
Deordering and Numeric Macro Actions for Plan Repair

Enrico Scala
Research School of Computer Science

Australian National University
enrico.scala@anu.edu.au

Pietro Torasso
Dipartimento di Informatica

Universita’ degli Studi di Torino
torasso@di.unito.it

Abstract

The paper faces the problem of plan repair in
presence of numeric information, by providing a
new method for the intelligent selection of numeric
macro actions. The method relies on a general-
ization of deordering, extended with new condi-
tions accounting for dependencies and threats im-
plied by the numeric components. The deordering
is used as a means to infer (hopefully) minimal or-
dering constraints then used to extract independent
and informative macro actions. Each macro aims at
compactly representing a sub-solution for the over-
all planning problem. To verify the feasibility of
the approach, the paper reports experiments in vari-
ous domains from the International Planning Com-
petition. Results show (i) the competitiveness of
the strategy in terms of coverage, time and quality
of the resulting plans wrt current approaches, and
(ii) the actual independence from the planner em-
ployed.

1 Introduction
Planning for real world systems requires the ability of react-
ing to unexpected contingencies in a timely fashion ([Ghallab
et al., 2014]). While some uncertainty can be anticipated off-
line when there is enough knowledge about the possible con-
ditions and evolutions of the world (e.g., probabilistic plan-
ning [Hoffmann and Brafman, 2006]), in many cases such a
knowledge might be not at disposal (e.g., user requests may
vary in a way that is not predictable a-priori); for this reason,
it is necessary to implement deliberation not only before but
also during the execution of the plan.

In this context several works ([Gerevini and Serina, 2010],
[van der Krogt and de Weerdt, 2005], [Garrido et al., 2010],
[Brenner and Nebel, 2009]) have faced the problem by
proposing strategies for efficient plan repair. Despite con-
trasting results in the general case ([Nebel and Koehler,
1995]), it has been shown that in practice repairing a plan is
much faster than replanning from scratch ([Muñoz-Avila and
Cox, 2008]). Unfortunately, most attention has been posed
just on propositional aspects, while real world applications
have to deal with quantitative aspects as well (e.g constraints

on continuous resources) which can be captured by using nu-
meric fluents ([Fox and Long, 2003]); in order to be actually
executable, plans have not only to be propositionally valid,
but also consistent in terms of specific numeric trajectories.

In this work we tackle the problem of plan repair with
numeric information extending a research line based on the
adoption of numeric macro action ([Scala, 2014]). The basic
idea is that the repair process can be enhanced by exploiting
previous knowledge directly extracted from the plan in exe-
cution. As shown in [Scala, 2014], such a knowledge can be
compactly represented in terms of (numeric) macro actions,
then compiled as regular instances of actions and provided in
input to any planner in an extended domain representation. A
huge number of possible macro actions could be extracted:
an intelligent strategy has to select just fruitful macro actions
in order to deal with the Utility Problem ([Minton, 1990]).

Following this line of research, this paper provides a new
method for the selection of numeric macro actions. The
main idea is to try to find reasonable self-contained nu-
meric macro actions, i.e., actions that do not depend on each
other. To achieve this objective the paper extends deorder-
ing ([Bäckström, 1998]) for dealing with both numeric and
propositional information. Deordering has proved to be ben-
eficial in many other contexts of automated planning, for in-
stance as a means to enhance the ability of absorbing unex-
pected situations ([Muise et al., 2011]) or to improve the qual-
ity of the computed solutions (e.g., [Siddiqui and Haslum,
2013]); the extension to the numeric case extends the appli-
cability to a larger set of scenarios in which dealing with num-
bers cannot be neglected.

In particular, the paper provides conditions for establish-
ing which are the ordering constraints that must be preserved
or can be safely removed (without endangering the numer-
ical validity of the plan). Then, the paper shows how the
deordered plan can be used in the context of plan-repair for
building numeric macro actions to be used in addition to reg-
ular operators. The approach is aimed at being domain and
planner independent; to show its effectiveness we experiment
on a set of domains using as off the shelf planners both Colin
[Coles et al., 2012] and Metric-FF [Hoffmann, 2003].

The paper starts by introducing the formal framework of
reference (Section 2), then the focus is on the deordering
(Section 3), and on its exploitation (Section 4). Section 5
and 6 report experiments and discuss related works.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1673



2 Background
The paper builds up current research on automated planning
with numeric fluents. We assume the reader is familiar with
the PDDL language1 and its semantic.

2.1 Basic Notions

Consistently with many works in the planning literature ([Fox
and Long, 2003], [Ghallab et al., 2014]), we represent the
world with a finite set of objects upon which we allow to ex-
press numeric fluents and propositional predicates. The uni-
verse of possible predicates is referred by F (propositional)
and X (numeric). A world state s is the tuple 〈F (s), X(s)〉; it
specifies (i) the propositional predicates holding in s, and (ii)
a real value for each of the numeric fluents.

