation
(Streit et al., 2014), and intraneuronal NFT lesions usually
precede the formation of Aβ aggregates (Braak and Del Tredici,
2004).

Although it has been reported that microglia and astrocytes
actively promote disease development, and play pivotal roles in
amyloid deposition (Wegiel et al., 2004), conversely it has also
been reported that microglia are protective and may remove
amyloid deposits, thus having no effect on AD development
(Simard et al., 2006; Grathwohl et al., 2009). Moreover, and
interestingly, it has been suggested that infiltrating macrophages
from the circulation, rather than microglia, play a central role
in clearing Aβ deposits in cerebral amyloid angiopathy (Hawkes
and McLaurin, 2009), but that these cells can also play a
determinant role in AD development (Gate et al., 2010; Rezai-
Zadeh et al., 2011).

Of note, while neurons were traditionally believed to be
passive bystanders in neuroinflammation, some recent evidence
suggests that not only astrocytes and microglia, but also neurons
themselves, contribute to the chronic inflammation in AD, by
serving as a source of inflammatory molecules (Tchelingerian
et al., 1994; Yan et al., 1995; Murphy et al., 1999; Suzuki
et al., 1999; Acarin et al., 2000; Heneka and O’Banion, 2007;
Rubio-Perez and Morillas-Ruiz, 2012; Ramesh et al., 2013).
An increase in pro-inflammatory molecule expression has also
been observed in human neuroblastoma SH-SY5Y cells after
incubation with some cholesterol oxidation products (known
as oxysterols) potentially implicated in AD pathogenesis (Testa
et al., 2014).
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Brain Cholesterol Metabolism and AD

The human brain contains approximately 25% of the body’s
cholesterol; this is essential for its normal functioning, being a
major component of neuronal cell membranes and an essential
factor in membrane fluidity. In the adult brain, cholesterol
is mostly present in its non-esterified form; however, small
amounts of desmosterol and cholesteryl ester are also present.
The brain is separated from the peripheral circulation by the
BBB, which prevents the dietary intake of cholesterol being
transported from the circulation to the brain, since lipoproteins
do not cross the BBB. This means that nearly all the brain
cholesterol is synthesized de novo within the CNS, from 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase, through a
complex series of reactions involving more than 20 enzymes;
cholesterol metabolism is, thus, regulated independently of
that in the peripheral tissues (Vance et al., 2005; Dietschy,
2009). Because neurons do not efficiently synthesize cholesterol,
they rely on astrocytes as an external source. Astrocytes meet
neuronal cholesterol demands by secreting ApoE-cholesterol
complexes, which are transported to the neurons for their
development and function. On note, ApoE transcription is
regulated by 24-hydroxycholesterol (24-OH) released by the
neurons via the liver X receptor (LXR), this cholesterol oxidation
product being one of its natural ligands (Pfrieger, 2003; Nieweg
et al., 2009). LXR is a nuclear receptor that regulates the
expression of specific genes involved in cholesterol efflux and
metabolism, such as ATP-binding cassette transporters A1
and G1 (ABCA1 and ABCG1), and ApoE (Sodhi and Singh,
2013).

ApoE is the brain’s principal cholesterol-carrier protein;
through its receptors it regulates the redistribution and
homeostasis of cholesterol within the brain. Humans express
three naturally-occurring alleles of the ApoE gene: ε2, ε3, and
ε4. Murine studies have shown that astrocytes and microglia are
the primary ApoE secreting cells in the brain, but neurons can
express ApoE under conditions of excitotoxic injury (Xu et al.,
2006).

The association between ApoE polymorphism and AD is
presumably related to disorders in cholesterol transport. In this
connection, it has been found that receptors recognizing ApoE
are widely expressed in the brain of AD patients. Of note, AD
is accelerated in ApoEε4 individuals: those who are homozygous
for the ε4 allelic variant of ApoE have a 50–90% higher chance
of developing AD by age 85 years than those carrying ε2 and
ε3, showing that this ApoE isoform is one of the major risk
factors for AD (Puglielli et al., 2003; Evans et al., 2004; Bu,
2009; Kim et al., 2009a; Martins et al., 2009; Schipper, 2011).
However, the mechanisms whereby ApoE isoforms affect the
risk of AD are still obscure. One hypothesis is that ApoEε4
protein accelerates the uptake of cholesterol-rich particles by the
vasculature, leading to more rapid disease progression: compared
to ApoEε4, ApoEε2 and ApoEε3 proteins show reduced receptor
binding.

Although ApoE facilitates intracellular Aβ degradation by
microglia, reducing intracellular cholesterol levels (Lee et al.,
2011) by accelerating its clearance by binding Aβ and forming

a stable complex (Sagare et al., 2007; Jiang et al., 2008), ApoE
is, conversely, essential for Aβ aggregation and deposition,
promoting Aβ fibrillization and plaque formation, as well as
tau hyperphosphorylation and NFT formation (Cam and Bu,
2006; Bu, 2009; Marzolo and Bu, 2009). Of note, in the AD-
affected brain, ApoE colocalizes with cholesterol and fibrillar
Aβ in senile plaques (Burns et al., 2003b). It has also been
shown that the ApoEε4 genotype enhances Aβ production and
Aβ fibril formation in vitro, as well as in transgenic mice
with mutated APP, more than in mice expressing ApoEε3
(Holtzman et al., 2000; Carter et al., 2001; Ye et al., 2005). In
addition, ApoEε4 synergizes with Aβ toxicity (Ji et al., 2002).
Conversely, a striking reduction in amyloid deposits has been
observed in all brain regions of ApoE-null mice (Bales et al.,
1999). It has also been suggested that, in AD patients with
ApoEε4, a decreased ability to clear Aβ contributes to increasing
Aβ accumulation and amyloid plaque formation (Deane et al.,
2008). In addition, ApoE may mediate Aβ cell internalization,
by binding to the low density lipoprotein receptor-related
protein (LRP; Herz and Beffert, 2000). Further, like APP, ApoE
also undergoes cleavage, and ApoEε4 is more susceptible to
cleavage than is ApoEε3. Fragments of ApoE, such as Aβ,
can be toxic, causing AD-like neurotoxicity in mouse models
(Harris et al., 2003; Brecht et al., 2004); the lipid-binding
region of ApoE is required for this toxicity (Chang et al.,
2005).

