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Abstract

We analyze the general equilibrium of an economy in which a competitive industry pro-

duces non-exclusive insurance services. The equilibrium is inefficient because insurance con-

tracts cannot control moral hazard, and welfare can be improved by policies that reduce insur-

ance by increasing its price above marginal cost. We discuss how insurance production costs

that exceed expected claim payments interact with moral hazard in determining the equilib-

rium’s inefficiency, and show that these costs can make insurance premia so actuarially unfair

as to validate the standard first-order conditions we exploit in our analysis.
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1 Introduction

When a single exclusive insurer of a specific risk does not observe the insured’s behavior, but

knows how that behavior influences the probability of claims, partial insurance can improve

efficiency by giving the insured incentives to exert loss-prevention efforts. If the insured may

also obtain coverage from other insurers, however, it can be difficult or impossible to ensure that

losses are only partially insured. For example, rental car contracts that do not include collision

damage insurance are supposed to encourage safe driving, but do not give such incentives if

customers are covered by secondary car insurance contracts.

Competition among non-exclusive insurers implies that coverage is excessive in equilibrium

(Pauly, 1974; similar inefficiencies can arise in credit markets where default probabilities de-

pend on the total amount of credit issued by competing lenders, as in e.g. Bizer and DeMarzo,

1992). Insurers can address this problem by sharing information about each individual’s cover-

age, requiring the presentation of original receipts to prevent the submission of claims to other

insurers, or refusing to pay claims for risks covered by multiple policies. It can be difficult to

discover hidden insurance, however, and the resulting moral-hazard inefficiencies may be par-

ticularly relevant for health and income risks, covered by public programs as well as by many

privately held contingent assets.

This article revisits such issues, focusing on the effect of moral hazard in a general equilib-

rium model with costly insurance production. In the model economy, introduced in Section 2,

a continuous unobservable effort choice influences the probability of two possible income re-

alizations. A standard competitive-industry cost structure represents “costs of obtaining infor-

mation and running markets [that] are no less real costs than other forms of production costs”

(Greenwald and Stiglitz, 1986, p. 259). We assume that all means to ensure exclusivity are fully

exploited, but are not sufficient to rule out residual non-exclusive insurance, which we model

in terms of anonymous and competitive trade of infinitely divisible contracts akin to Arrow-

Debreu securities. These convenient assumptions make it possible to use standard optimality

conditions, and to establish in Section 3 that the equilibrium is constrained inefficient because

trade of non-exclusive unit insurance contracts neglects moral-hazard effects. We discuss how

the inefficiency depends on the interaction of moral hazard with insurance production costs

and show in Section 4 how society can improve welfare. To exploit the incentive effects of partial

insurance, optimal public policy reduces equilibrium insurance by increasing insurance premia
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above production costs.

Although the model’s insurance production function is stylized, insurance production costs

are realistic: the OECD Insurance Statistics Yearbook records operating expenses amounting

to about one third of private non-life insurance claims in advanced countries. These costs in-

fluence the size of moral hazard inefficiencies and policy interventions in the model, and make

the analysis of competitive insurance markets more straightforward than previous analyses sug-

gest. When competitively priced contingent securities pay off with a probability that depends

on hidden actions, standard functional form assumptions are not sufficient to ensure that the

expected utility of individual price-takers is concave in effort and insurance, and an equilibrium

may fail to exist (Helpman and Laffont, 1975). In the economy we model, the technical results

collected in Section 5 establish that the cost of processing claims can make non-exclusive in-

surance so partial as to ensure that, under interpretable conditions, the objective function of

price-taking individuals is locally concave at points where the first-order conditions hold, and

that the equilibrium is unique. Section 6 concludes and discusses how the model’s convenient

but restrictive assumptions could be modified in further work.

2 Model

A continuum, normalized to measure one, of ex-ante identical risk-averse individuals experi-

ences idiosyncratic income shocks.1 The shocks are observable and verifiable but occur with

probabilities that depend on unobservable effort. An individual’s resource endowment amounts

to y with probability 1−π(e), but with probability π(e) may be reduced to y−∆, ∆ > 0. We make

the standard assumptions about the utility derived from consumption: the function U : R→ R

is continuously differentiable at least twice and strictly increasing, and strictly concave on an

interval C ⊂ R+. To ensure interior optima, we also assume limx↓inf C U
′(x) = ∞. It will be con-

venient in what follows to work with the function u(c) = U(y+c), where c denotes the difference

between consumption and y.

Effort, denoted e, additively decreases utility and determines the probability π(e) of the neg-

ative shock. We assume

1Our derivations and results are applicable to economies with observably heterogeneous endowments

and/or preferences. Pareto-improving policies would then need to include ex ante transfers.
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[PROB] 0 < π(e) < 1; π′(e) < 0, π′′(e) > 0 ∀ e ≥ 0; lime↓0 π
′(e) = −∞ :

both realizations have positive probability at all feasible effort levels and the probability of the

negative shock is always reduced by higher effort, ensuring that there is moral hazard whenever

effort is private information; to obtain an interior optimal solution, π(e) is infinitely steep at the

zero lower bound of feasible effort.

