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Abstract

We analyze two types of stochastic discrete time multi-sector endogenous growth models, namely a basic Uzawa-
Lucas (1988) model and an extended three-sector version as in La Torre and Marsiglio (2010). As in the case
of sustained growth the optimal dynamics of the state variables are not stationary, we focus on the dynamics of
the capital ratio variables, and we show that, through appropriate log-transformations, they can be converted
into affine iterated function systems converging to an invariant distribution supported on some (possibly fractal)
compact set. This proves that also the steady state of endogenous growth models—i.e., the stochastic balanced
growth path equilibrium—might have a fractal nature. We also provide some sufficient conditions under which
the associated self-similar measures turn out to be either singular or absolutely continuous (for the three-sector
model we only consider the singularity).

Keywords: Multi-Sector Growth Models, Endogenous Growth, Fractal, Self-Similar Measure, Singular and
Absolutely Continuous Measure

1. Introduction

Almost thirty years after the seminal work of Boldrin and Montrucchio (1986), it is now well known that
also traditional (macro)economic models may give rise to complicated dynamics, including random dynamics
eventually converging to (possibly singular) invariant measures supported on fractal sets. Montrucchio and
Privileggi (1999) borrowing from the iterated function system (IFS) literature (Hutchinson, 1981; Barnsley, 1989;
Vrscay, 1991) firstly show that standard stochastic economic growth models may show optimal dynamics defined
by an IFS. The traditional one-sector growth model with Cobb-Douglas production and logarithmic utility has
been extensively studied later. Mitra et al. (2003) show that its optimal path converges to a singular measure
supported on a Cantor set, characterizing singularity versus absolute continuity of the invariant probability
in terms of the parameters’ values. Mitra and Privileggi (2004, 2006, 2009) further generalize the model and
provide also an estimate of the Lipschitz constant for the maps of the optimal policy defined by an IFS.1 Only
recently, the analysis has been extended in order to consider two-sector growth models, nowadays predominant
in economic growth theory. La Torre et al. (2011) show that in a two-sector model with physical and human
capital accumulation the optimal dynamics for the state variables can be converted through an appropriate
log-transformation into an IFS converging to an invariant measure supported on a generalized Sierpinski gasket.

The aim of this paper it to further extend the analysis of fractal outcomes in optimal economic growth models
by studying the behavior of multi-sector endogenous growth models. Indeed, thus far the focus has always been
placed on neoclassical growth models, in which at steady state the economic growth rate is null, and nothing
has been said on whether also a perpetually growing economy (i.e., an economy experiencing a strictly positive
steady state growth rate) may achieve a fractal-type steady state. We thus analyze two alternative models of
endogenous growth, specifically a two-sector and a three-sector model, based on the Uzawa-Lucas (1988) and La
Torre and Marsiglio (2010) models, respectively. We show that even whenever perpetual growth is admissible the

1Other recent applications of the IFS theory showing that some economic growth model converge to an invariant distribution
supported on a Cantor set are Marsiglio (2012) and Privileggi and Marsiglio (2013). Specifically, Marsiglio (2012) analyzes a two-
sector Solow model, while Privileggi and Marsiglio (2013) consider the sustainability problem in a stochastic economy-environment
model.
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economy may develop along a (stochastic) balanced growth path equilibrium characterized by a fractal nature.
However, since in such a framework the optimal dynamics of (physical, human and technological) capital are not
stationary, we consider the dynamics of the capital ratio variables (specifically, the physical to human capital
and technological to human capital ratios) and show that, through appropriate log-transformations, they can be
converted into affine IFS converging to some distribution supported on a compact set which may be a fractal.2

We then also provide some sufficient conditions under which the associated self-similar measures turn out to be
singular and absolutely continuous.

The paper proceeds as follows. In Section 2 the main results from the IFS theory that we will need in
our analysis are briefly recalled and novel sufficient conditions (Theorem 5) for singularity of the invariant
distribution are provided for a special class of two-dimensional affine IFS. In Section 3 we consider the simplest
form of multi-sector endogenous growth models, namely a Uzawa-Lucas (1988) model driven by human capital
accumulation. In Section 4 we analyze an extended version of the model, that is a three-sector model, as in La
Torre and Marsiglio (2010), in which human capital is endogenously allocated across three (physical, human
and knowledge) sectors. For both the models, we derive the optimal dynamics and construct an affine IFS
conjugate to the optimal dynamics of stationary variables (the physical to human capital, and, in the latter,
also the knowledge to human capital ratios). We provide, directly in terms of parameters of the model, sufficient
conditions for the attractor of this conjugate IFS to be a fractal set (the Cantor set for the two-sector model
and a generalized Sierpinski gasket for the three-sector model). We also identify sufficient conditions under
which the self-similar measures turn out to be singular and absolutely continuous. In Section 5 we build some
examples of attractors, while Section 6 presents concluding remarks and proposes directions for future research.

2. Iterated Function Systems

An Iterated Function Systems (IFS) is a finite collection of contractive maps which are defined on a complete
metric space. This collection of maps allows to formalize the notion of self-similarity and the definition of
invariant set or attractor of the IFS. An Iterated Function System with Probabilities (IFSP), instead, consists
of the above collection of IFS maps together with an associated set of probabilities. An IFSP induces a Markov
operator on the set of all Borel probability measures and a notion of self-similar invariant measure. More
details on these can be found in the fundamental works by Hutchinson (1981) and Barnsley and Demko (1985).
Applications of these methods are in image compression, approximation theory, signal analysis, denoising, and
density estimation (Freiberg et al., 2011; Kunze et al., 2007; Iacus and La Torre, 2005a, 2005b; La Torre et al.,
2006, 2009; La Torre and Mendivil, 2008, 2009; La Torre and Vrscay, 2009; Mendivil and Vrscay, 2002a, 2002b).
Now we recall, without proofs, some well known basic properties that will be used in the next sections.

We briefly introduce the notion of Hausdorff measure and Hausdorff dimension (more details can be found
in Barnsley, 1989). Let (X, d) be a metric space and let diam (E) denote the diameter of a subset E of X. Let
s ≥ 0 and δ > 0, and define

Hs
δ (E) = inf

{ ∞
∑

k=1

[diam (Ek)]
s
: E ⊂

∞
⋃

i=1

Ek, diam (Ek) < δ

}

.

Now let us define
Hs (E) = sup

δ>0
Hs

δ (E) (1)

Definition 1. Hs (E) in (1) is called the s-dimensional Hausdorff measure. Furthermore, there exists a unique
number s0 ≥ 0 such that Hs (E) = ∞ for 0 ≤ s < s0 and Hs (E) = 0 for s > s0. The number s0 is called the
Hausdorff dimension of E and it is denoted by dimH (E).

In what follows, let (X, d) be a complete metric space and w = {w0, . . . , wm−1} a set of m injective contrac-
tion maps wi : X → X, to be referred to as an m-map IFS. Let 0 < λi < 1 denote the contraction factors of wi

and define λ := maxi∈{0,...,m−1} λi; clearly 0 < λ < 1. Associated with the IFS mappings w0, . . . , wm−1 there is
a set-valued mapping ŵ : K (X) → K (X) defined over the space K (X) of all non-empty compact sets in X as

2The advantage of introducing such a log-transformation consists of obtaining an affine system topologically conjugate to the
original nonlinear system which allows to exploit the mathematical theory on IFS, thus simplifying the characterization of existence
and uniqueness of (stochastic) fixed points. Without such a transformation, we would need to rely on more cumbersome ad-hoc
approaches, like analyzing the eventual monotonicity properties of the optimal policies and dynamics, as, e.g., Brock and Mirman
(1972) did in their seminal work.
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ŵ (A) :=

m−1
⋃

i=0

wi (A) , ∀A ∈ K (X) , (2)

where wi (A) = {wi (x) : x ∈ A} is the image of A under wi, i = 0, 1, . . . ,m− 1. Let ŵt (A) = ŵ
[

ŵt−1 (A)
]

for
all t ≥ 1, with ŵ0 (A) = A. The Hausdorff distance dH is defined as

dH (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

, ∀A,B ∈ K (X) .

Theorem 1 (Hutchinson, 1981). (K (X) , dH) is a complete metric space and ŵ is a contraction mapping
on (K (X) , dH):

dH (ŵ (A) , ŵ (B)) ≤ λdH (A,B) , ∀A,B ∈ K (X) .

Therefore, there exists a unique set A∗ ∈ K (X), such that ŵ (A∗) = A∗, the so-called attractor (or invariant
set) of the IFS ŵ. Moreover, for any A ∈ K (X), dH (ŵt (A) , A∗) → 0 as t→ ∞.

2.1. Invariant Measures

Let p = (p0, p1, . . . , pm−1), 0 < pi < 1, i = 0, 1, . . . ,m − 1, be a partition of unity associated with the IFS

mappings wi, so that
∑m−1

i=0 pi = 1 (each pi represents a probability value attached to wi). Let M (X) be the
space of probability measures defined on the σ-algebra B (X) of Borel measurable subsets of X and define for
some a ∈ X the set M1 (X) =

{

µ ∈ M (X) :
∫

X
d (a, x) dµ (x) <∞

}

. Define the Monge-Kantorovich distance
as

dM (µ, ν) = sup

{
∫

X

f d (µ− ν) : f ∈ Lip1 (X)

}

, ∀µ, ν ∈ M1 (X) ,

where Lip1 (X) is the set of all Lipschitz functions on X with Lipschitz constant equal to 1. Associated with
the IFS (w; p) is the so-called Markov operator, M : M1 (X) → M1 (X), defined as

(Mµ) (A) =

m−1
∑

i=0

piµ
[

w−1
i (A)

]

, ∀A ∈ B (X) ,

where w−1
i (S) = {y ∈ X : wi (y) ∈ S}. Let M tµ =M

(

M t−1µ
)

for all t ≥ 1, with M0µ = µ.