Definition 1 (Numeric Action). An action a is a pair
〈pre(a), eff(a)〉 where:

• pre(a) is the precondition set of a defining its applica-
bility conditions. pre(a) is a conjunction of both propo-
sitional and numeric conditions. A propositional condi-
tion is a predicate ∈ F , while a numeric condition is a
comparison 〈exp, {<,≤,==,≥, >}, exp′〉

• eff(a) defines the effects of executing a. It includes:

– an add and a delete set of objects from F referred
with effadd(a) and effdel(a)

– a set of numeric operators (effnum(a)). An oper-
ator is formalized by the tuple 〈f, op, exp〉 where f
is a fluent from X and op is an element from
{+=,-=,=}.

Exp and exp’ are arithmetical linear expression of numeric
fluents.

Consistently with works on numeric planning ([Hoffmann,
2003],[Coles et al., 2012],[Gerevini et al., 2008]), we will
say that an action is applicable in a state s whenever its pre-
condition satisfies s both in propositional and numeric terms.
If s |= pre(a) then its application produces a new state
s′ = s[a] as follows. s′ is set to s; each atom in effadd(a)
is set to true while each atom in effdel(a) is negated. The
numeric part of the state is modified according to operators
in effnum(a). Let op be one of such operators, f reported in
op is modified according to op while exp is evaluated in s.

Definition 2 (Numeric Planning Task). A numeric planning
task Π is the tuple 〈A, s0, G〉 where A is a set of numeric
actions, s0 is the initial state and G is a set of goals. Π is the
task of finding a sequence of actions leading the state s0 to a
state sn satisfying G. As action precondition, G may contain
numeric and/or propositional conditions.

A solution plan π = {a0, .., an−1} is valid iff each ac-
tion is applicable in the state produced by the previous action,
i.e., s0 |= pre(a0), s0[a0] |= pre(a1), .., s0[a0, ..., an−2] |=
pre(an−1), and then s0[π] |= G.

1For details, have a look at [Fox and Long, 2003].

2.2 Plan Repair and Macro Actions
In a dynamic context an initially valid plan can become in-
valid at some point of the execution because of the combi-
nation of number of unexpected contingencies (exogenous
events, erroneous assumptions, goal revisions). So the agent
has to react to these conditions in order to achieve (possibly
revised) goals despite the encountered discrepancies. In this
paper in particular we are interested in understanding how it
is possible to repair the plan. Formally:

Definition 3 (Numeric Plan Repair Problem (from [Scala,
2014],[Fox et al., 2006])). A numeric plan repair problem
Ψ is the tuple 〈A, si, G

′, πi〉 where si is the state observed
after the execution of the (i-1)-th action from the plan π ,
G′ is a new set of goals2, A is the universe of actions we
are considering, and πi is the suffix of the plan π still to be
executed. A solution for Ψ is a plan π′ from A bringing the
state si to a state satisfying the conditions expressed in G′.

Recently, it has been noticed that plan repair can be ap-
proached in a planner independent way by extrapolating
knowledge from the previous plan in form of numeric macro
actions ([Scala, 2014]). Those macros represent sub-plans
that can be useful for repairing the plan, of course under the
assumption that discrepancies between observations and ex-
pectations are limited, as well as changes in the goals set.

Basically a numeric macro action is a compact representa-
tion of a sequence of actions where preconditions and effects
respectively represent (i) the sufficient and necessary condi-
tions for executing that plan and (ii) the cumulative effects
obtained after the execution of that sequence of actions. In
the approach pursued by [Scala, 2014], this macro actions
extraction is lead by the flaws of the previous plan and by the
threats towards the goal conditions.

In this work we investigate a more sophisticated approach
for the selection process. The main idea of our work is to ex-
tract macro actions that represent self contained components,
i.e. sequence of actions that do not interact with each other,
and can be executed independently.

Figure 1 describes the high level idea of this work. The
main contribution is played by the two components in the
MADE (Macro Actions via DEordering) module: the de-
orderer and domain enhancer components. The deorderer is
responsible for inferring the actual action dependencies on
the basis of the current plan of actions and the current situa-
tions (described in the problem instance). Then the domain
enhancer exploits such a knowledge to build macro actions
representing self-contained/independent components. Next
section focuses on the way the deordering is implemented to
manage the numeric components at hand.

3 Deordering Numeric Plans
The task of deordering a plan consists in finding the minimal
set of orderings among actions such that any of its lineariza-
tions is valid [Bäckström, 1998]. In particular, given a nu-
meric planning problem Π, we are interested in finding the
deorder of a total ordered plan solving Π.

2G′ represents a variation w.r.t. the initial goal, where some pred-
icate/comparison could be added/removed.

1674



Figure 1: Overall sketch of the approach

Our technique builds up on previous works by [Kamb-
hampati, 1994] and [Bäckström, 1998], and extends them to
handle numeric components (numeric fluents, numeric con-
ditions and numeric operators).

The strategy works in two phases: the first is meant to build
the validation structure for the plan, then the second one re-
moves all the constraints such that the validity of the entailed
partial order is preserved.

In the context of classical planning it has been shown that
even if it is not optimal in the general case (finding minimal
partial order is NP-hard, [Bäckström, 1998]) the algorithm
KK presented in [Kambhampati, 1994] is able to find mini-
mal deordering in practice ([Muise et al., 2012]). The addi-
tion of numeric information makes the deordering task much
more complicated as it is necessary to reason about orderings
not only for propositional dependencies but also for numeric
ones.