Accumulating evidence also supports a key role for human
ApoE in modulating neuroinflammation (Maezawa et al., 2006c;
Keene et al., 2011; Tai et al., 2015). Many studies have
reported that ApoEε4 induces a detrimental neuroinflammatory
phenotype, both in peripheral and CNS inflammation. In
vitro data, using microglia isolated from ApoE transgenic
mice, has demonstrated ApoE genotype-specific modulation
of TLR4/lipopolisaccaride (LPS) induced inflammation. In
particular, LPS-induced pro-inflammatory cytokines are more
strongly expressed in ApoEε4 and ApoEε3 (Maezawa et al.,
2006b). Moreover, in microglia treated with LPS/interferon
γ, pro-inflammatory cytokine levels were higher, and anti-
inflammatory cytokine levels were lower, in ApoEε4 compared
to ApoEε3. Unlike what occurs in microglia, in astrocytes
TLR4/LPS-induced secretion of pro-inflammatory cytokines
follows the pattern: ApoEε2 > ApoEε3 > ApoEε4 via
differential nuclear factor-κB (NF-κB) activation (Maezawa
et al., 2006a). With regard to ApoE modulation of Aβ-
induced neuroinflammation, the available results are scarse.
It has been demonstrated that impaired ApoEε4 function
modulates the effects induced by Aβ on inflammatory receptor
signaling, by amplifying the detrimental pathway TLR4-
p38α and suppressing the beneficial pathway interleukin-
4R-nuclear receptor (Tai et al., 2015). Importantly, ApoE
also modulates BBB function, by a process that may be
considered neuroinflammatory. It has been observed that a lack
of murine ApoE combined with the expression of ApoEε4,
but not of ApoEε2 nor ApoEε3, leads to BBB breakdown
by activating the pro-inflammatory pathway cyclophilin A-
NF-κB-matrix metalloproteinase 9 in pericytes. Consequently,
blood-derived neurotoxic proteins are taken up by neurons,
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and microvascular and cerebral blood flows are reduced. It
has been shown that the vascular defects in ApoE-deficient
and ApoEε4-expressing mice precede neuronal dysfunction
and can initiate neurodegenerative changes (Bell et al.,
2012).

In addition to ApoE, other LXR-responsive genes involved
in cholesterol efflux are the ABCA1 and ABCG1 (Voloshyna
and Reiss, 2011). ABCA1 is reported to be involved in ApoE
metabolism and Aβ production, as well as in the modulation of
amyloid plaque formation in the CNS (Koldamova et al., 2010;
Kim et al., 2011). A close correlation between Aβ and ABCA1
levels has been demonstrated, since, in cultured astrocytes, Aβ

inhibits ABCA1 expression (Canepa et al., 2011). In addition, it
has also been shown that AD transgenic mice lacking ABCA1
develop increased Aβ levels and senile plaques, in the absence
of changes in APP processing (Wahrle et al., 2004). By contrast,
in transgenic mice overexpressing ABCA1, the increased ABCA1
function significantly decreases Aβ deposition (Wahrle et al.,
2008). Another ABC transporter, ABCA7, has been found to
stimulate cellular cholesterol efflux to ApoE-containing particles
in the same way as ABCA1 (Chan et al., 2008).

Cholesterol transport and homeostasis are thus closely linked
to multiple aspects of Aβ biology, since cholesterol levels
influence the production and deposition of the pathogenic
Aβ peptides (Burns et al., 2003a; Hughes et al., 2014; Lane-
Donovan et al., 2014). Cholesterol has indeed been shown
to directly modulate the processing of APP in neuronal cell
cultures (Ehehalt et al., 2003), probably by promoting β-
secretase activity (Xiong et al., 2008). However, the mechanisms
whereby cholesterol affects Aβ production and deposition
are still not fully understood. A change in membrane
properties and distribution of cholesterol has been suggested
as a possible mechanism (Shobab et al., 2005). Cholesterol
is mainly concentrated in membrane microdomains termed
lipid rafts, which are considered to be the site of the
amyloidogenic pathway (Cordy et al., 2006; Vetrivel and
Thinakaran, 2010). Further, it has been shown that cellular
cholesterol, especially when levels in the membrane are elevated,
binds directly to APP at its C terminal transmembrane domain
(Harris, 2008; Beel et al., 2010); as a consequence of the
binding APP is inserted into the phospholipid monolayers
of the lipid rafts and other organelles, where β- and γ-
secretases reside (Wahrle et al., 2002; Beel et al., 2010).
The amyloidogenic pathway of APP processing is thus linked
to cholesterol levels in these microdomains: β- and γ-
secretase activities are stimulated by high, and inhibited
by low levels of cholesterol (Grimm et al., 2008; Xiong
et al., 2008). Conversely, in the non-amyloidogenic pathway,
APP is processed by α-secretase in non-raft domains, and
this event is promoted by a decreased cellular cholesterol
level (Reid et al., 2007). Moreover, α-secretase can be
forced to associate with lipid rafts thus inactivating the
amyloidogenic pathway (Harris et al., 2009). Of note, it
has also been suggested that high levels of non-esterified
cholesterol alone might not affect APP processing, while the
conversion of free cholesterol to esterified cholesterol might
up-regulate APP processing and Aβ generation (Puglielli et al.,

2001). Conversely, inhibition of the enzyme acyl-coenzyme
A:cholesterol acyl-transferase 1, which esterifies cholesterol,
leads to the formation of smaller amounts of cholesteryl esters
and Aβ (Bhattacharyya and Kovacs, 2010). These observations
suggest that the balance between non-esterified and esterified
cholesterol is a fundamental point controlling the amyloidogenic
pathway.

