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ON THE STRUCTURE THEOREM FOR QUASI-HOPF BIMODULES.

PAOLO SARACCO

Abstract. The Structure Theorem for Hopf modules states that if a bialgebra H is a Hopf
algebra (i.e. it is endowed with a so-called antipode) then every Hopf module M is of the form
McoH ⊗ H, where McoH denotes the space of coinvariant elements in M . Actually, it has been
shown that this result characterizes Hopf algebras: H is a Hopf algebra if and only if every Hopf
module M can be decomposed in such a way. The main aim of this paper is to extend this
characterization to the framework of quasi-bialgebras by introducing the notion of preantipode and
by proving a Structure Theorem for quasi-Hopf bimodules. We will also establish the uniqueness
of the preantipode and the closure of the family of quasi-bialgebras with preantipode under
gauge transformation. Then, we will prove that every Hopf and quasi-Hopf algebra (i.e. a quasi-
bialgebra with quasi-antipode) admits a preantipode and we will show how some previous results,
as the Structure Theorem for Hopf modules, the Hausser-Nill theorem and the Bulacu-Caenepeel
theorem for quasi-Hopf algebras, can be deduced from our Structure Theorem. Furthermore,
we will investigate the relationship between the preantipode and the quasi-antipode and we will
study a number of cases in which the two notions are equivalent: ordinary bialgebras endowed
with trivial reassociator, commutative quasi-bialgebras, finite-dimensional quasi-bialgebras.
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1. Introduction

Let H be a bialgebra in the monoidal category of k-vector spaces (M,⊗,k, a, l, r) (k a field).
It is a well-known result in the study of Hopf algebras that H is a Hopf algebra if and only if
every Hopf module M can be decomposed as M ∼= M coH ⊗H, where M coH denotes the space of
coinvariant elements of M (cf. [BW, Theorem 15.5]). Categorically speaking, this means that there
exists an adjunction between the category of vector spaces M and the category of Hopf modules
MH
H such that the left adjoint functor is given by

L : M −→MH
H : V 7−→ V ⊗H

and that L is an equivalence of categories if and only if H is Hopf. The implication in this
theorem that gives the structure result for Hopf modules is commonly known as the Fundamental
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2 PAOLO SARACCO

or Structure Theorem of Hopf modules (see [Sw, Theorem 4.1.1] and [Mo, Theorem 1.9.4]) and
it has important consequences, e.g. in the study of integrals over a Hopf algebra (the proof of
uniqueness and existence of integrals over a finite dimensional Hopf algebra is based on it; cf. [Sw,
Corollary 5.1.6]).

In [Dr], Drinfel’d introduced a generalization of bialgebras and Hopf algebras connected to
conformal field theory: quasi-bialgebras and quasi-Hopf algebras. Roughly speaking, a quasi-
bialgebra H is a bialgebra with a comultiplication that is coassociative just up to conjugation by
an invertible element in H ⊗H ⊗H, called the Drinfel’d reassociator. A quasi-Hopf algebra is a
quasi-bialgebra endowed with an antimultiplicative endomorphism s and with two distinguished
elements α and β that satisfy certain properties. The triple (s, α, β) is called a quasi-antipode for
H. Actually, Drinfel’d’s definition of a quasi-bialgebra ensures that the category of left H-modules
HM is still monoidal, and his definition of quasi-Hopf algebras guarantees that the category of
finite-dimensional left H-modules is rigid.

In 1999, Hausser and Nill (cf. [HN]) extended the Structure Theorem to the framework of
quasi-bialgebras: as for the Hopf case, they found that there is a functor

G : HM −→ HMH
H : M 7−→M ⊗H

and they proved that if a quasi-bialgebra admits a quasi-antipode, then there exists a proper
analogue of the space of coinvariants such that every quasi-Hopf bimodule can be decomposed in
the same way (i.e. such that G is an equivalence). This result enabled them to provide a theory of
integrals for quasi-Hopf algebras of finite dimension and to prove that the space of integrals on a
finite-dimensional quasi-Hopf algebra (also called cointegrals) has dimension one (see [HN, Theorem
4.3]). In 2002, Bulacu and Caenepeel gave an alternative definition of the space of coinvariants that
has the advantage of giving rise to an alternative definition of cointegrals that still makes sense in
the infinite-dimensional case (see [BC, Section 3]). Moreover, even if it turned out to be isomorphic
to the one of Hausser and Nill, it can be used to give a second version of the Structure Theorem.

Unfortunately, there’s no evidence that the converse of these two results holds. Actually, there
exists an example in the dual context, due to Schauenburg, of a dual quasi-bialgebra for which the
Structure Theorem holds, but that is not a dual quasi-Hopf algebra (cfr. [Sc1] and [Sc3, Example
4.5.1]).

Ardizzoni and Pavarin studied the topic in [AP1] and they came to the conclusion that a proper
generalization of the antipode to dual quasi-bialgebras was what they called a preantipode: a
k-linear map S : H → H satisfying certain properties. The main aim of this paper is to fit what
they got to the framework of quasi-bialgebras. Observe that, even if it may seem just dualizing,
there are a number of difficulties to overcome. First of all, the dual of a dual quasi-bialgebra is not a
quasi-bialgebra in general (unless we are in the finite-dimensional case). Secondly, unlikely the ‘dual
quasi’ case we don’t have a pretty definition of the space of coinvariants that helps us in defining
the adjunction between HM and HMH

H by taking inspiration from the ordinary Hopf version. On
the contrary, our definition of coinvariants (that follows Hausser-Nill’s one) is a consequence of the
Structure Theorem itself.

In details, the paper is organized as follows.
In Section 2 we recall some basic notions concerning monoidal categories, quasi-bialgebras,

quasi-Hopf bimodules and we fix our notation. In particular, we construct an adjunction between
HM and HMH

H .
Section 3 is devoted to the notion of preantipode. In 3.1 we prove the main result: the

Structure Theorem for quasi-Hopf bimodules. It states that for a quasi-bialgebra A the functor
−⊗A : AM→ AM

A
A of Hausser and Nill is an equivalence of categories if and only if A admits a

preantipode, if and only if there exists a k-linear map τM : M →M for every quasi-Hopf bimodule
M that satisfies certain properties. In 3.2 we introduce the space of coinvariant elements for a
quasi-Hopf bimodule, namely N = τM (M), and we show how every quasi-Hopf bimodule M over a
quasi-bialgebra A with preantipode is of the form N ⊗A. Subsection 3.3 collects the results about
uniqueness of the preantipode and closure of the class of quasi-bialgebras with preantipode under
gauge transformation.
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In Section 4 we introduce quasi-Hopf algebras in order to show how the classical results are
now consequences of the theory we developed. The cornerstone of this section is Theorem 4.3,
which asserts that every quasi-Hopf algebra admits a preantipode. From this result we can recover
the Structure Theorem for Hopf modules (Remark 4.7) and Hausser-Nill version of the Structure
Theorem for quasi-Hopf bimodules (Remark 4.8) as corollaries. Moreover, we are able to give a
proof of the Structure Theorem of Bulacu and Caenepeel that doesn’t require bijectivity of the
quasi-antipode and is not long nor technical (Remark 4.9). Unfortunately, and unlike the dual
quasi case, we are not able to exhibit an explicit example of a quasi-bialgebra with preantipode that
does not admit a quasi-antipode and so we cannot say with certainty that the two concepts don’t
coincide, though it is very likely to be so. Nevertheless, even if it will turn out that the two are
equivalent, we took a step forward. Indeed, the preantipode is actually a more handy tool than the
quasi-antipode. Primarily, because it is composed by a single data: the map S : A→ A. Secondly,
because it is unique (see Theorem 3.16) and not just unique up to an invertible element (as the
quasi-antipode is).

Even if we believe that quasi-bialgebras with preantipode are a strictly larger class of quasi-
bialgebras with respect to quasi-Hopf algebras, in 4.1 we will be able to exhibit a number of cases
in which the two structures are equivalent. For example: ordinary bialgebras viewed as quasi via
the trivial reassociator (Proposition 4.13), commutative quasi-bialgebras (Corollary 4.14) and, last
but not the least, finite-dimensional quasi-bialgebras.

In some of these cases we are able to recover explicitly the quasi-antipode from the preantipode,
as we will show at the very end of Section 4, for example when the distinguished element α is
invertible. We will also highlight that we can do it for much of the best known examples of
non-trivial quasi-Hopf algebra. Nevertheless, up to this moment, we are not able to give general
guidelines to recover the quasi-antipode from the preantipode, even in the finite-dimensional case.
The heart of the problem lies in the fact that Schauenburg’s proof invokes the Krull-Schmidt
Theorem and this is a non-constructive result. Hence, as we will see, the relation between the
quasi-antipode and the preantipode hides behind an unknown isomorphism γ̃ (cfr. proof of Theorem
4.15).