Production of insurance

The only production is the provision of insurance services. An industry of N firms sells non-

exclusive insurance contracts. Realized shocks are verifiable; hence, insurance contracts in

terms of the single good can specify payment of a premium p for a unit payoff in the event of a

negative income shock. Consumer and insurer rationality dictates neither party suffers a sure

loss; hence, 0 ≤ p ≤ 1 in any equilibrium. For analytical convenience, we suppose that con-

tracts may be traded in continuously divisible quantities. As usual, competitive behavior can be

approximately realistic ifN is large and strategic interactions can be disregarded. We further as-

sume that the number of contracts purchased by each individual is unobservable: anonymous

competitive trade of contingent securities rules out the optimally nonlinear prices each insurer

would charge if it were possible to keep track of each individual’s contracts.2

In a symmetric competitive equilibrium, let the individuals’ common choice of effort be ē

and their common choice of insurance be q̄. If there are N insurers, each is issuing x = q̄/N

contracts (continuous divisibility implies there is no integer constraint for the number of poli-

cies). Taking as given the equilibrium price p of unit contingent claims, insurers maximize prof-

its when that price equals the marginal cost of insurance services, which is only realized when

a claim is made (underwriting costs for contracts that do not result in claims would have sub-

stantively similar but analytically less elegant implications).

If the variable cost of each insurance firm is a differentiable function γ(x) of the claims it

pays, and a fraction π(ē) of contracts issued results in claims, the competitive premium charged

2Even when contracts with other insurers are hidden, each insurer does observe the quantity of in-

surance it sells to each individual. Because customers who purchase more insurance should be charged

higher unit prices, and split hidden insurance evenly across insurers. Hence, effort responds to each firm’s

pricing policy only by a factor of 1/N . IfN is large, nonlinear pricing has a small effect on the firm’s profits,

can be prevented by bookkeeping costs, and has negligible implications for the economy’s equilibrium.
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by risk-neutral insurers equals the expected marginal cost of issuing a unit insurance contract:

p(q̄, ē) = π(ē)γ′ (q̄/N) . (1)

We assume that

[COST] γ′(x) > 0 ∀x ≥ 0, γ′′(x) > 0 ∀x ≥ 0; γ′(0) = 1.

Because γ(0) = 0 and γ′(0) = 1, limx↓0 (γ(x)/x) = 1: the marginal and average variable cost

of infinitesimally small amounts of insurance coincide with the claim payment, ensuring that

insurance is strictly positive in competitive equilibrium; a zero-insurance corner solution might

be optimal if instead limx↓0 (γ(x)/x) > 1 implied that small amounts of insurance are unfairly

priced. Because γ′′(x) > 0, marginal cost is increasing at the firm level: there are decreasing

returns to the processing or verification activities entailed by the delivery of contingent claim

units.

We suppose that organizing risk-sharing operations entails a fixed φ for every active insurer.

This rules out non-intermediated trade and lets insurers be neutral with respect to idiosyncratic

risk, because they each issue a finitely large mass of infinitesimal contracts: profits are negative

at q̄/N = 0 and increasing in q̄/N , so for φ > 0 the free-entry zero-profit condition

π(ē)
(
γ′
( q̄
N

) q̄

N
− γ

( q̄
N

))
− φ = 0 (2)

implies q̄/N > 0. By [COST], strictly positive insurance has marginal cost γ′ (q̄/N) > 1, and it is

unfairly priced at p(q̄, ē) > π(ē) by (1).3

Demand for insurance

Individuals can only take long positions in contingent securities, and may only buy rather than

sell insurance. When they purchase q units of insurance at price p, the difference between their

consumption and income is ch = −qp if the negative shock does not occur, and c` = −∆ + (1−

p)q = ch −∆ + q if it does. Under the assumptions above, the effort and insurance choices that

3Under free entry, N adjusts to ensure that each firm’s insurance services are produced at the zero-

profit efficient scale, and constant returns at the industry level conveniently simplify characterization of

the equilibrium. The working paper version also considers the case where a fixed number of competitive

firms are owned by the economy’s representative individual. The analysis is complicated by the need to

account for rents, but delivers a qualitatively identical characterization of the economy’s inefficiency and

of corrective policies.
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maximize

U(q, e) = −e+
(

1− π(e)
)
u (−qp) + π(e)u

(
−∆ + (1− p)q

)
(3)

must satisfy first-order conditions

π′(e)
(
u
(
−∆ + (1− p)q

)
− u(−qp)

)
= 1 (4)

and (
1− π(e)

)
u′ (−qp) p = π(e)u′

(
−∆ + (1− p)q

)
(1− p). (5)

3 Equilibrium analysis

In competitive equilibrium:

(i) Effort e† and insurance q† maximize individual utility (3) at given p;

(ii) Insurance supply qs by each of N insurers maximizes profits taking as given p and π (ē), and

N is such that profits are zero;

(iii) The insurance market clears (qs = q† = q̄) and equilibrium effort is individually optimal

(e† = ē).

Points (i) and (iii) imply that equilibrium effort and insurance satisfy conditions (4) and (5),

which by our assumptions are necessary for individual optimization and relate the equilibrium

insurance premium to insurance and effort through a differentiable function p (q̄, ē). These con-

ditions are also sufficient if the first-order approach is valid, as we assume now, deferring to

Section 5 the discussion of what may ensure that this is the case.

