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Abstract Discrete mixture models are one of the most successful approaches
for density estimation. Under a Bayesian nonparametric framework, Dirichlet
process location-scale mixture of Gaussian kernels is the golden standard, both
having nice theoretical properties and computational tractability. In this paper
we explore the use of the skew-normal kernel, which can naturally accommo-
date several degrees of skewness by the use of a third parameter. The choice of
this kernel function allows us to formulate nonparametric location-scale-shape
mixture prior with desirable theoretical properties and good performance in
different applications. Efficient Gibbs sampling algorithms are also discussed
and the performance of the methods are tested through simulations and ap-
plications to galaxy velocity and fertility data. Extensions to accommodate
discrete data are also discussed.
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1 Introduction

Discrete mixture models are routinely used for univariate and multivariate
density estimation. A discrete mixture model characterizes the density of y ∈
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Y ⊂ R as

f(y) =

k∑
h=1

πhK(y; θh), (1)

where
∑k
h=1 πh = 1 and K(·; θ) is a kernel function parametrized by a vector

of parameters θ. In (1), k can be any finite integer leading to a finite mixture
model, or∞ leading to an infinite, or nonparametric, mixture model. Bayesian
mixture models generalize model (1) by

f(y) =

∫
K(y; θ)dP (θ), P ∼ Π,

where P is a random mixing probability measure, and Π is a prior over the
space of mixing probability measures. The Bayesian nonparametric literature
dealing with such Π has recently undergone a strong development. A rich fam-
ily is represented by Gibbs-type priors (Gnedin and Pitman, 2005) which par-
ticular cases are represented by the Dirichlet process (DP) (Ferguson, 1973),
the two-parameter Poisson-Dirichlet process (Perman et al., 1992), or the nor-
malized inverse Gaussian process (Lijoi et al., 2005). All these priors are con-
venient choices for Π since they generate discrete probability measures almost
surely and thus lead to a discrete mixture as in equation (1). In many appli-
cations the default choice is the DP prior, both for practical and historical
reasons. A Dirichlet process mixture (DPM) model can be written in form (1)
marginalizing out P , namely

f(y) =

∞∑
h=1

πhK(y; θh), θh
iid∼ P0, π = {πh} ∼ Stick(α) (2)

where P0 is a base probability measure and Stick(α) denotes the stick-breaking
process by Sethuraman (1994) with positive scalar parameter α, i.e. the general
weight πh is obtained as

πh = Vh
∏
l<h

(1− Vl), Vh
iid∼ Be(1, α).

An interesting feature of finite mixture models, both for continuous and
count observations, is the induced clustering structure (Fraley and Raftery,
2002), so that each component can be seen as a cluster of subjects. A common
choice relies on Gaussian kernels (Lo, 1984; Escobar and West, 1995) but with
this choice, it may happen that redundant mixture components with similar
locations are estimated. Clearly this form of overfitting may lead to an unnec-
essarily complex model which is particularly unappealing if the sample size is
small, and it induces a lack of interpretability due to the overlapping of similar
kernels. Indeed, if the data are actually made of different sub-populations, this
procedure can fail to detect the real sub-population structure, if the subpop-
ulations distributions are not symmetric.

To deal with some of these issues, Petralia et al. (2012) propose a repulsive
mixture prior which favors well separated components and can lead to more
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interpretable clustering structure. Another approach consists in considering
mixtures of more flexible kernels, which accounts for several degrees of skew-
ness or kurtosis. For example, Rodŕıguez and Walker (2014) discuss a new
family of kernels K with large support on the space of unimodal density func-
tions. Despite the extreme flexibility obtained with the latter approach, the
formulation is complex and the posterior sampling is not straightforward. In
this paper, instead, we explore the use of the Azzalini (1985)’s skew-normal
kernel which allows us to built a nonparametric mixture model which retains
both computational tractability and good theoretical properties.