2. Preliminaries

Recall that (see [Ka, Chap. XI]) a monoidal category (M,⊗, I, a, l, r) is a category M equipped
with a functor ⊗ : M×M→M (called tensor product) and with a distinguished object I (called
the unit) such that ⊗ is associative ‘up to’ a natural isomorphism a, I is a left and right unit for ⊗
‘up to’ natural isomorphisms l and r respectively and ‘all’ diagrams involving a, l and r commute.
Formally, this means that we have three natural isomorphisms:

a : ⊗ (⊗× IdM)→ ⊗ (IdM ×⊗) associativity constraint
l : ⊗ (I× IdM)→ IdM left unit constraint
r : ⊗ (IdM × I)→ IdM right unit constraint

that satisfy the Pentagon Axiom and the Triangle Axiom:

	

((M⊗N)⊗P )⊗Q
aM,N,P ⊗Q

//

aM⊗N,P,Q

||

(M⊗(N⊗P ))⊗Q

aM,N⊗P,Q

""
(M⊗N)⊗(P⊗Q)

aM,N,P ⊗Q

))

M⊗((N⊗P )⊗Q)

M⊗aN,P,Q

uu
M⊗(N⊗(P⊗Q))

(M⊗I)⊗N
aM,I,N //

rM ⊗N

��

	

M⊗(I⊗N)

M⊗lN

��
M⊗N

for all M , N , P , Q in M.
The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be

introduced in the general setting of monoidal categories. Note that we will always request algebras
to be associative and unital and coalgebras to be coassociative and counital.
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Let k be a fixed field and denote by M the category of k-vector spaces. This is a monoidal
category with tensor product and unit given by ⊗k and k respectively. The associativity and unit
constraints are the obvious maps. Henceforth, all vector spaces, (co)algebras and linear maps are
understood to be over k. The unadorned tensor product ⊗ will denote the tensor product over k,
if not stated differently. In order to deal with the comultiplication and the coaction, we use the
following variation of Sweedler’s Sigma Notation (cf. [Sw, Sec. 1.2]):

∆(x) := x1 ⊗ x2 and ρ(n) := n0 ⊗ n1

for all x ∈ C, C coalgebra, and for all n ∈ N , N C-comodule (summation understood).
A quasi-bialgebra, as introduced by Drinfel’d in [Dr], is a datum (A,m, u,∆, ε,Φ) where:
• (A,m, u) is an associative unital k-algebra,
• ∆: A→ A⊗A and ε : A→ k are algebra maps, called comultiplication and counit,
• Φ ∈ A ⊗ A ⊗ A is an invertible element (the Drinfel’d reassociator or simply the

reassociator) such that:

(1) (A⊗A⊗∆)(Φ) · (∆⊗A⊗A)(Φ) = (1⊗ Φ) · (A⊗∆⊗A)(Φ) · (Φ⊗ 1)

(2) (ε⊗A⊗A)(Φ) = 1⊗ 1 = (A⊗ ε⊗A)(Φ) = 1⊗ 1 = (A⊗A⊗ ε)(Φ)

• ∆ is counital with counit ε and it is quasi-coassociative, meaning that the following relations
hold for all a ∈ A:

(3) (A⊗∆)(∆(a)) · Φ = Φ · (∆⊗A)(∆(a))

(4) lA(ε⊗A)(∆(a)) = a

(5) rA(A⊗ ε)(∆(a)) = a

Hereafter we will usually omit the constraints, in order to lighten the notation.
Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. A gauge transformation (or twist; cf. [Dr]) on A

is an invertible element F of A⊗A such that

(A⊗ ε)(F ) = 1 = (ε⊗A)(F ).

Given a gauge transformation, it is possible to twist the quasi-bialgebra A via F by considering
AF := (A,m, u,∆F , ε,ΦF ) where, for all a ∈ A

∆F (a) := F ·∆(a) · F−1,

ΦF := (1⊗ F ) · (A⊗∆)(F ) · Φ · (∆⊗A)(F−1) · (F−1 ⊗ 1).

This is still a quasi-bialgebra (cf. [Dr, Remark, p. 1422]), i.e. quasi-bialgebras form a class closed
under gauge transformation.

Moreover, the axioms of quasi-bialgebra are necessary and sufficient to state that the category
AM of left modules over a quasi-bialgebra A is monoidal in the following way. Given a left A-
module M , we denote by µ = µlM : A⊗M → M : a⊗m 7→ a ·m, its left A-action. The tensor
product of two left A-modules M and N is a left A-module itself via the diagonal action i.e.
a · (m⊗ n) = (a1 ·m)⊗ (a2 · n). The unit is k, which is regarded as a left A-module via the trivial
action, i.e. a · k = ε(a)k. The associativity and unit constraints are defined, for all M,N,P ∈ AM
and m ∈M,n ∈ N, p ∈ P, k ∈ k, by

(Aa)M,N,P ((m⊗ n)⊗ p) := Φ · (m⊗ (n⊗ p)),
lM (k ⊗m) := km and rM (m⊗ k) := mk.

We will denote this category by (AM,⊗,k,Aa, l, r). Analogously, we can define the monoidal
categories (MA,⊗,k, aA, l, r) and (AMA,⊗,k,AaA, l, r), where:

(aA)M,N,P ((m⊗ n)⊗ p) := (m⊗ (n⊗ p)) · Φ−1,

(AaA)M,N,P ((m⊗ n)⊗ p) := Φ · (m⊗ (n⊗ p)) · Φ−1.
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Remark 2.1. ([HN, Section 3]) Recall that we need an analogue of the notion of Hopf module for
quasi-bialgebras. Unfortunately, a quasi-bialgebra A is not a coalgebra in M and, in general, neither
in AM nor in MA. However, (A,m,m) as an (A,A)-bimodule, endowed with ∆ and ε, becomes
a coalgebra in AMA and so we can consider the category of the so-called (right) quasi-Hopf
bimodules

AM
A
A := (AMA)A .

The compatibility conditions with comultiplication and counit that a coaction should satisfy rewrites:

m0 ε(m1) = m,(6)
(m0 ⊗ (m1)1 ⊗ (m1)2) · Φ = Φ · ((m0)0 ⊗ (m0)1 ⊗m1).(7)

for all m ∈M , M ∈ AM
A
A (cf. [HN, Definition 3.1]).

2.1. An adjunction between AM
A
A and AM. Here we construct the analogue for quasi-Hopf

bimodules of the adjunction between the category of vector spaces and the category of Hopf modules
(for details about the classical ‘Hopf’ result, cf. [BW, Theorem 15.5]).

Lemma 2.2. (see also [Sc2, §2.2]) Let (C,∆, ε) be a coalgebra in a monoidal category (M,⊗, I, a, l, r)
and let MC be the category of right C-comodules and (N, ρN ) a C-comodule. The assignments

M 7→
(
M ⊗N, (aM,N,C)−1 ◦ (M ⊗ ρN )

)
and f 7→ f ⊗N

define a functor TN : M→MC . Moreover, if N = C, then TC is right adjoint to U : MC →M, the
underlying functor.

Therefore we have and adjunction (U, T ) between AM
A
A and AMA with right adjoint given by:

T : AMA −→ AM
A
A

•M• 7−→ •M• ⊗ •A••
where the full dots denote the given actions and coaction. Explicitly, if we denote by

ρM⊗A : M ⊗A→ (M ⊗A)⊗A

the coaction on M ⊗A, we have:

a · (m⊗ b) = a1 ·m⊗ a2b(8a)
(m⊗ b) · a = m · a1 ⊗ ba2(8b)

ρM⊗A(m⊗ a) = Φ−1 · ((m⊗ a1)⊗ a2) · Φ(8c)

for all a, b ∈ A and m ∈M .
Let M be an (A,A)-bimodule and consider the left A-module

M := M

MA+ ,

where A+ := ker(ε) is the augmentation ideal of A. The assignment L : AMA → AM : M 7→ M
defines a functor that is left adjoint to the functor R : AM→ AMA : •N 7→ •N◦, where the empty
dot denotes the trivial action (i.e. n · a := n ε(a) for all n ∈ N , a ∈ A). Define

F := LU : AMA
A → AM and G := TR : AM→ AM

A
A

so that, for all M ∈ AM
A
A, N ∈ AM:

F (•M•• ) = •M with a ·m = a ·m, for every a ∈ A,m ∈M

and
G(•N) = •N◦ ⊗ •A•• with a · (n⊗ b) = a1 · n⊗ a2b, for all a, b ∈ A,n ∈ N

(n⊗ b) · a = n⊗ ba, for all a, b ∈ A,n ∈ N
ρ(n⊗ b) = Φ−1 · ((n⊗ b1)⊗ b2), for all b ∈ A,n ∈ N

(9)
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Note also that since for any a in A we have that a− ε(a) ∈ A+, if M is an (A,A)-bimodule then
in the quotient M

MA+ = M the following relation holds for every m ∈M,a ∈ A:
m · a = mε(a).

This fact will be used frequently in the sequel without explicit mention.

Remark 2.3. Denote by µN⊗A the right A-action defined in (9). It is easy to see that
(10) µN⊗A ◦ (N ⊗ u⊗A) ◦

(
r−1
N ⊗A

)
= IdN⊗A

for any left A-module N . This will be useful in proving Theorem 3.1.

The content of the subsequent theorem is essentially the same of [Sc2, Proposition 3.6].

Theorem 2.4. The functor F : AMA
A → AM : M 7→M defined above is left adjoint to the functor

G : AM→ AM
A
A : •N 7→ •N◦ ⊗ •A••. Moreover, the unit η and counit ε of this adjunction are given

by:
ηM : M →M ⊗A : m 7→ m0 ⊗m1,(11)
εN : N ⊗A→ N : n⊗ a 7→ n ε(a)(12)

for all M ∈ AM
A
A, N ∈ AM, and ε is always a natural isomorphism.

3. The preantipode for quasi-bialgebras

This section is devoted to introduce the notion of preantipode and its properties. We start by
showing that to be an equivalence for the adjunction (F,G, η, ε) of Theorem 2.4 is equivalent to
the existence of a suitable map τ̃M for every quasi-Hopf module M . After this, we investigate the
relationship between the preantipode and the maps τ̃M . The main result of this section is Theorem
3.9, where we show how the preantipode is a proper analogue of the antipode for quasi-bialgebras.