Theorem 2 (Barnsley et al., 2008). If X is a separable complete metric space (M1 (X) , dM ) is a complete
metric space; furthermore, if X is compact, then M (X) = M1 (X) and both are compact metric spaces under
dM .

M is a contraction mapping on (M1 (X) , dM ), specifically,

dM (Mµ,Mν) ≤
(

∑

i

piλi

)

dM (µ, ν) , ∀µ, ν ∈ M1 (X) ,

and thus there exists a unique probability measure µ∗ ∈ M1 (X), called invariant measure of the IFS (w; p),
such that Mµ∗ = µ∗.

For any µ ∈ M1 (X), dM (M tµ, µ∗) → 0 as t → ∞, which implies that M tµ converges in the Monge-
Kantorovich metric to µ∗.

If the contraction mappings wi are assumed to be similitudes, i.e., if there exist numbers 0 < λi < 1 such
that

d (wi (x) , wi (y)) = λid (x, y) , ∀x, y ∈ X, i = 0, . . . ,m− 1, (3)

the attractor A∗ and the invariant measure µ∗ are both said to be self-similar. As it is common in the IFS
literature, however, in what follows we shall refer to any invariant measure µ∗ generated by some IFS as
‘self-similar’.

2.2. Absolutely Continuous vs. Singular Self-similar Measures

It is known that the self-similar invariant measure µ∗ determined by a IFS (w; p) generated by similitudes
can be either absolutely continuous or singular with respect to the n-dimensional Lebesgue measure, according
to the following definitions.
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Definition 2. Two positive measures µ and ν defined on a measurable space (Ω,Σ) are called singular if there
exist two disjoint sets A and B in Σ whose union is Ω such that µ is zero on all measurable subsets of B while
ν is zero on all measurable subsets of A. This is denoted by µ ⊥ ν.

Definition 3. If µ and ν are two measures defined on a measurable space (Ω,Σ), we say that ν is absolutely
continuous with respect to µ if ν (A) = 0 for any A ∈ Σ such that µ (A) = 0. The absolute continuity of ν with
respect to µ is denoted by ν ≪ µ.

This distinction is crucial as in the former case µ∗ can be represented by a density depending on some
parameters, while in the latter case there is no simple way to represent it—one actually has to list all its
values on every point in its support. The mathematical literature so far has dealt with this issue by trying to
characterize absolute continuity vs. singularity of µ∗ in terms of the parameters characterizing the IFS (w; p),
specifically, in terms of λis and pis configurations.

Especially the one-dimensional 2-maps IFS (λx, λx+ (1− λ) ; p, (1− p)), with 0 < λ < 1 and 0 < p < 1,
characterized by the same contraction factor λ in both maps, has received much attention since the first half
of the twentieth century, as its invariant measure µ∗ is the same as that of the Erdös series

∑∞
s=0 ±λs [it being

understood that the minus sign is taken with probability p and the plus sign with probability (1− p)] translated
over the interval [0, 1] (see Mitra et al., 2003). For p = 1/2 the topic is known as the study of “symmetric
infinite Bernoulli convolutions”; an exhaustive survey on the whole history of this subject can be found in Peres
et al. (2000). It is straightforward to see that for 0 < λ < 1/2 and any 0 < p < 1 the support of µ∗ is a Cantor
set of Lebesgue measure zero, so that µ∗ must be singular, while when λ = 1/2 and p = 1/2 µ∗ turns out to be
the uniform (Lebesgue) measure over [0, 1], which is clearly absolutely continuous. More complex, and hitherto
incomplete, is the analysis for parameter values 1/2 ≤ λ < 1 and 0 < p < 1, for which the support of µ∗ is the
‘full’ interval [0, 1]. Solomyak (1995) made a real breakthrough when he established that, when p = 1/2, for
almost every 1/2 < λ < 1 µ∗ has density in L2 (R) and for almost every 2−1/2 < λ < 1 the density is bounded
and continuous (see also Peres and Solomyak, 1996, and Peres and Schlag, 2000). To the best of our knowledge,
the contribution by Peres and Solomyak (1998), established for a generic family of contracting similitudes on
the real line—including the general case 1/2 ≤ λ < 1 and 0 < p < 1 for the 2-maps IFS above— is still the most
advanced available in the literature and proves useful for our purposes in the next Section 3. We summarize
below their results, together with the simpler cases discussed before, on the basis of the analysis in Mitra et al.
(2003), so to provide an overall picture of the state of the art.

Theorem 3. Consider the 2-maps IFS (λx, λx+ (1− λ) ; p, (1− p)) on [0, 1], with 0 < λ < 1 and 0 < p < 1,
and let A∗, µ∗ be its corresponding self-similar attractor and measure respectively.

1. For any 0 < λ < 1/2 and 0 < p < 1 A∗ is a Cantor set and µ∗ is singular.
2. If λ = 1/2, then A∗ is the full interval [0, 1] and

(a) if p 6= 1/2, then µ∗ is singular,
(b) if p = 1/2, then µ∗ is absolutely continuous—it is the uniform (Lebesgue) measure over [0, 1].

3. If 1/2 < λ < 1 again A∗ is the full interval [0, 1] and

(a) if 1/2 < λ < pp (1− p)
1−p

(the entropy curve), then µ∗ is singular,
(b) (Peres and Solomyak, 1998) if 1/3 ≤ p ≤ 2/3, then µ∗ is absolutely continuous for Lebesgue a.e.

pp (1− p)
1−p

< λ < 1,
(c) (Peres and Solomyak, 1998) if 0.156 < p < 1/3 or 2/3 < p < 0.844, then µ∗ is absolutely

continuous for Lebesgue a.e. pp (1− p)
1−p

< λ < 0.649, while, for any 1 < γ ≤ 2 such that

[pγ + (1− p)
γ
]
1/(γ−1)

< 0.649, µ∗ has density in Lγ for Lebesgue a.e. [pγ + (1− p)
γ
]
1/(γ−1) ≤ λ <

0.649.

Theorem 3 still leaves room for further research, as the parameter configurations 0 < p < 1/3 and 2/3 < p < 1
for 0.649 ≤ λ < 1 remain unsolved. Figure 5 in Mitra et al. (2003) draws a bifurcation diagram reporting all
cases described in Theorem 3.

Only little progress has been made after the results just stated. It is worth mentioning Niu and Xi (2007)
who establish singularity of the self-similar measure for very peculiar IFS with m maps that are similitudes on
the real line. Here we report the following result, proved in Ngai and Wang (2005), that generalize some of
the results of Theorem 3 to m-maps IFS on R

n having similitudes characterized by different contraction factors
0 < λi < 1, namely

wi (x) = λiQix+ ξi, i = 0, . . . ,m− 1, (4)

where Qi is a n × n orthogonal matrix and ξi ∈ R
n for each i. We denote by A∗ ⊂ R

n the corresponding
attractor and by Ln the n-dimensional Lebesgue measure.
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Definition 4. The IFS satisfies the open set condition (OSC) if there exists a nonempty open set U such that
wi (U) ⊂ U for all i = 0, . . . ,m− 1 and wi (U) ∩ wj (U) = ∅ for all i 6= j.

Theorem 4 (Ngai and Wang, 2005). Let (w; p) be an IFS on R
n with maps wi : R

n → R
n defined by (4)

and let p = (p0, p1, . . . , pm−1) be the associated probability weights. Denote by µ∗ the self-similar invariant
measure supported over A∗ defined by (w; p).

i) If
∏m−1

i=0 ppi

i λ
−npi

i > 1, then µ∗ is singular.

ii) If
∏m−1

i=0 ppi

i λ
−npi

i = 1 but pi 6= λni for some i, then µ∗ is singular.

iii) If pi = λni for all i = 0, . . . ,m − 1, then µ∗ is absolutely continuous if and only if the IFS (w; p) satisfies
the open set condition (OSC). In this case µ∗ = δLn|A∗ , where A∗ is the attractor of the IFS, and
δ = 1/Ln (A∗); that is, µ∗ is the uniform (n-dimensional Lebesgue) measure over A∗ ⊂ R

n.

Case (i) generalizes cases 1, 2a and 3a of Theorem 3 altogether to IFS with any number of similitudes on R
n

with different contraction factors λi; case (ii) actually adds an important piece of information by extending the

conclusion in 3a of Theorem 3 to the generalized boundary (entropy) curve corresponding to λ = pp (1− p)
1−p

there; finally, case (iii) generalizes case 2b of Theorem 3. Indeed, in the latter scenario the OSC requires that
the image sets of the similitudes of the attractor, wi (A

∗), have only “small overlap” (sometimes called “just
touching”), which—because in Theorem 3 the two maps are assumed to have both the same slope, λ0 = λ1 = λ—
for the IFS (λx, λx+ (1− λ) ; p, (1− p)) translates into λ = p = 1/2, which implies that A∗ is the full interval
[0, 1] and the image sets are equal to w0 ([0, 1]) = [0, 1/2] and w1 ([0, 1]) = [1/2, 1], having only the unique point
x = 1/2 in common (see Schief, 1994). Theorem 1.2 in Ngai and Wang (2005) to some extent generalizes results
3b and 3c of Theorem 3 to IFS with any number of similitudes with different contraction factors, however only
for maps on the real line.