3.1 Validation Structure
Since in our action model propositional and numerical infor-
mation can be kept separated, we divide the validation struc-
ture into two sub-components:

• Propositional Validation Structure (PVS)

• Numeric Validation Structure (NVS)

PVS is built as in [Kambhampati, 1994], and we do not
report the algorithm here for space reasons.

In the computation of the NVS we start by transforming
the init and the goal conditions with two pseudo actions sim-
ulating the initial situation and the condition that must be
achieved (in a similar way to what is done in partial order
planning, [Gerevini et al., 2008]).

As for the propositional case (see [Kambhampati, 1994] for
details), the validation structure is built by iterating over the
plan following the total order given as input, but differently
from the classical setting, it implements a new method to
reason about the numeric dependencies among actions. The
numeric setting requires taking care also of indirect impli-
cations; numeric conditions might need more than one ac-
tion to be satisfied. This might happen also for very simple
situations, for instance consider a domain involving a plane
which cannot take-off unless there is a sufficient amount F
of fuel in the tank. Assume that each refuel action can re-
fill only F1 fuel where F1 < F , therefore the only way of
having the constraint on the fuel satisfied is by repeating the

refuel action multiple times. A naive application of the pro-
ducer/consumer model proposed for the classical setting (see
[Bäckström, 1998]) does not suffice to infer action dependen-
cies in the numeric context.

As also pointed out in [Gerevini et al., 2008], the support
of an action might not depend on the execution of a single
action, but in a number of situations it may depend on a set of
actions (ordered in a certain way). As reported in Def. 1 the
impact of the execution of an action on a variable is a function
of an expression whose evaluation may involve all the fluents
of the state where the action is applied.

In order to capture this aspect, we introduce the notion of
numeric dependency set and its relation with respect to nu-
meric conditions. Formally:

Definition 4 (Numeric Dependency Set (NDS)). A Numeric
Dependency Set (NDS) of a condition c is a set of actions such
that ∀s ∃ an ordering O such that the execution of NDS using
O starting from s satisfies c. We will say that, given an action
a and a NDS K, the action a ”numerically” depends on K,
whenever a has a condition c having K as NDS.

From the definition above we can deduce that:

Proposition 1. Let < A,≺> be a valid plan where ≺ defines
a total order among actions in A, each action a ∈ A has at
least a NDS with the following characteristic:

• NDS ⊆ A

• ∀b ∈ NDS then b ≺ a

The proof of the proposition is a direct consequence of the
validity of a plan. In fact there is a trivial valid NDS for each
condition c for any action in A. This NDS corresponds to the
plan prefix formed by the init action till the action strictly
precedent to a. The init action is a means to simulate the
whole initial status; for the numeric case this means that the
action contains an assign operator for each numeric fluent of
the problem.

In most cases there could be several NDSs. Therefore,
since we are interested in minimising orderings among ac-
tions, the problem is how to look for the smallest NDS.

The problem involves a combinatorial number of se-
quences of actions to be taken into account. A NDS for an
action a can be in fact any combination of actions, in any or-
der. While this dependency in the classical case can be found
simply by looking for one of the achievers for the condition
of a, the numerical case requires additional care.

In order to handle the problem in an efficient way, we im-
plemented a hill climbing approach. Let b be an action from
π and S = {a : a ∈ π and a ≺ b}, the algorithm performs
a local search in the space defined by subsets of S, with the
aim of finding all the (hopefully minimal) dependencies of
b. For each numeric condition c in prenum(b), the algorithm
greedily adds new actions to the NDS of c whose contribution
decreases the distance from the satisfaction of the constraint.
The contribution is computed by executing NDS actions from
an empty state, using the order imposed by the input plan.

We consider only NDSs that are not invalidated by the exe-
cution of actions ordered between the first action of the NDS
and the action for which the NDS has been built. The check
is done by simulating the state resulting from the application

1675



of the actions from NDS and all the intermediate actions (ac-
cording to the ordering provided by the input plan).

At the end of the process, we can deduce some sufficient
ordering between actions. As matter of facts, if an action a
belongs to some NDS for an action b, then a ≺ b. So we have
the ordering constraints that must be considered.

If the plan in input is valid for the numeric planning prob-
lem, NDSs are found in polynomial time as the procedure
must be repeated ”just” as many times as there are conditions
in the plan, and for each step the search does not backtrack
to a previous decision. Completeness of hill climbing in this
case is guaranteed by the fact that in the worst case it finds
the trivial NDS entailed by the input plan.

The situation is more complicated if the plan presents open
preconditions and hence flaws. In that case in fact the locality
of hill climbing would make the approach incomplete in that
different orderings of actions are not considered. Fortunately,
this does not compromise the overall completeness of MADE
as numeric macro actions are just extra knowledge for the
plan repair problem.

In the next paragraph we will focus on the problem of es-
tablishing which are the orderings of the input plan that can
be relaxed. In fact, the partial order obtained via the NDS
analysis described above does not guarantee that all the lin-
earizations are valid.

3.2 Removing Ordering Constraints
In this section we see how it is possible to infer whether an
ordering constraint can be removed. Algorithm 1 summarizes
the main steps involved.