Theorem 3.1. (Dual to [AP1, Proposition 3.3]) Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. The
following assertions are equivalent:

(i) The adjunction (F,G, η, ε) is an equivalence of categories.
(ii) For each M ∈ AM

A
A, there exists a k-linear map τ̃M : M →M such that, for all m ∈M :

τ̃M (m0) ·m1 = m,(13)

τ̃M (m)0 ⊗ τ̃M (m)1 = m⊗ 1.(14)

For the sake of brevity, we will often omit the subscript M and we will denote τ̃M just by τ̃ ,
when there isn’t the risk of confusion.

Proof. Let us begin by observing that (13) and (14) can be rewritten as:
µM ◦ (τ̃ ⊗A) ◦ ηM = IdM and ηM ◦ τ̃ = (M ⊗ u) ◦ r−1

M

respectively, where µM denotes the right A-action on M , and these suggest us how to define τ̃
having η−1

M or viceversa.
(i)⇒ (ii). By hypothesis (F,G, η, ε) is an equivalence, so that η is a natural isomorphism. For each
M ∈ AM

A
A define

(15) τ̃ = η−1
M ◦ (M ⊗ u) ◦ r−1

M
,

i.e. τ̃(m) = η−1
M (m⊗ 1) for all m ∈M . It is clear that (14) holds, so let us verify (13). Since η is a

morphism of quasi-Hopf bimodules, the same holds true for η−1. Therefore

(M ⊗A)⊗A

	

η−1
M
⊗A
//

µ
M⊗A

��

M ⊗A

µM

��
M ⊗A

η−1
M

// M
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commutes, i.e. µM ◦ (η−1
M ⊗A) = η−1

M ◦ µM⊗A, and

µM ◦ (τ̃ ⊗A) ◦ ηM
(15)= µM ◦

(
η−1
M ⊗A

)
◦
(
M ⊗ u⊗A

)
◦
(
r−1
M
⊗A

)
◦ ηM

= η−1
M ◦ µM⊗A ◦

(
M ⊗ u⊗A

)
◦
(
r−1
M
⊗A

)
◦ ηM

(10)= η−1
M ◦ ηM = IdM .

(ii)⇒ (i). Assume that τ̃ : M →M exists for any quasi-Hopf bimodule M and define
(16) λM = µM ◦ (τ̃ ⊗A).
From (13) we deduce that λM ◦ ηM = IdM . On the other hand, a direct check shows that:

ηM ◦ λM = ηM ◦ µM ◦ (τ̃ ⊗A) = µM⊗A ◦ (ηM ⊗A) ◦ (τ̃ ⊗A)
(14)= µM⊗A ◦ (M ⊗ u⊗A) ◦ (r−1

M
⊗A) (10)= IdM⊗A

for each M ∈ AM
A
A and therefore η is a natural isomorphism. �

3.1. The preantipode and the Structure Theorem.

Definition 3.2. A preantipode for a quasi-bialgebra (A,m, u,∆, ε,Φ) is a k-linear map S : A→ A
that satisfies:

a1S(ba2) = ε(a)S(b),(17)
S(a1b)a2 = ε(a)S(b),(18)

Φ1S(Φ2)Φ3 = 1,(19)

for all a, b ∈ A, where Φ1 ⊗ Φ2 ⊗ Φ3 = Φ (summation understood).

Remark 3.3. Note that, evaluating (17) and (18) at b = 1, we have that
(20) (IdA ∗ S)(a) = ε(a)S(1) = (S ∗ IdA)(a)
for all a ∈ A, where ∗ denotes the convolution product, i.e. f ∗ g = m ◦ (f ⊗ g) ◦ ∆ for all
f, g ∈ End(A). This means that a preantipode is very close to be the convolution inverse of the
identity in End(A). Moreover, applying ε on both sides of (19) we get that ε (S(1)) = 1 and
applying ε again on both sides of the left hand equality in (20), we obtain that the preantipode
preserves the counit:
(21) ε ◦ S = ε.

The following proposition is the natural generalization of [HN, Proposition 3.4] to quasi-bialgebras
with preantipode.

Proposition 3.4. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S and M ∈ AM
A
A.

For all a ∈ A, m ∈M , define
τ : M →M : m 7→ Φ1 ·m0 · S(Φ2m1)Φ3,(22)

a I m := τ(a ·m).(23)
Then, for all a, b ∈ A, m ∈M , they satisfy:

τ(m · a) = τ(m) ε(a),(24a)
τ2 = τ,(24b)

a I τ(m) = τ(a ·m),(24c)
a I (b I m) = (ab) I m,(24d)

a · τ(m) = τ(a1 ·m) · a2 = (a1 I τ(m)) · a2,(24e)
τ(m0) ·m1 = m,(24f)

τ(τ(m)0)⊗ τ(m)1 = τ(m)⊗ 1.(24g)
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Proof. Property (24a) is quite easy to prove, indeed:

τ(m · a) = Φ1 ·m0 · a1S(Φ2m1a2)Φ3 (17)= Φ1 ·m0 · ε(a)S(Φ2m1)Φ3 = τ(m) ε(a).

To prove (24c) one uses (24a) to compute:

τ(a · τ(m)) = τ(aΦ1 ·m0 · S(Φ2m1)Φ3) (24a)= τ(aΦ1 ·m0) ε(S(Φ2m1))ε(Φ3)
(21)= τ(aΦ1 ·m0) ε(Φ2m1)ε(Φ3) = τ(a ·m0)ε(m1) = τ(a ·m),

for all a ∈ A and m ∈M . Now, (24b) is just (24c) with a = 1 and (24d) follows directly from (24c)
since for every a, b ∈ A and m ∈M

a I (b I m) = a I τ(b ·m) = τ(ab ·m) = (ab) I m.

Statement (24e) is a consequence of the quasi-coassociativity of ∆:

τ(a1 ·m) · a2 = Φ1(a1)1 ·m0 · S(Φ2(a1)2m1)Φ3a2
(3)= a1Φ1 ·m0 · S((a2)1Φ2m1)(a2)2Φ3

(18)= a1Φ1 ·m0 · S(Φ2m1)Φ3ε(a2) = a · τ(m)

for all a ∈ A and m ∈M . Furthermore, (24f) follows from the fact that for all m ∈M

τ(m0) ·m1 = Φ1 · (m0)0 · S(Φ2(m0)1)Φ3m1
(7)= m0 · Φ1S((m1)1Φ2)(m1)2Φ3

(18)= m0 · Φ1S(Φ2)ε(m1)Φ3 (19)= m.

Finally, let us verify (24g). In the calculations that follows we are going to indicate with
Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 another copy of Φ. For all m ∈M

τ(τ(m)0)⊗ τ(m)1 = τ
((

Φ1 ·m0 · S(Φ2m1)Φ3)
0

)
⊗
(
Φ1 ·m0 · S(Φ2m1)Φ3)

1
(24a)= τ

((
Φ1 ·m0

)
0

)
ε
((
S(Φ2m1)Φ3)

1

)
⊗
(
Φ1 ·m0

)
1

(
S(Φ2m1)Φ3)

2

= τ
(
(Φ1)1 · (m0)0

)
⊗ (Φ1)2(m0)1S(Φ2m1)Φ3

(7)= τ
(
(Φ1)1φ

1 ·m0 ·Ψ1)⊗ (Φ1)2φ
2(m1)1Ψ2S(Φ2φ3(m1)2Ψ3)Φ3

(24a)= τ
(
(Φ1)1φ

1 ·m0
)
ε
(
Ψ1)⊗ (Φ1)2φ

2(m1)1Ψ2S(Φ2φ3(m1)2Ψ3)Φ3

(2)= τ
(
(Φ1)1φ

1 ·m0
)
⊗ (Φ1)2φ

2(m1)1S(Φ2φ3(m1)2)Φ3

(17)= τ
(
(Φ1)1φ

1 ·m0
)
⊗ (Φ1)2φ

2ε(m1)S(Φ2φ3)Φ3

(∗)= τ
(
φ1Ψ1 ·m

)
⊗ φ2Φ1 (Ψ2)

1 S
((
φ3)

1 Φ2 (Ψ2)
2

) (
φ3)

2 Φ3Ψ3

(17)= τ
(
φ1Ψ1 ·m

)
⊗ φ2Φ1 ε

(
Ψ2)S ((φ3)

1 Φ2) (φ3)
2 Φ3Ψ3

(18)= τ
(
φ1 ·m

)
⊗ φ2Φ1S

(
Φ2) ε (φ3)Φ3

(2)= τ(m)⊗ Φ1S
(
Φ2)Φ3 (19)= τ(m)⊗ 1

where in (∗) we used (1): (∆⊗A⊗A)(Φ)·(Φ−1⊗1) = (A⊗A⊗∆)(Φ−1)·(1⊗Φ)·(A⊗∆⊗A)(Ψ). �

Remark 3.5. Actually, it can be proven that (24b), (24c), (24d) and (24e) are consequences of
(24a), (24f) and (24g). Indeed, we already know that (24b) and (24d) follows directly from (24c).
Moreover, (24a) and (24f) together imply that for all a ∈ A, m ∈M ,

τ(a ·m) (24f)= τ(a · τ(m0) ·m1) (24a)= τ(a · τ(m0))ε(m1) = τ(a · τ(m)).