We end this section providing our own novel contribution to the latter literature with the next Theorem 5,
which considers the special case of an affine three-map IFS on X = R2 with constant linear parts given by the
upper triangular matrix

Q =

[

a c
0 b

]

. (5)

This type of IFS will become relevant in Section 4, where a three-sector model giving rise to an affine IFS of
this type [see (34) and (35)] will be thoroughly analyzed.

There are not many results known about this situation, here we indicate a simple sufficient condition for
singularity of the invariant measure. The simplest case is when the attractor of the IFS (the support of µ∗)
has dimension strictly less than 2, in which case it is obviously singular; so we start with this case. Define the
function Φ (s) by

Φ (s) =

{

max {bs, as} if s ≤ 1

max
{

abs−1, bas−1
}

if 1 < s ≤ 2.

Then by results of Falconer and Miao (2007), an upper bound for the dimension dimH of the attractor A∗ of
this IFS is given by

dimH (A∗) ≤ min

{

2,Φ−1

(

1

3

)}

.

It can be shown that Φ is a strictly decreasing function of s and thus there is a unique s such that Φ (s) = 1/3.
Assuming that a ≤ b, we have as ≤ bs for all s and abs−1 ≤ bas−1 for s ≤ 2. Thus, under a ≤ b we have

Φ (s) =

{

bs if 0 ≤ s ≤ 1

bas−1 if 1 < s ≤ 2.

Thus, we have either

dimH (A∗) ≤ − ln 3

ln b
or dimH (A∗) ≤ ln [a/ (3b)]

ln a
.

Therefore, dimH (A∗) < 2 if ab < 1/3.
The results in Falconer and Miao (2007) require the IFS to satisfy the OSC (Definition 4 above) in order for

the dimension result to be exact. Hence, it is also possible that the dimension is less than 2 for a larger range
of parameters than that given by ab < 1/3.

The above (dimension-based) result can be extended by proving the following Theorem 5, which can be
thought of as an analogue of Theorem 3a or Theorem 4i. The strategy of the proof is the same as Theorem 4i,
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but we include it because we use the entropy in an essentially different way. In the sequel we will denote by
{0, 1, 2}N the collection of infinite words in the alphabet {0, 1, 2}, by {0, 1, 2}n the collection of words of length
n, and by L2 the 2-dimensional Lebesgue measure.

Theorem 5. Let (w; p) be an IFS on R
2 having maps wi : R

2 → R
2 defined by wi (x) = Qx+ ξi, with Q as in

(5), ξi ∈ R
2 for i = 0, 1, 2, and let p = (p0, p1, p2) be the associated probability weights. If ab < pp0

0 p
p1

1 p
p2

2 , the
invariant measure µ∗ defined by (w; p) is singular.

Proof. For σ ∈ {0, 1, 2}N and for n ∈ N, i = 0, 1, 2, define

σ (n, i) = # {j ≤ n : σj = i} .

Fix k ∈ N and consider the set

Sn =

{

σ ∈ {0, 1, 2}n :

∣

∣

∣

∣

∣

σ (n, i)− npi√
n
√

pi (1− pi)

∣

∣

∣

∣

∣

≤ k, i = 0, 1, 2

}

so that Sn is the set of k-typical sequences of length n. Then from Chebyshev’s inequality we have

Pr (Sn) ≥ 1− 3

k2
,

which is independent of n. Furthermore, by Theorem 1.3.4 in Roman (1992) we have

#Sn ≤ (pp0

0 p
p1

1 p
p2

2 )
−n

3C
√
n

for some constant C > 0. For notational ease define

wσ = wσ1
◦ wσ2

◦ · · · ◦ wσn

as the n-fold composition given by σ ∈ {0, 1, 2}n. Now, let

Jn =
⋃

σ∈Sn

wσ (K) ⊂ K.

Then µ (Jn) = Pr (Sn) ≥ 1− 3/k2 uniformly in n and

L2 (Jn) ≤
∑

σ∈Sn

L2 [wσ (K)] = L2 (K)
∑

σ∈Sn

(ab)
n
= L2 (K) (#Sn) (ab)

n

≤ L2 (K)

(

ab

pp0

0 p
p1

1 p
p2

2

)n

3C
√
n → 0

as n→ ∞. Thus, µ∗ ⊥ L2.

Notice that the minimum value of pp0

0 p
p1

1 p
p2

2 is 1/3 and occurs when p0 = p1 = p2 = 1/3. Thus if ab < 1/3 µ∗

is singular for any choice of p0, p1, p2 and so this result includes the dimension-based result previously mentioned.
Finally, Theorems 22 and 23 in Shmerkin (2006) imply that for any probabilities pi if the Lebesgue measure

of A∗ is positive, then either µ∗⊥ L2 or we have both µ∗≪ L2 and L2
∣

∣

A∗ ≪µ∗ (the two measures are mutually
absolutely continuous). Specifically, as if L2 (A∗) = 0 we automatically have µ∗⊥ L2, this always implies that
either µ∗⊥ L2 or they are mutually absolutely continuous.

3. The Uzawa-Lucas Model

We first study the Uzawa-Lucas (1988) model of endogenous growth where the social planner seeks to
maximize social welfare subject to the physical and human capital constraints, choosing consumption, ct > 0,
and the share of human capital employed in physical production, 0 < ut < 1. The welfare is the expected
infinite discounted (0 < β < 1 is the pure rate of time preference) sum of instantaneous utilities [assumed to be
logarithmic, u (ct) = ln ct]. Physical capital, kt, accumulates according to the difference between the production
of the unique final good and consumption, kt+1 = yt − ct, where production is assumed to use a Cobb-Douglas
technology combining physical and the allocated share of human capital, yt = kαt (utht)

1−α
, where 0 < α < 1

6



is the physical capital share and ut the proportion of human capital employed in physical production. The
remaining share, 1 − ut is used to produce new human capital, ht, according to a linear technology; thus, the
law of motion of human capital is equal to: ht+1 = b (1− ut)ht, with b > 0. However, the final sector is
affected by exogenous perturbations, zt, which enter multiplicatively the production function; these shocks are
independent and identically distributed, and take on two values: zt ∈ {q, 1}, where 0 < q < 1. We assume
that educational choices are not affected at all by eventual shocks. This means that at any time, given the
realization of the random shocks, the economy may be in two alternative situations: i) an economic crisis due
to a supply shock lowering physical productivity, corresponding to zt = q, and ii) a business-as-usual scenario
with no shocks in which the whole economy evolves along its full capacity, corresponding to zt = 1. These two
alternative scenarios occur with (constant) probability p and 1− p, respectively.

The social planner problem consists of choosing the level of consumption and the shares of human capital to
allocate to the physical sector in order to maximize social welfare, taking into account the dynamic evolution
of physical and human capital, the presence of random shocks zt ∈ {q, 1}, and the given initial conditions k0,
h0, and z0:

V (k0, h0, z0) = max
{ct,ut}∞

t=0

E0

∞
∑

t=0

βt ln ct (6)

s.t.







kt+1 = ztk
α
t (utht)

1−α − ct
ht+1 = b (1− ut)ht
k0 > 0, h0 > 0, z0 ∈ {q, 1} are given,

(7)

where E0 denotes expectation at time t = 0. The Bellman equation associated to (6) reads as:

V (kt, ht, zt) = max
ct,ut

[ln ct + βEtV (kt+1, ht+1, zt+1)] . (8)

By applying the Verification principle, it is possible to obtain an analytical expression for the value function
of the above problem, and consequently derive explicitly the optimal dynamics of physical and human capital
(see also Bethmann, 2007, 2013).

Proposition 1. Given the problem in (6) under (7), the following results hold.

i) The Bellman equation (8) has solution given by:

V (kt, ht, zt) = θ + θk ln kt + θh lnht + θz ln zt,

where θj, j ∈ {k, h, z}, are defined as follows:

θk =
α

1− αβ
, θh =

1− α

(1− αβ) (1− β)
, θz =

1

1− αβ
,

and the constant term θ is given by:

θ =
1

1− β

[

ln (1− αβ) +
αβ

1− αβ
ln (αβ) +

1− α

1− αβ
ln (1− β)

+
(1− α)β

(1− αβ) (1− β)
lnβ +

β

(1− αβ)
E ln z

]

.

ii) The optimal policy rules for consumption, ct, and share of human capital allocated to physical production,
ut, are respectively given by:

ct = (1− αβ) (1− β)
1−α

ztk
α
t h

1−α
t

ut ≡ 1− β ∀t.

The optimal dynamics of physical, kt+1, and human, ht+1, capital are the following:

kt+1 = αβ (1− β)
1−α

ztk
α
t h

1−α
t (9)

ht+1 = bβht. (10)

7



The proof of Proposition 1 parallels that of Proposition 1 in La Torre et al. (2011); hence, we omit the
details.