Algorithm 1: Orderings Removal

for (a,b) ∈≺+ do
preserve the constraint if at least one of the following
holds:
- a is pseudo init or b is a pseudo goal;
** Propositional Part **
- ∃ (a,p,b) ∈ PV S for some p;
- ∃ (c,p,a) ∈ PV S and p ∈ del(b);
- ∃ (b,p,c) ∈ PV S and p ∈ del(a);
** Numeric Part **
- ∃ (NDS,cmp,b) ∈ NV S, a ∈ NDS ;
- ∃ (NDS,cmp,a) ∈ NV S and b might prevent cmp;
- ∃ (NDS,cmp,c) ∈ NV S, b ∈ NDS and a might
prevent cmp;
- ∃ (NDS,cmp,c’) ∈ NV S and a, b ∈ NDS;

The propositional step is part of the KK algorithm, hereby
reported for clarity reasons. The difficulty here is in estab-
lishing when the removal of an ordering between two actions
threatens the satisfaction of some comparison (see ”Numeric
Part”). In the pseudo code the tuple (NDS,cmp,a) represents
the set any action numerically depends on. cmp is the nu-
meric condition causing the dependency.

It can be shown that a sufficient condition for guaranteeing
that an action is not a threat for a comparison can be inferred

by reasoning on the numeric fluents influenced/required by
the actions at hand. More formally:

Proposition 2. Given an action a and a comparison cmp. a
does not threaten cmp if:
• a does not indirectly influence fluents involved in cmp
• cmpeff(a) is dominated by cmp

Proof sketch. An action a does not indirectly influence flu-
ents in cmp when a’s operators do not contain any indirect
change to variables involved in cmp. For cmpeff(a) we in-
tend the regression version of the comparison where each
fluent is substituted with the numeric expression implied by
eff(a)3. A comparison c’ is dominated by another comparison
c” whenever the validity region entailed by c’ contains the
one entailed by c”. In that case in fact it holds that: s |= c′′
=⇒ s |= c′. The proof can then proceed by absurd. If we as-
sume in fact that the action may threaten the comparison this
means that if we execute the action just before the evaluation
of the constraint, the set of states from which the comparison
is satisfiable can be smaller than the one from which it was
satisfiable before. However, this contradicts the dominance
hypothesis in that cmpeff(a) is less strict then cmp. There-
fore, the action cannot threaten the comparison.

The first hypothesis in the proposition assures that the re-
gression captures all the implications of action a; in fact indi-
rect effects (i.e., changes to variables on which other variables
involved in cmp depend) are not captured by the regression.

At the end of this process we hence know a possible de-
ordering of the plan given as input. Next section explains
how this information is used to build macro actions.

4 Select Macros via Deordered Flawed Plans
Once all the dependencies among actions within the plan have
been computed, and hence a (hopefully more) relaxed par-
tial order is singled out, this information is exploited to build
macro actions.

As a first step we collect all the objects within the prob-
lem formulation and we transform those objects in constants.
The constants are used in the domain definition in order to
make possible to build instances of operators. In the context
of plan repair macro actions are grounded, as a difference to
macro actions used in learning based approaches ([Chrpa et
al., 2013]). This is a very important characteristic in that nu-
meric macro actions does not suffer from the combinatorial
explosion of cases that can happen when building macro ac-
tion schema, because of the grounding process.

As a second step we run a connectivity analysis by inspect-
ing the Directed Acyclic Graph entailed by the partial order.
Each resulting connected component is used to build the as-
sociated macro action, by following the ordering imposed by
the graph itself.

Actually, the resulting macro is obtained by performing a
further splitting process. The graph is indeed cut by look-
ing at the open conditions (caused by the discrepancies be-
tween the problem for which the plan is generated and the

3The regression hereby performed is the same employed in
[Scala, 2014] to compute preconditions of macro action.

1676



(a) DAG of the plan considering a total order

(b) DAG after the deordering

(c) DAG for computing macro actions

Figure 2: Zenotravel example: from a total ordered plan to
macro actions

actual problem formulation depending on the actual current
observed state) and the goal threats. This is basically the
strategy adopted by CLMA in [Scala, 2014], here extended
for each connected component found. In our approach, the
splitting points are computed during the deordering process.
It is in fact sufficient to keep track of each condition that can-
not be satisfied. These macro actions are used to enhanced
the domain as shown in Fig. 1.

4.1 Example
As an example of the entire process accomplished by MADE,
we have extrapolated a simple problem instance from the
Zenotravel domain4 and performed some analysis all along
the deordering and macro actions construction process. Fig-
ure 2a shows the DAG implied by the total ordered plan pro-
vided as a solution by the Metric-ff planning system. The
DAG reports not only the explicit orderings, but also all the
implicit ones computed performing the transitive closure of

4In particular the example is the third instance of problem
from the International Planning Benchmark suite. For details see
http://www.icaps-conference.org/index.php/Main/Competitions

the order relation. As you can see, without any form of rea-
soning, it is quite inefficient to reason on this formulation as
it may contain several ordering constraints which are actually
not necessary. Figure 2b reports the DAG after the deordering
process. As it is easy to see from the picture, the deordering
is able to minimize quite an interesting amount of orderings;
moreover, the numeric extension captures also the dependen-
cies along the numeric dimension of the problem. The refuel
action is in fact ordered before some successive fly actions,
whose execution will not be possible with the amount of fuel
provided from the initial state. More important the relaxed
ordering formulation, as shown in Figure 2c, allows to isolate
which are the part of the plan which are independent each
other. Then, after the removal of the init and the goal pseudo
actions we have the two separated components, upon which
MADE builds the macro actions set. Each macro is built tak-
ing a possible linearization of the set of actions belonging to
the entailed independent components.