Finally, from (24c) we deduce that:

(25) τ(a1 ·m) · a2
(24c)= τ(a1 · τ(m)) · a2
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for every m ∈M , a ∈ A and this, together with (24g) and (24f), implies that

τ(a1 · τ(m)) · a2
(24g)= τ(a1 · τ(τ(m)0)) · a2τ(m)1

(25)= τ(a1 · τ(m)0) · a2τ(m)1
(24f)= a · τ(m).

Proposition 3.6. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra, M be a quasi-Hopf bimodule and
τ : M →M a k-linear map that satisfies (24a), (24f) and (24g) of Proposition 3.4. Then

(26) τ̃ : M

MA+ →M : m 7→ τ(m)

satisfies (i) and (ii) of Theorem 3.1.

Proof. Note that τ actually factors through the quotient M
MA+ , since it satisfies τ(m ·a) = τ(m) ε(a)

(cf. (24a)). Thus the map τ̃ of (26) is a well-defined k-linear map. Keeping in mind Proposition
3.4, let us show that this τ̃ satisfies (i) and (ii):

(i) For all m ∈M

τ̃(m0) ·m1 = τ(m0) ·m1
(24f)= m.

(ii) From (24f) we deduce that in the quotient M
MA+ the following relation holds

(27) m = τ(m0) ·m1 = τ(m)
for all m ∈M . Consequently, from the identity τ̃(m) = τ(m) together with (24g) and (27),
we find out that:

τ̃(m)0 ⊗ τ̃(m)1 = τ(m)0 ⊗ τ(m)1
(27)= τ(τ(m)0)⊗ τ(m)1

(24g)= τ(m)⊗ 1 (27)= m⊗ 1.
This completes the proof. �

As a consequence of Proposition 3.6 and Proposition 3.4 we have the following central theorem.

Theorem 3.7. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra and S be a preantipode for A. The map

(28) τ̃ : M

MA+ −→M : m 7−→ Φ1 ·m0 · S(Φ2m1)Φ3

is k-linear and satisfies (i) and (ii) of Theorem 3.1.

Next aim is to show that if the adjunction (F,G, η, ε) is an equivalence, then we can construct a
map S that satisfies the conditions (17), (18) and (19) of Definition 3.2.

Therefore, consider the quasi-Hopf bimodule A⊗A with the following structures:
A⊗̂A := T (◦A•) = ◦A• ⊗ •A••

where the tensor product is taken in AMA. Explicitly:
x · (a⊗ b) = a⊗ xb, (a⊗ b) · x = ax1 ⊗ bx2,(29a)
ρ(a⊗ b) = ((a⊗ b1)⊗ b2) · Φ = aΦ1 ⊗ b1Φ2 ⊗ b2Φ3(29b)

for all a, b, x ∈ A (recall relations (8c) and (2)). Set

(30) η̂A := ηA⊗̂A : A⊗̂A→ A⊗̂A
(A⊗̂A)A+ ⊗A : a⊗ b 7→ aΦ1 ⊗ b1Φ2 ⊗ b2Φ3.

The structures on A⊗̂A
(A⊗̂A)A+ ⊗A are given by:

x · (a⊗ b⊗ c) = a⊗ x1b⊗ x2c,

(a⊗ b⊗ c) · x = a⊗ b⊗ cx,

ρ(a⊗ b⊗ c) = (a⊗ φ1b⊗ φ2c1)⊗ φ3c2,

for all a, b, c, x ∈ A. If we assume that (F,G) is an equivalence, then η̂A is an isomorphism in AM
A
A.

This means that η̂−1
A exists and it is an isomorphism too. Note that since it is right A-linear, i.e.:

(31) η̂−1
A (a⊗ b⊗ c) = η̂−1

A (a⊗ b⊗ 1) · c,
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it is completely determined by its value on elements of the form a⊗ b⊗ 1. Set

(32) a1 ⊗ a2 := η̂−1
A (1⊗ a⊗ 1)

(summation understood) and define a new map:

(33) ξ : A⊗̂A
(A⊗̂A)A+ −→ A : a⊗ b 7−→ (A⊗ ε)η̂−1

A (a⊗ b⊗ 1).

We will see at the end of Section 4 that ξ plays a central role in reconstructing the quasi-antipode
from the preantipode.

Consider the left A-action on A⊗A given by the multiplication on the first factor. The subset
(A⊗A)A+ is still a left A-submodule of A⊗A and so this action passes to the quotient A⊗A

(A⊗A)A+ .
It is not hard to see that η̂A in left A-linear with respect to the multiplication on the first factor.
This implies that also η̂−1

A is. In particular, for all a, b ∈ A

η̂−1
A (a⊗ b⊗ 1) = ab1 ⊗ b2,(34)
ξ(a⊗ b) = ab1 ε(b2).(35)

Next observe that, in view of (31), we can write:

(36) η̂−1
A (a⊗ b⊗ c) (34)= (ab1 ⊗ b2) · c = ab1c1 ⊗ b2c2.

Define

(37) S(a) := a1 ε(a2) = (A⊗ ε)
(
η̂−1
A (1⊗ a⊗ 1)

)
for all a ∈ A and let us show that this is a preantipode for A.

• First of all, S : A→ A is clearly k-linear. Moreover

(38) ξ(a⊗ b) = aS(b).

• For every a⊗ b ∈ A⊗A
(A⊗A)A+ we have that:

ax1 ⊗ bx2 = (a⊗ b) · x = a⊗ b ε(x).

This implies that:

ax1S(bx2) = ξ(ax1 ⊗ bx2) = ξ(a⊗ b) ε(x) = aS(b) ε(x)

and, evaluating it at a = 1, we get (17): x1S(bx2) = ε(x)S(b).
• Recall that η̂−1

A is left A-linear with respect to the original left A-action too. Hence:

a1 ⊗ xa2 = x · (a1 ⊗ a2) = x · η̂−1
A (1⊗ a⊗ 1) = η̂−1

A (x · (1⊗ a⊗ 1))

= η̂−1
A (1⊗ x1a⊗ x2) (36)= (x1a)1(x2)1 ⊗ (x1a)2(x2)2.

Applying A⊗ ε on both sides we find (18): ε(x)S(a) = S(x1a)x2.
• Finally, η̂−1

A is the inverse of η̂A. Consequently

a⊗ b = η̂−1
A (η̂A(a⊗ b)) = η̂−1

A (aΦ1 ⊗ b1Φ2 ⊗ b2Φ3)
(36)= aΦ1(b1Φ2)1(b2Φ3)1 ⊗ (b1Φ2)2(b2Φ3)2

and applying A⊗ ε on both sides again we obtain:

a ε(b) = aΦ1S
(
b1Φ2) b2Φ3.

For a = b = 1 we get (19): 1 = Φ1S(Φ2)Φ3.
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Remark 3.8. Observe that we can use the right A-colinearity of η̂−1
A to express it explicitly as a

function of S. Indeed, from the commutativity of the following diagram:

(39) A⊗̂A⊗A

	

� η̂−1
A //

_
ρ

A⊗̂A⊗A

��

A⊗̂A_
ρA⊗̂A

��
A⊗̂A⊗A⊗A �

η̂−1
A
⊗A

// A⊗̂A⊗A

one deduces that:(
φ1b
)1 (

φ2)
1 ⊗

(
φ1b
)2 (

φ2)
2 ⊗ φ

3 (36)= η̂−1
A

(
1⊗ φ1b⊗ φ2

)
⊗ φ3 (39)= ρA⊗̂A

(
η̂−1
A (1⊗ b⊗ 1)

)
(32)= ρA⊗̂A

(
b1 ⊗ b2) (29b)=

(
b1Φ1 ⊗ (b2)1Φ2)⊗ (b2)2Φ3.

Applying A⊗ ε⊗A to the leftmost member and to the rightmost one and in view of relations (2),
(31) and (37) we find:

S(φ1b)φ2 ⊗ φ3 = b1 ⊗ b2 = η̂−1
A (1⊗ b⊗ 1),

so that from (36) we can conclude that:

(40) η̂−1
A (a⊗ b⊗ c) = aS(φ1b)φ2c1 ⊗ φ3c2.

Theorem 3.9. (Structure Theorem for quasi-Hopf bimodules) For a quasi-bialgebra (A,m, u,∆, ε,Φ)
the following assertions are equivalent:

(1) the adjunction (F,G, η, ε) is an equivalence of categories;
(2) η̂A is bijective;
(3) there exists a preantipode;
(4) there is a linear map τ : M →M for all M ∈ AM

A
A that satisfies (24a), (24f) and (24g).

Proof. (1)⇒ (2). It follows from the fact that η̂A = ηA⊗̂A.
(2)⇒ (3). We proved this in the paragraph that follows Theorem 3.7.
(3)⇒ (4). It follows from Proposition 3.4.
(4)⇒ (1). It follows from Theorem 3.1 and Proposition 3.6. �

3.2. The space of coinvariant elements of a quasi-Hopf bimodule. A careful observer can
object that, if M is an Hopf Module, then the ordinary Structure Theorem involves the space M coH

and not a quotient M
MA+ . Actually, there exists a suitable extension of the notion of coinvariant

elements of a quasi-Hopf bimodule such that they are isomorphic.
The results that follow have been proven for quasi-Hopf algebras (that we will introduce later)

by Hausser and Nill in [HN]. Here we generalize these results to the framework of quasi-bialgebras
with preantipode and in the next section we will show how the original ones can be recovered from
the new ones.

Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S, let M be a quasi-Hopf bimodule
and consider the linear transformation τ : M →M of (22). The definition below is the analogue of
[HN, Definition 3.5] (see also [BC, introduction to Section 3, p. 566]).