It has also been shown that increased cholesterol levels in
the lipid bilayers favor Aβ binding to cell membranes (Kakio
et al., 2001). Additionally, cholesterol interacts with the peptide
as soon as it inserts into the lipid bilayer, and accelerates
its recruitment and oligomerization (Fantini and Yahi, 2010).
Indeed, cholesterol enhances Aβ to form neurotoxic aggregates
(Yanagisawa, 2005), and binds avidly to Aβ protofibrils at
level of lipid rafts where fibrillogenesis of these peptides has
been proposed to take place (Kakio et al., 2002; Harris, 2008).
Conversely, other research has demonstrated that cholesterol
decreases the Aβ-induced changes in structure and morphology
of lipid rafts, hindering β-sheet formation in membranes, and
thereby reducing peptide insertion, aggregation, and cytotoxicity
(Arispe and Doh, 2002; Curtain et al., 2003; Qiu et al.,
2011).

The effect of Aβ on cholesterol metabolism has also been
investigated: Aβ, especially the oligomeric rather than the
monomeric form, may alter the intracellular trafficking and
homeostasis of cholesterol, by promoting the release from the
cells of cholesterol and other lipids, in the form of Aβ-lipid
complexes (Michikawa et al., 2001). It has also been reported
that Aβ fibrils down-regulate cholesterol metabolism in cultured
neurons (Gong et al., 2002). Additionally, the intracellular
domain of APP, which is released upon γ-secretase cleavage of
APP, may act as a transcriptional suppressor of LRP1, leading
to the down-regulation of cellular cholesterol uptake (Liu et al.,
2007) and synaptic failure (Koudinov and Koudinova, 2005), as
well as enhancement of tau phosphorylation (Fan et al., 2001). It
has also been shown that extracellular cholesterol accumulates
in the senile plaques of AD patients, and in transgenic mice
expressing the Swedish Alzheimer mutation APP751, by binding
to aggregated Aβ (Mori et al., 2001).

Given the above considerations, it appears that cholesterol
distribution and trafficking within brain cells, rather than the
total amount of cholesterol in the neurons, play key roles in APP
processing and in the amyloid cascade during AD progression.
Conversely, Aβ may affect cellular cholesterol dynamics, such
as transport, distribution, and binding, which in turn have a
variety of effects on AD-related pathologic changes leading to
neurodegeneration.

A number of epidemiological studies also suggest a positive
correlation between hypercholesterolemia and susceptibility to
AD, in particular in individuals with the ApoEε4 genotype, which
influences cholesterol metabolism, although this relationship is
still the subject of considerable controversy (Shobab et al., 2005;
Panza et al., 2006; Jenner et al., 2010; Wood et al., 2014; Luckhoff
et al., 2015).

Elevated dietary cholesterol has been reported to increase
senile plaque formation in numerous animal models. In double
transgenic (APP/PS) mice, consumption of a high-cholesterol
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diet (7 weeks) elevated Aβ deposition in the CNS (Refolo
et al., 2000). In addition, in transgenic mice, a typical
Western diet (1% cholesterol), increased Aβ accumulation
and plaque burden, particularly in the dentate gyrus of the
hippocampus (Hooijmans et al., 2007). APP23 mice fed a
high-fat/high-cholesterol diet for 4 months showed the AD
phenotype. This resulted in significantly worse memory deficits
than in the same mice fed with a normal diet (Fitz et al.,
2010). Furthermore, studies using New Zealand white rabbits
have demonstrated that a diet inducing hypercholesterolemia
doubles the Aβ concentration in the hippocampal cortex (Sparks
et al., 2000). In addition to increasing Aβ, cholesterol-enriched
diets increased tau phosphorylation and oxidative stress in
rabbit brains (Ghribi et al., 2006; Jaya Prasanthi et al., 2008).
It has also been shown that cholesterol colocalizes with fibrillar
Aβ in the amyloid plaques of transgenic mice (Burns et al.,
2003b). Conversely, a study on guinea pigs showed that lowering
total cholesterol profile by administering statins decreased
cerebral Aβ production and accumulation (Fassbender et al.,
2001).

Although systemic lipoprotein carrying cholesterol cannot
cross the BBB, oxysterols, formed during oxidative stress, can
cross the BBB, partly because they may have damaging effects
on the BBB’s integrity and function (Dias et al., 2014). This
consideration supports the idea that oxysterols are the link
between hypercholesterolemia and AD.

The Involvement of Oxysterols in AD
Pathogenesis

To maintain cholesterol homeostasis in the brain, and because
the brain cannot degrade cholesterol, there must be a
mechanism to eliminate excess cholesterol, transporting it
through the BBB into the systemic circulation, thus preventing
its accumulation. The most important such mechanism operates
via the conversion of cholesterol to oxysterols. Cholesterol is
converted into the relatively polar oxysterol 24-OH, which
is produced in the brain almost exclusively by cholesterol
24-hydroxylase (CYP46A1) expressed in neurons, and which,
unlike cholesterol itself, diffuses across the BBB into the
systemic circulation. To a lesser extent, cholesterol is also
converted into 27-OH in the brain by cholesterol 27-
hydroxylase (CYP27A1), and then into 7α-hydroxy-3-oxo-4-
cholestenoic acid (7-OH-4-C) by the enzyme CYP7B; crossing
the BBB, 7-OH-4-C reaches the liver where it is eliminated
(Björkhem, 2006; Meaney et al., 2007; Björkhem et al., 2009).
However, most 27-OH has been found to flow from the
systemic circulation into the brain, since it can cross the
BBB; here it acts as an important link between extracerebral
and intracerebral pools of cholesterol, and may contribute
to the negative effects of hypercholesterolemia in the brain
(Heverin et al., 2005; Björkhem, 2006; Sharma et al., 2008).
A further oxysterol, 7β-hydroxycholesterol (7β-OH), derives
from cholesterol oxidation in the brain, following its interaction
with APP and Aβ (Nelson and Alkon, 2005). In addition
to those oxysterols, others including 7α-hydroxycholesterol
(7α-OH), 4β-hydroxycholestrerol (4β-OH), 5α, 6α- and 5β,