Points (ii) and (iii) imply p (q̄, ē) = π(ē)γ′ (q̄/N) as in (1). Hence, in equilibrium the effort

first-order condition (4) reads

π′(ē)

(
u
(
−∆ + q̄ − π(ē)γ′ (q̄/N) q̄

)
− u
(
− π(ē)γ′ (q̄/N) q̄

))
= 1, (6)

and the insurance first-order condition (5) reads

u′
(
−∆ + q̄ − π(ē)γ′ (q̄/N) q̄

)
u′
(
− π(ē)γ′ (q̄/N) q̄

) =
γ′ (q̄/N)

(
1− π(ē)

)
1− π(ē)γ′ (q̄/N)

. (7)

In the Appendix we show formally that, at equilibrium, insurance is positive but actuarially

unfair, hence only partial:
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Result 1 [COST] implies that 0 < q̄ < ∆ in equilibrium.

The zero-profit condition (2) implies that, if the negative shock is not realized,

ch = −qp (ē, q̄) = −
(
π(ē)γ (q̄/N) + φ

)
N : (8)

consumption is reduced by the total cost

k(q̄, ē) ≡ π(ē)γ (q̄/N)N + φN = q̄π(ē)γ′ (q̄/N) (9)

of insurance payoffs. We proceed to study how asymmetric information prevents this resource

cost from being efficiently traded off against the benefits of consumption stability for the risk-

averse representative individual.

Socially optimal insurance

Under the maintained assumption that effort choices are private, the planner cannot control

them directly.4 To characterize the additional inefficiency implied by hidden non-exclusive in-

surance, we consider the problem that would be solved by a planner who can control insurance.

The planner knows that insurance determines individual effort through a function e(q) that is

differentiable under our assumptions and that effort satisfies (4), as long as first-order condi-

tions are sufficient as well as necessary. Differentiating either side of the cost expressions in

(9) and imposing (2) yields ∂k(q, e)/∂q = π(e)γ′
(
q
N

)
, and (4) cancels the welfare effect of the

variation of effort caused by changes of insurance. Hence, the problem

max
q
− e(q) +

(
1− π

(
e(q)

))
u
(
− qp (q, e(q))

)
+ π

(
e(q)

)
u
(
−∆ + q − qp (q, e(q))

)
has the first-order condition

−
(

1− π
(
e(q∗)

))
u′ (c∗h)

dch
dq

= π
(
e(q∗)

)
u′ (c∗` )

(
1 +

dch
dq

)
, (10)

where c∗h = −q∗p (q∗, e(q∗)) and c∗` = c∗h−∆+q∗ optimize ex-ante utility subject to unobservable

effort.

4If this were possible, the planner would recognize that effort reduces the probability of the negative

shock, and implies a smaller expected utility loss and smaller insurance production costs: differentiating

the cost expressions on either side of (9) and imposing (2) yields ∂k(q, e)/∂e = π′(e)γ
(
q
N

)
N < 0.
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Equilibrium inefficiency

Competitive trade of non-exclusive or hidden insurance takes its price as given, but the social

optimality condition takes into account the effects of insurance on the equilibrium price. In-

serting

dch
dq

= −p
(
q, e(q)

)
− q

dp
(
q, e(q)

)
dq

(11)

in (10), we see that the social efficiency condition differs from the individual first-order condi-

tion (5) whenever dp
(
q, e(q)

)
/dq 6= 0.

We can show that, as in Pauly’s (1974) partial equilibrium and Helpman and Laffont’s (1975)

general equilibrium with actuarially fair contracts, insurance is too cheap in the economy we

model:

Proposition 1 The social cost of insurance differs from the competitive general equilibrium price

by a positive wedge

q̄
dp
(
q̄, e(q̄)

)
dq̄

= π′(ē)
dē

dq̄
γ
( q̄
N

)
N > 0. (12)

The proof, in the Appendix, uses both supply and demand relationships to show that, at the

margin, more insurance would reduce effort in equilibrium. Because less effort increases the

probability of negative shocks, it also increases the total variable cost of insurance services and

the consumption cost (8). Marginal-cost pricing of insurance fails to account for the effects of

insurance on effort and on insurance production costs, so the socially optimal ratio of marginal

utilities is larger than that implied by price-taking individual optimization, and non-exclusive

insurance is excessive.

In our model economy, the wedge (12) is the product of three terms. The first two are π′(ē),

which determines the intensity of moral hazard, and dē/dq̄, which represents the negative ef-

fect of insurance on loss-prevention efforts. Both of these, and the wedge, would vanish in the

absence of moral hazard, and the equilibrium would be efficient regardless of insurance costs.

When π′(ē) < 0, conversely, insurance production costs interact with moral hazard in determin-

ing equilibrium inefficiency: excessive hidden insurance has a larger resource cost when [COST]

implies that γ (q̄/N)N > q̄; i.e., that insurance absorbs more than claim payments. Production

costs also influence equilibrium insurance through their effect on equilibrium prices which, as

we discuss next, may be influenced by public policy.
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4 Policy implications

Unlike atomistic agents, society takes into account the equilibrium effect of individual choices

on the price of insurance. A social planner who does not observe individual effort and insurance

positions cannot directly control individual consumption, but may improve efficiency with poli-

cies that influence individual behavior through observable aggregate variables.

In the model economy the identity of covered individuals is not observable, but the planner

may observe the total amount of insurance produced by each firm, or transaction prices. Then,

as in Helpman and Laffont (1975), the inefficiency identified by Proposition 1 can be targeted

by indirect taxation. In reality, specific taxes are indeed charged for insurance (in the United

Kingdom, for example, an Insurance Premium Tax is imposed on common non-life contracts at

rates of 6% and 20%).