Definition 3.10. The space of coinvariant elements (or just the space of coinvariants, for the
sake of brevity) of a quasi-Hopf A-bimodule M is defined to be

M coA := τ(M).

Before showing that this definition is exactly what we need to formulate the Structure Theorem
in terms of M coA, let us retrieve a proposition that collects some characterizations of the space of
coinvariants (cf. also [HN, Definition 3.5] and [HN, Corollary 3.9]). The proof is left to the reader.
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Proposition 3.11. If A is a quasi-bialgebra with preantipode S and M is a quasi-Hopf A-bimodule,
then the following descriptions of M coA hold, where φ1 ⊗ φ2 ⊗ φ3 = Φ−1:

M coA = {n ∈M | τ(n) = n}
= {n ∈M | τ(n0)⊗ n1 = τ(n)⊗ 1}
=
{
n ∈M | ρM (n) = τ(φ1 · n) · φ2 ⊗ φ3} .(41)

Remark 3.12. Note that if n ∈M is such that ρM (n) = n⊗ 1, then n ∈M coA. However, up to
this moment, we found no evidence that the converse is true or not, in general.

Next lemma is the analogue of [HN, Lemma 3.6] for a quasi-bialgebra A with preantipode S.

Lemma 3.13. Let M be a left A-module. Then the coinvariants of the quasi-Hopf bimodule
G(M) = •M◦ ⊗ •A•• are given by (M ⊗A)coA = M ⊗ k, and for m ∈M and a ∈ A we have that
τ(m⊗ a) = m⊗ ε(a).

Proof. In view of (24a) of Proposition 3.4, we have that

(42) τ(m⊗ a) = τ((m⊗ 1) · a) = τ(m⊗ 1) ε(a).

Moreover, denoting by φ1 ⊗ φ2 ⊗ φ3 = Φ−1 the inverse of Φ = Φ1 ⊗ Φ2 ⊗ Φ3, we get:

τ(m⊗ 1) = Φ1 · (m⊗ 1)0 · S(Φ2(m⊗ 1)1)Φ3 (9)= Φ1 · (φ1m⊗ φ2) · S(Φ2φ3)Φ3

(∗)= φ1Φ1 ·m⊗ φ2Ψ1(Φ2)1S
(
(φ3)1Ψ2(Φ2)2

)
(φ3)2Ψ3Φ3

(18)= φ1Φ1 ·m⊗ φ2Ψ1 ε(Φ2)S
(
(φ3)1Ψ2) (φ3)2Ψ3Φ3

(17)= φ1Φ1 ·m⊗ φ2Ψ1 ε(Φ2)S
(
Ψ2) ε(φ3) Ψ3Φ3

(2)= m⊗Ψ1S(Ψ2)Ψ3 (19)= m⊗ 1

(43)

where, again, we denoted by Ψ another copy of Φ in order to avoid confusion and in (∗) we used (1)
in the form:

(∆⊗A⊗A)(Φ) · (Φ−1 ⊗ 1) = (A⊗A⊗∆)(Φ−1) · (1⊗Ψ) · (A⊗∆⊗A)(Φ).

Relation (43) implies that M ⊗ k ⊆ (M ⊗A)coA. Furthermore, combined with (42), it shows that
if m⊗ a ∈ (M ⊗A)coA, then

m⊗ a = τ(m⊗ a) = m⊗ ε(a) = mε(a)⊗ 1.

Hence M ⊗ k ⊇ (M ⊗A)coA. �

Now we are ready to prove that the quotient M that occurs in the Structure Theorem 3.9 is
isomorphic (as left A-module) to M coA.

Proposition 3.14. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S and consider
M coA as a left A-module with A-action given by (23). Then the linear map τ̃ , as defined in (28),
induces a map

τ̃ : M

MA+ →M coA

that we denote by τ̃ as well. This τ̃ comes out to be an isomorphism of left A-modules with inverse
given by

σ : M coA → M

MA+ : m 7→ m.

Proof. Let us begin by showing that the induced map τ̃ is bijective. Indeed, for all m ∈M and for
all n ∈M coA

σ (τ̃ (m)) = τ̃(m) = τ(m) (27)= m and τ̃(σ(n)) = τ̃(n) = τ(n) (41)= n.
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Next, consider the left A-action on M coA given by (23): a I m := τ(a · m) for all a ∈ A and
m ∈ M coA. Actually, it is an action. Indeed, by the definition of M coA = τ(M) and in view of
(24d) of Proposition 3.4, in order to prove it it’s enough to verify that 1 I m = m, but

1 I m = τ(1 ·m) = τ(m) (41)= m

for all m ∈M coA. Moreover, (24c) of Proposition 3.4 guarantees that τ is A-linear with respect to
this left A-action and hence τ̃ , too. �

As a corollary, we get the following analogue of [HN, Theorem 3.8].

Corollary 3.15. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. Let M be a
quasi-Hopf A-bimodule. Consider N := M coA as a left A-module with A-action I as in (23), and
•N◦ ⊗ •A•• as a quasi-Hopf A-bimodule with structures indicated by the dots. Then:

ν : N ⊗A −→ M
n⊗ a 7−→ n · a

provides an isomorphism of quasi-Hopf A-bimodules with inverse given by ν−1(m) = τ(m0)⊗m1.

Proof. In view of Proposition 3.14, η−1
M ◦ (σ ⊗A) is an isomorphism and(

η−1
M ◦ (σ ⊗A)

)
(n⊗ a) (16)= n · a

for all n ∈M coA and a ∈ A. The inverse is given for all m ∈M by

((τ̃ ⊗A) ◦ ηM )(m) = τ̃(m0)⊗m1 = τ(m0)⊗m1.

�

3.3. Uniqueness and gauge transformation. Let us conclude this section with two important
results about the preantipode. First of all its uniqueness and, secondly, the fact that quasi-bialgebras
with preantipode form a class of quasi-bialgebras closed under gauge transformation.

Theorem 3.16. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. If there exists a preantipode S for A,
then it is unique.

Proof. Assume that S and T are both preantipodes for A. Then we know that the adjunction
(F,G, η, ε) defined in Theorem 2.4 is an equivalence of categories and that the unit η is a natural
isomorphism. Furthermore, in view of (40), we can express explicitly η̂−1

A as a function of S on the
one side:

η̂−1
A (a⊗ b⊗ c) = aS(φ1b)φ2c1 ⊗ φ3c2

for all a, b, c ∈ A, and as a function of T on the other side:

η̂−1
A (a⊗ b⊗ c) = aT (φ1b)φ2c1 ⊗ φ3c2

for all a, b, c ∈ A. In particular, by uniqueness of the inverse, for a = c = 1 we have that:

S(φ1b)φ2 ⊗ φ3 = T (φ1b)φ2 ⊗ φ3

for all b ∈ A. If we apply A⊗ ε on both sides of this relation and we simplify in view of

(A⊗A⊗ ε)(Φ−1) (2)= 1⊗ 1,

then we find that S(b) = T (b) for all b ∈ A, as we claimed. �

Proposition 3.17. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode and F ∈ A⊗A
be a gauge transformation on A. Define, for a ∈ A,

(44) SF (a) := F 1S(f1aF 2)f2.

Then (AF ,m, u,∆F , ε,ΦF , SF ) is a quasi-bialgebra with preantipode.

Proof. One easily checks that SF satisfies (17), (18) and (19) of Definition 3.2. �



14 PAOLO SARACCO

4. Quasi-Hopf algebras and some (new) classical results

Our aim here is to prove that the Structure Theorem is in accordance with the classical results.
This is why we open a digression on quasi-Hopf algebras.

Definition 4.1. ([Dr, p. 1424]) A quasi-bialgebra (A,m, u,∆, ε,Φ) is a quasi-Hopf algebra if
there exist elements α and β in A and an antimultiplicative endomorphism s of A such that:

s(a1)αa2 = ε(a)α,(45)
a1βs(a2) = ε(a)β,(46)
Φ1βs(Φ2)αΦ3 = 1,(47)
s(φ1)αφ2βs(φ3) = 1,(48)

where, as usual, Φ = Φ1 ⊗ Φ2 ⊗ Φ3 and Φ−1 = φ1 ⊗ φ2 ⊗ φ3. The triple (s, α, β) is usually
called antipode [HN] or quasi-antipode [Sc1]. We will use the second terminology, in order to
distinguish this one from the ordinary antipode of a Hopf algebra.

Remark 4.2. ([Dr, Proposition 1.1]) A quasi-antipode for a quasi-Hopf algebra is not unique, but
just uniquely determined up to an invertible element. This means that if (s, α, β) and (s′, α′, β′)
are quasi-antipodes for (H,m, u,∆, ε,Φ) then there exists an invertible element u ∈ H such that
for all h ∈ H

(49) s′(h) = us(h)u−1, α′ = uα and β′ = βu−1.

Theorem 4.3. Let (A,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra. The map S : A→ A defined
by S(a) = βs(a)α for all a ∈ A is a preantipode for A.

Proof. We just need to check that the axioms are satisfied, whence we verify (17), (18) and (19) in
the given order:

b1S(ab2) = b1βs(ab2)α = b1βs(b2)s(a)α (46)= ε(b)βs(a)α = ε(b)S(a),

S(a1b)a2 = βs(b)s(a1)αa2
(45)= βs(b)αε(a) = S(b)ε(a),

Φ1S(Φ2)Φ3 = Φ1βs(Φ2)αΦ3 (47)= 1.

