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Abstract We introduce a new parallel pattern derived from a specific ap-
plication domain and show how it turns out to have application beyond its
domain of origin.

The pool evolution pattern models the parallel evolution of a population
subject to mutations and evolving in such a way that a given fitness function is
optimized. The pattern has been demonstrated to be suitable for capturing and
modeling the parallel patterns underpinning various evolutionary algorithms,
as well as other parallel patterns typical of symbolic computation.

In this paper we introduce the pattern, we discuss its implementation on
modern multi/many core architectures and finally present experimental results
obtained with FastFlow and Erlang implementations to assess its feasibility and
scalability.

Keywords Parallel design patterns · algorithmic skeletons · multi/many core
architectures · evolutionary computing · FastFlow

1 Introduction

Design patterns were originally proposed as a tool to support the development
of sequential object oriented software [12] and have proven to be a very ef-
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fective programming methodology, greatly improving the time-to-deploy and
maintainability of complex applications.

Later, the pattern concept migrated to the parallel programming world
where it has been seen to be a realistic instrument with which to attack the
programmability issue of modern parallel architectures [4]. According to Matt-
son, Sanders and Massingill [17], . . . a design pattern describes a good solution
to a recurring problem in a particular context. The pattern follows a prescribed
format that includes the pattern name, a description of the context, the forces
(goals and constraints), and the solution. In their book, the authors iden-
tify a number of patterns, organized in four design spaces: the “finding con-
currency”, “algorithm structure”, “support structure” and “implementation
mechanisms” spaces. Each of the spaces includes several patterns aimed at
capturing and modelling parallelism exploitation features typical of the ab-
straction level represented in the design space. Proceeding from the top down,
the finding concurrency space hosts patterns identifying the available concur-
rency; the algorithm structure space hosts patterns modelling different kinds of
algorithm; and the support structure and implementation mechanisms spaces
provide patterns modeling the typical implementation mechanisms (high and
low level) used to construct parallel computations.

Design patterns, as well as parallel design patterns, are described by suit-
able sections of text, and programmers wishing to use the patterns to imple-
ment their applications can follow the pattern recipe but they must write all
the code needed to implement the patterns on their own and, very often, from
scratch.

In the ParaPhrase project [19], we devised a slightly different parallel ap-
plication development methodology. Parallel design patterns are used to define
the correct parallel structure of an application. Then, the implementation of
the “patterned” application uses a library of composable algorithmic skele-
tons, as suggested by M. Cole. Cole, in his “skeleton manifesto” [7], observes
how patterns may be used to abstract computation and interaction structures
in parallel applications: Skeletal programming proposes that such patterns be
abstracted and provided as a programmer’s toolkit, with specifications which
transcend architectural variations but implementations which recognize these
to enhance performance. Thus we use the algorithmic skeletons provided by
the FastFlow programming framework [3, 8, 11], and by the skel Erlang skele-
ton library [5,10], to implement, alone or in suitable composition, the parallel
patterns deemed appropriate by the application programmer.

The parallel design patterns identified by Mattson et al. are quite generic.
They include general patterns such as divide&conquer (algorithm space) and
master/slave (implementation structure space), to mention just two well-known
pattern examples. Parallel patterns identified by different authors [18] are also
generic/general purpose. Because of the widespread applicability of such gen-
eral patterns, it is worthwhile investing effort in developing efficient imple-
mentations for a range of languages/architectures. However, the application
programmer needs to know how to assemble them to realise an application. In
contrast, application programmers tend to identify as “patterns” computation
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structures very close to their application domain. For example, programmers
of evolutionary algorithms readily recognize as a pattern the (parallel) compu-
tation of the possible evolution of a gene population, that is the application of
some “evolution function” to all the genes of a given population. Numerical ap-
plication programmers, however, will recognize the same parallel computation
schema as a map pattern, that is, a pattern processing an input collection–a
vector or a matrix–by applying to each element of the collection xi the same
function f and returning the collection of the f(xi)s.

In this paper we introduce a new parallel pattern, the Pool Evolution Pat-
tern, which originated in a domain-specific context (evolutionary computing)
but has been demonstrated to be more general and useful in a number of dif-
ferent applications, both from the evolutionary computing and the symbolic
computing domains. Thus, in generality, it sits between patterns such as mas-
ter/slave, etc. which are general-purpose, and domain-specific patterns such as
the Orbit pattern (see Table 2) which have much narrower applicability. The
intent is to provide application programmers from the named domains with a
pattern which is somewhat general, yet is tuned to their way of thinking.

The main contribution of the paper can be summarized as follows:

– Definition of a new parallel pattern–pool evolution–capturing the iterative
evolution of a population. The pattern logically belongs to the “algorithm
structure” design space, according to the layering of Mattson et al.

– Identification of a list of applications, from different domains, whose par-
allel behaviour may be perfectly modelled via the new pattern.

– Implementation of the pattern as a new algorithmic skeleton, such that
the application programmer may implement a pool evolution patterned
application by just providing the functional parameters (business logic code
of the evolutionary algorithm) to a pool evolution skeleton object. Both
FastFlow and Erlang implementations have been developed.

– Experimental results assessing the scalability and efficiency of both the
FastFlow and Erlang skeletons implementing the new parallel pattern.

The remainder of this paper is organized as follows: Section 2 introduces
the new pattern and lists different applications whose parallel structure may
be suitably modeled using the pattern. Section 3 outlines possible implementa-
tion strategies for an algorithmic skeleton implementing the pattern and then
outlines the FastFlow and Erlang skeleton implementations. Section 4 presents
experimental validation of the FastFlow and Erlang implementations of the
new pattern. Finally, Section 5 outlines related work and Section 6 draws
conclusions.