When effort and insurance are private information, non-concavities generally make it prob-

lematic to remove wedges between individual and social optimality with indirect mechanisms

that, like taxes, distort the prices facing individual choice problems. In our setting, however,

welfare-enhancing taxation is feasible because local concavity is preserved when insurance be-

comes more partial than required by the sufficient conditions discussed in Section 5 below.

If a unit tax τ is due on insurance contracts, individuals pay a premium

p = π(ē)γ′ (q̄/N) + τ ,

where effort and insurance levels are those realized in the equilibrium with taxation, and their

resource constraints include rebated tax revenues. We see that a Pigouvian tax amounting to

the wedge (12) aligns the marginal utility ratio implied by individual optimization in (5) to that

required by social efficiency in (10).

Besides this fully rebated unit tax, other policies can address the economy’s inefficiency. If

the number of firms N is observable, the planner can reduce it by adding a license fee to the

fixed cost in the zero-profit condition (2). At given q̄, a smaller N increases the marginal cost

γ′ (q̄/N) and the competitive insurance premium, so that in equilibrium there is less insurance

and more effort. This improves welfare at the laissez faire allocation, where there is a positive

wedge between the social and private cost of insurance, and excessive insurance implies ineffi-

ciently low effort. As long as the insurance industry remains competitive and license revenues

are lump-sum rebated to the economy’s representative individual, a smallerN continues to im-
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prove welfare until the constrained-efficient allocation is reached, and the equilibrium satisfies

the social first-order condition.

In more complex models and in reality, these and other policies may entail additional dis-

tortions, such as rent-seeking activities or monopoly power. In our model economy, private

insurance services expend resources, and similarly costly policy administration would make it

impossible to fully rebate tax or license revenues. From this perspective it is interesting to con-

sider briefly our model’s implications for public insurance schemes. In general, private insur-

ance tends to be crowded out by public transfers contingent on the verifiable events it covers.

Because in our economy insurance costs influence equilibrium insurance and effort through av-

erage consumption levels and local risk aversion, however, public insurance is not fully crowded

out in equilibrium if its social production cost differs from that of private insurance.

5 Validity of the first-order approach

For the first-order conditions (4) and (5) to be sufficient, the objective function (3) should be

concave in its two arguments. This is the case if ∂2U(q, e)/∂q2 ≤ 0 and ∂2U(q, e)/∂e2 ≤ 0, i.e.

u′′ (c`)π(e)(1− p)2 + u′′(ch)
(

1− π(e)
)
p2 ≤ 0, π′′(e)

(
u(c`)− u(ch)

)
≤ 0, (13)

and
(
∂2U(q, e)/∂q2

)(
∂2U(q, e)/∂e2

)
−
(
∂2U(q, e)/∂q∂e

)2 ≥ 0, i.e.

u′′ (c`)π(e)(1− p)2 + u′′(ch)
(

1− π(e)
)
p2

π′(e)
(

(1− p)u′(c`) + pu′(ch)
) ≥

π′(e)
(

(1− p)u′(c`) + pu′(ch)
)

π′′(e)
(
u(c`)− u(ch)

) . (14)

Our assumptions imply the inequalities in (13) for all c` ≤ ch, but not that in (14): when ef-

fort determines the probability distribution of consumption, it is difficult to derive functional

form restrictions that ensure concavity of expected utility (3) in both consumption and effort.

Because (14) may fail to hold at a consumption and effort combination that satisfies the first-

order conditions, those conditions need not identify a competitive equilibrium, which may fail

to exist (Helpman and Laffont, 1975).

[Figure 1 here]

To illustrate how non-concavity of individual objective functions may make it inappropriate

to rely on the first-order conditions, Figure 1 plots in q, e space the loci that satisfy the insurance
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and effort first-order conditions. The assumptions we made imply that both loci are continuous

and decreasing, but do not prevent them from crossing more than once. In the figure, there

is an intersection with low insurance and high effort, where the function is concave and the

first-order conditions identify a maximum. The first-order conditions, however, also hold at an

allocation with more insurance and less effort, where the objective function is not concave.

Adapting to our single-period economy with non-exclusive insurance an approach similar to

that applied by Rogerson (1985) and Ábrahám, Koehne, and Pavoni (2011) to two-period moral-

hazard economies with hidden non-contingent savings and exclusive insurance, in this section

we show that costly production of insurance services can help ensure the existence of equilib-

rium for non-exclusive insurance in the presence of moral hazard.

Local concavity

It is convenient to work with a sufficient condition for local concavity:

Result 2 Given [PROB],

p2u′′(ch)− (1− p)2u′′(c`)(
pu′(ch) + (1− p)u′(c`)

)2(u(ch)− u(c`)
)
≥ π′(e)2

π′′(e)π(e)
(15)

ensures local concavity of the objective function U(q, e) in (3).

The proof, in the Appendix, shows that (15) implies concavity of the expected utility loss

−π(e)
(
u (ch)− u (c`)

)
, which is sufficient to ensure concavity of the welfare function.

Condition (15) is stronger than (14) because its lefthand side numerator omits a positive

term, −p2u′′(ch)/π(e), that depends on the shape of both the utility and probability functions

and is difficult to bound with interpretable functional form restrictions, as we proceed to do for

(15).