Finite mixtures of skew-normals have been already discussed in the liter-
ature both in the frequentist and Bayesian context. For example, Lin et al.
(2007) discuss a finite mixture of skew-normal model. The authors propose
Expectation Maximization and Gibbs Sampling algorithms for the frequentist
and Bayesian estimation of the parameters, respectively. Frühwirth-Shnatter
and Pyne (2010), in a fully Bayesian setting, discuss mixtures of skew-normal
and skew-t, motivated by multivariate data arising from biotechnological ap-
plications. They provide an interesting discussion about the number of compo-
nents, involving reversible jump Markov Chain Monte Carlo and evaluation of
posterior probability via information criteria. However, from a practical point
of view, it is not clear how to choose the number k of components, and in
practice they fixed it a priori. Cavatti Vieira et al. (2013) propose a DPM of
skew-normal to estimate densities, obtaining promising results on some simu-
lation scenarios. However, no discussion on clustering is made and the DPM
of skew-normal is evaluate only in terms of density estimation, no theoretical
justification or results are provided, and the computations are challenging. In
this paper, we discuss location-scale-shape mixture models using the skew-
normal kernel motivated by the seek of meaningful clustering structure. For
posterior evaluation, we propose efficient sampling algorithms, which exploit
recent advances in Bayesian inference for the skew-normal model (Canale and
Scarpa, 2013). In addition, we provide theoretical justification of our pro-
cedure by showing large support of the prior and proving strong posterior
consistency. We also introduce a new model for probability mass function esti-
mation exploiting the rounding procedure of Canale and Dunson (2011) with
skew-normal kernels in place of classic Gaussian kernels.

The rest of the paper is organized as follows. Section 2 reviews the skew-
normal distribution and formalizes location-scale-shape mixture models. Sec-
tion 3 discusses some theoretical properties of the DPM of skew-normal prior.
Proofs are reported in the Supplementary Materials. Section 4 gives the poste-
rior full conditional distributions representation from which a Gibbs sampling
algorithm can be obtained. In Section 5 a simulation study is carried out to
show the performance of the methods in finite samples. Section 6 provides two
applications and Section 7 concludes the paper.
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2 Models

2.1 The skew-normal distribution

A random variable X is distributed as a skew-normal (Azzalini, 1985) with
location ξ, scale ω2 and shape λ, denoted by X ∼ SN(ξ, ω2, λ), if its density
function is

fSN (X; ξ, ω2, λ) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
λ
x− ξ
ω

)
, (3)

where φ(·) and Φ(·) are the density function and the distribution function,
respectively, of a standard normal, ξ ∈ R, ω2 ∈ R+ and λ ∈ R. Note that for
λ = 0 the SN distribution reduces to the normal N(ξ, ω2). Let FSN (x; ξ, ω2, λ)
be the correspondent cumulative distribution function.

The skew-normal model has several stochastic representations. Some of
them are interesting since they mimic real life phenomena, and others are
convenient because of their nice mathematical construction. An elegant and
useful stochastic representation, for example, is obtained via convolution. If
Z ∼ N(0, 1) and V ∼ N(0, 1), and δ ∈ (−1, 1), then

X = δ|Z|+
√

1− δ2V (4)

has a skew-normal distribution X ∼ SN(0, 1, δ/
√

1− δ2). The latter repre-
sentation is particularly useful if we want to simulate skew-normal random
variable and, after suitable adaptation, it will be used in the Gibbs sampling
algorithm of Section 4.

Frequentist estimation methods typically face difficulties with the classical
parametrization of the skew-normal model reported in (3). These difficulties
are intrinsically tied with the likelihood function but since the pioneering paper
of Azzalini (1985), a “centered parametrization” has been adopted to bypass
some of these problems. The latter is induced by the bijective map (µ, σ2, γ) =
ϕ(ξ, ω2, λ), where

ϕ

 ξ
ω2

λ

 =


ξ − ωbδ

ω2{1− (bδ)2}
4−π
2

{
bδ√

1−(bδ)2

}3

 , (5)

δ = λ(1−λ2)−1/2, b =
√

2/π, and µ, σ2, γ are exactly the mean, variance, and
third standardized cumulant, of X ∼ SN(ξ, ω2, λ). The Bayesian reasoning is
free from these issuses since the likelihood function is weighted by the prior
distribution. For this reason, the Bayesian skew-normal literature typically
deals directly with the standard parametrization, as we do in the present
paper (Liseo, 1990; Liseo and Loperfido, 2006; Arellano-Valle et al., 2009;
Frühwirth-Shnatter and Pyne, 2010; Cabras et al., 2012).
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2.2 Mixtures of skew-normals