2 Pool evolution pattern

In this section we first describe the new parallel pattern and then provide
different patterns, from the same or from other application domains, that may
be implemented as specialisations of the new pattern.
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Name Pool evolution pattern
Problem The pattern models the evolution of a population. In the pattern, a “candidate

selection” function (s) selects a subset of objects belonging to an unstructured
object pool (P ). The selected objects are processed by means of an “evolution”
function (e). The evolution function may produce any number of new/modified
objects out of the input one. The set of objects computed by the evolution function
on the selected object are filtered through a “filter” function (f) and eventually
inserted into the object pool. At any insertion/extraction into/from the object pool
a “termination” function (t) is evaluated on the object pool to determine whether
the evolution process should be stopped or continued for further iterations.
A pool evolution pattern therefore computes P as result of the following algorithm:

1: while not(t(P )) do
2: N = e(s(P ))
3: P = P ∪ f(N,P )
4: end while

Forces The selection function may be implemented in a data parallel way, by partitioning
the object pool and applying selection in parallel on the different partitions. The
evolution function step is clearly an embarrassingly parallel one, as is the filter
process. The termination process may be implemented as a reduce pattern, but
in some cases (e.g. when the “counting” termination function is used) it may be
implemented as a plain sequential process. Candidate partitioning in small blocks
may improve load balancing. Job stealing may be used to improve load balancing
in the last stage of the computation. Mapreduce implementation of the selection,
evolution and filtering stages may be considered to improve parallelism exploitation
when large populations are evolved.

Table 1 Pool evolution pattern

2.1 Pattern definition

By means of Table 1 we provide a concise pool evolution pattern definition,
in the style of Mattson et al. We deliberately omit the solution and example
sections, as pattern implementation will be discussed thoroughly in Section 3
and sample usage of the pattern will be discussed later in this section and in
Section 4. From an algorithmic skeleton perspective, the pool evolution pattern
may be described in terms of its functional (what it computes) semantics and
parallel (how the results are computed in parallel) semantics. The functional
semantics is that defined by the while loop in the Problem part of Table 1.
We now consider the parallel semantics in more detail.

In principle, the computation of a pool evolution pattern is an iterative
process. Iteration i builds on the results given by iteration i− 1 and so itera-
tion computations must be serialized. Also, each iteration is built of different
stages (selection, evolution, filtering) which should also be executed sequen-
tially, as each stage takes as input the output of the previous stage. However,
the different stages of the single iteration may be computed in parallel, as
suggested by Forces in Table 1. In particular:

– The selection process is usually based on some function selecting the “best”
individuals as candidates to be submitted to the evolution process. This
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Fig. 1 Alternative implementations (with multipopulation) of the pool evolution pattern:
single population (left) vs. multipopulation (right)

obviously makes the selection process a good candidate for application of
a mapreduce pattern1: first map the function estimating how good is an
individual, then filter (reduce) the better candidates.

– The evolution process is embarrassingly parallel: each individual (or group
of individuals, e.g. in a crossover) may be “evolved” independently of the
other selected individuals.

– The filtering process usually evaluates some fitness function on the evolved
individuals. Finally, the new individuals with the “best” fitness values are
selected to be kept in the next generation. In some cases they are added to
the current population, retaining in the population the original individuals
that led to the evolution of the new ones. More commonly, the new individ-
uals replace the ones originating the evolution. In either case, the filtering
process may be another candidate for application of a mapreduce pattern,
with the fitness function being applied in the map and the filtering being
applied in the reduce.

Assuming availability of the usual map and mapreduce patterns in the
implementation structure design space2, the complete iteration process may
be structured as follows:

pipe(mapreduce(fsel, ⊕max k), map(fevol),mapreduce(ffitness, ⊕maxk
))

ffitness being the function computing the fitness of an individual and ⊕maxk

the operator used to compute the “best” individual according to its fitness.
Fig. 1 (left) outlines the kind of computation performed, with circles repre-
senting individuals in the population transformed by the different map and
mapreduce phases. This raises the opportunity to group differently the com-
putations eventually leading to the new population by:

1 for simplicity we use the term “mapreduce” to denote the optimized composition of a
map and a reduce pattern; note this is different from the “Google mapreduce”, the latter
involving multiple, parallel reduce steps after the map phase, each relative to a different key

2 we assume here availability of the corresponding algorithmic skeletons
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1. splitting the population into disjoint groups G1, . . . , Gg;
2. within each group selecting individuals, evolving them, computing fitness

and filtering new individuals; and
3. putting back the selected individuals from the different groups into the

population and evaluating the termination condition;

as sketched in Fig. 1 (right). This makes sense from the pure parallelism ex-
ploitation viewpoint; however it also slightly changes the evolution process
semantics (single population vs. multiple population algorithms [2]), as the
reduce steps will probably lead to different results, given that the population
is split into groups.

In the definition of the pattern, this is not relevant, as the Solution text
only suggests possible solutions but it does not impose any parallel implemen-
tation schema. When moving to the algorithmic skeleton implementation of
the pattern, this possibility should be taken into account and the user (ap-
plication programmer) may be conveniently provided with a boolean skeleton
parameter enabling/disabling population decomposition. The boolean param-
eter will provide the application programmer with the possibility (and duty)
to evaluate the trade-off between the parallelism exploited and the kind of
evolutionary algorithm computed.