6β-epoxicholesterol (α- and β-EPOX) and 7-ketocholesterol
(7-K), have recently been identified post-mortem in human AD
brains, and their concentrations compared across the disease
states (Hascalovici et al., 2009). Of note, the study authors
observed that the levels of potentially amyloidogenic sterol
species derived from the auto-oxidation of cholesterol, like β-
EPOX, were higher at the mild cognitive impairment disease
stage. Oxysterols have also been identified in mouse brains and,
in addition to the above cited cholesterol derivatives, consistent
levels of 25-hydroxycholesterol (25-OH) were found (Ahonen
et al., 2014). Increased levels of 24-OH, 7-K, and β-EPOX have
also been detected in areas of the rat hippocampus undergoing
gliosis and neuroinflammation, after excitotoxic injury (He et al.,
2006; Kim et al., 2010). Further, because oxysterols can cross
the BBB, the flux of more than 20 cholesterol metabolites
between brain and circulation has very recently been verified
in 20 patients. Differences in concentrations, between jugular
and forearm veins, of 18 oxysterols, 5 cholestenoic acids and
3 cholenoic acids were measured. The study reported that
24-OH and 7-OH-4-C, of enzymatic origin, but also 6-oxo-
5α-hydroxycholesterol, 7β-OH, 7-K, which are formed from
cholesterol by ROS, are exported from the brain, while 27-OH
is imported into brain (Iuliano et al., 2015). Of these cholesterol
metabolites, that exported in the largest quantities is 24-OH.
Two other cholesterol metabolites, 7α, 25-dihydroxycholest-
4-en-3-one and 7α, (25R)26-hydroxycholest-4-en-3-one, were
reported to be exported from the brain (Crick et al., 2015b).
Oxysterols and cholestenoic acids have also been identified
and quantified in mouse cerebrospinal fluid (CSF), and the
findings compared with concentrations of the same metabolites
found in the plasma, in order to clarify cholesterol metabolism.
Concentrations of oxysterols were lower in the CSF than
in the plasma, but 7α, 24-dihydroxycholesterol and 7α, 24-
dihydroxycholest-4-en-3-one, both of enzymatic origin, were
only identified in the CSF (Crick et al., 2015a). These data
clearly demonstrate that there are several routes by which
cholesterol metabolites may be exported or imported from the
brain (Figure 2).

The idea has therefore gained ground that, owing to their
ability, unlike cholesterol, to cross the BBB, oxysterols might be
the missing link between altered brain cholesterol metabolism
and AD pathogenesis, as well as between hypercholesterolemia
and AD (Gamba et al., 2012). Although this means that the
brain can eliminate excess amounts of oxysterols, it could
conversely allow toxic amounts of these compounds, present in
the bloodstream, to accumulate in the brain, as in the case of
27-OH. The key role of oxysterols in AD pathogenesis has been
strongly supported by the last decade’s research, pointing to the
involvement of these oxysterols in the amyloid cascade.

To date, although contradictory results could obviously arise
from future findings on the other cholesterol metabolites found
in the brain, the oxysterols most widely considered to be
potentially implicated in the pathogenesis of AD are 24-OH
and 27-OH, both of enzymatic origin (Iuliano, 2011; Jeitner
et al., 2011; Leoni and Caccia, 2011; Gamba et al., 2012; Hughes
et al., 2013; Marwarha and Ghribi, 2014; Noguchi et al., 2014;
Table 1).
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FIGURE 2 | Enzymatically and non-enzymatically produced
oxysterols in AD brain and their fluxes across the blood brain
barrier (BBB). In neuronal cells, cholesterol is converted into
24-hydroxycholesterol (24-OH) by the enzyme CYP46A1; 24-OH, unlike
cholesterol, diffuses across the BBB into the systemic circulation. To a
lesser extent, cholesterol is also converted into 27-hydroxycholesterol
(27-OH) by the enzyme CYP27A1, and then into
7α-hydroxy-3-oxo-4-cholestenoic acid (7-OH-4-C) by the enzyme CYP7B;
crossing the BBB, 7-OH-4-C reaches the liver where it is eliminated.

However, most 27-OH flows from the circulation into the brain, since it
can cross the BBB. In addition, other oxysterols, such as
7β-hydroxycholesterol (7β-OH), 7-ketocholesterol (7-K),
7α-hydroxycholesterol (7α-OH), 4β-hydroxycholestrerol (4β-OH), 5α, 6α-
and 5β, 6β-epoxicholesterol (α- and β-EPOX), and 25-hydroxycholesterol
(25-OH), have been found in AD brain deriving from brain cholesterol
autoxidation. Potentially these oxysterols, as well as other cholesterol
metabolites, can cross the BBB.

TABLE 1 | 24-hydroxycholesterol and 27-hydroxycholesterol levels in Alzheimer’s disease patients compared with healthy controls.

Oxysterol Levels of oxysterol in AD subjects Reference
compared with control subjects

24-hydroxycholesterol ↓ Brain levels Heverin et al. (2004)
↑ CSF levels Papassotiropoulos et al. (2002), Schönknecht et al. (2002) and Leoni et al. (2004)
↓ Plasma levels Bretillon et al. (2000) and Kölsch et al. (2004)
↑ Plasma levels Lütjohann et al. (2000)
= Plasma levels Iuliano et al. (2010)

27-hydroxycholesterol ↑ Brain levels Heverin et al. (2004) and Shafaati et al. (2011)
↑ CSF levels Leoni et al. (2004)
↓ Plasma levels Kölsch et al. (2004)
= Plasma levels Iuliano et al. (2010)

CSF, cerebrospinal fluid.