The results highlighted in Proposition 1 are pretty standard in the literature (see Bethmann, 2007, 2013; La
Torre et al., 2011). It is also very well-known that the Uzawa-Lucas (1988) framework, because of the linearity
in the production of (new) human capital, may generate sustained long-run growth. Specifically, the system
(9)–(10) is diverging whenever b > 1/β as, in this case, both physical and human capital grow without any
bound. Therefore, in such a scenario we need to introduce a change of variables in order to obtain a system
converging to a stationary equilibrium. The natural candidate is the physical to human capital ratio, χt = kt/ht,
which, incidentally, reduces the two-dimensional optimal dynamics (9)–(10) into a one-dimensional dynamic.
Indeed, the physical to human capital ratio χt evolves over time according to the following stochastic nonlinear
difference equation:

χt+1 =
α (1− β)

1−α

b
ztχ

α
t . (11)

Denoting by σ the linear coefficient in (11),

σ =
α (1− β)

1−α

b
, (12)

the nonlinear IFS associated to (11) defined by the two maps

{

f0 (χ) = σqχα with probability p
f1 (χ) = σχα with probability 1− p

(13)

eventually traps the new variable χ into the compact interval A =
[

(σq)
1/(1−α)

, σ1/(1−α)
]

, with endpoints

corresponding to the fixed points of f0 and f1 respectively; such a scenario corresponds to growth rate values
for the original variables, kt and ht, oscillating between finite positive bounds. If the IFS (13) converges to
some invariant measure supported over (possibly a fractal subset of) A, then we can interpret such a situation
as a steady state representing a stochastic balanced growth path (SBGP) equilibrium, the stochastic equivalent
of a typical equilibrium in deterministic endogenous growth theory.

Note that whenever α > q the IFS (13) turns out to be non-contractive, as there exists a right neighborhood

of the left fixed point (σq)
1/(1−α)

on which f ′1 > 1.3 In this case, the results of Section 2, which provide only
sufficient conditions for a (contractive) IFS to converge to a unique invariant measure, cannot be directly applied;
however, the logarithmic transformation to the nonlinear dynamics in (11) contemplated by the next Proposition
2 allows us to establish the existence of a unique invariant measure for (13) indirectly. Such a transformation
yields a conjugate affine system which can be represented by an IFS characterized by contractive similitudes.

Proposition 2. The one-to-one logarithmic transformation χt → ϕt defined by:

ϕt = −1− α

ln q
lnχt + 1 +

lnσ

ln q
, (14)

with σ defined in (12), defines a contractive affine IFS equivalent to the nonlinear dynamics in (11) composed
of two maps w0, w1 : [0, 1] → [0, 1], where 0 and 1 are the fixed points of w0 and w1 respectively, given by:

{

w0 (ϕ) = αϕ with probability p
w1 (ϕ) = αϕ+ (1− α) with probability 1− p.

(15)

The IFS (15) converges in the Monge-Kantorovich metric to a unique self-similar measure supported on a
compact attractor which is either the interval [0, 1] when 1/2 ≤ α < 1 or a Cantor set when 0 < α < 1/2.

Proposition 2 follows immediately from Theorems 1 and 2 in Section 2.
Note that the one-sector stochastic optimal growth model discussed in Mitra et al. (2003) exhibits the same

optimal dynamics as in (15). Indeed, besides the different constant σ as in (12), the dynamics described by

3To see this, compute the derivative of the ‘higher’ map f1 on the left fixed point, (σq)1/(1−α): f ′1

[

(σq)1/(1−α)
]

=

σα
[

(σq)1/(1−α)
]α−1

= σα/ (σq) = α/q, which is clearly larger than 1 whenever α > q. As f ′0

[

(σq)1/(1−α)
]

= α < 1 and

both f0 and f1 are strictly increasing and strictly concave, α/q is the Lipschitz constant of the IFS (13) over the trapping set
[

(σq)1/(1−α) , σ1/(1−α)
]

.

8



(11) is the same as the optimal dynamics of capital in the one-sector growth model; hence, also the no-overlap
condition 0 < α < 1/2 yielding a support which is a Cantor set is exactly the same. The novelty in our model is
that here what converges to an invariant measure supported on a Cantor set is a transformation of the physical
to human capital ratio (and not a transformation of physical capital); therefore, we have just shown that also
an economy experiencing sustained growth can exhibit a long-run pattern related to some fractal attractor.
Specifically, the SBGP equilibrium has a fractal nature whenever α < 1/2.

Note that Proposition 2 uses the physical capital share 0 < α < 1 as the contraction factor to establish
convergence of (15). Because (14) is a one-to-one transformation of the nonlinear IFS (13), an immediate
consequence of Proposition 2 is the following Corollary 1 establishing weak convergence of (13) to a unique
invariant measure also when α > q, that is, when it is non-contractive and falls outside the class of IFS
considered in Section 2. We shall say that a set A ⊂ R is a generalized (topological) Cantor set if it is totally
disconnected and perfect.4

Corollary 1. For any parameters’ configuration such that 0 < α < 1, 0 < β < 1, 0 < q < 1, 0 < p < 1, and
b > 1/β, envisaging sustained growth for the stochastic discrete-time Uzawa-Lucas model, the nonlinear IFS (13)
converges in the Monge-Kantorovich metric to a unique invariant measure supported either over the full interval

A∗ =
[

(σq)
1/(1−α)

, σ1/(1−α)
]

or over some compact subset of it. In the latter case, whenever 0 < α < 1/2 the

attractor A∗ of (13) is a generalized topological Cantor set contained in
[

(σq)
1/(1−α)

, σ1/(1−α)
]

.

Proof. As there is a one-to-one correspondence between (11) and (14), the fist part is an immediate
consequence of Proposition 2. To establish the second part, we must show that the no-overlap property for
the IFS (13) is the same as the no-overlap property 0 ≤ α < 1/2 for the IFS (15): as both maps f0, f1
are strictly increasing, the former property (see Mitra and Privileggi, 2009) can be written as f0

[

σ1/(1−α)
]

<

f1

[

(σq)
1/(1−α)

]

⇐⇒ σq
[

σ1/(1−α)
]α
< σ

[

(σq)
1/(1−α)

]α

⇐⇒ q (σ)
α/(1−α)

< (σq)
α/(1−α) ⇐⇒ q < qα/(1−α) ⇐⇒

q(2α−1)/(1−α) > 1 ⇐⇒ α < 1/2, establishing the result.

Corollary 1 states that, if 0 < α < 1/2, the attractor of the nonlinear IFS (13) is a distorted (due to nonlin-

earity of the maps in the IFS) Cantor set contained in the interval
[

(σq)
1/(1−α)

, σ1/(1−α)
]

. Mitra and Privileggi

(2004, 2006, 2009) dealt with nonlinear IFS generating optimal policies for the one-sector stochastic optimal
growth model, starting from a class of the type in (13) and then increasing the degree of generality; however,
all results established by the authors hold under assumptions on the primitives of the model guaranteeing that
such IFS satisfy the contraction property, on which all results in Section 2 are based. Proposition 2, joint with
Corollary 1, expands these results outside the family of contractive IFS, at least for the specific functional forms
chosen here. Clearly the logarithmic-Cobb-Douglas specification of our model plays a major role in allowing for
the transformation (14).5

Remark 1. The literature on IFS actually encompasses a more general result in which the assumption that the
IFS mappings are contractions can be slightly relaxed and substituted with a broader notion of “contraction on
average”; in this case existence and uniqueness of an invariant measure µ∗ for the IFS can still be established
(see, e.g., Proposition 5.1 in Diaconis and Friedman, 1999). Specifically, denoting by λi the Lipschitz constant
associated to the ith map of the IFS, for i = 0, . . . ,m− 1, the IFS is contracting on average if

m−1
∑

i=0

pi lnλi < 0, (16)

in which smaller probability weights pi associated to steeper maps neutralize their effect when they are not
contractions, i.e., when λi > 1.

In our model the Lipschitz constants of the two maps in (13) correspond to the slopes of f0 and f1 on the

smallest fixed point (σq)
1/(1−α)

: λ0 = α and λ1 = α/q respectively (see footnote 3). In this case (16) translates

4Recall that a set A ⊆ X, where (X, d) is a metric space, is said to be totally disconnected if its only connected subsets are
one-point sets: formally, for any two distinct points x, y in A, there are two non-empty open disjoint sets U and V such that x ∈ U ,
y ∈ V and (U ∩A) ∪ (V ∩A) = A. A set A ⊆ X is said to be perfect if it is equal to the set of its accumulation points; that is, it
is a closed set which contains no isolated points.

5Incidentally, we note that the same conclusion can be drawn for the one-sector stochastic optimal growth model in Mitra et
al. (2003): the nonlinear IFS representing the optimal capital dynamics there converges weakly to a unique invariant measure
also when the ratio physical capital share over the technological shock is larger than one, implying that the nonlinear IFS is not a
contraction.
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into p lnα+ (1− p) ln (α/q) = lnα− (1− p) ln q < 0, which is equivalent to α/q < e1−p, clearly a more general
assumption than the requirement for both maps to be contractive—corresponding to α/q < 1. However, the
assumptions of Corollary 1 clearly include the case α/q ≥ e1−p, stressing further its contribution outside the
general theory.

Figure 1 shows an example of parameters’ configuration such that the IFS (13) is non-contractive, having
Lipschitz constant, λ1, associated to f1 larger than 1. Specifically, setting the fundamentals as α = 1/3,
q = 1/6, p = 2/3, β = 0.96 and b = 1.052 (so that there is sustained growth as b > 1.042 = 1/β), it turns out

that σ = 0.037 in (12), the fixed points of the two nonlinear maps f0, f1 are χ∗
0 = (σq)

1/(1−α)
= 0.0005 and

χ∗
1 = 0.007 respectively, so that the trapping interval is [χ∗

0, χ
∗
1] = [0.0005, 0.007], and their Lipschitz constants

are λ0 = f ′0 (χ
∗
0) = α = 1/3 and λ1 = f ′1 (χ

∗
0) = α/q = 2 > e1−p = 1.4 > 1; thus, the IFS is non-contractive, not

even ‘on average’. Moreover, as α = 1/3 < 1/2, in the figure it can be clearly seen that the images f0 ([χ
∗
0, χ

∗
1])

and f1 ([χ
∗
0, χ

∗
1]) do not overlap [because f0 (χ

∗
1) < f1 (χ

∗
0)], so that, according to Corollary 1, the attractor A∗

is a generalized topological Cantor set in [χ∗
0, χ

∗
1].