The positive term on the righthand side of (15) only depends on the loss probability function,

and is bounded below unity if we strengthen [PROB]:

[PROB’] Assume [PROB] and that π(e) is log-convex (which entails π′′(e)π(e)π′(e)−2 ≥ 1 ∀e ≥ 0).

This condition requires the negative shock’s probability to decline at a non-increasing propor-

tional rate as effort increases.5

5The π(e) = ξ exp(−βeα) function used in drawing Figure 1 satisfies all the conditions in [PROB’]

when ξ < 1, β > 0, 0 < α < 1. This somewhat awkward functional form maps x = eα into a weakly log-
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The lefthand side of (15) only depends on utility terms and on the insurance premium. It

is zero when u(ch) = u(c`). Hence, with full insurance and π′(e)2 > 0 the inequality cannot be

satisfied. If insurance is only partial and risk aversion is decreasing, then u′′(ch)p2−u′′(c`)(1−p)2

can be so strongly positive as to satisfy the inequality. Formal analysis of this insight is easier for

hyperbolic absolute risk aversion utility,

[HARA] u(c) = ζ
(
η + y+c

σ

)1−σ
, with (1− σ)ζ > 0.

For this functional form the lefthand side of the inequality depends only on u′(c`)/u
′(ch), and

under decreasing absolute risk aversion it increases above unity as that ratio grows:6 in the

Appendix, we prove

Result 3 Under [HARA] the lefthand side of (15) is a function

g (ν) ≡ σ

σ − 1

p2 (ν)
− 1+σ

σ − (1− p)2(
pν−1 + (1− p)

)2 (
(ν)

1−σ
σ − 1

)
, (16)

with ν ≡ u′(c`)/u′(ch), and

(i) g′(ν) > 0 for ν > 1 and g(ν) > 0 if σ > 0,

(ii) g(ν) < 1 for all ν > 0 if σ = −1 or σ →∞,

(iii) limν→∞ g(ν) > 1 if 0 < σ <∞.

Concavity at stationary points

Under decreasing risk aversion, insurance can be so partial as to ensure that (15) is satisfied;

moreover, in the economy we model insurance production costs can be so large as to imply that

first-order conditions only hold where the objective function is locally concave.

convex negative exponential loss probability, ξ exp(−βx). The model’s effort variable has linearly negative

welfare effects, and α < 1 ⇒ lime↓0 π
′(e) = −∞ guarantees an interior solution for e. An equivalent and

perhaps more readily interpretable formalization would, as in the working paper version of this article, let

the welfare cost of loss-prevention effort x be a convex function, such as x1/α, with zero marginal cost at

x = 0.
6For HARA preferences, absolute risk aversion−u′′(c)/u′(c) =

(
η + y+c

σ

)−1
is a decreasing function of

c when 0 < σ < ∞; it is constant when σ → ∞ yields u(c) = −η exp((y + c)/η), and increasing if with

σ = −1 utility is quadratic (see, e.g., Gollier, 2001, pp. 26–27).
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At points that satisfy the first-order condition (5) for insurance, the argument of g(·) is

u′(c`)

u′(ch)
=

1− π(e)

π(e)

p

1− p ≡ ν(e, p). (17)

Under partial insurance, 0 < π(e) < p < 1, so ν(e, p) exceeds unity and, by Result 3, can be so

large as to ensure local concavity wherever the first-order condition for insurance is satisfied.

To account for the endogenously determined level of effort, note π′(e) < 0 implies ν(e, p) is in-

creasing in e for given p (higher effort decreases the probability of loss, and lets the first-order

condition for insurance be satisfied at a larger marginal utility ratio). This makes it possible to

rely on the partial-insurance implications of insurance production costs and on interpretable

functional restrictions, rather than on global concavity or quasi-concavity of the objective func-

tion, to ensure that the first-order conditions identify a unique solution:

Proposition 2 Under [PROB’], [HARA], if absolute risk aversion is decreasing then p can exceed

π(0) by a sufficiently large amount to ensure that

g

(
1− π(0)

π(0)

p

1− p

)
≥ 1, (18)

and that the objective function (3) is concave at all allocations that satisfy interior first-order

conditions.

The proof, in the Appendix, uses the first-order condition (17) and Result 2 to establish that

if the insurance price p exceeds π(0) by a sufficiently large amount, then the expected utility

loss term −π(e)
(
u(ch) − u(c`)

)
would be locally concave should e = 0 be the optimal effort

choice. Because partial insurance makes it optimal to exert positive effort, at points where first-

order conditions are satisfied the marginal utility ratio ν(e, p) is larger than it would be at e = 0,

and the properties of g(·) in Result 3 imply that under decreasing risk aversion a larger ν(e, p)

preserves local concavity. Hence, the first-order conditions can only hold at a point where the

objective function is concave. There can be only one such point under Proposition 2’s condi-

tions: even though the objective function need not be concave where the first-order conditions

are not satisfied, our assumptions rule out corner maxima and imply continuity of individual

choices. Hence, multiple interior local optima could only exist if, as in Figure 1, the first-order

conditions were also satisfied at non-concave local minima or saddle points.