Higher levels of 24-OH than in unaffected individuals have
been found in the peripheral circulation and CSF of early-
stage AD patients, suggesting that cholesterol turnover in the
brain increases during the neurodegenerative changes of AD
(Lütjohann et al., 2000; Papassotiropoulos et al., 2002; Kölsch
et al., 2004). Conversely, plasma levels of 24-OH were lower in
patients with later stages of AD than in unaffected individuals,
suggesting that the rate of cholesterol transport slows as the
disease progresses (Bretillon et al., 2000; Kölsch et al., 2004).
These apparently contradictory results may be rationalized
by considering that increased plasma levels of 24-OH reflect

ongoing neurodegeneration and/or demyelinization, whereas
decreased plasma levels in later stages reflect a selective loss of
neuronal cells expressing the enzyme CYP46A1 (Björkhem and
Meaney, 2004). The decrease of 24-OH in the AD brain may
also be the result of an increase in total free cholesterol (likely
derived from cell membrane collapse and widespread myelin
release) that exceeds the brain’s capacity to convert it to 24-
OH (Vaya and Schipper, 2007). However, it has been observed
that, in glial cells, and especially around senile plaques, there
is an ectopic induction of CYP46A1, leading to some 24-OH
production, but without compensating for the decrease of that
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oxysterol (Bogdanovic et al., 2001; Brown et al., 2004). Another
study, however, has found that plasma levels of 24-OH and
27-OH in AD patients are not significantly different from control
values (Iuliano et al., 2010). A small fraction of total 24-OH
excretion occurs via the CSF, and the 24-OH concentration is
increased in the CSF of AD patients, probably reflecting neuronal
damage and loss rather then metabolically active neuronal cells
(Schönknecht et al., 2002; Leoni et al., 2004).

It has also been reported that, in critical areas of post-mortem
AD brains, as well as in aged mice expressing the Swedish
Alzheimer mutation APP751, 24-OH levels are decreased and
those of 27-OH increased (Heverin et al., 2004). Increased levels
of 27-OH were also found in the brains of patients carrying
the Swedish APP670/671 mutation (Shafaati et al., 2011). As a
consequence of neuron loss, expression of CYP27A1 may also
be reduced; however, 27-OH levels remain elevated because
CYP27A1 is also expressed in astrocytes and oligodendrocytes,
leading to in situ generation of 27-OH (Brown et al., 2004).
Accumulation of 27-OH in the brain is also due to the
increased flux of this oxysterol across the BBB, because of either
hypercholesterolemia associated to oxidative stress (Björkhem,
2006), or damaged BBB integrity (Leoni et al., 2003). There is
a positive correlation between levels of cholesterol and those of
27-OH in the circulation, and the high flux of 27-OH from the
peripheral circulation into the brain suggests that this oxysterol
may be the link between hypercholesterolemia and AD. An
alternative explanation for the accumulation of 27-OH is reduced
activity of CYP7B, the neuronal enzyme responsible for 27-OH
metabolism; this reduction arises from the reduced CYP7B
expression in the brain of AD patients, because of neuron loss
(Yau et al., 2003). Moreover, high CSF levels of 27-OH were
found in mild cognitive impairment and AD patients (Leoni
et al., 2004).

From these considerations, it is clear that the balance between
24-OH and 27-OH levels is important. Oxysterol homeostasis
in the brain is tightly regulated, specific levels being maintained
in various brain regions. For example, the 27-OH:24-OH ratio
is ∼1:8 in the frontal cortex, 1:5 in the occipital cortex, and
1:10 in the basal ganglia, and the increased ratio of 27-OH
to 24-OH in AD brains is consistent with AD pathogenesis.
Thus it is likely that reduced levels of 24-OH may accelerate
disease progression, and that the increased levels of 27-OH
may be insufficient to compensate for this: the shift in balance
between the two oxysterols might lead to increased generation
and accumulation of Aβ with consequent neurodegeneration
(Heverin et al., 2004; Björkhem, 2006; Björkhem et al., 2009). In
a retrospective study on cardiovascular patients with evidence
of cerebrovascular disease, higher plasma levels of 24-OH and
a higher 24-OH/27-OH ratio were found to be associated with
the development of incidental cognitive impairment over 8 years
of follow-up (Hughes et al., 2012). However, opinions still differ
about the involvement of 24-OH and 27-OH in APP processing
and Aβ production.

To date, the conversion of cholesterol into 24-OH, by
inducing CYP46A1 activity, has been considered to exert a
protective action on the brain, mainly by regulating cholesterol
homeostasis and favoring the efflux of its excess from the brain to

the blood, but also by preventing Aβ generation (Björkhem et al.,
2009). Astrocytes are sensitive to levels of 24-OH, which regulates
the expression of LXR-responsive genes involved in cholesterol
homeostasis (i.e., ABCA1, ABCG1 and ApoE) (Abildayeva et al.,
2006). Indeed, 24-OH acts as an endogenous ligand of LXR.
Conversely, it has been reported that brain accumulation of
27-OH antagonizes the preventive effect of 24-OH on generation
of Aβ and that it is potentially toxic (Shafaati et al., 2011). Since
the flux of 27-OH across the BBB increases under conditions
of hypercholesterolemia (Björkhem, 2006), or in the case of
increased BBB permeability (Leoni et al., 2003), the inhibitory
effect of 24-OH on Aβ generation would consequently be
reduced.

Studies on human neuroblastoma cells and on brain tissues
have somewhat clarified the different effects of 24-OH and
27-OH on APP levels and processing: 24-OH may favor the
non-amyloidogenic pathway, with consequent inhibition of
Aβ formation, whereas 27-OH is thought to stimulate the
amyloidogenic pathway, with production of Aβ as well as
tau hyperphosphorylation (Bu, 2009; Prasanthi et al., 2009;
Marwarha et al., 2010). However, the mechanisms underlying
their different effects are still unclear.