2.2 Pattern usage examples

Having defined the pool evolution pattern, we now describe a) more patterns
that may be implemented in terms of the pool evolution pattern, and b) ap-
plications from different domains that may be implemented using the pattern.
The goal is to assess whether the new pool evolution pattern is, in fact, a
more general pattern, not specifically bound to the particular domain where
it originated. If this is the case then it is of course desirable that efficient im-
plementations of the pattern can be obtained via specific (compositions of)
algorithmic skeletons as this broadens the reach of the pattern.

2.2.1 More patterns

Table 2 includes a number of patterns drawn from two distinct application
domains: evolutionary computing and symbolic computing. These patterns
may be “reduced” to the pool evolution pattern, that is, a pool evolution
pattern instance exists computing the same (parallel) computation captured
by each of these more specific patterns.

The orbit pattern comes from the symbolic computing community [14,22,
23]. It computes the transitive closure of a set through a set of generators.
From the pool evolution perspective, the selection function is the identity (all
the items in the current set are selected), the evolution function is a map
pattern over the generator set items (for each individual pi compute the set
gen1(pi), gen2(pi), . . . , geng(pi)) and finally the filter function checks that the
new individuals do not already belong to the population.
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Symbolic computing domain

Name Orbit
Problem The orbit pattern comes from the symbolic computing domain and models the

iterative construction of a set of items starting from an initial set (S) of items
using generator functions from a generator function set (G = {g1, . . . , gk}). At
each stage of the iterative process, the set of generators are applied to all the
elements in the current set. The resulting set of new items is then added to the
original set taking care to avoid duplicates. Therefore the orbit pattern computes
the transitive closure of a set according to a set of generator functions.

Evolutionary computing domain

Name Genetic algorithm pattern
Problem The genetic algorithm pattern describes an iterative behaviour in which, at each

iteration step, a set of items (the individuals belonging to a population) evolves.
The size of the population could change or could be statically defined. How the
items change depends on the genetic operator that the pattern will apply (muta-
tion and crossover, for instance), and is thus a matter of application specificity.

Name Global single population pattern
Problem The Global single population genetic pattern is a domain-specific instance of the

Genetic Algorithm pattern (see above) where the evolution is a process involving
the whole population in each generation. In fact, the population is seen as a single
entity over which individuals evolve on the basis of a set of genetic operators.
The population size tends to be statically defined, and so does not change as the
computation proceeds.
The result of the global single population genetic pattern may be defined in terms
of the algorithm computed by the pool evolution pattern algorithm.

Name Multiagent system pattern
Problem The multiagent system pattern models the evolution of a multiagent system. A

multiagent system can be described as a set of autonomous, independent and
decentralized agents which represent, through their activities, the evolution of a -
virtual, discrete or continuous - environment.
Agents can be provided with different degrees of “intelligence”, depending on the
application domain and the problem to solve but, generally speaking, they act all
independently, they could go through significant inactivity periods, they do not
necessarily share information, and their behaviour is generally highly influenced by
the environment.
A multiagent system can be seen as a set of agents A1, . . . , An, each executing
one or more jobs j1, . . . , jm. Jobs could be provided with a weight and agents can
have a limit of workload assigned a1, . . . , an.
A pattern for a multiagent system is that which assigns jobs to each agent (the so
called Job Assignment Problem) so as to obtain the maximum utility in the min-
imum overall completion time, i.e. to maximise

∑
a∈{A1,...,An}

Mi
1
ti
Ui where

Mi is the load of each job, ti is the execution time of the ith job imposed by
agent a, and ui is the utility gained from the job being executed by agent a.

Name Concurrent memetization pattern
Problem This pattern is also used in evolutionary computation in which iterative progress

processing, such as growth or development in a population, is performed. With
respect to other patterns in the family of genetic algorithm patterns, here the
population is selected, during the iterative process, using suitable search operators
in order to achieve the desired goal. The pattern involves continuous optimisation
and combinatorial optimisation phases. It may be useful for implementing Lamar-
ckian or Baldwinian memetic variation operators [6]. The procedure starts with
a certain individual iinit and a set of mutation operators (M) available. Then,
according to the parameters, a series of mutations m ∈ M and evaluations f of
new individuals are performed in parallel. The best obtained solution i becomes
a new starting point for another phase of the memetization. The best individual
after the assumed number of phases is returned.

Table 2 Specific domain patterns suitable for reduction to pool evolution pattern



8 Marco Aldinucci et al.

The other patterns all come from the evolutionary computing commu-
nity. The genetic algorithm pattern maps one-to-one onto the pool evolu-
tion pattern, as does the Global single population pattern. In fact, they can
be understood as the pattern(s) that generated–through generalisation and
abstraction–the pool evolution pattern.

The Multiagent system pattern is somehow more interesting. In terms of
the pool evolution pattern, the selection function selects all agents that have
an event to process in their input event queue (a message, a synchronisation
request, etc.); the evolution function updates the agent’s internal state based
on the input event accepted; and the filter function is the identity function
(all transformed individuals/agents are put back into the original population
replacing their previous (state) instances). The “evolution” of an agent, how-
ever, may generate events directed to other agents. These events should be
directed to the correct agent queues during the filtering (update) function,
which makes the filtering / termination test slightly more complex. The con-
current memetization pattern may be reduced to the pool evolution pattern
with a process similar to that used to reduce the orbit pattern to the pool
evolution one.