When Proposition 2’s assumptions are not satisfied, individual objective functions need not
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be concave. In Figure 1, p = π(0), so full insurance and zero effort also satisfy both first-order

conditions and, because the lefthand side of (18) is zero, the inequality in that condition is cer-

tainly violated. Even though p is actuarially unfair at positive effort levels (as implied in com-

petitive equilibrium by a marginal cost of claim payment that exceeds unity), it is not so unfair

as to guarantee concavity at all of the points where both first-order conditions are satisfied: for

the parameterization used in plotting the figure, g(·) exceeds unity only for q < 0.12.

For this and any other parameterized example it is possible to establish validity of the first-

order conditions by evaluating the exact concavity condition (14). But the interpretable con-

ditions of Proposition 2 offer a comforting general insight: first-order conditions can plausibly

hold when insurance is partial, as implied by processing costs, and risk aversion is decreasing.7

Equilibrium

To support an equilibrium with positive effort and partial non-exclusive insurance, demand

for costly insurance (which depends on risk aversion and on the probability and size of the

negative shock) should be so strong as to ensure that the equilibrium marginal cost γ′ (q̄/N) of

insurers exceeds unity by a sufficiently large margin. Proposition 2’s condition evaluated at the

competitive equilibrium price p = π(ē)γ′ (q̄/N),

g

(
1− π(0)

π(0)

π(ē)γ′ (q̄/N)

1− π(ē)γ′ (q̄/N)

)
≥ 1, (19)

ensures that first-order conditions are sufficient in equilibrium. Because with positive insur-

ance equilibrium effort ē is lower than the ẽ that satisfies (4) at zero insurance,

π(ẽ) < π(ē) ⇒ π(ē)γ′ (q̄/N)

1− π(ē)γ′ (q̄/N)
>

π(ẽ)γ′ (q̄/N)

1− π(ẽ)γ′ (q̄/N)
,

7It is possible to specify conditions that are less stringent, but also less general and transparent than

those of Proposition 2. For example, if absolute risk aversion is constant then g(·) is strictly less than

unity, as shown in Result 3. But because g(ν) > 0 when ν > 1 and p < 0.5, the sufficient condition (15)

can be satisfied if π′(e)2/ (π′′(e)π(e)) is bounded by additional functional form restrictions: with π(e) =

ξ exp
(
− βeα/ (1 + µeα)

)
, for example,

π′(e)2/
(
π′′(e)π(e)

)
= βαeα/

(
(1 + α)µ2e2α + (2µ+ αβ) eα + 1− α

)
can be much smaller than unity for all e > 0when µ > 0 is large.
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and because g′(·) > 0 by Result 3, the inequality in (19) is certainly satisfied when

g

(
1− π(0)

π(0)

π(ẽ)γ′ (q̄/N)

1− π(ẽ)γ′ (q̄/N)

)
≥ 1.

Like (18), this sufficient condition is more stringent than what would be necessary to validate

the first-order approach in a specific parameterized example, but usefully characterizes some

relevant structural features. A small π(0) helps ensure that price-taking individuals’ choice

problems are well defined as in Proposition 2, but validity of the first-order approach is more

easily established in general equilibrium when π(ẽ) is large. Hence, π(e) should not be too

strongly declining in its argument, i.e., the moral hazard problem should not be too severe.

Related literature

In our model, private actions determine a non-degenerate probability distribution for outcomes.

Then, as in Pauly (1974) or Ábrahám, Koehne, and Pavoni (2011), a non-exclusive market for

trade in securities contingent on idiosyncratic realizations is active unless it is ruled out by

assuming exclusive insurance. If instead income realizations were fully determined by effort

choices based on privately observed ability, there would be no trade in non-exclusive contin-

gent securities (Golosov and Tsyvinski 2007, appendix A).

In that setting, Ales and Maziero (2009) suppose that exclusive insurance entails a per-individual

fixed cost, so that sufficiently rich individuals are perfectly insured by exclusive contracts and

the rest of the population is completely uninsured. Our model’s cost functions instead imply

that partial insurance is available to all of the economy’s ex-ante identical individuals.

The characterization results and policy implications of the previous sections are related to

those of models that use first-order conditions to characterize interactions between exclusive

insurance and public policies (e.g. Golosov and Tsyvinsky, 2007; Chetty and Saez, 2010). The

results of this section show that even though that approach may be problematic when there

is competitive non-exclusive asset trade under asymmetric information, insurance production

costs can provide a structural interpretation for the asset position limits or bid-ask spreads that,

in Bisin and Gottardi’s (1999) pure-exchange economy, imply partial insurance and can ensure

equilibrium existence.

The sufficient conditions we derive are for a one-period economy with two possible realiza-

tions of uncertainty. Establishing validity of the first-order approach in economies with mul-
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tiple states and hidden assets is harder, as shown in Bertola and Koeniger (2014). It might be

possible to do so with different methods, perhaps adapting to problems with hidden assets the

direct approach of Jewitt (1988) rather than that of Rogerson (1985). Otherwise it is necessary

to characterize non-concave economies where equilibria may be multiple, or fail to exist. Bisin

and Guaitoli (2004), building on Hellwig (1983a), study an exchange economy with two effort

levels where non-concavity may let individuals be indifferent between exerting positive effort

(and insuring the loss partially) or setting the effort at the lowest possible level (and overin-

suring).8 Partial insurance implies that profits are positive in the absence of production costs,

so the positive-effort equilibrium has to be supported by the latent possibility that customers

would discontinuously shift to low effort and excessive insurance if any insurer charged a lower

premium; such "non-price" equilibria are not particularly plausible (Hellwig, 1983b, p. 4).