�

Corollary 4.4. Let (A,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra. Then the adjunction
(F,G, η, ε) of Theorem 2.4 is an equivalence of categories.

By the foregoing we have that every quasi-Hopf algebra is a quasi-bialgebra with preantipode. It
is more than likely that the converse does not hold, as we conjecture here, even if we are not able
to provide an example at the moment.

Conjecture 4.5. There is a quasi-bialgebra with preantipode which is not a quasi-Hopf algebra.

Our conjecture is supported by the fact that there exists an example of a dual quasi-bialgebra with
preantipode that is not a dual quasi-Hopf algebra. The interested reader may refer to [Sc3, Example
4.5.1], where Schauenburg exhibits a dual quasi-bialgebra H that does not admit a quasi-antipode
but such that the category HMf of finite-dimensional left H-comodules is left and right rigid. By
the left-handed version of [Sc1, Theorem 2.6], this is equivalent to say that the adjunction (F,G) of
[AP1, Theorem 2.7] is an equivalence of categories and hence, by [AP1, Theorem 3.9], H admits a
preantipode (cf. also [AP1, Remark 3.12] and [AP2, Remark 2.17]).

Remark 4.6. An example of a quasi-bialgebra A with preantipode but without quasi-antipode has
to be a noncommutative quasi-bialgebra (cf. Corollary 4.14) with infinite-dimensional underlying
vector space (cf. Theorem 4.15) such that there is no gauge transformation F for which A is the
twist of a quasi-Hopf algebra via F (cf. [Dr, Remark 5, p. 1425]).
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Remark 4.7. Let (H,m, u,∆, ε, s) be an ordinary Hopf algebra. Set Φ = 1⊗ 1⊗ 1 and α = β = 1.
Thus (H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with quasi-antipode (s, 1, 1). By Theorem
4.3, s is a preantipode. Furthermore, observe that if n ∈M is such that τ(n) = n, then

ρM (n) = n0 ⊗ n1
(41)= τ(φ1 · n) · φ2 ⊗ φ3 = τ(n)⊗ 1 = n⊗ 1,

so that the ordinary definition of coinvariants and Definition 3.10 coincides. As a consequence,
we can apply Corollary 3.15 to recover the ordinary Structure Theorem for Hopf modules ([Sw,
Theorem 4.1.1]). Indeed, for every Hopf module M , M ∼= M coH ⊗H via the isomorphisms:

ν : M coH ⊗H −→M : m⊗ h 7−→ m · h,
ν−1 : M −→M coH ⊗H : m 7−→ τ(m0)⊗m1.

Moreover, τ(m) = Φ1 ·m0 · s(Φ2m1)Φ3 = m0 · s(m1) implies that ν−1(m) = m0 · s(m1)⊗m2.

Remark 4.8. Let (H,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra with quasi-antipode (s, α, β)
and assume that s is bijective. By Theorem 4.3, S(·) = βs(·)α is a preantipode. Thus the map τ
has the form:

τ(m) = Φ1 ·m0 · βs(Φ2m1)αΦ3 = Φ1 ·m0 · βs(s−1(αΦ3)Φ2m1).
This τ is exactly the projection E of Hausser and Nill and M coH , obtained as image of τ , is the
same M coH that appears in [HN, Definition 3.5] and [HN, Corollary 3.9]. Moreover, the A-action
I coincides with the action they indicate with . and Corollary 3.15 is precisely [HN, Theorem 3.8].

This last remark and the previous one show how the theory we developed here latch on to the
traditional results about Hopf and quasi-Hopf bimodules.

Remark 4.9. In [BC] a different space of coinvariant elements is introduced for a quasi-Hopf
H-bimodule over a quasi-Hopf algebra (H,m, u,∆, ε,Φ, s, α, β).

Define T ⊗ U ⊗ V ⊗W := (1⊗ Φ−1) · (H ⊗H ⊗∆)(Φ) (summation understood) and the right
A⊗A⊗A⊗A-action on A⊗A given on generators by:

(a⊗ b) / (c⊗ d⊗ e⊗ f) := s(d)ae⊗ s(c)bf
and extended by linearity (cf. [Dr, proof of Lemma 1, p. 1427]). Next, set

γ = γ1 ⊗ γ2 := (α⊗ α) / (T ⊗ U ⊗ V ⊗W ) = s(U)αV ⊗ s(T )αW
and

f = f1 ⊗ f2 := (s⊗ s)(∆op(φ1)) · γ ·∆(φ2βs(φ3))
= (α⊗ α) / ((1⊗ Φ−1) · (H ⊗H ⊗∆)(Φ) · (∆⊗∆)(pR)),

where pR = p1 ⊗ p2 := φ1 ⊗ φ2βs(φ3).
Then this other space of coinvariants is defined to be the set:

M coH :=
{
n ∈M | ρ(n) = φ1 · n · s(φ3

2Φ3)f1 ⊗ φ2Φ1βs(φ3
1Φ2)f2} .

Furthermore, a new map
E : M −→M : m 7−→ m0 · βs(m1)

is defined, that should be the analogue of the projection E of [HN] and it is connected with τ via:
E(m) = τ(p1 ·m) · p2 and τ(m) = Φ1 · E(m) · s(Φ2)αΦ3

for all m ∈M . Bulacu and Caenepeel proved that (cf. [BC, Lemma 3.6])

M coH =
{
n ∈M : E(n) = n

}
,

that M coH is an H-submodule of M with respect to the left adjoint H-action h .m := h1 ·m · s(h2)
and that M coH and M coH are isomorphic as left H-modules via τ (caveat: not τ̃) and E, i.e.

E : M coH →M coH and τ : M coH →M coH

are inverses of each others.
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Through the definition of this M coH , they were able to prove another structure theorem for
quasi-Hopf bimodules. Nominally (cf. [BC, Theorem 3.7]) every quasi-Hopf H-bimodule M is
isomorphic to M coH ⊗H via

ν : M coH ⊗H →M : n⊗ h 7→ Φ1 · n · s(Φ2)αΦ3h,

ν−1 : M →M coH ⊗H : m 7→ E(m0)⊗m1.

The proof they gave relies broadly on the Structure Theorem of Hausser and Nill ([HN, Theorem
3.8]). Nevertheless, they claimed in [BC, Remark 3.8] that their result has a direct proof that
doesn’t involve the bijectivity of the quasi-antipode and Hausser-Nill Structure Theorem, but also
that that proof is long and technical. Here we found a bijectivity-free proof of their theorem, that
has the advantage of not being long nor technical. Indeed, in Remark 4.8 the bijectivity of s is
definitely unnecessary and we have the following commutative diagram:

M ⊗H
η−1

M //

τ̃⊗H
��

M

M coH ⊗H
E⊗H

// M coH ⊗H

ν

OO

for any quasi-Hopf bimodule M . Unfortunately, it is not clear to us if M coH has an analogue for
quasi-bialgebras with preantipode.

The following lemma comes from [Ma, Example 2.4.1] and it is retrieved here because it allows
us to show that a preantipode is neither antimultiplicative nor anticomultiplicative in general.

Lemma 4.10. Let (H,m, u,∆, ε, s) be an ordinary Hopf algebra. Let Φ ∈ H⊗H⊗H be an invertible
element that satisfies (1), (2) and (3). Assume that c := Φ1s(Φ2)Φ3 ∈ H is invertible with inverse
β and set α = 1. Then (H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra and β ∈ Z(H) where Z(H)
is the center of H. Furthermore, (H,m, u,∆, ε,Φ, S) is a quasi-bialgebra with preantipode defined
by S(h) = βs(h), for each h ∈ H.

Proof. Obviously, if Φ satisfies (1), (2) and (3), thus (H,m, u,∆, ε,Φ) is a quasi-bialgebra. Then
let us show that c ∈ Z(H). Apply m ◦ (m⊗H) ◦ (H ⊗ s⊗H) on both sides of (3) to obtain that
(50) h1Φ1s(Φ2)s(h2)h3Φ3 = Φ1h1s(h2)s(Φ2)Φ3h3.

Since we know that
(51) s(h1)h2 = ε(h)1H = h1s(h2)
for all h ∈ H by definition of antipode, we can simplify (50) to conclude that hc = ch for all h ∈ H.
Thus β ∈ Z(H). Moreover, consider (1) in the form:

(A⊗A⊗∆)(Φ) · (∆⊗A⊗A)(Ψ) · (Φ−1 ⊗ 1) = (1⊗ Φ) · (A⊗∆⊗A)(Ψ)
where we set Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 = Φ, and apply m ◦ (m⊗m) ◦ (s⊗A⊗ s⊗A) on both sides:
s(φ1)s((Ψ1)1)s(Φ1)Φ2(Ψ1)2φ

2s(φ3)s(Ψ2)s((Φ3)1)(Φ3)2Ψ3 = s(Ψ1)Φ1(Ψ2)1s((Ψ2)2)s(Φ2)Φ3Ψ3.

Simplifying once again in view of (51) and (2) we find that

(52) s(φ1)φ2s(φ3) = s(φ1)s((Ψ1)1)(Ψ1)2φ
2s(φ3)s(Ψ2)Ψ3 (51)= Φ1s(Φ2)Φ3 = c.