2.2.2 More applications

As far as applications are concerned, we consider a few representative appli-
cations whose parallel behaviour may be readily modeled by the pool pattern.

Strings of a given length generated by a grammar This is clearly an instance
of the orbit pattern (and thus, transitively, of the pool evolution pattern). The
productions of the grammar are used as generators and the filtering function
(with no fitness function included) simply filters those items a) not already
belonging to the current population and b) not longer that the given length.
Termination is determined by an empty set to be added to the population
after an iteration.

Brute force sudoku solver This is a plain pool evolution pattern instance. The
population is initially a partially filled board. The evolution function generates
a board with possible assignments of an empty cell from the original board
and the filter function sends back to the population those boards adhering to
the sudoku rules. A more efficient variant is that where the evolution function
picks up an empty cell and generates only those configurations filling the cell
with legal values. In this case the filter function is the identity function, and
the filtering activity itself is moved from filter (sequential execution in the
implementation schema P1 in Section 3 below) to evolution (computed in
parallel).
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Function minimum in an interval This is a plain genetic pattern with popu-
lation made of random points in the interval, a fitness function computing the
function on the given point of the interval, and the evolution pattern(s) gen-
erating new random points, or new points close to the “best” (i.e. minimum)
elements in the population.

Finding a function approximating a given set of 〈 point, value 〉 pairs A pop-
ulation of random functions is evolved by selecting those giving the best ap-
proximation of the function value on the known points and applying different
random mutations, including a kind of crossover, to obtain new functions. The
fitness function measures the distance of the function from the target points.
Here the selection function requires evaluation of the distance of the com-
puted points from the target values for all the functions in the population,
and a reduction to determine the functions with minimal distance, similar to
the function used to select the best mutated individuals as candidates to be
inserted in the new population.

3 Skeleton implementation

The parallel implementation of the pool evolution pattern may employ par-
allelism at different levels and with different granularities. We consider three
possibilities, namely:

P1 parallel computation (map pattern) of the evolution function over the se-
lected individuals, with sequential computation of the other phases (selec-
tion, filtering and termination).

P2 parallel computation of all phases (as outlined at the end of Section 2):
mapreduce for selection and filter phases and map for the evolution phase.

P3 split the population into sub-populations and map the whole computation
relative to one iteration on the sub-populations, merging the updates af-
ter the termination of the sub-computations (map of filter(evolve()) over
sub-partitions, then “reduce” filtered individuals for inclusion in the pool
population).

The three alternatives use different grains of parallelism (P1 and P2 process
individuals in parallel, while P3 processes partitions of the population) and
two of them (P1 and P2), while working at the same granularity, use different
extents of parallelism (P1 has a greater serial fraction than P2).

In accordance with the ParaPhrase methodology–which provides both C++/
FastFlow and Erlang pattern implementations–we implemented two versions
of the pool pattern: a FastFlow [11] version and an Erlang version.

The FastFlow version is built on top of a task-farm-with-feedback core skele-
ton, suitably customized to take into account the features of the pool as imple-
mented according to schema P1 or P2. The Erlang version, instead, is built on
top of the skel Erlang skeleton library [5,10]. Different versions of the Erlang
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pool evolution pattern use map skeleton instances to implement the different
parallel parts of the skeleton over the selected population items (P1 or P2).

The Erlang version is very compact and the code corresponds one-to-one to
the pseudo code given in Table 1 to describe the pattern’s functional semantics.
The code implementing the P1 pool pattern version on top of skel is:

1 pool(Termination, Selection, Evolution, Filter ) −>
2 fun(Set) −>
3 case (Termination(Set)) of
4 true −>
5 Set;
6 false −>
7 {Selected,Rest} = Selection(Set),
8 Evolved = parmap(Evolution,Selected),
9 Filtered = Filter(Evolved),

10 Newset = union(Rest, Filtered),
11 (pool(Termination, Selection, Evolution,Filter ))(Newset)
12 end
13 end.

where the parmap computes (in parallel) the same result as that computed
by a lists:map.

In the FastFlow implementation, by default only the evolution phase is
computed in parallel (P1 schema). However, it is also possible to configure the
pool implementation to compute the selection and the filtering map-reduce
phases in parallel. On the contrary, the termination phase is always computed
sequentially in the current implementation. Both the map and map-reduce
phases have been implemented using the ParallelForReduce high-level pattern
[8] already available in the FastFlow framework. The ParallelForReduce pattern
allows efficient parallelisation of parallel loops and parallel loops with reduction
variables. It is implemented using the task-farm-with-feedback core skeleton of
the framework. In the FastFlow task with feedback skeleton, an emitter thread
schedules tasks (either appearing on an input stream or generated from an
in-memory data-structure) to a pool of worker threads. The workers compute
the task results and deliver them back to the emitter. The emitter scheduling
policy may be customised by the user.

In Fig. 2 are sketched both the concurrency structure of the possible paral-
lel pattern implementing the pool evolution and the concrete implementation
skeleton currently implementing the pool pattern in FastFlow.

This quite simple but effective parallel structure is provided to the paral-
lel application programmer through an interface similar to that used for the
other FastFlow high level patterns (see [20]), supporting all the parameters
needed to specialize the pool evolution pattern by means of user (application
programmer) supplied business code and non-functional parameters.