Assume y a continuous random variable, y ∼ f and f ∈ L where L is the
space of densities with respect to the Lebesgue measure. A prior on L, is a
nonparametric mixture of skew-normal if

f(y) =

∞∑
h=1

πhfSN (y; ξh, ω
2
h, λh) (6)

in which πh and (ξh, ω
2
h, λh) are random for each h = 1, 2, . . . . For simplicity

henceforth we focus on a DP mixture of skew-normal, i.e. we let π ∼ Stick(α),

and (ξh, ω
2
h, λh)

iid∼ P0. As suggested by Escobar and West (1995) we addition-
ally assign gamma hyperprior to α, i.e. α ∼ Ga(1, 1), where Ga(a, b) denotes
the gamma distribution with mean a/b and variance a/b2. To denote a general
density from the mixture model (6) we use the notation fMSN .

The choice of P0 is very important both from the applied and theoretical
point of view. P0 is a measure over R × R+ × R and needs to be specified.
In mixture of Gaussians models the usual choice for P0 is normal-inverse-
gamma for gaining conjugacy in the blocked Gibbs samplers. In specifying P0

here, we want to retain computational tractability while having the possibility
to include, if present, prior information. A recent proposal for the Bayesian
analysis of the skew-normal model has been discussed by Canale and Scarpa
(2013), showing that the prior

P0(ξ, ω2, λ) = N(ξ; ξ0, κω
2)×Ga(ω−2; a, b)× SN(λ;λ0, ψ0, ν0). (7)

leads to closed form full conditional posterior distributions whose sampling
can be efficiently carried out within a Gibbs sampling scheme. See Section 4
for further details. A particular case is obtained with λ0 = 0 and ν0 = 0,
leading to

P0(ξ, ω2, λ) = N(ξ; ξ0, κω
2)×Ga(ω−2; a, b)×N(λ; 0, ψ0), (8)

In this case the marginal prior for λ is a normal centered in zero with variance
ψ0. This implies that the prior expected skewness for each mixture component
is zero.

However, if we are motivated by finding clustering patterns and we expect
that most cluster has positive (negative) skewness, the marginal prior for λ can
be the general (7). For example, consider the problem of estimating the age-
specific probability of childbirth for an entire area (in Section 6.2 we provide an
application of this to the city of Milan). We may think to the global distribution
of the age of the mother at childbirth as a mixture of skew-normal distributions
in different subpopulations with different education level or socio-economic
status. Although we expect that each different subpopulation has a different
behavior, e.g., developing countries typically show asymmetric to the right
distribution of the age of the mother at childbirth. In this case we may want
to favor this positive skewness for all mixture components, and hence we can
assume that the marginal prior for λ has low prior mass on the negative semi-
axis. This can be achieved, for example, with λ0 = 0 and ν0 > 0.
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2.3 Mixture of rounded skew-normals

Consider the case in which y ∈ Y is a discrete random variable with Y ⊆ Z.
Let y ∼ p and p ∈ C where C is the space of the probability mass functions
on the integers. Following Canale and Dunson (2011), assume that y = h(y∗),
where h(·) is a rounding function defined so that h(y∗) = j if y∗ ∈ (aj , aj+1],
for j ∈ Z, with a−∞ < · · · < a0 < · · · < a∞ being an infinite sequence of pre-
specified thresholds that defines a disjoint partition of R with a−∞ = −∞ and
a∞ =∞. Under this setting the probability mass function p of y is p = g(f),
where g(·) is the rounding function having the simple form

p(j) = g(f)[j] =

∫ aj+1

aj

f(y∗)dy∗, j ∈ Z. (9)

A prior over C is obtained specifying a prior for the distribution of the latent
y∗. Our proposal consists in

y = h(y∗), y∗ ∼ f, f(y∗) =

∞∑
h=1

πhfSN (y∗; ξh, ω
2
h, λh), (10)

with π ∼ Stick(α), and (ξh, ω
2
h, λh) ∼ P0 as in Section 2.2. We call this formu-

lation DPM of rounded skew-normal. Note that a particular case of the DPM
of rounded skew-normal is obtained when y is a count variable, i.e. Y = N and
j ∈ N, with the thresholds being a0 = −∞ < a1 < · · · < a∞ =∞. Clearly, the
properties of the prior induced on the space of probability mass functions, here
described, will be largely driven by the properties of the prior on the latent
space. In the next section we will study first some of the properties of model
(6) and then discuss the discrete case.