In order to take into account the actual discrepancies from
the new encountered planning problem, each resulting macro
action is inspected and split whenever there is a node inside
a connected component representing an action with at least a
numeric or a propositional condition open. This is detected by
the same deordering process, as a result of the hill climbing
strategy (in that case the NDS for an action is empty).

For this problem instance, the CLMA strategy would have
not considered all the action dependencies, so different macro
actions are constructed looking at the encountered discrep-
ancy. Let us assume that the actual discrepancy would have
referred to the first connected component (the one on the left).
Since CLMA has no knowledge of the independency w.r.t.
the second component (the one on the right), the result would
have consisted just two macro actions, for which at least one
of them involves actions from the second component. This
has two negative effects: on the one hand it could happen that
the two macro actions will never be exploited because of the
impossibility to recover from the inconsistency; on the other
hand, if the macro is employed, the need of some precon-
dition entailed by the fusion of that macro would imply the
presence of other spurious actions whose involvement is ac-
tually not necessary. As a difference MADE computes three
actions out of the deordered plan. The first is the one refer-
ring to the second connected component (which is already
executable from the initial state), and other two actions com-
puted splitting the component according to the CLIMA rule.

5 Experimental Evaluation
In order to evaluate the benefits (and possible drawbacks) of
the approach described in the paper we have tested different
system architectures in a number of domains. In particular
this section compares the performance of a planner P using
the DME (domain model enhanced) with the corresponding
planner P using just the basic domain model. We are inter-
ested in evaluating whether there is an advantage in adopt-
ing the strategy MADE over the strategy CLMA introduced
in [Scala, 2014]. The experiments make use of two plan-
ners: Metric-ff and Colin. Hence we have six architectures to
evaluate: Metric-ff-MADE, Metric-ff-CLMA,Metric-ff-basic,

1677



Colin-MADE, Colin-CLMA,Colin-basic. Suffixes denote the
particular selection strategy employed. Basic refers to the ar-
chitecture where no macros are used. For the sake of compar-
ison, we also report results obtained via LPG-ADAPT which
is the state of art system for plan adaptation and is based on
quite different principles wrt a macro action approach.

The experimental setting. The system has been tested on
5 numeric domains of the International Planning Competi-
tion (IPC): DriverLog, Rovers, Depots, Satellite and Zeno-
Travel. To challenge the system in the management of re-
source constraints, we preferred domains where actions are
preconditioned in numeric terms (in addition to propositional
conditions). We have added a sixth domain (denoted as Zeno-
TravelPlus) which is a variant of ZenoTravel where the refuel
action has the additional constraints that it can be performed
just in specific airports. To generate several instances of plan
repair problems we used an approach similar to the one re-
ported in [Fox et al., 2006] and [Scala, 2014] 5.

In particular, for each considered domain, the starting prob-
lems are the 10 most difficult problems of the benchmarks
planning suite. For each of them, a starting plan has been
generated (by using LPG), and a set of variant problems have
been collected. Each variant differs from the starting prob-
lem problem because of the addition and/or removal of up
to 3 initial state information and 3 goals. For each domain
we collected 100 test cases where for each case the injected
change makes the input plan no more valid, so that for each
test case a not trivial plan repair step has to be performed.

The performances of the systems are compared accord-
ing to: coverage represents the number of test cases that a
given system is able to solve within a timeout; time repre-
sents the CPU time taken by the system6 in solving the test
case 7. Plan-length represents the length (in terms of original
atomic actions in the domain model) of the repair plan which
is produced by the system for solving the test case. This pa-
rameter is quite relevant since in principle the plan produced
via macro actions could involve many atomic actions that are
not relevant for solving the problem at hand (useless actions).
We have also collected experimental results for a parameter
somewhat related to plan stability. In particular we have com-
puted the plan distance between the plan obtained as repair
plan with respect to the plan given for the starting problem.
The notion of plan distance used in the experiments has been
introduced in [Fox et al., 2006]. The performances of the
systems are measured according to the International Planning
Competition metrics. Given a parameter p (distance or plan-
length), the score of a case for the system s in a set of tested

systems S is defined by means of
bestV alue(p,S)

value(p,s) . For the time

score, let T ∗ be the minimum time required by any planner,
the formula 1/(1 + log10(T/T

∗)) is used to evaluate the per-

5The suite of cases referring to the standard ZenoTravel comes
directly from the benchmark made available by [Fox et al., 2006].

6For Metric-ff-MADE, Metric-ff-CLMA, Colin-MADE, Colin-
CLMA this parameter includes both the CPU time for selecting and
adding macros to the original domain definition and the CPU time
needed for solving the new problem by the specified planner.