6 Conclusion

Insurance is partial for at least two reasons: to limit moral hazard by writing contracts that do

not fully cover losses, and because it is costly to write contracts and process claims. Studying in-

teractions between these two reasons in a stylized model of the costs entailed by the verification

or delivery of insurance claims, this article has obtained two types of results. At a substantive

level, we have shown that, much as one might wish for better coverage, when both effort and

insurance are unobservable insurance should be made even more expensive and less complete

than is implied by production costs. At a methodological level, we have shown that insurance

production costs are technically convenient because partial insurance makes it easier to estab-

lish the existence of competitive equilibrium.

In our model economy the information problems that make it difficult to enforce exclusive

insurance interact with technological features of insurance production. In reality, both infor-

mation and technology vary across markets. For specific damages, processing costs vary little

with the size of claims, and the resulting contract-level economies of scale push insurance mar-

kets towards essentially exclusive arrangements. Increasing returns to scale at the firm level

would also favor large, imperfectly competitive companies, which might well supply exclusive

insurance that would not be excessive, and might in fact need to be subsidized or nationalized

8Loss and Piaser (2013) consider a similar model with a continuous effort choice.
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to prevent monopolistic distortions. Our stylized model abstracts from these possibilities to

focus on non-exclusive insurance problems, which can be studied using the standard tools of

competitive-industry analysis under the assumption that production of insurance services has

decreasing returns at the firm level. Comparing the welfare implications for insurance provision

across different markets characterized by different technologies and information problems is an

interesting direction for future research.
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Appendix

Proof of Result 1

As c` = ch−∆ + q̄ and utility is concave, for any ch the lefthand side of (7) is a monotonically

decreasing function of q̄ that ranges from u′ (ch −∆) /u′ (ch) > 1 at q̄ = 0, to unity at q̄ = ∆. The

righthand side of (7) is equal to one at q̄ = 0 because γ′(0) = 1 by [COST]. It increases in q̄ > 0,

diverging to infinity as p(·) = π(e)γ′ (q/N)→ 1, with slope

d

d (q/N)

[
γ′ (q/N)

1− π(e)

1− π(e)γ′ (q/N)

]
= γ′′ (q/N)

1− π(e)(
1− π(e)γ′ (q/N)

)2 > 0

where the inequality follows for any q and e from γ′′ (x) > 0 for x ≥ 0 by [COST]. Hence, equality

in (7) is obtained for a unique level of equilibrium insurance q̄ ∈ (0,∆).

Proof of Proposition 1

In equilibrium, q̄p (q̄, ē) = k(q̄, ē). Imposing the zero-profit condition (2), differentiation of

(9) yields
∂

∂e
k(q̄, ē) = π′(ē)γ (q̄/N)N < 0,

hence

q̄
dp (q̄, ē)

dq̄
=

∂

∂e
k(q̄, ē)

dē

dq̄
= π′(ē) γ (q̄/N)N

dē

dq̄
,

where we again impose (2) to obtain the first equality. As π′(e) < 0 by [PROB] and γ (q̄/N)N >

0, the Proposition’s inequality is proved if dē/dq̄ < 0. Note that individual effort’s reaction to

changes of q̄ maintains equality in the first-order condition (4) and totally differentiate (4) to

obtain

dē

dq̄
= −

π′(ē)∂
[
u
(
−∆ + q̄ − k(q̄, ē)

)
− u
(
− k(q̄, ē)

)]
/∂q

π′′(ē)
(
u
(
−∆ + q̄ − k(q̄, ē)

)
− u
(
− k(q̄, ē)

))
+ π′(ē)∂

[
u
(
−∆ + q̄ − k(q̄, ē)

)
− u
(
− k(q̄, ē)

)]
/∂e

.

In the numerator,−π′(ē) > 0 by [PROB], and

∂
[
u
(
−∆ + q̄ − k(q̄, ē)

)
− u
(
− k(q̄, ē)

)]
∂q

=

= u′
(
−∆ + q̄ − k(q̄, ē)

)(
1− π(ē)γ′ (q̄/N)

)
+ u′

(
(−k(q̄, ē)

)
π(ē)γ′ (q̄/N) > 0

because π(ē)γ′ (q̄/N) p < 1. The denominator is negative because π′′(ē)
(
u(c`) − u(ch)

)
< 0
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by the second-order condition for individual effort choice, π′(ē) < 0 by [PROB], and

∂ [u(c`)− u(ch)]

∂e
=
(
u′(c`)− u′(ch)

)(
− ∂

∂e
k(q̄, ē)

)
> 0

because u′(c`) > u′(ch) when c` < ch and ∂
∂ek(q̄, ē) < 0.