3 Properties

An important property that a Bayesian nonparametric procedure should hold
is the consistency in frequentist sense of the final posterior, namely if a fixed
density f0 has generated the data, the posterior should concentrates on a small
neighborhood of such f0 as the sample size increases.

We first concentrate on the properties of model (6). Large support of the
prior is an important property while also having a crucial role in posterior
consistency. The Kullback-Leibler (KL) support of the prior Π is the set of
all f0 such that Π(Kε(f0)) > 0, where Kε(f0) is a KL ε-neighborhood of f0
defined as

Kε(f0) =

{
f :

∫
f0
f0
f
< ε

}
.

Wu and Ghosal (2008) proved the prior positivity of KL ε-neighborhoods un-
der mild regularity conditions on f0, for DP location-scale mixture of several
kernels. Among them, the authors considered the skew-normal kernel too, as-
suming the shape parameter as fixed. Under the theory therein for each fixed
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λ0 we have that the prior on the space of continuous univariate densities in-
duced via

f(y;P, λ0) =

∫
fSN (y; ξ, ω2, λ0)dG(ξ, ω2), G ∼ DP (αG0),

has large KL support.
The next theorem, which instead is in terms of location-scale-shape mix-

tures prior formalizes the size of the KL support of prior (6).

Theorem 1 Let f0 be a density over R with respect to Lebesgue measure and
let Π denote the prior on f induced from a location-scale-shape mixture of
skew-normal kernels, i.e.

f(x;P ) =

∫
fSN (x; ξ, ω2, λ)dP (ξ, ω2, λ), P ∼ Π̃. (11)

Assume that the weak support of Π̃ contains all probability measures on R ×
R+ × R that are compactly supported and that: (i) 0 < f0(x) < M for
some finite constant M , (ii) |

∫
f0(x) log f0(x)dx| < ∞, (iii) for a > 0,∫

f0(x) log f0(x)
ψa(x)

dx < ∞, where ψa(x) = inft∈(x−a,x+a) f0(t), and (iv) for

η > 0,
∫
|x|2(1+η)f0(x)dx <∞. Then f0 is in the KL support of Π̃.

The conditions on f0 required by Theorem 1 are the same conditions for
the KL support of general location-scale mixtures and can be seen as standard
regularity and tail conditions. As a corollary of Theorem 1, we give the follow-
ing result which formalizes the size of the support of the prior (10). The proof
follows directly from Theorem 1 of Canale and Dunson (2011) and hence is
omitted.

Corollary 1 Let p0 be a probability mass function on N such that p0 ∈ g(LΠ∗)
where g is the mapping function in (9), Π∗ is a prior defined as in (11) and
LΠ∗ is the KL support of Π∗. Say Π the prior induced by Π∗ as described in
Section 2.3, then p is in the KL support of Π.

Weak posterior consistency is a direct consequence of the large KL support
of the prior thanks to the theory of Schwartz (1965). This means that as
the sample size increases the posterior probability of any weak neighborhood
around the true data-generating distribution f0 converges to one with Pf0-
probability 1. However, strong posterior consistency is more interesting. For
the discrete probability mass function case, the latter also follows directly
from the large KL support property as stated in the next proposition. Its
proof follows directly from Theorem 2 of Canale and Dunson (2011).

Proposition 1 Assume we observe an iid sample y = (y1, . . . , yn) from p0
satisfying the conditions of Corollary 1. For any ε > 0, if Π is the the prior
defined by (10), then the posterior Π({p : ||p−p0||1 < ε} | y1, . . . , yn)→ 1 a.s.
Pp0 .
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To prove strong consistency for the mixture (6), we need some further con-
ditions on the prior. Let first J(δ,L) denote the L1 metric entropy of the set
L, defined as the logarithm of the minimum integer N for which there exists
f1, . . . , fN ∈ L such that L ⊂

⋃N
j=1{f : ||f − fj ||1 < δ}. To obtain strong pos-

terior consistency we need to define a sieve, i.e. a sequence of sets which even-
tually grows to cover the whole parameter space satisfying the requirements of
Theorem 2 of Ghosal et al. (1999) (reported in the Supplementary Materials).
That theorem basically requires that such a sieve has low entropy and high
prior mass. Since our model is a generalization of the classical location-scale
mixture model, the asymptotic results described in what follows are expected.
However their proof is not straightforward. Indeed our parameter space is
bigger than that induced by a simple location-scale mixture, and thus, it is
not obvious that we can cover this parameter space with a sieve with linearly
increasing entropy and (exponentially) vanishing prior probability of its com-
plement. To construct our sieve we exploit the stick-breaking representation of
the Dirichlet process following an approach first proposed by Pati et al. (2013)
and adapting it to the more challenging case of skew-normal kernels. To build
our sieve we first introduce the set