In particular, the pool evolution pattern interface has been designed as
follows:

1 template<typename T, typename env t=char>
2 class poolEvolution : public ff node {
3 public:
4 /∗ selection t : it takes the population and returns a sub−population
5 ∗ evolution t : it works on the single element
6 ∗ filtering t : it takes the population produced at the previous step,
7 ∗ the output of the evolution phase and produces a new population
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Fig. 2 Algorithm, concurrent activity graphs and the FastFlow parallel skeleton of the pool
evolution pattern. Each circle represents a thread, arrows represent communication channels,
which are implemented through FastFlow lock-free buffers.

8 ∗/
9 typedef void(∗selection t)(ParallelForReduce<T>&,std::vector<T>&,std::vector<T>&,

env t&);
10 typedef const T&(∗evolution t)(T&, const env t&);
11 typedef void(∗filtering t)(ParallelForReduce<T>&,std::vector<T>&,std::vector<T>&,

env t&);
12 typedef bool(∗termination t)(const std::vector<T>&,env t&);
13 protected:
14 env t env;
15 ParallelForReduce<T> mapreduce;
16 ...
17 public :
18 /∗ constructor : to be used in non−streaming applications ∗/
19 poolEvolution ( size t maxp, /∗ maximum parallelism degree in all phases ∗/
20 std :: vector<T> &pop, /∗ the initial population ∗/
21 selection t sel /∗ the selection function ∗/
22 evolution t evol , /∗ the evolution function ∗/
23 filtering t fil , /∗ the filter function ∗/
24 termination t ter , /∗ the termination function ∗/
25 const env t &E= env t()); /∗ user’s environment ∗/
26 /∗ constructor : to be used in streaming applications ∗/
27 poolEvolution ( size t maxp, /∗ maximum parallelism degree in all phases ∗/
28 selection t sel /∗ the selection function ∗/
29 evolution t evol , /∗ the evolution function ∗/
30 filtering t fil , /∗ the filter function ∗/
31 termination t term, /∗ the termination function ∗/
32 const env t &E= env t()); /∗ user’s environment ∗/
33

34 /∗ changing the parallelism degree of the evolution phase ∗/
35 void setParEvolution(size t pardegree);
36 const env t& getEnv() const { return env;}
37 ....
38

The pattern has two constructors: one to support standalone execution of
the pattern, where execution processes only the input population specified as
parameter; and another to support execution of the pattern over population
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items appearing on the pattern’s input stream3. The env t type passed as
template parameter is the type representing the “external environment” of
the pool pattern. It is the type of a data-structure passed in the constructors,
and accessed in a read-only way in the evolution phase, which is used to store
“global” informantion between the computation of the four different phases of
the pattern.

To exemplify the user’s (application programmer’s) perspective of the pool
evolution pattern, we now discuss the kind of code needed to program a simple
application exploiting parallelism via the pool evolution pattern in FastFlow. In
particular, we consider an application modeling a population evolution where:

– each individual of the population is tagged as selected or not-selected by
means of some criterion;

– individuals are evaluated in parallel and those exhibiting very good fitness
can generate new individuals and/or mutate; and

– the new or mutated individuals are indiscriminately added to the original
population.

The following outline code captures this scenario:

1 #include <ff/poolEvolution.hpp”
2 const long MAXGENERATION = 100;
3 typedef long Env t; /∗ this is my simple environment ∗/
4 class Individual { /∗ implementation of an individual ∗/
5 ...
6 };
7 /∗−−−−−−−−−−−−−− genetic operators −−−−−−− ∗/
8 bool termination(const std::vector<Individual> &P,Env t &E) {
9 return E.numGeneration >= MAXGENERATION;

10 }
11 void selection(ParallelForReduce<Individual> &mapreduce,
12 std :: vector<Individual> &P,
13 std :: vector<Individual> &newP, Env t &E) {
14 ... // implementation of selection: P −−> newP
15 }
16 const Individual& evolution(Individual &t) {
17 ... // implement the evolution changes in t
18 }
19 void filter (ParallelForReduce<Individual> &mapreduce,
20 std :: vector<Individual> &P,
21 std :: vector<Individual> &newP, Env t &E) {
22 ... // filter individuals (P) to be added to current pop
23 newP += P;
24 }
25 /∗−−−−−−−−−−end of genetic specific material −−−−−−−−∗/
26

27 int main(int argc, char ∗argv[]) {
28 std :: vector<Individual> initialP = ....;
29 Env t num generations=0; /∗ my simple environment ∗/
30 poolEvolution<Individual,Env t> /∗ instantiate the pattern pardegree=48 ∗/
31 pool(48, initialP , selection , evolution, filter , termination,
32 num generation);
33 if (pool.run and wait end()<0) /∗ then run it and wait completion ∗/
34 error (‘‘ poolEvolution fails to run\n’’) ;
35 }

3 in FastFlow any pattern has an input and an output stream to support pattern compo-
sition; or it is executed just once, in which case input data is passed via pattern parameters
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4 Experimental validation

To evaluate the implementation of the pool evolution pattern we performed
a set of experiments using simple synthetic benchmarks and three applica-
tions: as described in Section 2.2, the first searches for the best function
that approximates a given set of 〈 point, value 〉 pairs; the second computes
the approximation of the minimum of a given function in a given interval
(min f(x) x ∈ [a, b]); and the third implements a sudoku solver. The first ap-
plication provides an example of how the different phases of the pattern could
be parallelized; the second experiment, focusing on the parallelisation of the
evolution phase only, shows how the pattern maintains good performance even
when just one phase is parallel and/or some phases are sequential, but compu-
tationally irrelevant. The third demonstrates application of the pool pattern
in symbolic computation domains. ode used for the experiments is (in part)
available from the FastFlow svn [11] and ParaPhrase web site [19].