0

χ

χ∗
0 χ∗

1

f0 (χ
∗
0) = χ∗

0

f0 (χ
∗
1)

f1 (χ
∗
0)

f1 (χ
∗
1) = χ∗

1

f0

f1

λ1 > 1

Figure 1: the nonlinear maps f0 and f1 in (13) when α = 1/3, q = 1/6, p = 2/3, β = 0.96 and b = 1.052. Such IFS is
non-contractive, as λ1 = 2 > 1, and its attractor is a generalized topological Cantor set, as the images of the two maps

do not overlap because f0 (χ
∗

1) < f1 (χ
∗

0).

While we are not aware of results establishing singularity vs. absolute continuity of the invariant measures
for nonlinear IFS, Theorem 3 in Section 2 can be applied to provide a partial analysis of the affine IFS (15),
which is summarized below. Note that such result is independent of the size of the shock q, the rate of time
preference β and the human capital productivity coefficient b.

Proposition 3. Let µ∗ be the self-similar measure associated to the IFS (15), (αϕ, αϕ+ (1− α) ; p, (1− p)),
on [0, 1].

i) If 0 < α < pp (1− p)
1−p

, then µ∗ is singular.

ii) If α = pp (1− p)
1−p

and p 6= 1/2, then µ∗ is singular.

iii) If α = p = 1/2, then µ∗ is absolutely continuous—it is the uniform (Lebesgue) measure over [0, 1].

iv) If 1/3 ≤ p ≤ 2/3, then µ∗ is absolutely continuous for Lebesgue a.e. pp (1− p)
1−p

< α < 1.
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v) If 0.156 < p < 1/3 or 2/3 < p < 0.844, then µ∗ is absolutely continuous for Lebesgue a.e. pp (1− p)
1−p

<

α < 0.649, while, for any 1 < γ ≤ 2 such that [pγ + (1− p)
γ
]
1/(γ−1)

< 0.649, µ∗ has density in Lγ for

Lebesgue a.e. [pγ + (1− p)
γ
]
1/(γ−1) ≤ α < 0.649.

4. A Three-Sector Model

We now analyze an extended Uzawa-Lucas model, as presented in La Torre and Marsiglio (2010) and
in Marsiglio (2012), where human capital needs to be endogenously allocated across three sectors: besides
the physical and human capital sector as in the standard Uzawa-Lucas framework, also in the knowledge or
technological sector.6 In this framework the planner has to choose consumption, ct, and the share of human
capital to allocate into physical, ut, and knowledge, vt, production, taking into account the presence of random
shocks, which affect both physical and technological capital production. The technological knowledge, at, evolves
over time because of newly produced knowledge: at+1 = yat . Both the production of the final consumption
good, ykt , and knowledge, yat , use a Cobb-Douglas technology. Physical production combines physical capital,
knowledge capital and the allocated share of human capital: ykt = kαt (utht)

γ
a1−α−γ
t , with 0 < α < 1 and,

0 < γ < 1 − α. Knowledge production combines the existing stock of knowledge and the allocated share of
human capital: yat = (vtht)

1−φ
aφt , with 0 < φ < 1. The remaining share of human capital, 1 − ut − vt > 0,

0 < ut, vt < 1, is used to generate new human capital according to a linear technology (as in Section 3):
ht+1 = b (1− ut − vt)ht, with b > 0. We now assume that both the production of the final good and knowledge
are affected by exogenous random shocks. As in the previous section, we keep assuming that educational choices
are not affected by productivity shocks.

Specifically, the shocks are independent and identically distributed, and take on finite values: zt = {q1, q2, 1}
and ηt ∈ {r, 1}, with 0 < q1 < q2 < 1 and 0 < r < 1, are the shocks affecting multiplicatively the physical
and knowledge sector, respectively. As in La Torre et al. (2011), we assume that only three pairs of shock
values can occur with positive probability, (zt, ηt) ∈ {(q1, r) , (q2, 1) , (1, 1)}, each with (constant) probability

p0, p1 and p2 respectively, where 0 < pi < 1, i = 0, 1, 2, and
∑2

i=0 pi = 1. Such three shock configurations
may be interpreted as: i) a deep economic-financial crisis having wide effects on the economy as a whole and
thus involving both production and knowledge sectors, corresponding to (zt, ηt) = (q1, r), ii) a negative supply
shock, as an increase in raw materials’ prices (e.g., oil), affecting only final production but not knowledge,
corresponding to (zt, ηt) = (q2, 1), and iii) a business-as-usual scenario, corresponding to (zt, ηt) = (1, 1).

The social planner problem consists of choosing the level of consumption and the shares of human capital
to allocate into physical and knowledge production in order to maximize social welfare, taking into account the
dynamic evolution of physical, human and technological capital, the presence of random shocks zt+1 = {q1, q2, 1}
and ηt+1 = {r, 1}, and the given initial conditions k0, h0, a0, z0 and η0:

V (k0, h0, a0, z0, η0) = max
{ct,ut,vt}∞

t=0

E0

∞
∑

t=0

βt ln ct (17)

s.t.















kt+1 = ztk
α
t (utht)

γ
a1−α−γ
t − ct

ht+1 = b (1− ut − vt)ht
at+1 = ηt (vtht)

1−φ
aφt

k0 > 0, h0 > 0, a0 > 0, z0 ∈ {q1, q2, 1} , η0 ∈ {r, 1} are given,

(18)

where E0 denotes expectation at time t = 0. The Bellman equation associated to (17) is:

V (kt, ht, at, zt, ηt) = max
ct,ut,vt

[ln ct + βEtV (kt+1, ht+1, at+1, zt+1, ηt+1)] . (19)

Following the same steps used in the previous section, it is possible to prove the following.

Proposition 4. Given the problem in (17) under (18), the following results hold.

i) The Bellman equation (19) has a solution given by:

V (kt, ht, at, zt, ηt) = θ + θk ln kt + θh lnht + θa ln at + θz ln zt + θη ln ηt,

6Note that referring to this sector as technological sector or another form of sector is totally irrelevant for our analysis. What
really matters is that the third sector produces a form of capital (different from human and physical capital) which is used in the
production of the final consumption good and which is produced using a certain share of human capital. Interpreting this kind of
capital as cultural or social capital would work as well; however, in the following, for the sake of simplicity, we refer to this type of
capital as technological or knowledge capital as in La Torre and Marsiglio (2010).
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where θj, j ∈ {k, h, a, z, η} are defined as follows:

θk =
α

1− αβ
, θh =

γ (1− β) + β (1− α) (1− φ)

(1− αβ) (1− β) (1− βφ)
, θa =

1− α− γ

(1− αβ) (1− βφ)

θz =
1

1− αβ
, θη =

(1− α− γ)β

(1− αβ) (1− βφ)

and the constant term θ is given by:

θ =
1

1− β

{

ln (1− αβ) +
γ

1− αβ
lnu+

αβ

1− αβ
ln (αβ)

+
βγ (1− β) + β2 (1− α) (1− φ)

(1− αβ) (1− β) (1− βφ)
ln [b (1− u− v)]

+
β (1− φ) (1− α− γ)

(1− αβ) (1− βφ)
ln v +

β

1− αβ
E ln z +

(1− α− γ)β2

(1− αβ) (1− βφ)
E ln η

}

,

where u and v are defined in (20) and (21) respectively.

ii) The optimal policy rules for consumption, ct, share of human capital allocated to physical, ut, and knowledge,
vt, production are respectively given by:

ct = (1− αβ)uγztk
α
t h

γ
t a

1−α−γ
t ,

ut ≡
γ (1− β) (1− βφ)

γ (1− β) + β (1− α) (1− φ)
= u ∀t, (20)

vt ≡
β (1− β) (1− φ) (1− α− γ)

γ (1− β) + β (1− α) (1− φ)
= v ∀t. (21)

The optimal dynamics of physical, kt+1, human, ht+1, and technological, at+1, capital are the following:

kt+1 = αβuγztk
α
t h

γ
t a

1−α−γ
t , (22)

ht+1 = b (1− u− v)ht, (23)

at+1 = v1−φηth
1−φ
t aφt . (24)

The proof of Proposition 4 is a long and (algebraically) tedious extension of that of Proposition 1 in La
Torre et al. (2011); hence, we omit it.