Fa,u,l,s,m =

{
fMSN : |ξh| < a, l < ωh < u, |λh| < s, for h ≤ m,

∑
h>m

πh < ε

}
(12)

and we formalize its size in terms of metric entropy in the next lemma.

Lemma 1 For some a > 0, u > l > 0, and s > 0, the set Fa,u,l,s,m in (12)
has

J(ε,Fa,u,l,s,m) ≤m log
{
d1

(as
l

)
+ d2

(a
l

)
+ d3s log

(u
l

)
+ d4 log

(u
l

)
+ s+ 1

}
+ d3m log(d4m)

where d1, d2, d3, and d4 are constants depending on ε.

To conclude this section we give our main result on consistency for the
model (6) with base measure (7) which combines Theorem 2 of Ghosal et al.
(1999) and Lemma 1.

Theorem 2 Assume we observe an iid sample y = (y1, . . . , yn) from f0 satis-
fying the conditions of Theorem 1. For any ε > 0, if Π is the the prior defined
by (6)–(7), then the posterior Π({f : ||f − f0||1 < ε} | y1, . . . , yn) → 1 a.s.
Pf0 .

Proof First define the set Fn as the set in (12) with a = O(
√
n), s = O(

√
n),

l = O(1/
√
n), u = O(exp{n}), and m = O(n/ log(n)). Then the proof relies on

showing that Fn satisfies the conditions of Theorem 2 of Ghosal et al. (1999).
This is obvious from the definition of P0 in (8) and our Lemma 1.
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4 Computation

A Gibbs sampler for the mixture of skew-normals can be developed general-
izing the slice sampler of Kalli et al. (2011). We introduce latent S1, . . . , Sn
where Si = h if the i-th subject is drawn from the h-th mixture component.
With such an approach, conditionally on Si, each observation is drawn from a
single skew-normal distribution and hence the updated of each cluster-specific
set of parameters can be done easily. Consider the joint density

f(yi, ui, Si) ∝ 1I(ui < πSi
)fSN (yi; ξh, ω

2
h, λh),

then the full conditional posterior distributions for the slice variables ui and
the cluster indicators Si are

ui|yi, Si ∼ U(0, πSi
), (13)

pr(Si = h|ui, yi) ∝ 1I(h : πh > ui)fSN (yi; ξh, ω
2
h, λh). (14)

To update each cluster-specific set of parameters, the stochastic represen-
tation (4) can be used, introducing latent half-normal distributed variables
η1, . . . , ηn. Conditionally on such latent variables, we can consider the generic
i-th observation as being normally distributed with mean ξSi + δSiηi and vari-
ance (1 − δ2Si

)ω2
Si

, with δh = λh(1 + λ2h)−1/2. Conditionally on those ηi the
observations can be seen as drawn from a suitable Gaussian distribution and
this allows us to gain conjugacy for the location and scale parameters of each
component of the mixture.

Finally, the distributions for the shape parameters are in closed forms and
belong to the unified-skew-normal class of distribution (discussed in Arellano-
Valle and Azzalini, 2006, with the acronym SUN) as discussed in Canale and
Scarpa (2013). In the latter paper an efficient algorithm for sampling from
SUN is proposed. The algorithm is based on the stochastic representation of
a SUN distribution which is represented as a weighted sum of a Gaussian and
a left truncated Gaussian distributions.

The precision parameter α can be updated as in Escobar and West (1995).
The complete Gibbs sampler for model (6) is reported in Algorithm 1.

For posterior computation in the discrete case, an additional data augmen-
tation step and a modification of step 1 are required. Indeed we first need to
generate the latent continuous variable y∗ and then we can continue on the
lines of the Gibbs sampler for the continuous case. Algorithm 2 gives the Gibbs
sampler for model (10).