As target architecture for the experiments we use a dual-socket NUMA In-
tel multi-core Xeon E5-2695 Ivy Bridge micro-architecture running at 2.40GHz
featuring 24 cores (12+12) each with 2-way Hyperthreading. Each core has
32KB private L1, 256KB private L2 and 30MB shared L3. The operating sys-
tem is Linux 2.6.32 x86 64 shipped with CentOS 6.5.

Micro-benchmark tests

The first set of experiments was aimed at assessing the general properties of
the pool evaluation pattern implementation(s), and in particular focusing on
the implementation described in Section 3 (P1 case).

Therefore, we considered a synthetic benchmark where the various func-
tions used in the pattern (termination, selection, evaluation, filter) are simple
functions performing floating point computations while accessing some fixed
amount of memory. In all tests, the number of memory accesses to shared and
private data structures is kept fixed, while the amount of time spent in the
computation of each function may be varied by adjusting application param-
eters.

We studied the performance, and thereby the overhead introduced by the
parallel implementation, when varying the computational grain for the single
element of the population in the evolution phase. We considered three distinct
cases:

1. one single floating point operation per element (1 flop);
2. up to ten floating point operations per element (10 flops);
3. up to one hundred floating point operations per single element (100 flops).

The results of these tests are sketched in Fig. 3. As can be seen, the pool
pattern implementation is able to obtain quite good performance even in the
case of very fine-grain computation for the single element of the population. In
particular, for the FastFlow implementation the maximum scalability for the
case 1flop is 4.1 considering the overall execution time. But, if we consider
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Fig. 3 Benchmark scalability (P1 version) varying the parallelism degree of the evolution
phase for three different levels of computation grain (1x, 10x and 100x floating point opera-
tions per single population element). The selection and filtering phases are kept sequential,
the number of iterations is fixed at 50. Left): FastFlow C++ implementation. Right): skel
Erlang implementation. Floating point operations are used only as an indicative measure of
the amount of computation per operator and refer to single precision.

only the execution time improvement for the evolution phase, the gain is much
greater: the execution time of this phase goes from 300ms using 1 thread down
to 15ms using 24 threads. The Erlang graph in Fig. 3 also plots the curve
relative to 1k flop, showing that the interpreted execution of Erlang needs
somewhat larger grain to achieve reasonable speedups.

The next benchmark is aimed at assessing the pool evolution pattern when
all phases (selection, evolution and filtering) are executed in parallel according
to the P2 schema described in Section 3. In this test, the selection function
computes the average value of a population of N elements (N = 106 in the
tests) and then selects all elements whose value is greater than the average
value. In this way, at each iteration of the pool evolution loop, the population
decreases. This benchmark has been run using the FastFlow implementation
of the pool pattern, as this is able to exploit much finer grain parallelism than
the Erlang implementation, as pointed out before. The computation ends when
there are fewer elements than a given threshold value. The evolution and fil-
tering functions apply a synthetic function on each element of the selected
population. The results of this test, varying the parallelism degree for each
phase, are sketched in Fig. 4. As can be seen, by increasing the number of
worker threads in each phase, the execution time decreases up to (12,24,48)
and then starts to increase slowly. It is interesting to note is that using the
maximum level of parallelism in each phase (i.e. (48,48,48)) does not lead
necessarily to the best execution time for the case considered, even though
the best execution time for the single phase (i.e. considering the other two se-
quential) is obtained when using the maximum number of threads/cores in the
target platform. Therefore, having the flexibility to vary the parallelism degree
for each single phase of the pool evolution pattern gives greater possibility of
reaching the best execution time on the target platform.
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Fig. 4 FastFlow poolEvolution benchmark (P2 version) execution time while varying the
parallelism degree of each of the three phases: (nwS, nwE, nwF) is the number of worker
threads used in the selection, evolution and filtering phases, respectively. The total number
of iterations executed in each step is 21.

Function approximating a set of points

The second experiment was aimed at assessing the implementation of the
pattern with an application. We considered the problem of finding the best
function approximating another (unknown) function defined by a given set of
〈xi, fmeasured(xi)〉 pairs [15, 16]. In this case we developed only the FastFlow
implementation. The selection, termination and filtering functions are com-
puted sequentially, with only the evolution component being parallelised, and
only a single run of the pool pattern is executed (stream length m = 1). The
initial population is given by a set of randomly generated functions represented
as trees. Each node of the tree can be a variable, a constant, or an application
of a binary (g ∈ {−,+, ∗, /, power}) or unary (f ∈ {exp, sin, cos, log}) oper-
ator. Variables and constants are leaves of the tree, a unary operator has a
single child subtree and a binary operator has two child subtrees.

The application evaluates the approximating function f ′ by minimizing
the distance assumed by each x ∈ P = {x0, . . . , xn} in the target function
fmeasured(x) w.r.t. the approximated value f ′(x). For each function (tree) f ′,
we evaluate in parallel the root mean square error over P , given by

E(f ′, P ) =

√∑n
i=0(f ′(xi)− fmeasured(xi))2

n

and the functions having the better fitness value are selected for modification
by the crossover or the mutation operator. The crossover randomly selects two
subtrees belonging to two different trees respectively and exchanges them. The
mutation substitutes a randomly selected subtree with a new one of the same
depth. In both cases the newly generated trees substitute the modified ones in
the population. Thus, generation after generation, the functions exhibiting the
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better fitness (i.e. showing minimal E(f, P )) are kept within the population
and contribute to production of improved “children” until a reasonable or
the exact solution is reached. In other words, the problem of approximating
a function given a set of points P is a search of the function that minimises
E(f, P ) as far as possible.