In human SH-SY5Y neuroblastoma cells, 24-OH appears
to exert a unique modulatory effect on APP processing: it
directly increases α-secretase activity, as well as elevating the
α/β-secretase activity ratio; conversely, 27-OH enhances the
generation of Aβ (Famer et al., 2007). In vitro experiments
suggest that 24-OH reduces Aβ production, by down-regulating
APP trafficking via enhancement of the complex formation of
APP, also up-regulating glucose-regulated protein 78 in the
endoplasmic reticulum. The inhibitory effect of 24-OH was
reduced in glucose-regulated protein 78 knockdowned cells
(Urano et al., 2013). In rat primary cortical neurons, both 24-
OH and 27-OH were found to be inhibitors of Aβ secretion,
24-OH being approximately 1000 times more potent than
27-OH (Brown et al., 2004). SH-SY5Y cells incubated with
27-OH release higher levels of Aβ1–42 and APP as well as
of BACE1. Conversely, cells incubated with 24-OH do not
release increased Aβ1–42 levels, and are associated with increased
levels of sAPPα, suggesting that 24-OH favors APP processing
via the non-amyloidogenic pathway (Prasanthi et al., 2009).
Another study, on hippocampal slices from adult rabbits, found
that 27-OH increases Aβ accumulation by reducing levels of
insulin-like growth factor 1, a neurotrophic factor that promotes
neurogenesis and has a neuroprotective effect (Sharma et al.,
2008). This oxysterol has also been found to increase both BACE1
and Aβ levels in retinal pigment epithelial cells (Dasari et al.,
2010). In neuronal SK-N-BE cells, 24-OH and 27-OH have both
been shown to enhance expression and activity of the β-secretase
of the amyloidogenic pathway of APP processing, leading to
increased Aβ generation and accumulation in those cells (Gamba
et al., 2014; Table 2).

24-OH has also been reported to be neurotoxic, but this effect
may depend on its concentration. It has been demonstrated
that high concentrations of 24-OH (25–50 µM) caused cell
death when added to undifferentiated or differentiated SH-
SY5Y cells: the effect was mediated by increased generation of
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TABLE 2 | Effects of 24-hydroxycholesterol and 27-hydroxycholesterol on the amyloidogenic pathway.

Oxysterol Dosage Effects Experimental model Reference

24-hydroxycholesterol C = 10 µM ↓ Aβ production Primary culture of rat
cortical neurons

Brown et al. (2004)

C = 5 µM ↑ α-secretase activity
↓ β-secretase activity

Undifferentiated human
neuroblastoma cell line SH-SY5Y

Famer et al. (2007)

C = 10 µM ↑ α-secretase activity
no effect on APP, BACE1 and Aβ level

Undifferentiated human
neuroblastoma cell line SH-SY5Y

Prasanthi et al. (2009)

C = 1–10 µM ↑ APP level
↓ Aβ production
no effect on β-secretase activity

Undifferentiated SH-SY5Y cells and
Chinese hamster ovary (CHO) cells

Urano et al. (2013)

C = 1 µM ↑ APP level and Aβ production
↑ α-secretase level

↑ β-secretase level and activity

Differentiated human neuroblastoma
cell line SK-N-BE

Gamba et al. (2014)

27-hydroxycholesterol C = 1–15 µM ↓ Aβ production Primary culture of rat cortical neurons Brown et al. (2004)

C = 5 µM No effect on α- and β-secretase activity Undifferentiated human neuroblastoma
cell line SH-SY5Y

Famer et al. (2007)

C = 10 µM ↑ Aβ production
↑ APP and BACE1 level

Undifferentiated human neuroblastoma
cell line SH-SY5Y

Prasanthi et al. (2009)

C = 10–25 µM ↑ Aβ production
↑ BACE1 level

Retinal pigmented epithelial cells
ARPE-19

Dasari et al. (2010)

C = 5 µM ↑ Aβ production
↑ BACE1 level and activity

Undifferentiated human neuroblastoma
cell line SH-SY5Y

Marwarha et al. (2013)

C = 1 µM ↑ APP level and Aβ production
↑ α-secretase level

↑ β- and γ-secretase level and
activity

Differentiated human neuroblastoma cell
line SK-N-BE

Gamba et al. (2014)

Aβ, amyloid β; APP, amyloid precursor protein; BACE1, beta-site amyloid precursor protein cleaving enzyme 1.

free radicals (Kölsch et al., 2001). High concentrations of 24-
OH (50 µM) also induce necroptosis, a form of programmed
necrosis in neuronal SH-SY5Y cells (Yamanaka et al., 2011).
In contrast, pretreatment of human neuroblastoma SH-SY5Y
cells with sub-lethal concentrations of 24-OH induces adaptive
responses, and protects the cells against subsequent cytotoxic
stress induced by 7-K treatment, via transcriptional activation
of the LXR signaling pathway. The cytoprotective effects of
24-OH disappeared in LXRβ-knockdowned cells, suggesting
that this nuclear receptor may play a key role in the 24-
OH-induced adaptive response. Adaptive responses are also
induced by other oxysterols, such as 25-OH and 27-OH, both
ligands of LXR, similarly to 24-OH (Okabe et al., 2013).
However, in our recent studies, a very low concentration
(1 µM) of 24-OH was found to markedly potentiate both the
apoptotic and the necrogenic effects exerted by the Aβ1–42
peptide, on two human differentiated neuronal cell lines (SK-
N-BE and NT-2) (Gamba et al., 2011), but also on human
dental pulp progenitor cells differentiated into neuron-like
cells (Testa et al., 2012). 24-OH appeared to interact with
Aβ1–42 by strongly increasing intracellular ROS steady-state
levels, an action not exerted by either 27-OH or 7β-OH
(Gamba et al., 2011). This evidence supports the opinion that
Aβ must form oligomers in order to induce neurotoxicity,
and that the latter process is probably enhanced by redox
imbalance. Additionally, 50 µM 24-OH has been shown to
enhance the neurotoxic effect of the Aβ1–42 peptide in the
human differentiated neuroblastoma cell line MSN, as well as

augmenting ROS generation (Ferrera et al., 2008). Although in
many of the various in vitro tests performed in our laboratory,
27-OH (1 µM) did not display neurotoxicity, in terms of necrosis
and apoptosis (Gamba et al., 2011), conversely, the toxicity of
27-OH (5–20 µM) has been demonstrated in astrocyte cells
(C6 cells). This oxysterol increased ROS levels and decreased
antioxidant defense system levels, with consequent decrease of
cell viability. In addition, 27-OH down-regulated the expression
of the nuclear factor E2-related factor 2 signaling pathway (Ma
et al., 2015).