5 Simulation studies

To assess the performance of the proposed approaches, we conducted a simula-
tion study comparing our location-scale-shape mixture of skew-normal with a
classic location-scale mixture of Gaussians. The methods were compared based
on a Monte Carlo approximation of the mean Kullback-Leibler divergence and
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Algorithm 1 Gibbs sampling for posterior simulation of model (6)

1. Sample ui and Si as in (13) and (14).
2. Sample α using Escobar and West (1995) given n and H, the number of

occupied clusters
3. Update the stick-breaking weights using

Vh ∼ Be

(
1 + nh, α+

H∑
l=h+1

nl

)

where nh is the sample size of the hth cluster.
4. Update

ηi ∼ N(δSi
(y∗i − ξSi

), ω2
Si

(1− δ2Si
))

where δh is λh/
√
λ2h + 1.

5. Sample (ξh, ωh) from

N
(
µ̂h, κ̂hω

2
h

)
I-Ga(a+ nh/2 + 1, b+ b̂h)

where

µ̂h =
κ
∑
Si=h

(yi − δhηi) + (1− δ2h)ξ0

nh + κω2(1− δ2h)
, κ̂h =

κ(1− δ2h)

nhκ+ (1− δ2h)

b̂h =
1

2(1− δ2h)

{∑
Si=h

η2i − 2δh
∑
Si=h

ηi(yi − ξh) +
∑
Si=h

(yi − ξh)2

+(1− δ2h)(ξh − ξ0)2
}
.

6. Sample λh from

λh ∼ SUN1,nh+1(λh;λ0, γh, ψ0, ∆h, Γh), (15)

where ∆h = [δi]i=1,...,nh
with δi = ψ0yi(ψ

2
0y

2
i + 1)−1/2, γh =

(∆1:nh
λ0ψ

−1
0 , 0), and Γh = I−D(∆h)2 +∆h∆

T
h , where D(V ) is a diagonal

matrix whose elements coincide with those of the vector V .

Algorithm 2 Gibbs sampling for posterior simulation of model (10)

0 For i = 1, . . . , n, generate y∗i from the full conditional posterior

0a Generate ui ∼ U
(
FSN (ayi ; ξSi

, ωSi
, λSi

), FSN (ayi+1; ξSi
, ωSi

, λSi
)
)

0b Let y∗i = F−1SN (ui; ξSi
, ωSi

, λSi
)

1b Sample ui from and (13) and Si from

pr(Si = h|−) = 1I(h : πh > ui)p(yi|ξh, ωh, λh)

2b Continue with the Gibbs sampler (steps 2–6) for the continuous case (Al-
gorithm 1) with y∗i in place of yi;
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L2 distance of the posterior mean estimate (f) from the true data generating
process (f0), defined as

KL(f0, f) =

∫
f0(x) log

(
f0(x)

f(x)

)
dx, L2(f0, f) =

(∫
(f0(x)− f(x))2dx

)1/2

.

(16)
In addition to these two indexes of goodness of fit, we report the average
posterior mean number of occupied components and the average posterior
mean of the DP precision parameter α. To facilitate the interpretation of the
Kullback-Leibler divergence, we report the transformation proposed by McCul-
loch (1989). Such transformation, given by q(KL) = (1 + (1 + e−2KL)1/2)/2
is bounded between 0.5 and 1 and thus facilitates the interpretation of the
Kullback-Leibler divergence as measure of discrepancy of f from the true f0.

In implementing the blocked Gibbs samplers of the two models the first
1,000 iterations were discarded as a burn-in and the next 5,000 samples were
used to calculate the posterior mean of the density on a fine grid of points of
the domain. For our mixture of skew-normals we choose, as hyperparameters,
ξ0 = y, the sample mean, and κ = s2, the sample variance, λ0 = 0, ψ0 =
10, ν0 = 0, and a = b = 1. Choosing the sample mean and variance for
ξ0 and κ, respectively, can be seen as a default empirical Bayes approach
(Efron and Morris, 1972) used in absence of strong prior information. Similarly,
hyperparameters for the mixture of Gaussian were fixed as: the location mean
µ0 = y, the location scale κ = s2, and the precision gamma hyperparameters
both equal to 1. For the precision parameter of the DP prior we assigned a
Ga(1,1) hyperprior in both cases. The values of the density for a wide variety
of points of the domain were monitored to check for convergence and mixing.