7Experiments ran on Ubuntu 10.04 with an Intel Core
Duo@2.53GHz cpu and 4 GB of Ram

Metric-FF Colin-Clp Lpg-Adapt

MADE CLMA Basic MADE CLMA Basic Basic

D
ep

o
ts

C 98 98 87 88 88 34 100

T 96,36 95,71 77,23 66,77 71,03 28,32 92,55

P 90 88,98 83,01 81,4 81,01 31,67 92,86

D 40,77 73,37 7,55 36,19 70,47 3,67 89,38

S
at

el
li

te

C 72 68 50 63 48 22 91

T 68,69 63,47 40,88 30,8 22,35 11,04 56,72

P 68,67 62,82 48,44 60,3 45,32 20,81 85,08

D 26,47 54,62 3,25 21,8 36,59 2,23 83,78

C 91 40 23 89 35 19 100

R
o
v
er

T 88,31 28,26 19,21 78,33 27,47 9,85 99,61

P 85,77 36,86 21,83 85,17 33,19 17,72 89,98

D 55,19 26,9 1,73 58,09 27,75 2,37 68,97

C 52 49 22 46 40 10 79

D
ri

v
er

L
o

g T 47,47 47,22 19,65 40,89 37,64 8,21 72,02

P 47,88 44,87 19,21 44,68 38,19 9,4 71,22

D 27,88 32,1 4,03 27,22 28,38 2,43 68,21

C 67 61 51 39 27 6 51

Z
en

o
T

ra
v
el T 55,2 59,37 42,06 21,53 14,57 3,15 38,36

P 52,73 51,83 50,94 27,69 19,93 5,29 34,21

D 36,81 27,98 5,4 24,89 12,91 0,99 40,88

C 83 65 37 20 14 0 14

Z
en

o
+

T 78,12 60 24,14 10,61 7,6 0 7,28

P 79,96 61,04 36,2 19,03 12,41 0 12,57

D 60,23 54,08 8,39 14,5 9,71 0 11,11

C 463 381 270 345 252 91 435

T
o

ta
l T 434,15 354,03 223,16 248,94 180,65 60,58 366,54

P 425,01 346,39 259,63 318,28 230,05 84,9 385,92

D 247,36 269,06 30,34 182,69 185,81 11,69 362,34

Table 1: Results of experiments expressed using IPC scores.
C, T, P, D are shorts for Coverage, Time, Plan-length and Dis-
tance score. Timeout in these experiments is set to 20secs.
Bold is used to highlight the advantage of the employed
macro action selection strategy.

formance of a system which spent T sec to solve the case.
Cases solved in less than 1s take the maximum score 1. Cov-
erage scores 1 for solved case, 0 otherwise. The total score
for a domain is the sum of scores obtained for each case in
that domain.

The experimental results reported in Table 1 show that
MADE always outperforms the basic strategy in terms of cov-
erage, time and plan-length. These results make clear that the
addition of macro actions is very beneficial since it not only
improves the coverage score, but also time score (despite the
addition of the preprocessing time). Even more surprising is
the result of plan-length score which shows that the macro
actions are not responsible for adding useless actions in the
plan. It is worth noting that MADE does non create a large
number of macro actions to be added to the model, also if
in general this depends on the specific case, and in particu-
lar is strictly related to the length of the plan and the num-
ber of interactions between actions. We measured that, on
the average, MADE adds 4,7 macro actions into the extended
model representation. The addition of a limited number of se-
lected macro actions experimentally turned out to be a good
compromise between the undeniable increase of the branch-

1678



ing factor and the decrease of the actual depth of the goal.
Each macro action in fact explicitly represents a shortcut in
the implied search space.

The benefits of using macro actions is also shown by the
performance of CLMA strategy that provides better results
than the basic strategy in all the domains as concerns cover-
ing, time and plan length. A challenging comparison is be-
tween MADE and CLMA: in almost all the domains and in
the global score, MADE got much better scores as concerns
coverage, time and plan-length (for example the differences
in the Rover domain are actually huge). The result is unex-
pected as concerns the time since MADE has to perform not
trivial steps before starting the synthesis of macro actions.

The ranking MADE > CLMA > Basic is the same
both considering Metric-FF and Colin even if the underlying
planner has a significant impact on the global performance (in
particular Colin in some domains such as Depots and Zeno-
Travel has performances much lower than Metric-FF). This
is a further evidence that the addition of macro actions is
beneficial independently on the specific planner adopted for
producing the plan repair. As concerns the distance score,
the experiments confirm what is expected: the basic strat-
egy produces plans which are more distant from the origi-
nal one than MADE and CLMA do. For this parameter, the
comparison between MADE and CLMA shows that there is
no clear winner, while globally CLMA has slight better per-
formance. In Table 1, we have listed also the performances
obtained by LPG-ADAPT for a comparison with a system
which directly works on the original plan for producing the
repair plan. We expected that LPG-ADAPT performs better
than strategies exploiting macro actions, not only as concern
time (all the CPU time can be exploited for plan adaptation)
but also coverage (the structure of the original plan is a strong
guide for obtaining a repair plan). The experiments confirmed
this hypothesis, but at least in the ZenoTravel domain (and its
variant) the performances of LPG-ADAPT have been much
worse than the one obtained by Metric-ff-MADE.