Because the human capital sector employs a linear technology, the economy may experience sustained long-
run growth (La Torre and Marsiglio, 2010); specifically, whenever b > 1/ (1− u− v) physical, human and
technological capital grow without any bound according to (22), (23) and (24). Again, by introducing the
physical to human capital, χt = kt/ht, and the knowledge to human capital, ωt = at/ht, ratio variables, we
can recast the previous system into a two-dimensional nonlinear system converging to some compact trapping
subset of R2, which may provide the basis for a stationary SBGP equilibrium:

{

χt+1 = ∆ztχ
α
t ω

1−α−γ
t

ωt+1 = Θηtω
φ
t ,

(25)

where

∆ =
αβuγ

b (1− u− v)
and Θ =

v1−φ

b (1− u− v)
. (26)

Under our assumptions on the stochastic process governing the exogenous shocks, the nonlinear IFS associ-
ated to (25) is defined by the following three maps fi : R

2 → R
2:







f0 (χ, ω) =
(

∆q1χ
αω1−α−γ ,Θrωφ

)

with probability p0
f1 (χ, ω) =

(

∆q2χ
αω1−α−γ ,Θωφ

)

with probability p1
f2 (χ, ω) =

(

∆χαω1−α−γ ,Θωφ
)

with probability p2,
(27)

which has trapping set A defined by the rectangle in R
2 containing all three fixed points of each map in (27),
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that is, the rectangle with opposite vertex having coordinates

(χ∗
0, ω

∗
0) =

(

[

∆q1 (Θr)
(1−α−γ)/(1−φ)

]1/(1−α)

, (Θr)
1/(1−φ)

)

(28)

(χ∗
2, ω

∗
2) =

(

[

∆Θ(1−α−γ)/(1−φ)
]1/(1−α)

,Θ1/(1−φ)

)

;

such a scenario corresponds to growth rate values for the original variables, kt, ht and at, oscillating between
finite positive bounds. If the IFS (27) converges to some invariant measure supported over (possibly a fractal
subset of) A, then we have a stationary SBGP equilibrium.

4.1. Transforming Two-Dimensional Nonlinear IFS into Affine Ones

Following the same approach pursued in Proposition 2, the next proposition shows that, for all feasible
values for parameters α, β, γ, φ, b, q1, q2, r, a one-to-one logarithmic transformation exists such that (25) can be
converted in a conjugate affine IFS converging to an invariant measure supported on a (possibly fractal) subset
of a compact set.

Proposition 5. The one-to-one logarithmic transformation (χt, ωt) → (ϕt, ψt) defined by:

ϕt = ρ1 lnχt + ρ2 lnωt + ρ3 (29)

ψt = ρ4 lnωt + ρ5, (30)

with

ρ1 = −1− α

ln q2
, ρ2 = − (1− α) (ln q2 − ln q1)

ln q2 ln r
, ρ4 = −1− φ

ln r
, (31)

ρ3 =

(

1 +
δ

1− α

)(

1 +
lnΘ

ln r

)

+
ln∆

ln q2
− ln q1 lnΘ

ln q2 ln r
, ρ5 = 1 +

lnΘ

ln r
, (32)

where

δ =
1− α

(1− φ) ln q2
[(1− α− γ) ln r + (φ− α) (ln q2 − ln q1)] , (33)

defines a contractive affine IFS which is equivalent to the nonlinear dynamics in (25) composed of three maps
w0, w1, w2 : R2 → R

2, given by:







w0 (ϕ,ψ) = (αϕ+ δψ, φψ) with probability p0
w1 (ϕ,ψ) = (αϕ+ δψ, φψ + (1− φ)) with probability p1
w2 (ϕ,ψ) = (αϕ+ δψ + (1− α) , φψ + (1− φ)) with probability p2,

(34)

The IFS (34) converges in the Monge-Kantorovich metric to a unique self-similar measure supported on a
compact attractor A∗ ⊂ R

2.

It is convenient to rewrite the IFS in (34) as

{

ϕt+1 = αϕt + δψt + ζt
ψt+1 = φψt + ϑt

, (35)

from which it can be seen that the (conjugate) random vector (ζt, ϑt) ∈ R
2 taking on the three values (0, 0),

(0, 1− φ) and (1− α, 1− φ) corresponds respectively to the three scenarios (q1, r), (q2, 1) and (1, 1) for the
original random values (zt, ηt).

Proof of Proposition 5. We use (29) and (30) to rewrite both sides of (35):

{

ρ1 lnχt+1 + ρ2 lnωt+1 + ρ3 = α (ρ1 lnχt + ρ2 lnωt + ρ3) + δ (ρ4 lnωt + ρ5) + ζt
ρ4 lnωt+1 + ρ5 = φ (ρ4 lnωt + ρ5) + ϑt.

(36)

Then, we use (25) to rewrite the LHS in each equation above so to obtain the following two equations:

ρ1 ln∆ + ρ1 ln zt + ρ1α lnχt + ρ1 (1− α− γ) lnωt + ρ2 lnΘ + ρ2 ln ηt + ρ2φ lnωt + ρ3

= αρ1 lnχt + αρ2 lnωt + αρ3 + δρ4 lnωt + δρ5 + ζt, (37)
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ρ4 lnΘ + ρ4 ln ηt + ρ4φ lnωt + ρ5 = φρ4 lnωt + φρ5 + ϑt. (38)

As the terms αρ1 lnχt in (37) and φρ4 lnωt in (38) both cancel out, in order to let (37) hold independently of
values taken by the variable lnωt, the following condition must hold:

(1− α− γ) ρ1 + φρ2 = αρ2 + δρ4,

which, after substituting for ρ1, ρ2 and ρ4 as in (31), boils down to (33).
Hence, when (33) holds equations (37) and (38) become

ρ1 ln∆ + ρ2 lnΘ + (1− α) ρ3 − δρ5 = ζt − ρ1 ln zt − ρ2 ln ηt (39)

ρ4 lnΘ + (1− φ) ρ5 = ϑt − ρ4 ln ηt. (40)

Note that we have arranged both equations so that the LHS are constant; therefore, both RHS in (39) and (40)
must be constant as well for all the three-values configuration of the (corresponding) random shocks,

(zt, ηt, ζt, ϑt) ∈ {(q1, r, 0, 0) , (q2, 1, 0, 1− φ) , (1, 1, 1− α, 1− φ)} , (41)

that is, the RHS in (39) and (40) must be independent of the random shocks values. Using the three values in
(41) we get the following system of three equations [the first two out of the RHS in (39) and the last out of the
RHS in (40)]:







−ρ1 ln q1 − ρ2 ln r = −ρ1 ln q2
−ρ1 ln q2 = 1− α
−ρ4 ln r = 1− φ,

(42)

which can be solved for ρ1, ρ2 and ρ4, yielding the values in (31). As the RHS in (39) and (40) must be equal
to (1− α) and (1− φ) respectively, ρ3 and ρ5 are computed by substituting the values of ρ1, ρ and ρ4 in (31)
into the LHS of (39) and (40):



















(1− α) ρ3 − δρ5 = (1− α)

[

1 +
ln∆

ln q2
+

(ln q2 − ln q1) lnΘ

ln q2 ln r

]

(1− φ) ρ5 = (1− φ)

(

1 +
lnΘ

ln r

)

,

which easily yield the values in (32).
Therefore, whenever δ is defined by (33), (37) and (38) are always satisfied for the values in (31) and (32),

which is sufficient to establish that the affine IFS in (35) is topologically conjugate to the nonlinear IFS (25). To
complete the proof, note that the upper triangular matrix defining the linear part of (35) has largest eigenvalue
equals to max {α, φ} < 1, which implies that it is contractive; hence, Theorems 1 and 2 in Section 2 apply
and the IFS (35)—or, equivalently, (34)—converges in the Monge-Kantorovich metric to a unique self-similar
measure supported on a compact set A∗ ⊂ R

2.

Remark 2. As it happens for the IFS (13), also the nonlinear IFS (27) may be non-contractive, because there
could exist a neighborhood of the smallest fixed point (χ∗

0, ω
∗
0) defined in (28) on which at least one of the two

components of the largest map f2 (χ, ω) in (27) has (maximum) slope steeper than 1, which, in turn, implies
that its Lipschitz constant is larger than 1, λ2 > 1. Again, in such circumstances the results of Section 2
cannot be directly applied; nonetheless, Proposition 5 establishes indirectly the existence of a unique invariant
measure for (27) even in such non-contractive cases. Because, for any i = 0, 1, 2, the nonlinear maps fi (χ, ω)
in (27) have components which are strictly increasing and strictly concave, their Lipschitz constants λi can be
computed as the largest eigenvalue of their Jacobian matrix evaluated at the smallest fixed point (χ∗

0, ω
∗
0) defined

in (28), which can be easily checked to be λ0 = max {α, φ}, λ1 = max {αq2/q1, φ/r} and λ2 = max {α/q1, φ/r}
respectively. Clearly, under our assumptions it may well occur that either α/q1 > 1 or φ/r > 1 hold; if this is
the case, the nonlinear IFS (27) turns out to be non-contractive, but, as Proposition 5 still applies, such IFS
converges anyway to a unique invariant measure.

For example, this is certainly the case when we set α = 1/3, φ = 0.8, γ = 0.2, q1 = 0.2, q2 = 0.8,
r = 0.1, β = 0.96 and b = 1.052 [so that there is sustained growth as b > 1.042 = 1/ (1− u− v)], because
λ2 = max {α/q1, φ/r} = max {1.667, 8} = 8 > 1. Furthermore, if we set p0 = 1/3 and take any positive
value 0 < p1 < 2/3 so that 0 < p2 = 2/3 − p1 < 1 holds al well, it turns out that the IFS (27) is not even
‘contracting on average’ according to (16). Indeed, noting that λ0 = max {α, φ} = max {1/3, 0.8} = 0.8 and
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λ1 = max {αq2/q1, φ/r} = max {1.333, 8} = 8, we have

2
∑

i=0

pi lnλi =
1

3
ln (0.8) + (p1 + p2) ln (8) =

1

3
ln (0.8) +

2

3
ln (8) ≃ 1.312 > 0.