Several simulations have been run under different settings obtaining sim-
ilar results and, in the following, we report the results for four scenarios.
Four additional scenarios related to the rounded mixture models are reported
in the Supplementary Materials. The first simulation scenario assumed that
the data were generated as a mixture of three Gaussians, 0.35N(−2, 1) +
0.5N(4, 2) + 0.15N(5, 2.5), the second scenario, as a mixture of two skew-
normal, 0.65SN(0, 1, 5) + 0.35SN(4, 2, 3), the third as a mixture of a Gamma
and a Gaussian, 0.25Ga(2, 1) + 0.75N(3, 1), while the last one as a simple ex-
ponential distribution with mean parameter 2. For each scenario, we generated
samples of sizes n = 100, 200, 300 and we fit the two mixture models to 1,000
replicated data sets.

The results of the simulation are reported in Table 1. For small n the two
methods have similar performance in terms of Kullback-Leibler divergence
and L2 distance from the truth but, as n increases, our location-scale-shape
mixture outperforms the usual location-scale mixture. Note that in Scenario
1, i.e. a finite mixture of normals, our method is perfectly comparable with
a nonparametric mixture of Gaussians in terms of distances from the truth.
However, despite the substantial equality of the performances in terms of good-
ness of fit, our mixture of skew-normal requires on average a lower number of
occupied clusters, which is a key advantage of our procedure. Indeed, only for
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Table 1 Kullback-Leibler divergence (tranformed via the function q) and L2 distance for
the mean posterior density, posterior mean number of occupied cluster components and
posterior mean of the DP precision parameter

Scenario 1: mix of normals Scenario 2: mix of skew-normals
n Kernel q(KL) L2 E(k|−) E(α|−) q(KL) L2 E(k|−) E(α|−)
100 Gaussian 0.634 0.058 4.039 0.788 0.680 0.125 3.282 0.622

SN 0.640 0.061 2.788 0.519 0.680 0.116 3.209 0.606
200 Gaussian 0.593 0.041 3.970 0.671 0.652 0.108 3.703 0.619

SN 0.593 0.042 2.736 0.445 0.638 0.092 3.369 0.558
300 Gaussian 0.576 0.034 3.969 0.623 0.631 0.092 4.317 0.68

SN 0.576 0.034 2.719 0.413 0.617 0.078 3.738 0.582
Scenario 3: mix gamma+normal Scenario 4: exponential

n Kernel q(KL) L2 E(k|−) E(α|−) q(KL) L2 E(k|−) E(α|−)
100 Gaussian 0.639 0.066 3.989 0.775 0.786 0.205 4.617 0.905

SN 0.647 0.067 3.556 0.681 0.785 0.201 4.664 0.917
200 Gaussian 0.601 0.048 4.405 0.748 0.761 0.187 5.374 0.927

SN 0.604 0.048 3.791 0.635 0.752 0.177 5.364 0.926
300 Gaussian 0.584 0.039 4.601 0.728 0.750 0.180 6.061 0.980

SN 0.585 0.039 3.938 0.615 0.740 0.169 5.878 0.950

n = 100, in Scenario 2 and in Scenario 4 the two methods show, on average,
the same number of occupied components. These differences in terms of clus-
tering can be appreciate also through the boxplots in Figure 1, representing
the distribution of the posterior mean of the number of components for all the
1,000 samples, when n = 300. To conclude the discussion about the induced
clustering, in Figure 2 we report the heatmaps of the posterior probability
of being allocated to the same cluster for the two competing models in one
sample generated from Scenario 3. These posterior probabilities are computed
as the proportion of MCMC iterations, after burn-in, that two observation
are allocated to the same mixture component. It is evident that our mixture
of skew-normals discover two main clusters where the mixture of Gaussians
discover three or four clusters. Qualitatively similar results are obtained also
for the rounded mixture models reported in the Supplementary Materials.

6 Applications

6.1 Galaxy data

First we applied our modeling framework to the famous Galaxy dataset (Roeder,
1990). The dataset consists on the velocity of 82 galaxies. The histogram of the
speeds reveals that the data are clearly multimodal. This feature supports the
Big Bang theory, as the different modes of density can be though as clusters of
galaxies moving at different speed. The data analysis was already carried out
via DP mixture of Gaussians by Escobar and West (1995), and we compare
their results with our mixture of skew-normal.