These computations allow us to verify easily that the axioms of a quasi-Hopf algebra are satisfied:
s(a1)αa2 = s(a1)a2 = ε(a)1 = ε(a)α,

a1βs(a2) = a1s(a2)β = ε(a)β,
Φ1βs(Φ2)αΦ3 = βΦ1s(Φ2)Φ3 = βc = 1,

s(φ1)αφ2βs(φ3) = βs(φ1)φ2s(φ3) (52)= βc = 1.
�
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Remark 4.11. As we said before, the previous example allows us to observe that S is not, in
general, an antiendomorphism of algebras, since

S(ab) = βs(ab) (∗)= βs(b)s(a) = βs(b)cβs(a) = cS(b)S(a),
nor an antiendomorphism of coalgebras, since

∆(S(a)) = ∆(β) ·∆(s(a)) (∗)= ∆(β) · (s(a2)⊗ s(a1)) = ∆(β) · (c⊗ c) · (S(a2)⊗ S(a1)),
where in (∗) we used the fact that the antipode is an antiendomorphism of bialgebras. Actually, in
this particular situation, it depends on β and c.

4.1. The other way around: from preantipodes to quasi-antipodes. Even though we
claimed that a quasi-bialgebra with preantipode is not, in general, a quasi-Hopf algebra, there
exist partial converses to Theorem 4.3. The subsequent proposition will retrieve an easy one, but
before we need a technical lemma. Moreover, we are going to conclude this last section with some
considerations concerning a result, due to Schauenburg, that proves that in the finite-dimensional
case these two concepts are equivalent, and with some examples in which this equivalence is explicit.

Lemma 4.12. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S. Then:
(53) S(φ1)φ2S(φ3) = S(1).

Proof. In what follows we are going to indicate with Ψ−1 = ψ1 ⊗ ψ2 ⊗ ψ3 another copy of Φ−1. In
view of relation (1), we have the following identity:

(∆⊗A⊗A)(Φ−1) · (A⊗A⊗∆)(Ψ−1) · (1⊗ Φ) = (Φ−1 ⊗ 1) · (A⊗∆⊗A)(Ψ−1),
i.e.

(φ1)1ψ
1 ⊗ (φ1)2ψ

2Φ1 ⊗ φ2(ψ3)1Φ2 ⊗ φ3(ψ3)2Φ3 = φ1ψ1 ⊗ φ2(ψ2)1 ⊗ φ3(ψ2)2 ⊗ ψ3.

If we apply S ⊗A⊗ S ⊗A on both sides and then we multiply we get that
S((φ1)1ψ

1)(φ1)2ψ
2Φ1S(φ2(ψ3)1Φ2)φ3(ψ3)2Φ3 = S(φ1ψ1)φ2(ψ2)1S(φ3(ψ2)2)ψ3

and we can simplify it in view of (17), (18) and (2) to obtain:
S(ψ1)ψ2Φ1S((ψ3)1Φ2)(ψ3)2Φ3 = S(φ1)φ2S(φ3).

Therefore, simplifying this further in view of (18), (19) and (2) again, we can conclude that
S(1) = S(φ1)φ2S(φ3), as we claimed. �

Proposition 4.13. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. If Φ is in the
center of A⊗A⊗A, then (A,m, u,∆, ε, s) is an ordinary Hopf algebra where
(54) s(a) = Φ1S(aΦ2)Φ3,

for all a ∈ A. Furthermore (A,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with α = 1 and β = S(1).
Moreover, for all a ∈ A one has
(55) S(a) = βs(a).

Proof. In view of (4) and (5), we know that ε is a counit for ∆. Moreover, commutativity of Φ
ensures that ∆ is coassociative. Indeed, by (3):

(∆⊗A)(∆(a)) = Φ−1((A⊗∆)(∆(a)))Φ = ((A⊗∆)(∆(a)))Φ−1Φ = (A⊗∆)(∆(a))
for every a ∈ A, so that (A,m, u,∆, ε) is an ordinary bialgebra. Let us show that s is an antipode:

(s ∗ Id)(a) = s(a1)a2 = Φ1S(a1Φ2)Φ3a2
(∗)= Φ1S(a1Φ2)a2Φ3 (18)= Φ1S(Φ2)Φ3 ε(a) (19)= (u ◦ ε)(a)

where in (∗) we used that Φ is in the center in the following form:
(56) (Φ1 ⊗ a1 ⊗ Φ2 ⊗ Φ3a2) = (Φ1 ⊗ a1 ⊗ Φ2 ⊗ a2Φ3).
Analogously:

(Id ∗ s)(a) = a1s(a2) = a1Φ1S(a2Φ2)Φ3 (∗∗)= Φ1a1S(Φ2a2)Φ3 (17)= Φ1S(Φ2)Φ3 ε(a) (19)= (u ◦ ε)(a)
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where (∗∗) follows from (∆(a)⊗ 1)Φ = Φ(∆(a)⊗ 1). Hence (A,m, u,∆, ε, s) is an ordinary Hopf
algebra. Moreover:

S(a) = S(a1ε(a2)) = S(a1)ε(a2) (◦)= S(a1)a2s(a3) (18)= S(1)ε(a1)s(a2) = βs(a)
where in (◦) we used that Id ∗ s = u ◦ ε and coassociativity of ∆ to renumber. Now, let us show
that (A,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra:

• We know that s is an antiendomorphism of A, since it is an ordinary antipode.
• Since α = 1, we have s(a1)αa2 = s(a1)a2 = ε(a)1 = ε(a)α.
• In view of (55) we get that a1βs(a2) = a1S(a2) (18)= ε(a)S(1) = ε(a)β.
• By (55) again we have that Φ1βs(Φ2)αΦ3 = Φ1S(Φ2)Φ3 = 1.
• In order to prove (48), first apply m ◦ (m⊗A) ◦ (S ⊗A⊗ S) on both sides of

(∆⊗A)(∆(a))Φ−1 (3)= Φ−1(A⊗∆)(∆(a))
and then simplify in view of (17) and (18) to get that

(57) S(φ1)φ2S(aφ3) = S(φ1a)φ2S(φ3)
for all a ∈ A. Next, recalling that α = 1 and that S(a) = βs(a) for all a ∈ A:

s(φ1)αφ2βs(φ3) = s(φ1)φ2S(φ3) (54)= Φ1S(φ1Φ2)Φ3φ2S(φ3) (N)= Φ1S(φ1Φ2)φ2S(φ3)Φ3

(57)= Φ1S(φ1)φ2S(Φ2φ3)Φ3 (4)= Φ1S(φ1)φ2S(φ3)s(Φ2)Φ3

(53)= Φ1S(1)s(Φ2)Φ3 (55)= Φ1S(Φ2)Φ3 (19)= 1
where in (4) we used: S(ab) = βs(ab) = βs(b)s(a) = S(b)s(a) and in (N) we used (56) again, with
a = φ2S(φ3). �

Corollary 4.14. (Dual to [AP2, Theorem 2.16]) Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with
preantipode. If A is commutative, then all the conclusions of Proposition 4.13 hold for A. In
particular, it is an ordinary Hopf algebra.

Let us recall now the less trivial result we referred to at the very beginning of this section.
This theorem is due to Schauenburg and it states that, at least in the finite-dimensional case, the
existence of a preantipode is equivalent to the existence of a quasi-antipode.

Theorem 4.15. ([Sc1, Theorem 3.1]) Let (A,m, u,∆, ε,Φ) be a finite-dimensional quasi-bialgebra.
The following are equivalent:

(1) A is a quasi-Hopf algebra,
(2) the adjunction (F,G, η, ε) is a category equivalence.

The interested reader may find the proof of this equivalence in [Sc1], here we fix our attention on
the important steps.

Unfortunately, this is a non-constructive result. From the invertibility of the component of the
unit η associated to the quasi-Hopf bimodules A⊗̂A as defined in (30), and from the finiteness of
A, one deduces the existence of an isomorphism of left A-modules γ̃ : A⊗A→ A by applying the
Krull-Schmidt Theorem.

With this γ̃, on the one hand one defines γ : A→ A by γ(a) = γ̃(1⊗ a) for all a ∈ A. On the
other hand, one equips A with a left A⊗A-module structure given by
(58) (x⊗ y) . a := γ̃((x⊗ y) · γ̃−1(a))
for all x, y, a ∈ A. The action of the right tensor factor comes out to be of the form
(59) (1⊗ x) . a = as(x)
for all a, x ∈ A, and for a certain antimultiplicative endomorphism s of A. Afterwards, one defines
the isomorphism of quasi-Hopf bimodules
(60) θ := (γ̃ ⊗A) ◦ η̂ : A⊗A −→ A⊗A
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and one considers the elements β := γ(1) and α := (A⊗ ε)θ−1(1⊗ 1). The conclusion of the proof
consists in verifying that (s, α, β) is a quasi-antipode for A.

As we said, this is a non-constructive proof, because of the role played by the Krull-Schmidt
Theorem. However, there are two interesting relations that one can derive from this proof a
posteriori:
(61) γ̃(a⊗ b) = aγ(b) = aβs(b) and a1γ(a2) = ε(a)γ(1).
Let us compare these with the following ones:

ξ(a⊗ b) = aS(b) = aβs(b)α and a1S(a2) = ε(a)S(1)
(cf. (38) and (17)). Since they look like the same, we hoped that it was possible to obtain a
constructive version by means of the preantipode. Unfortunately again, ξ is not invertible in general,
not even in the finite-dimensional case. Hence, it cannot substitute γ̃ in Schauenburg’s proof.
Nevertheless, the following result holds.

Corollary 4.16. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. If ξ as defined in
(38) is bijective, then A is a quasi-Hopf algebra with quasi-antipode given by α = 1, β = S(1) and,
for all a ∈ A,

s(a) = ξ
(
(1⊗ a) · ξ−1(1)

)
= 11S(a12)

where 11 ⊗ 12 = ξ−1(1).