The timeout Δ is an important parameter in the experimen-
tal setting: thus, we have performed an extensive evaluation
on its impact on the coverage. In Figure 3 we report the global
coverage on the 600 test cases (100 for each domain) by set-
ting Δ from 1 to 100 seconds. It is easy to see that the ranking
MADE > CLMA > Basic holds for all the values of Δ.
More interesting, there is a very limited increase in coverage
when Δ increases. In particular, for Metric-FF-MADE the
coverage when Δ is set to 20s. is almost the same when Δ
is set to 100s. It is also worth noting that for small values of
CPU timeout (roughly < 40s.) the coverage got by Metric-ff-
MADE is even larger than the one of LPG-ADAPT.

By looking at the Raw-Data of our experiments we noticed
that a very large number of test cases have been solved in
less than 1s. A large amount of CPU time (e.g. > 20 s.)
is actually needed just in the Zenotravel domain (but in this
domain problems required very long plans; in our test cases
the average length is 213,87 and the longest plan involves
320 actions). Also in Driverlog the plans are very long (up
to 236 actions). A final remark concerns the Cpu time taken
by deordering and extraction of macro action in Metric-ff-
MADE. In our experiments we measured the average time

Figure 3: Timeout analysis impact on the coverage for all the
strategies. Y-axis reports the total solved cases number. X-
axis indicates the timeout setting (from 1 to 100 secs).

taken by the preprocessing step over the total time taken for
solving each single test case, and we have seen that this time
takes up to the 77% in the Rover Domain (explaining the huge
success of MADE over CLMA) while is just the 15% in the
ZenoTravelPlus. Because of the length of the plans given as
input, in the Zenotravel the absolute average time spent for
the deordering is roughly 3 secs.

6 Discussion and Conclusions
The paper addresses the problem of plan repair for tasks char-
acterized by the presence of numeric conditions, in addition
to propositional ones. In particular the paper presents a new
method for an accurate selection of numeric macro actions
from the plan in execution.

Macro actions have been exploited in different contexts
([Chrpa et al., 2013],[Botea et al., 2005],[Coles and Smith,
2007],[Scala, 2014],[Korf, 1985]) as a means to speed up the
resolution process by providing shortcuts in the search space.
Whenever a macro action is employed, a state space plan-
ner can jump from states which are not explicitly connected.
In the paper we use the same structure of macros presented
in [Scala, 2014], but as a difference we use quite a differ-
ent selection strategy. At the basis of the selection the paper
presents an extended version of deordering to deal with tasks
involving numeric information. In particular we have intro-
duced (i) the notion of numeric dependency set in order to
explain causality also in the context of numeric planning (ii)
a sufficient condition for the safe removal of ordering con-
straints considering numeric threats.

Deordering/reordering has been thoroughly investigated
in previous works ([Bäckström, 1998],[[Kambhampati,
1994],[Muise et al., 2012]). In this paper we have extended
the mechanism to infer not only propositional dependencies
but also numeric ones. At the basis of this extension the ob-
servation that the executability of the action may depend on
the particular schedule of a set of other previous actions. In
the context of plan repair, works have been mainly focused
on propositional or temporal discrepancies([Garrido et al.,
2010];[van der Krogt and de Weerdt, 2005]; [Cushing and
Kambhampati, 2005];[Conrad and Williams, 2011];[Levine

1679



and Williams, 2014]). [Fox et al., 2006] deals with the prob-
lem of plan repair with numeric information extending the
LPG system to produce high stability plans. Our work tackles
the problem from a different perspective, which is a planner
independent one.

Despite reported conditions are just sufficient, experimen-
tal results show the benefits of the entailed macro action se-
lection strategy, MADE (Macro Action and DEordering), wrt
CLMA ([Scala, 2014]). Looking at our experiments we no-
ticed that in many cases MADE finds decompositions directly
from the implicit multi-agent nature of the submitted prob-
lem. The strategy turned out to be even very competitive (for
lower timeouts) with specialized plan repair system ([Fox et
al., 2006]). In line with the work of [Muise et al., 2011], an
immediate future work is in measuring the flexibility of the
partial ordered plans computed as a result of the deordering
process. Its least commitment nature can be in fact very use-
ful in absorbing unexpected contingencies, without the neces-
sity of invoking a (possibly expensive) replanning step. An
interesting aspect that can be also investigated as future work
is whether it is possible to exploit macro actions for consid-
ering temporal aspects and concurrency, compulsory in some
situation ([Cushing et al., 2007]).

Acknowledgements. This work was supported in part by
ARC project DP140104219, Robust AI Planning for Hybrid
Systems, and ”Intelligent agents for autonomous system” -
Dipartimneto di Informatica - Università di Torino.

References
[Bäckström, 1998] Christer Bäckström. Computational as-

pects of reordering plans. Journal of Artificial Intelligence
Research, 9:99–137, 1998.

[Botea et al., 2005] Adi Botea, Markus Enzenberger, Mar-
tin Müller, and Jonathan Schaeffer. Macro-ff: Improving
ai planning with automatically learned macro-operators.
Journal of Artificial Intelligence Research, 24:581–621,
2005.