It is known that hypertension is a risk factor for AD, and that
angiotensin converting enzyme activity is increased in AD brains.
In this connection, it has been suggested that 27-OH might up-
regulate the renin-angiotensin system in AD brains. A positive
correlation between angiotensin converting enzyme activity in
the CSF, and both plasma and CSF levels of 27-OH, has been
shown, as well as an increased production of angiotensinogen in
rat primary neurons, astrocytes, and human neuroblastoma cells
treated with 27-OH (Mateos et al., 2011).

Moreover, 7β-OH has been found to be neurotoxic at very
low concentrations on cultured rat hippocampal neuronal cells,
and may therefore contribute to neurodegeneration in AD
brains. In the same study, it has also been shown that Aβ

can oxidize cholesterol to form 7β-OH in a highly efficient
mechanism and more actively than APP. Oxidation of cholesterol
was accompanied by hydrogen peroxide production, suggesting
that Aβ could contribute to the oxidative damage observed in
AD (Nelson and Alkon, 2005). 7β-OH causes re-arrangement
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of the liquid-ordered phase which results in the formation
of lipid rafts (Wang et al., 2008; Mitomo et al., 2009); it
is also a potent inhibitor of α protein kinase C, an enzyme
critical for memory consolidation and synaptic plasticity that is
implicated in AD (Nelson and Alkon, 2005). Another oxysterol
that might derive from the autoxidation of cellular cholesterol
released during neurodegeneration is 7α-OH, which appeared
to be responsible for SH-SY5Y cell death (Kölsch et al., 2000);
a further possibility is 7-K. 7-K has been shown to enhance
mitochondrial dysfunction in the neuronal PC12 cell line, leading
to cell death (Kim et al., 2006; Kim and Lee, 2010; Jang and
Lee, 2011). It has also been reported that incorporation of 7-K
to lipid raft domains of plasma membranes triggers apoptotic
signaling; α-tochopherol (vitamin E) reduces the cytotoxicity
of 7-K by inhibiting its distribution to the lipid raft domains
(Berthier et al., 2004; Royer et al., 2009). It has recently been
suggested that 25-OH is an important regulator of cholesterol
metabolism, as well as of humoral immunity (Diczfalusy, 2013;
Waltl et al., 2013). Of note, it has also been hypothesized
that Aβ deposition is not a central event in AD, but rather is
subservient to 25-OH. Confirming this hypothesis, it has been
observed that, in a large cohort of AD patients, specific 25-
hydroxylase haplotypes were associated with a complete absence
of Aβ deposits in the brain, despite all other aspects of AD
pathology being present (Papassotiropoulos et al., 2005). This
suggests that neuroinflammation and 25-hydroxylase activation
precede Aβ generation in the sequence of events leading to
the disease. An interesting study on different immortalized,
tumoral and normal cells of the CNS has found that oxysterols
oxidized at C4, such as 4α-OH and 4β-OH, have no effect on
cell viability and almost no effect on cell growth; conversely,
oxysterols oxidized at C7, such as 7-K, 7α-OH, and 7β-OH,
inhibit cell growth and decrease viability through their cytotoxic
activity. These data suggest that 4α-OH and 4β-OH, the only
oxysterols identified as having cytostatic properties, may be of
some interest for attempts to counteract cell proliferation (Nury
et al., 2013).

Oxysterols have also been shown to modify specific sites of the
Aβ peptide thus enhancing Aβ aggregation and its neurotoxicity.
Following Aβ modification at Lys-16, peptide aggregates were
formed faster than in the case of modification at Lys-28 or at
Asp-1 (Usui et al., 2009).

Further, evidence has emerged that Aβ has predominant
cholesterol oxidase activity, particularly in the presence of
divalent cations such as Cu2+. Significantly elevated levels of
4-cholesten-3-one were reported in brains of Aβ transgenic
mice and in brain tissue of AD patients (Puglielli et al., 2005;
Yoshimoto et al., 2005).

The interaction of Aβ with cell membranes is the crucial
event in AD pathogenesis. Of note, there is less evidence to
date on the negative effects of oxysterols on Aβ binding to
the cell membranes. Because the orientation of oxysterols in
the cell membrane differs from that of cholesterol, they are
less able to condense lipids, thus modifying some physical
properties of membrane, including raft domains; it has thus
been suggested that oxysterols may facilitate Aβ interaction
with cell membranes. The effects of 7-K and 7β-OH on

enhancing Aβ insertion into the lipid bilayer, by decreasing
intermolecular cohesive interaction, have been demonstrated
(Kim and Frangos, 2008). Using a model membrane, it was
shown that 25-OH and 7-K render the membrane more sensitive
to Aβ, in contrast to the role played by cholesterol, which
inhibits Aβ’s interaction with membranes. 7-K facilitated Aβ’s
localization in the membrane, while 25-OH stimulated the
peptide’s insertion but lead to membrane modification. In
addition, the higher potential of Aβ1–42, compared to Aβ1–40,
to interact with the membrane has also been demonstrated
(Phan et al., 2013). Further, it is hypothesized that increased
oxysterol concentrations, mainly of 7-K, but also of 24-OH
and β-EPOX, may enhance exocytosis and neurotransmitter
release in damaged areas of the brain, thereby aggravating
neuronal excitotoxicity (Ma et al., 2010). Further, in our
study we observed that 24-OH, 27-OH, and 7β-OH markedly
enhanced the binding of Aβ1–42 on membranes of human
differentiated neuronal cell lines (SK-N-BE and NT-2), by
up-regulating CD36 and β1-integrin receptors (Gamba et al.,
2011), two components of the multireceptor complex CD36/β1-
integrin/CD47, through which Aβ peptide binds to cell
membranes (Verdier et al., 2004; Yu and Ye, 2015). This event
might favor the accumulation of the toxic Aβ1–42 peptide into
neurons.