Proof. In proving Schauenburg’s result 4.15, the finiteness condition on A is used just to find an
isomorphism γ̃ : A⊗A→ A. By hypothesis, we already have such an isomorphism:

ξ : A⊗A −→ A : a⊗ b 7−→ aS(b).
Hence, let us substitute this ξ to γ̃ into Schauenburg’s proof. We get that γ = S and β = S(1).
Moreover,

s(a) = (1⊗ a) . 1 = ξ
(
(1⊗ a) · ξ−1(1)

)
= ξ

(
11 ⊗ a12

)
= 11S(a12)

and, recalling (60),

α = (A⊗ ε)
(
θ−1(1⊗ 1)

)
= (A⊗ ε)

(
η̂−1
A (ξ−1(1)⊗ 1)

) (33)= ξ
(
ξ−1(1)

)
= 1

as claimed. Now, one easily checks that the triple (s, α, β) is a quasi-antipode. Indeed, recalling
that ξ = γ̃ and S = γ, we find out that the following relation holds for all a, b ∈ A in this context:

(62) aβs(b) (61)= ξ(a⊗ b) = aS(b).
Consequently, we can take advantage of this to verify that

s(a1)αa2 = s(a1)a2 = 11S(a112)a2
(18)= 11S(12) ε(a) (62)= ξ(11 ⊗ 12) ε(a) = ξ(ξ−1(1)) ε(a) = ε(a)α

and that
a1βs(a2) (62)= a1S(a2) (17)= ε(a)S(1) = ε(a)β.

Therefore, (45) and (46) are valid. Moreover, (47) holds because:

Φ1βs(Φ2)αΦ3 (62)= Φ1S(Φ2)Φ3 (19)= 1.
Finally, consider θ = (ξ ⊗A) ◦ η̂ again and the following relations:

θ−1(1⊗ 1) = η̂−1(ξ−1(1)⊗ 1) (40)= 11S(φ112)φ2 ⊗ φ3 = s(φ1)φ2 ⊗ φ3,(63)

(A⊗ ε) ◦ θ = (A⊗ ε) ◦ (ξ ⊗A) ◦ η̂ = (ξ ⊗ k) ◦ (A⊗A⊗ ε) ◦ η̂ (30)= ξ ◦ π.(64)

where π : A⊗A→ A⊗A is just the canonical projection. These make the final check easier, since

s(φ1)αφ2βs(φ3) (61)= ξ(s(φ1)φ2 ⊗ φ3) (63)= ξ(θ−1(1⊗ 1)) (64)= ((A⊗ ε) ◦ θ) (θ−1(1⊗ 1)) = 1
and so even (48) holds. �
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Corollary 4.16 retrieves what it seems to be a limited family of quasi-bialgebras with preantipode
for which it is possible to recover an explicit relation with the quasi-Hopf algebra structure (as
the one we will study in Example 4.19). Let us show briefly that it is actually a large class of
quasi-Hopf algebras.

Let (H,m, u,∆, ε,Φ, s, α, β) be a finite-dimensional quasi-Hopf algebra. Then we know, by
Theorem 4.3, that H admits a preantipode S(·) := βs(·)α and so the Structure Theorem holds
for the quasi-Hopf H-bimodules. Applying Schauenburg’s result 4.15 we get, a posteriori, a
quasi-antipode (s′, α′, β′) for H such that the morphism γ̃(x⊗ y) = xβ′s′(y) is invertible. By [Dr,
Proposition 1.1, p. 1425], a quasi-antipode is uniquely determined up to an invertible element.
Hence, there exists an u ∈ H invertible such that (s, α, β) and (s′, α′, β′) are connected via u. In
particular, if α is invertible, then also α′ is invertible. By the way, note that s′, α′ and β′ are not
known to us, since they are obtained by γ̃.

Next, assume that α is invertible in H. Hence

(65) ξ : H ⊗H −→ H : x⊗ y 7−→ xS(y) = xβ′s′(y)α′ = γ̃(x⊗ y)α′

is invertible with ‘explicit’ inverse given by

(66) ξ−1(h) := γ̃−1 (h(α′)−1) = γ̃−1 (hα−1u−1) .
Thus we can apply Corollary 4.16. This implies that, if α is invertible, it is always possible to recover
explicitly the quasi-antipode from the preantipode, at least theoretically. It is just a question of
finding an explicit inverse to the map ξ, that we know to be invertible.

Remark 4.17. By [Dr, Proposition 1.1, p. 1425], if (s, α, β) and (s′, α′, β′) are two quasi-antipodes
for a quasi-bialgebra (H,m, u,∆, ε,Φ), then there exists a unique invertible element v ∈ H such
that:

s′(a) = vs(a)v−1, α′ = vα, β′ = βv−1.

If (H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with α invertible, then Corollary 4.16 states that(
ξ((1⊗ ∗) · ξ−1(1)), 1, βs(1)α

)
is a quasi-antipode for (H,m, u,∆, ε,Φ). Consequently we should

have that, under these hypothesis, v = α−1. In fact:

vα = α′ = 1 = α−1α, βv−1 = β′ = βs(1)α = βα

and finally, for all h ∈ H

s′(h) = ξ
(
(1⊗ h) · ξ−1 (1)

) (66)= ξ
(
(1⊗ h) · γ̃−1 (α−1v−1)) (65)= γ̃

(
(1⊗ h) · γ̃−1 (α−1v−1)) vα

(58)= ((1⊗ h) . α−1v−1)vα (59)= α−1v−1s′(h)vα = α−1s(h)α.

Observe that in this framework fall all finite-dimensional Hopf algebras, the quasi-Hopf algebras
H(2), H±(8) and H(32) of [EG], the twisted quantum doubles Dω(G) introduced by Dijkgraaf,
Pasquier and Roche (cf. [DPR], [Ka, Section XV.5]), the basic quasi-Hopf algebras A(q) of [Ge].

In order to find interesting examples of the relation that intervenes between quasi-antipodes and
preantipodes, one should look for a quasi-Hopf algebra that is finite-dimensional and such that α is
not invertible. Unfortunately, it will not be enough to transform a quasi-Hopf algebra with trivial
α (let us call α trivial when it is invertible) via a gauge transformation F , as the following remark
shows.

Remark 4.18. Let (H,m, u,∆, ε,Φ, s, α, β) be a (finite-dimensional) quasi-Hopf algebra with α

invertible. We have the preantipode S(·) = βs(·)α and the quasi-antipode (ŝ, α̂, β̂) obtained from S
by Corollary 4.16. Let F ∈ H ⊗H be a gauge transformation on H and consider the quasi-antipode
(s, αF , βF ) as defined in [Dr, Remark 5, p. 1425]. In general, αF = s(f1)αf2 needs not to be
invertible. Nevertheless, consider the preantipode SF (·) = βF s(·)αF and denote by E = E1 ⊗ E2

and G = G1 ⊗G2 other two copies of F . We have that, for all h ∈ H:

ŝ(h) = 11S(h12) = 11 (SF )F−1 (h12) (44)= 11f1SF (F 1h12f2)F 2,

α̂F = ŝ(g1)α̂g2 = 11f1SF (F 1g112f2)F 2g2 = 11f1SF (12f2),
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β̂F = G1 β̂ ŝ(G2) = G1S(1)ŝ(G2) = G1e1SF (E1e2)E211f1SF (F 1G212f2)F 2,

and this quasi-antipode (ŝ, α̂F , β̂F ) on HF is written ‘explicitly’ using just F , SF and ξ−1(1).
Furthermore, it can be proved that it is connected to (s, αF , βF ) via the invertible element α.

Let us conclude with an explicit example.

Example 4.19. ([EG, Preliminaries 2.3]) Let C2 = 〈g〉 be the cyclic group of order 2 with generator
g and let k be a field of characteristic different from 2. Consider the group bialgebra H(2) := kC2.
Observe that H(2) is a two dimensional commutative algebra. Now, let us set p := 1

2 (1− g) and let
us introduce the non trivial reassociator

Φ := (1⊗ 1⊗ 1)− 2(p⊗ p⊗ p).
In this way H(2) becomes a quasi-Hopf algebra with quasi-antipode given by β = 1, α = g and
s = IdH(2). Let us consider the associated preantipode:

S : H(2) −→ H(2) : x 7−→ xg.

As above consider the map ξ of (38):
ξ : H(2)⊗H(2) −→ H(2) : x⊗ y 7−→ xyg.

It is easy to see that it is bijective and we can exhibit an explicit inverse for ξ. Indeed, consider the
function

ψ : H(2) −→ H(2)⊗H(2) : x 7−→ x⊗ g.
By composing with ξ we find:

ξ (ψ(x)) = ξ (x⊗ g) = xgg = x

and since we know that ξ is invertible, we have that ψ = ξ−1. Therefore, we can construct a
quasi-antipode for H(2) by virtue of Corollary 4.16. Since

11 ⊗ 12 = ξ−1(1) = ψ(1) = 1⊗ g,
what we find is α = 1, β = S(1) = g and s(x) = S(xg) = xgg = x for all x ∈ H(2). Finally, by
recalling that a quasi-antipode in uniquely determined only up to an invertible element and that g
is trivially invertible, it is easy to see that g itself is the invertible element that we need and thus
we recovered the structure given previously.

Remark 4.20. Observe that, once we have proven that H(2) is a quasi-bialgebra with preantipode
S, we may come to the same conclusions of Example 4.19 by simply applying Corollary 4.14.
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