4.2. Generalized Sierpinski Gaskets as Attractors

In this subsection we investigate the possibility of generating known fractals as attractors of the IFS (35);
specifically, we focus our attention on Sierpinski gasket-like attractors. Let us rewrite the IFS (35) as

[

ϕt+1

ψt+1

]

=

[

α δ
0 φ

] [

ϕt

ψt

]

+

[

ζt
ϑt

]

, (43)

where the vector (ζt, ϑt) ∈ R
2 takes on the three values (0, 0), (0, 1− φ) and (1− α, 1− φ). It is well known that,

in order to generate a Sierpinski gasket-type attractor the linear part in (43) must be a diagonal matrix, i.e.,
δ = 0 must hold. Setting δ = 0 in condition (33) of Proposition 5 implies that some restrictions on parameters
must be imposed; specifically, the following relation among the random shocks values must be satisfied:

r =

(

q2
q1

)

α−φ
1−α−γ

. (44)

That is, one random shock value becomes a function of the other two; to ease reading, in (44) we set the value
of the shock on knowledge production as a function of the two shocks affecting the final good production. Note
that, in turn, this restriction implies that α < φ must hold, as, because under our assumptions q2/q1 > 1 and
1− α− γ > 0, this additional restriction is necessary to have r < 1.

Corollary 2. If α < φ and r is defined according to (44), then the IFS (34)/(35) converges in the Monge-
Kantorovich metric to a unique self-similar measure supported on a generalized Sierpinski gasket7 with vertices
(0, 0), (0, 1) and (1, 1).

Proof. When δ = 0 the three maps IFS (35) becomes

{

ϕt+1 = αϕt + ζt
ψt+1 = φψt + ϑt,

(45)

which, when (ζt, ϑt) ∈ {(0, 0) , (0, 1− φ) , (1− α, 1− φ)}, is well known to have a generalized Sierpinski gasket
as attractor centered in the triangle having vertex the three fixed points of the maps in (45), (0, 0), (0, 1) and
(1, 1) respectively.

Note that the condition α < φ required in Corollary 2 precludes the possibility of generating the standard,
symmetric Sierpinski triangle with vertices(0, 0), (0, 1) and (1, 1) through (35), as its construction postulates
that α = φ = 1/2 must hold. Hence, the attractor of (35) must always be a generalized Sierpinski gasket, that is,
a Sierpinski gasket-like set whose prefractals8 are composed by triangles that do not overlap for smaller values
of α and φ, while they tend to overlap for larger values of either α or φ (see the examples in Section 5).

Remark 3. Corollary 2 emphasizes the role of the coefficient δ defined in (33) in the proof of Proposition 5:
it allows the transformation defined by (29) and (30) to have full control over all parameters’ values. In other
words, it acts as a correction factor affecting variable ψt in (35) in such a way so to balance the effects induced
by all model parameters (factor shares and exogenous shocks’ values), letting the log-transformation always work,
for any feasible parameters’ values. Whenever, as in Corollary 2, one puts some restrictions on the δ value, the
range of applicability of Proposition 5 dramatically narrows, as heavy restrictions on parameters immediately
become necessary in order to maintain the result of Proposition 5.

7By generalized Sierpinski gasket we mean a standard Sierpinski gasket whose pre-fractals are composed by triangles that may
or may not overlap, depending on the parameters configuration.

8The sets obtained after each iteration of the map (34) are called prefractals.
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4.3. Singular Self-similar Measures

The IFS defined by (34)/(35) is two-dimensional, mapping R
2 into itself; therefore, in order to pursue

singularity vs. absolute continuity analysis on its self-similar measure we should rely on Theorem 4 of Section
2. Unfortunately, this theorem can be applied only to affine IFS which are similitudes according to condition
(3), that is, if and only if they are defined through some orthogonal matrix Qi as in (4). As a matter of fact,
the linear part of (35) is given by the upper triangular matrix

Q =

[

α δ
0 φ

]

,

which precludes any application of this Theorem unless δ = 0 and α = φ, which, according to the discussion in
Section 4.2, is incompatible with the assumptions on parameters’ values for our model.9

However, by applying the main result of Section 2, Theorem 5, to the IFS (35) it is possible to establish the
following sufficient condition for the singularity of the invariant measure. As there are three maps in the IFS
(34), we can set only two out of the three probabilities associated to each map wi, say p0 and p1, as the third
must complement to 1: p2 = 1− p0 − p1. Let

E (p0, p1) = pp0

0 p
p1

1 (1− p0 − p1)
1−p0−p1 (46)

denote the (exponential of the) entropy of the Bernoulli process underlying the exogenous shocks in our model.

Proposition 6. If αφ < E (p0, p1), with E (p0, p1) defined in (46), then the invariant measure µ∗ of the IFS
(34)/(35) is singular.

p0

p1

E (p0, p1)

0

0.2

0.4

0.5

0.5

0.6

0.8

1

1

1

Figure 2: if αφ < E (p0, p1) on the triangle {(p0, p1) : p0 ≥ 0, p1 ≥ 0, p0 + p1 ≤ 1}, then the invariant measure µ∗ of
the IFS (34) is singular.

Figure 2 illustrates Proposition 6: any value for the product αφ below the entropy curve, i.e., satisfying
0 < αφ < E (p0, p1), characterizes a dynamic defined by the IFS (34) that converges to a singular self-similar

9Note that, while on the one hand Theorem 4 is sufficiently general to encompass maps wi in the IFS with different contraction
factors [which is not the case with (34)/(35)], on the other hand the requirement that they are similitudes implies that each map wi

must apply the same contraction factor to both variables, ϕ and ψ, as the contraction shrink must be the same along any direction
in R

2.
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measure µ∗. Nothing can be said on the possible absolute continuity of µ∗ when αφ ≥ E (p0, p1). Note that
when two out of the three probabilities pi are both close to 0 the invariant measure µ∗ turns out to be singular
for most values of α and φ.

Consistently with Proposition 3, Proposition 6 states that singular invariant measures are associated with
economies having small physical capital share in final good production (α); the novelty for the three-sector
version is that the same effect can also be determined by a small knowledge share (φ), or, equivalently, a
large human capital share in the knowledge sector (1 − φ), while the human capital share in final production
(γ), does not affect the nature of the invariant measure. Again, such result is independent of the size of the
shocks q1, q2 and r, the rate of time preference β and the human capital productivity coefficient b. Note that
empirical estimates of the physical capital share are about 1/3 (Bernanke and Gurkaynak, 2002); thus, in view of
Propositions 3 and 6, empirically relevant values of α can be considered ‘small’. While clear empirical estimates
of the human capital share in knowledge production do not exist, it is reasonable to believe the technological
sector to be human capital intensive (Lucas, 1988), such that relevant values of parameter 1 − φ should be
considered ‘large’, or, equivalently, those of φ should be considered ‘small’. Both these results go in the same
direction to ensure that the inequality in Proposition 6 is met, meaning that for an empirically realistic model’s
parameterization the invariant measure µ∗ is likely to be singular.

5. Examples

Below we present some examples of attractors for certain parameterizations of the model described in Section
4. In all examples we keep constant the discount factor, β = 0.96, and the random shocks’ values on the final
consumption good production, q1 = 0.2 and q2 = 0.6; moreover, we set b = 1/ (1− u− v)+ 0.01, where u and v
are defined in (20) and (21) respectively, so to have always sustained growth. The first three examples cover the
general setting envisaged by Proposition 5 for which we keep constant the random shock value on knowledge
production, r = 0.5, while the last three satisfy the restrictions of Corollary 2—so that α < φ must hold and
the r value is constrained to be given by (44)—and thus the IFS (34) produces generalized Sierpinski gaskets
as attractors.

Figure 3(a) shows a good estimate of the attractor of the affine IFS (34), obtained after 8 iterations of the
operator (2) associated with it,10 starting from the triangle with vertices given by the fixed points of the three
maps in (34):

(ϕ∗
0, ψ

∗
0) = (0, 0) , (ϕ∗

1, ψ
∗
1) =

(

δ

1− α
, 1

)

, (ϕ∗
2, ψ

∗
2) =

(

δ

1− α
+ 1, 1

)

, (47)

where δ is given by (33), for α = φ = 1/2 and γ = 0.1. For such parameterization the ‘correction factor’
turns out to be δ = 0.54277, which, according to (47), implies that ϕ∗

1 = 1.08553 and ϕ∗
2 = 2.08553. Figure

3(b) reports an estimate of the attractor associated to the nonlinear IFS (27) obtained after 8 iterations of the
operator (2), which, according to Proposition 5, corresponds to the attractor in Figure 3(a) for the original
nonlinear optimal dynamic described in (25). The latter iterations start from the triangle with vertices given
by the fixed points of the three maps in (27), which, recalling (26), are computed as

(χ∗
0, ω

∗
0) =

(

[

∆q1 (Θr)
(1−α−γ)/(1−φ)

]1/(1−α)

, (Θr)
1/(1−φ)

)

= (0.00007, 0.00772)

(χ∗
1, ω

∗
1) =

(

[

∆q2 (Θr)
(1−α−γ)/(1−φ)

]1/(1−α)

,Θ1/(1−φ)

)

= (0.00194, 0.03088)

(χ∗
2, ω

∗
2) =

(

[

∆Θ(1−α−γ)/(1−φ)
]1/(1−α)

,Θ1/(1−φ)

)

= (0.00540, 0.03088) .

As αφ = 1/4 < 1/3 = min {E (p0, p1) : p0 ≥ 0, p1 ≥ 0, p0 + p1 ≤ 1} = E (1/3, 1/3), according to Proposition
6 the invariant measure µ∗ supported over the attractor in Figure 3(a) must be singular for any choice of
probabilities p0, p1.