The scalability results achieved are presented in Fig. 5 (left). The Figure
clearly shows that the application scales well on the target architecture (20
fold speedup with the available resources). In this case the serial fraction of
the computation for each iteration (i.e. the time spent in the selection, filtering
and termination functions) is negligible with respect to the time spent in the
computation of the evolution function, so in principle we should have obtained
an even higher scalability. The main bottleneck in this case is the memory
bandwidth available per core for accessing shared and private data structures.
Hyperthreading helps in masking memory access time and so provides extra
speedup. In fact, by doubling the number of worker threads from 24 to 48 we
obtained a improvement of about 23%. A more complex and time consuming
re-design of shared data structures, together with careful placement of objects
in the different memory banks of the platform, would probably produce even
better results at the cost of reduced portability. This limits the possibility of
reaching the ideal performance on the target platform.

In Fig. 5 (right), the convergence of a run of our application approximating
f(x) = x2 is shown over a population of 100 function “trees”. Each tree is built
with a depth of at most three levels, and the initial population is randomly
created using the tree grammar. In the figure a run over 50 generations is
compared with a run over 5 generations: the first run computes g(x) = x+ x2

as best solution, while producing an error e = 114.604. In the second run,
besides the shorter “evolution” time, the error is reduced to 0.7070 and an
approximated function g(x) = cos(x) +x2 is computed. The figure shows that
in both cases the algorithm reached a form of convergence. For the sake of
simplicity we decided to consider a population comprising only 3-level trees.



Pool evolution pattern 17

However, due to the limited genetic information provided by these trees, single
modifications introduced by crossover and mutation operators could imply
huge differences in the tree structures and as a consequence, to their fitness
values. Thus, in the initial part of the evolution process, it could happen that
at a lower number of generations, a better solution is found in terms of error
produced. This phenomenon is recognised in evolutionary algorithm theory
and, in general, the convergence will improve as the number of generations
increases. In fact, in this sample, over 100 iterations we got the approximated
function being f(x) = sin(x) + x2, thus confirming a certain convergence
stability.

Convergence also depends on the size of the starting population: in general
bigger is better. For instance, by duplicating the population to obtain 200 in-
dividuals, the exact solution is again obtained, thus confirming that increasing
diversity allows a greater exploration of the solution space: in 5 iterations the
optimal detected function result was g(x) = (0 + x) ∗ (x − 0) = x ∗ x, while
in 50 iterations the optimal is, equivalently, g(x) = x ∗ x + x0 = x ∗ x + 1
with a greater error but a smaller number of tree nodes. In 100 iterations, the
solution tree is g(x) = x ∗ x + sin(0) = x ∗ x which is optimal and is also
the shortest optimal tree found. In this example, we can see that, even if the
fitness is apparently unstable at the beginning of the evolutionary process,
the convergence improves over a greater number of iterations both in terms of
error and in terms of the structure of the solution tree.

Finding the global minimum of a function in a range

In the third experiment, we implemented an application searching for the
global minimum of an input function in a range [a, b] [13]. The aim of this
experiment, leading to both C++/FastFlow and Erlang versions of the appli-
cation, is to check whether the two implementations (FastFlow and Erlang)
of the pool pattern exhibit similar behaviour on the same application and to
experiment with different versions of the pool pattern, namely the simple P1
version and the more parallel P2 version described in Section 3.

The application searching for the minimum of a function in an interval is
implemented as follows. A set of random points x1, . . . , xn ∈ [a, b] are selected
as the initial minimum candidates. This initial population is submitted to the
evolution pool pattern where:

– The selection phase is the identity function.
– In the evolution phase, for each of the points in the candidate set (popu-

lation) p we consider the values f(p + ε) and f(p − ε) and determine the
minimum f value. The corresponding point (p− ε or p+ ε) is kept as can-
didate in place of the original p. This process is iterated, on each point, for
a given number k (internal iterations). At the end of this step the new set
of minimum candidates is considered and:
– the best candidate (i.e. the one leading to the minimum f value) is kept;
– a portion of the rest of the candidates is subject to crossover; and
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Fig. 6 Execution time (in milliseconds, P2 version of the pattern) when varying the paral-
lelism degree of the evolution and filtering phases using P = 1000, t = 500,K = 200, k = 100
in the range (1, 1.1) (left) and, the minimum value found when evaluating three different
functions F considering two external (K) and internal (k) iteration cases (P = 10000, t =
5000, ε = 10−6) (right).

– the rest of the candidates are discarded and substituted by new random
points in [a, b].

– The filter phase is again the identity function.

The pattern is iterated a maximum number of times (global or external itera-
tions) or up to convergence to a given minimum value.

The whole application is defined by a set of parameters which are: the
dimension of the search space, the number of candidates, the number of itera-
tions for the global as well as for the local search, the number of survivors (i.e.
the candidates subject to crossover) and, for the parallel version, the number
of workers involved in the pool.