Proof of Result 2

Write U(q, e) = −e + u (ch) − π(e)
(
u
(
ch

)
− u (c`)

)
. The term −e + u (ch) is linear in e and

strictly concave in q because ∂2u (ch) /∂q2 = u′′ (ch) p2 < 0. We only need to prove that the

conditions imply that−π(e)
(
u (ch)− u (c`)

)
is concave or, equivalently, π(e)

(
u (ch)− u (c`)

)
=

π(e)
(
u(−qp) − u(−∆ + (1 − p)q)

)
is convex in q and e. In (15), the righthand side is positive by

[PROB], and with u (ch)− u (c`) > 0 the inequality implies u′′(ch)p2 − u′′(c`)(1− p)2 > 0. Hence,

both diagonal terms of the Hessian

H =

 π(e)
(
u′′(ch)p2 − u′′(c`)(1− p)2

)
π′(e)

(
− u′(ch)p− u′(c`)(1− p)

)
π′(e)

(
− u′(ch)p− u′(c`)(1− p)

)
π′′(e)

(
u (ch)− u (c`)

)
 ,

are positive. The determinant

|H| = π(e)
(
u′′(ch)p2−u′′(c`)(1−p)2

)
π′′(e)

(
u (ch)−u (c`)

)
−
(
π′(e)

(
−u′(ch)p−u′(c`)(1−p)

))2
is also positive if (15) holds.

Proof of Result 3

Rearrange the lefthand side of (15) to

p2u′′(ch)− (1− p)2u′′(c`)(
pu′(ch) + (1− p)u′(c`)

)2(u(ch)−u(c`)
)

=
u′′(c`)u(c`)

u′(c`)2

p2 u
′′(ch)
u′′(c`)

− (1− p)2(
pu
′(ch)
u′(c`)

+ (1− p)
)2 (u(ch)

u(c`)
− 1

)
. (20)

For σ 6= 1, [HARA] implies

u(ch)

u(c`)
=

((
η + y+ch

σ

)−σ(
η + y+c`

σ

)−σ
)− 1−σ

σ

=

(
u′(c`)

u′(ch)

) 1−σ
σ

,

u′′(ch)

u′′(c`)
=

(
u′(c`)

u′(ch)

)− 1+σ
σ

,

u′′(c)u(c)

u′(c)2
=
−ζ 1−σσ

(
η + y+c

σ

)−σ−1
ζ
(
η + y+c

σ

)1−σ(
ζ 1−σσ

(
η + y+c

σ

)−σ)2 =
σ

σ − 1
.

Inserting these expressions in (20) and denoting ν ≡ u′(c`)/u′(ch) yields (16). For σ = 1 utility is
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logarithmic, u′′(c`)u(c`)/u
′(c`)

2 = − ln c`, and

g(ν) = − p2ν−2 − (1− p)2(
pν−1 + (1− p)

)2 ln ν

has the same properties as for other positive and finite values of σ.

(i) Write g(ν) = ĝ(ν) σ
σ−1

(
ν
1−σ
σ − 1

)
for ĝ(ν) = p2ν−

1+σ
σ −(1−p)2

(pν−1+(1−p))2 .

With ĝ′(ν) = ĝ(ν)

(
− 1+σσ

(
p2ν−

1
σ
−2

p2ν−
1+σ
σ −(1−p)2

)
+ 2 pν−2

(pν−1+(1−p))

)
,

g′(ν) = ĝ′(ν)
σ

σ − 1

(
ν
1−σ
σ − 1

)
− ĝ(ν)ν

1−σ
σ −1

= g(ν)

−1 + σ

σ

p2ν−( 1
σ+2)

p2ν−
1+σ
σ − (1− p)2

+ 2
pν−2(

pν−1 + (1− p)
) +

1− σ
σ

ν
1−σ
σ −1

ν
1−σ
σ − 1


is positive when

(ν > 1, σ > 0)⇒ σ

1− σ

(
ν
1−σ
σ − 1

)
> 0

so that

(g(ν) > 0)⇒ p2ν−
1+σ
σ − (1− p)2 < 0.

(ii) For σ = −1, g(ν) = 1
2 (2p− 1)

(
ν−2 − 1

) (
p
ν + (1 − p)

)−2
has a global maximum of 0.5 at

ν = (p− 1) /p < 0 and, like

lim
σ→∞

g(ν) =
p2ν−1 − (1− p)2(
pν−1 + (1− p)

)2 (ν−1 − 1
)

= 1− 1(
pν−1 + (1− p)

)2
ν
< 1 ∀ν > 0,

never exceeds unity.

(iii) For 0 < σ ≤ 1, limν→∞ g(ν) =∞ ; for 1 < σ <∞, limν→∞ g(ν) = σ
σ−1 > 1.

Proof of Proposition 2

The righthand side of inequality (15) is bounded below unity by [PROB’] for all e. Its lefthand

side is bounded above unity at e = 0 by the first-order condition for insurance choice (17) if

(18) holds, where the function g(ν) is that defined in (16). By Result 3(iii), condition (18) can

be satisfied for a finite value of the g(·) function’s argument if 0 < σ < ∞ (decreasing risk

aversion). For σ > 0 we know from Result 3(i) that g′ (·) > 0 when g (ν) > 0 and ν > 1: because

the righthand side of (17) increases with e for π′(e) < 0 as in [PROB’],

g

(
1− π(e)

π(e)

p

1− p

)
> g

(
1− π(0)

π(0)

p

1− p

)
≥ 1 for all e > 0 : (21)
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the inequality in (15) is satisfied, and ensures local concavity by Result 2, at all points where (17)

holds. This is sufficient to ensure local concavity at all such points.
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Figure 1: How non-concavity can invalidate the first-order approach. Functional forms u(c) =

((1 + c)
1−σ − 1)/(1 − σ), π(e) = ξ exp(−βeα) ; parameter values σ = 5, ξ = 0.7, β = 2, α = 0.9,

∆ = 0.6; insurance price p = π(0) = 0.7.
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