[Brenner and Nebel, 2009] Michael Brenner and Bernhard
Nebel. Continual planning and acting in dynamic multi-
agent environments. Journal of Autonomous Agents and
Multiagent Systems, 19(3):297–331, 2009.

[Chrpa et al., 2013] Lukás Chrpa, Mauro Vallati,
Thomas Leo McCluskey, and Diane E. Kitchin. Generat-
ing macro-operators by exploiting inner entanglements.
In Proc. of SARA-13, 2013.

[Coles and Smith, 2007] Andrew Coles and Amanda Smith.
Marvin: A heuristic search planner with online macro-
action learning. Journal of Artificial Intelligence Research,
28:119–156, 2007.

[Coles et al., 2012] Amanda Jane Coles, Andrew Coles,
Maria Fox, and Derek Long. Colin: Planning with con-
tinuous linear numeric change. Journal of Artificial Intel-
ligence Research, 44:1–96, 2012.

[Conrad and Williams, 2011] Patrick R. Conrad and
Brian C. Williams. Drake: An efficient executive for tem-

poral plans with choice. Journal of Artificial Intelligence
Research, 42:607–659, 2011.

[Cushing and Kambhampati, 2005] W. Cushing and
S. Kambhampati. Replanning: A new perspective.
In Poster Session in ICAPS-05, 2005.

[Cushing et al., 2007] William Cushing, Subbarao Kamb-
hampati, Mausam, and Daniel S. Weld. When is tempo-
ral planning really temporal? In Proc. of IJCAI-07, pages
1852–1859, 2007.

[Fox and Long, 2003] Maria Fox and Derek Long. Pddl2.1:
An extension to pddl for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research, 20:61–
124, 2003.

[Fox et al., 2006] Maria Fox, Alfonso Gerevini, Derek Long,
and Ivan Serina. Plan stability: Replanning versus plan
repair. In Proc. of ICAPS-06, pages 212–221, 2006.

[Garrido et al., 2010] A. Garrido, Guzman C., and E. Onain-
dia. Anytime plan-adaptation for continuous planning. In
PLANSIG-10, 2010.

[Gerevini and Serina, 2010] Alfonso Gerevini and Ivan Se-
rina. Efficient plan adaptation through replanning win-
dows and heuristic goals. Fundamenta Informaticae,
102(3-4):287–323, 2010.

[Gerevini et al., 2008] Alfonso Gerevini, Ivan Saetti, and
Alessandro Serina. An approach to efficient planning with
numerical fluents and multi-criteria plan quality. Artificial
Intelligence, 172(8-9):899–944, 2008.

[Ghallab et al., 2014] M. Ghallab, D. Nau, and P. Traverso.
The actor’s view of automated planning and acting: A po-
sition paper. Artificial Intelligence, 208(0):1 – 17, 2014.

[Hoffmann and Brafman, 2006] Jörg Hoffmann and Ronen
Brafman. Conformant planning via heuristic forward
search: A new approach. Journal of Artificial Intelligence
Research, 170(6–7):507–541, 2006.

[Hoffmann, 2003] Jörg Hoffmann. The metric-ff planning
system: Translating ”ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research,
20:291–341, 2003.

[Kambhampati, 1994] Subbarao Kambhampati. A unified
framework for explanation-based generalization of par-
tially ordered and partially instantiated plans. Artificial
Intelligence, 67(1):29–70, 1994.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak
method for learning. Artificial Intelligence, 26(1):35–77,
1985.

[Levine and Williams, 2014] Steven James Levine and
Brian Charles Williams. Concurrent plan recognition and
execution for human-robot teams. In Proc. of ICAPS-14,
2014.

[Minton, 1990] Steven Minton. Quantitative results concern-
ing the utility of explanation-based learning. Artificial In-
telligence, 42(2):363–391, 1990.

[Muise et al., 2011] Christian Muise, Sheila A McIlraith,
and J Christopher Beck. Monitoring the execution of

1680



partial-order plans via regression. In Proc. of IJCAI-11,
pages 1975–1982, 2011.

[Muise et al., 2012] Christian Muise, Sheila A. McIlratih,
and J. Christopher Beck. Optimally Relaxing Partial-order
Plans With MaxSAT. In Proc. of ICAPS-12, 2012.

[Muñoz-Avila and Cox, 2008] Héctor Muñoz-Avila and
Michael T. Cox. Case-based plan adaptation: An analysis
and review. IEEE Intelligent Systems, 23(4):75–81, 2008.

[Nebel and Koehler, 1995] Bernhard Nebel and Jana
Koehler. Plan reuse versus plan generation: A theo-
retical and empirical analysis. Artificial Intelligence,
76(1-2):427–454, 1995.

[Scala, 2014] Enrico Scala. Plan repair for resource con-
strained tasks via numeric macro actions. In Proc. of
ICAPS-14, 2014.

[Siddiqui and Haslum, 2013] Fazlul Hasan Siddiqui and Pa-
trik Haslum. Plan quality optimisation via block decom-
position. In Proc. of IJCAI-13, 2013.

[van der Krogt and de Weerdt, 2005] R. van der Krogt and
M. de Weerdt. Plan repair as an extension of planning.
In Proc. of ICAPS-05, pages 161–170, 2005.

1681