In Fig. 6 (left) we can see the execution time exhibited by the applica-
tion implemented with the P2 FastFlow pool implementation while varying
the parallelism degree using 1000 points and 500 “survivors” over 200 global
iterations and 100 internal iterations. The chart shows that the minimum exe-
cution time (426ms) is obtained when using the maximum parallelism degree
for both the evolution and filtering phases. By increasing the population size
ten times, we measured a speedup increase of about 25% (from 22.1 to 28.33)
confirming that performance remains strong while scaling the problem size.
Fig. 6 (right) shows the behavior of the application with respect to three dif-
ferent object functions whose search space varies from a very small to a large
one. Each row of the table shows the minimum value returned by the appli-
cation when varying the internal vs external iterations rate. As can be seen,
results are sensitive in precision to the parameters given. Moreover, in the case
of a function like xsin(x)cos(x) which is symmetric with respect to the x-axis
and has two minimums at approximatively ±18, different runs can converge
to different values depending on the iterations ratio specified as input. These
results show that the pattern, when used to implement a genetic algorithm,
reflects the high sensitivity with respect to the input parameters provided by
the user, which is typical of these kinds of computation.
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Fig. 7 presents the variation in the speedup of the application finding the
minimum of a function in an interval implemented in Erlang (P1 version of
the pool). Augmenting the number of internal iterations performed during the
evolution phase, the speedup increases as a consequence of the augmented
grain of the evolution phase. The speedup increases also when the number of
individuals in the population increases, again as a consequence of the larger
number of single individual evolution functions to be computed in the single
“evolution” map partition.

Finally, Fig. 8 (left) shows the effect of using the P2 version of the pool
pattern vs. the P1 version while computing the minimum of a function in
an interval (Erlang version). As expected, the version with the parallel filter
phase performs better, although the increase in speedup turns out to be larger
with finer grain computations (smaller number of flops used to compute the
function f(x)).
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Brute force sudoku solver

The fourth experiment is aimed at demonstrating the feasibility of using the
pool pattern to implement symbolic computations. In particular, we imple-
mented the orbit pattern discussed in Section 2.2.1 using the pool pattern and
also used it to implement a brute force sudoku solver as follows:

– a set of generators g1, . . . , g9 is used, such that each gi applied to a sudoku
board configuration B generates the configuration B′ where all the empty
positions are filled with the item i, if and only if the fill does not conflict
with already completed board positions;

– a null filter function is used, as the board configurations generated are
different from those already present in the population (initially just the
start board configuration) by construction;

– the termination function simply checks the presence of a board configura-
tion with no empty cells.

Obviously, the orbit brute force sudoku solver suffers the state explosion prob-
lem. To avoid the explosion of the board configurations in the population, we
adopted a severe filtering function adding only a few configurations to the
population list, rather than adding all the (huge number of) configurations
generated at each step.

We implemented the sudoku brute force solver in Erlang, using the P1
version of the pool. The typical results achieved are shown in Fig. 8 (right).
With different initial board configurations (with more or less alternative values
suitable for filling a single cell to be evaluated at each step), the speedup varies
between very small numbers (about 3) to higher values (close to 12) on the
24 core test machine. However, if we relax more and more the filtering phase
such that more and more alternatives are considered, we easily come up with
speedups close to 20 in computations requiring quite a lot of memory to host
the population state. In all the experiments, the time spent to get the solution
was in the range of the hundreds of milliseconds when 16 to 24 cores were
used.

5 Related work

The design pattern community is increasingly interested and active in the field
of parallel design patterns. Besides the groups that published the two classic
parallel pattern books [17, 18], several different authors and research groups
contribute to the research area. The pages at http://www.cs.uiuc.edu/

homes/snir/PPP/ and http://www.cs.wustl.edu/~schmidt/patterns-ace.

html present a number parallel patterns and parallel pattern frameworks. To
the best of our knowledge, no parallel pattern has previously been proposed
to model evolutionary applications. Different research groups active in the al-
gorithmic skeleton area have put forward algorithmic skeletons modeling com-
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plex, high level parallel patterns. The MALLBA team4 proposed several algo-
rithmic skeletons including skeletons modeling genetic algorithms and memetic
operators. However, they keep distinct the two skeletons rather than provid-
ing a general skeleton that may be specialized to realise the implementation
of the two patterns [1]. In [9] general purpose iterative skeletons are proposed
that may be used to model genetic computations. The focus here is on it-
erative processes, however, with genetic computations being employed as a
use case. Within the ParaPhrase project, our pool evolution pattern is used
in two different contexts: researchers using Erlang to implement Agent Sys-
tems are considering the pool evolution pattern to model agent interactions;
and researchers working in the use-case workpackage are experimenting with
the pool evolution pattern to model parallelism exploitation in applications
previously using low level patterns such as pipelines and task farms [21].

6 Conclusions and future work

We have introduced a new parallel pattern, the pool evolution pattern, that
captures the idea of the evolution of a population. The pattern has been de-
rived as a generalisation of an existing domain-specific pattern, and has been
shown to have wider applicability in the evolutionary and symbolic comput-
ing domains We have also discussed how different specialized versions of the
pattern–employing different amounts (and kinds) of parallelism–may be used
to implement different applications, ranging from numeric applications (mini-
mum of a function, approximation of an unknown function) to symbolic (su-
doku). We designed and implemented implementations of the different variants
of the pool pattern in C++/FastFlow as well as in Erlang/skel. Both imple-
mentations run on top of state-of-the-art shared memory multicore servers. A
full set of experiments has been discussed assessing the features of the pool
pattern as well as the efficiency and scalability of the pattern when used to
implement various parallel applications. In particular, we have demonstrated
that reasonable performances may be achieved with modest programming ef-
fort while noting that, in certain cases, manual, ad-hoc optimisation of the
parallel code taking into account the specific target architecture features may
lead to further minor performance improvement.
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