Figure 4(a) shows the estimate of the attractor of the affine IFS (34), obtained through the same construction
as before, for α = 1/3, φ = 2/3 and γ = 1/3. In this case δ = −0.52916, a negative value, which, according
to (47), implies that ϕ∗

1 = −0.79374, also negative, and ϕ∗
2 = 0.20626; in fact, the attractor lies across the first

and second orthant. Figure 4(b) reports an estimate of the attractor of the corresponding nonlinear IFS (27).

10The Maple 18 code generating all attractor approximations in this section is available from the authors upon request.
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Figure 3: first 8 iterations of (a) the IFS (34) and (b) the IFS (27) for α = φ = 1/2 and γ = 0.1.

The three fixed points in the latter case now are

(χ∗
0, ω

∗
0) = (0.00011, 0.00229) , (χ∗

1, ω
∗
1) = (0.00163, 0.01829) , (χ∗

2, ω
∗
2) = (0.00351, 0.01829) .

Again, as αφ = 2/9 < 1/3, the invariant measure µ∗ supported over the generalized Sierpinski gasket in Figure
4(a) is singular for any choice of probabilities p0, p1.

Figure 5(a) shows the estimate of the attractor of the affine IFS (34), again obtained through the same
construction as before, for α = 0.7, φ = 1/2 and γ = 0.15. Now δ = 0.38020, which, according to (47), implies
that ϕ∗

1 = 1.26734 and ϕ∗
2 = 2.26734. Figure 5(b) reports the attractor of the corresponding nonlinear IFS (27).

The fixed points in the latter case are

(χ∗
0, ω

∗
0) = (0.00001, 0.00471) , (χ∗

1, ω
∗
1) = (0.00093, 0.01884) , (χ∗

2, ω
∗
2) = (0.00510, 0.01884) .

Because now αφ = 0.35 > 1/3, according to Proposition 6 we cannot exclude that the invariant measure µ∗

ϕ

ψ

0−0.5
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0.6

0.8
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1 ϕ∗
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2

ω∗
0

ω∗
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2
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Figure 4: first 8 iterations of (a) the IFS (34) and (b) the IFS (27) for α = 1/3, φ = 2/3 and γ = 1/3.
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Figure 5: first 8 iterations of (a) the IFS (34) and (b) the IFS (27) for α = 0.7, φ = 1/2 and γ = 0.15.

supported over the attractor in Figure 5(a) may be absolutely continuous for some values of probabilities p0, p1,
possibly for p0 = p1 = 1/3 or values around 1/3. In fact, both attractors in Figure 5 exhibit enough overlapping
of the prefractals to allow for positive 2-dimensional Lebesgue measure of the attractor itself and an absolutely
continuous invariant measure supported on it.

The last three examples deal with attractors which are generalized Sierpinski gasket according to Corollary
2; hence, from now on α < φ will hold and, by (44),

r =

(

q2
q1

)

α−φ
1−α−γ

= 3
α−φ

1−α−γ . (48)

Now the fixed points of the three maps in (34) are always (ϕ∗
0, ψ

∗
0) = (0, 0), (ϕ∗

1, ψ
∗
1) = (0, 1) and (ϕ∗

2, ψ
∗
2) = (1, 1).

In Figure 6 the attractors of both the affine IFS (34) and the nonlinear IFS (27) are obtained through the
usual procedure for α = 1/2, φ = 0.501 and γ = 0.4, which, according to (48), imply that r = 0.98907. Note
that in Figure 6(a) the plot resembles the standard symmetric Sierpinski triangle; this occurs because, although
α < φ, in this example we chose a value for φ very close to α = 1/2. The fixed points of the maps in the
corresponding nonlinear IFS (27) in Figure 6(b) are

(χ∗
0, ω

∗
0) = (0.00022, 0.00720) , (χ∗

1, ω
∗
1) = (0.00197, 0.00736) , (χ∗

2, ω
∗
2) = (0.00546, 0.00736) .

As αφ = 0.2505 < 1/3, also in this case the invariant measure µ∗ supported over the attractor in Figure 6(a) is
singular for any choice of probabilities p0, p1.

Remark 4. Attractors similar to those in Figure 6 can be constructed outside the range of application of
Corollary 2 by setting α = φ = 1/2, provided that a value for γ sufficiently close to 1 − α = 1/2 is chosen.
Indeed, if α = φ and γ ≃ 1−α, the value of δ in (33) is close to 0—e.g., if γ = 0.499 and all other parameters’
values are as in the first example, δ = 0.00136—yielding an IFS (34)/(35) with attractor resembling the standard
symmetric Sierpinski triangle.

Note that if one sets γ = 1 − α = 1/2, the attractor becomes the exact standard symmetric Sierpinski
triangle; however, when substituted into (18) or into (25), the condition γ = 1− α implies the disappearance of
the knowledge sector in our model. In other words, the only way to obtain a symmetric Sierpinski gasket as the
attractor of a three-sector growth model is by eliminating one of the sectors, thus annihilating the very nature
of the model itself, transforming it into the two-dimensional one discussed in Section 3, which, after detrending
its two state variables kt and ht, exhibits a one-dimensional dynamic possibly converging to a Cantor set. In
this case, the lack of the ‘correction factor’ δ let the two logarithmic transformations defined by (29)–(30) in
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Figure 6: first 8 iterations of (a) the IFS (34) and (b) the IFS (27) for α = 1/2, φ = 0.501, γ = 0.4 and r = 0.98907.

Proposition 5 become linearly dependent,11 thus ruling out any chance of keeping the two-dimensional nature
of the original dynamic (25) through the transformation, as it necessarily collapses into the one-dimensional
dynamic (15) tackled in Section 3.

In Figure 7 we consider an example with smaller values of both α and φ: specifically, we consider α = 0.4,
φ = 0.45 and γ = 0.3. From (48) we get r = 0.83268. The fixed points of the three maps in (27) in Figure 7(b)
are

(χ∗
0, ω

∗
0) = (0.00023, 0.01358) , (χ∗

1, ω
∗
1) = (0.00169, 0.01894) , (χ∗

2, ω
∗
2) = (0.00396, 0.01894) .

Clearly, as αφ = 0.18 < 1/3, the invariant measure µ∗ supported over the attractor in Figure 7(a) is singular
for any choice of probabilities p0, p1. This property is confirmed by the strong no-overlapping of the prefractals
in both Figures 7(a) and 7(b).

Finally, Figure 8 reports an example with larger values of both α and φ: α = 0.6 and φ = 0.65 and γ = 0.2,
so that, according to (48), r = 0.75984. The fixed points of the three maps in (27) in Figure 8(b) are

(χ∗
0, ω

∗
0) = (0.00006, 0.00838) , (χ∗

1, ω
∗
1) = (0.00135, 0.01837) , (χ∗

2, ω
∗
2) = (0.00484, 0.01837) .

In this case αφ = 0.39 > 1/3, so that, according to Proposition 6, an absolutely continuous invariant measure µ∗

supported over the attractor in Figure 8(a) cannot be ruled out for some values of probabilities p0, p1, possibly
for p0 = p1 = 1/3. As a matter of fact, both attractors in Figure 8 exhibit enough overlapping of the prefractals
so that the attractor may have positive Lebesgue measure, possibly with an absolutely continuous invariant
measure supported on it.

6. Conclusions

In this paper we extend the analysis of stochastic discrete-time optimal growth models to consider the
multi-sectoral framework in the context of sustained growth. We consider first the simplest case, namely the
Uzawa-Lucas (1988) two-sector model, and then an extended three-sector model, as in La Torre and Marsiglio
(2010). Both the models exhibit two peculiar features: the log-Cobb-Douglas structure of preferences and
production functions in each sector allows for a closed form solution of the Bellman equation, thus permitting
to explicitly compute the optimal dynamics of the state variables; moreover, through simple log-transformations
of the capital ratio variable dynamics we are able to show that the model economy converges to an invariant
measure supported on some compact set which, under some restrictions on parameters, may exhibit a fractal

11We thank L. Gardini for raising this observation during the MDEF 2014 workshop.
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Figure 7: first 8 iterations of (a) the IFS (34) and (b) the IFS (27) for α = 0.4, φ = 0.45, γ = 0.3 and r = 0.83268.

nature (a generalized Cantor set in the case of the two-sector model, and a generalized Sierpinski gasket in the
case of the three-sector model).

By exploiting some recent results on the IFS theory, we are also able to establish some sufficient conditions
under which the invariant measure turns out to be either singular or absolute continuous with respect to Lebesgue
measure (for the three-sector model we only consider the singularity with respect to Lebesgue measure). By
comparing the outcomes of the two and three-sector model, it is clear that the latter framework is much richer
and allows for a greater variety of alternative configurations in terms of singularity and absolute continuity of
the self-similar measure associated to the IFS. We are also able to show that, in both models, for a rich range
of parameter value (also for an empirically realistic model’s parameterization) the invariant measure is likely to
be singular.

This paper significantly extends the literature on stochastic growth and fractal attractors, by showing that
also stochastic BGP equilibria can have a fractal nature and showing that for empirically relevant parameteri-
zations the invariant measure is singular. Despite the new insights provided by these results, new questions for
future research naturally arise. In particular, since in Section 4 we are able only to comment on the singularity
of the invariant measure, the issue related to its eventual absolute continuity is still unsolved; it would be inter-
esting at least to build an example converging to some absolutely continuous invariant measure. Moreover, since
the literature has only focused thus far on log-linear transformations of the optimal dynamics associated with
stochastic growth models (the same approach we use in our paper), it might be interesting to try characterizing
the singularity vs. absolute continuity of the invariant measure directly for the original nonlinear IFS—i.e.,
without transforming them into affine IFS—in both two and three-sector models. These issues are left for future
research.
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