Although oxysterols have been analyzed for their involvement
in neurotoxicity and Aβ production during AD progression,
their role as natural ligands for LXR is now emerging (e.g.,
24-OH, 27-OH, 22-OH, 25-OH, 4β-OH, and 7α-OH) (Vaya
and Schipper, 2007). Indeed, astrocytes are sensitive to 24-OH-
mediated up-regulation of ApoE, a LXR-target gene involved
in cholesterol efflux (Abildayeva et al., 2006). Moreover, it has
been reported that 27-OH prevents Aβ generation from primary
human neurons, not by modulating α-, β-, or γ-secretase,
but rather by overexpressing LXR-responsive genes (ABCA1,
ABCG1 and ApoE) (Kim et al., 2009b). Moreover, incubation
of primary brain cells with 22-OH significantly reduced Aβ

secretion in a dose-dependent manner, while ABCA1 expression
and cholesterol efflux were induced (Koldamova et al., 2003).

Recent in vitro evidence also suggests that 24-OH and 27-OH
might contribute to decreasing the influx of Aβ peptide into
the brain across the BBB, increasing expression of the ABCB1
transporter in brain capillary endothelial cells, resulting in
protection from peripheral Aβ entry (Saint-Pol et al., 2013).
Of note, ABCB1 has never been described as an LXR target
gene, and other nuclear receptors might control its transcription.
Conversely, treatment of brain pericytes with 24-OH up-
regulated ABCA1 expression that was correlated with an increase
of cholesterol efflux, whereas 24-OH treatment did not reduce
the pericytes’ ability to accumulate Aβ in the cells (Saint-Pol
et al., 2012). The clearance of Aβ might also be mediated through
microglia-induced phagocytosis of Aβ, which depends on LXR
activation (Terwel et al., 2011).

Of note, LXR activation not only regulates cholesterol
homeostasis, and Aβ peptide transport and clearance, but also
neuroinflammation. Studies have shown that LXR activation
inhibits inflammatory gene expression, pointing to the ability
of LXRs to inactivate promoters of pro-inflammatory genes
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(Wang et al., 2002; Cao et al., 2007; Zelcer et al., 2007;
Sodhi and Singh, 2013; Steffensen et al., 2013). Moreover, LXR
activation may prevent neuroinflammation, by indirectly down-
regulating TLR target genes. However, although LXR-activating
oxysterols might reduce membrane cholesterol content and
inflammation, they may also activate opposing pathways, and
induce inflammation independently of LXRs. In our very recent
study, we observed that 27-OH, 24-OH, and 7β-OH enhanced
inflammatory molecule expression in human neuroblastoma
SH-SY5Y cells via TLR4/cyclooxygenase-2/membrane bound
prostaglandin E synthase; this clearly indicates that oxysterols
may promote neuroinflammation in AD (Testa et al., 2014).

Although it can be assumed that oxysterols may increase
the activation of microglia promoting their phagocytosis,
there is less evidence to date on their effects on microglial
phagocytosis during neuroninflammation. The phagocytosis
of fibrils and large aggregates of Aβ by microglia is an
important neuroprotective mechanism for Aβ peptide clearance
(D’Andrea et al., 2004; Colton and Wilcock, 2010) but, in
later stages of AD, the increased inflammatory molecule release
makes the microglia phagocytically inactive leading to neuronal
death (Hickman et al., 2008; Krabbe et al., 2013). Among
the receptors promoting Aβ phagocytosis and clearance by
microglia, the CD36 scavenger receptor appears to be involved
and its increased expression may be crucial in preventing
AD (Verdier et al., 2004; Yu and Ye, 2015): CD36 initiates
a signaling cascade that promotes microglial activation and
recruitment to β-amyloid deposits in the brain (Stuart et al.,
2007). Concernig sterols, it has been shown that cholesterol
(20 µM) and α-EPOX (20 µM) do not interfere with CD36
membrane distribution but both compounds were found to

up-regulate the total CD36 levels in the mouse microglial
cell line BV-2 potentiating phagocytosis in LPS-stimulated
cells (Rǎcková, 2013). Moreover, treatment with methyl-β-
cyclodextrin, a reagent able to remove cholesterol from cell
membranes, inhibited phagocytosis in LPS-activated microglia,
indirectly supporting the potential role of sterols in phagocytosis
(Churchward and Todd, 2014).

Conclusion

This review has pointed up the vicious circle connecting
oxidative stress and inflammation in AD. Alongside oxidative
stress and neuroinflammation, altered cholesterol metabolism in
the brain and hypercholesterolemia also significantly contribute
to AD pathogenesis. Thanks to consistent research evidence,
it is now believed that oxidized cholesterol is the driving
force behind the development of AD and that oxysterols
are the link connecting altered cholesterol metabolism and
hypercholesterolemia to this neurodegenerative disease.
Oxysterols play a fundamental role, by enhancing inflammation,
Aβ generation and accumulation, and neuron death.

The involvement of oxysterols in AD pathogenesis, and the
analysis of such products in the plasma and CSF, may contribute
to clarifying the role of cholesterol metabolism in AD; ultimately,
it may be helpful in developing therapeutic strategies to prevent
or slow AD pathogenesis.
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