In implementing our blocked Gibbs sampler the first 1,000 iterations were
discarded as a burn-in and the next 10,000 samples were used to calculate the
posterior mean of the density on a fine grid of points of the domain. As a default
non informative choice, we set the hyperparameters ξ0 = y, κ = s2, λ0 = 0,
ψ0 = 10, ν0 = 0, and a = b = 1/2. Since the scientific interest is galactic
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Fig. 1 Boxplot of the distributions of the posterior means of the number of components in
the Gaussian mixture (G) and skew-normal mixture (SN) for all the 1,000 samples and the
four scenarios and n = 300.

clustering, we followed Escobar and West (1995) in letting the precision DP
parameter α ∼ Ga(2, 4). The posterior mean predictive density is plotted in
Figure 3 along with the relative 95% credible bands, empirical histogram,
and the estimate obtained via DP mixture of Gaussians (dotted line). The
two fitted densities show minor differences around the central area of the
domain. Nonetheless the results in terms of density fit are similar, the posterior
distribution of the number of occupied clusters and the average cluster size
in the two models is different, as reported in Figure 4. From the left panel,
it is evident that our approach leads to a generally lower number of occupied
clusters. Our posterior distribution of the number of clusters is coherent with
the posterior number of observed modes reported in Escobar and West (1995).
Indeed, if a galactic cluster has a skew distribution, a single skew-normal
component is sufficient, while two or more mixture components with collapsing
modes are needed when using Gaussian kernels. This feature is a key advantage
of using a more flexible kernel, such as the skew-normal. Such conjecture is also
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Fig. 2 Heatmaps of the posterior probability of being allocated to the same cluster for
the mixture of Gaussians (a) and mixture of skew-normals (b) for a generic sample of size
n = 100 generated from Scenario 3.
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supported by the right panel of Figure 4, that reports the posterior cluster size
for both approaches. It is evident that the Gaussian mixtures needs additional
clusters with few observations.
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Fig. 4 Posterior probability of the number of occupied clusters (left panel) and posterior
mean cluster size (right panel) in the location-scale-shape mixture of skew-normal (contin-
uous line) and of location-scale mixture of Gaussians (dotted line) for the galaxy dataset

6.2 Childbirth age data

We apply our modeling framework to data on the births in the Milan munici-
pality in 2011 divided by areas to estimate the different age-specific probability
of childbirth. Milan is one of the biggest and multiethnic cities in Italy being
the center of many economic activities and the destination of strong national
and international immigration. In this context, fertility may be affected by
socio-demographical and economical differences among and within the differ-
ent urban areas. The presence of different subpopulations with different edu-
cational level, socio-economic status or citizenships, inside each area may give
rise to asymmetric distributions of the age of the mother at childbirth. For
small populations, such as the residents in Milan, there are not many specific
studies on fertility indicators, and we may expect different behaviors of women
with respect to the age at childbirth. Given this variety of possible patterns,
a nonparametric approach to density estimation seems appropriate to both
smooth the random noise affecting the curves, and to account for different
patterns.

Let y be the age of the mother at childbirth and assume that we want
to model the probability distribution p(y). In fact, even if age is ideally con-
tinuous, data are rounded to the lower integer. Hence p(y) may be seen as a
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probability mass function defined on the positive integers and we estimate p(·)
with model (10). Here, the population may be divided in a number of different
sub-populations each of which may have a different fertility behavior induc-
ing different fertility curves. Fertility curves are typically asymmetric to the
right, but it is well known that more developed communities tend to postpone
childhood by showing symmetric and even skew to the left fertility curves.
Sub-populations living in Milan may present different patterns of fertility and
a mixture model is reasonable relevant to fit available data.

Although, mixture models have been already quite used in demography,
for example in the context of country age-specific fertility rate estimation
where several finite mixture models have been discussed (Chandola et al.,
1999; Peristera and Kostaki, 2007), to our knowledge, no skew kernel has been
previously adopted. The use of the skew-normal kernel has the advantage to
easily fit asymmetric pattern in each component of the mixture.

One of our goals is to compare pattern of fertility in different areas of Milan,
so that we compare curves obtained by separately fitting nine models, one for
each administrative zone of the Milan municipality. These nine areas include
the following neighborhoods: area 1 - historical center; area 2 - central station,
Gorla, Turro, Greco, Crescenzago; area 3 - Città Studi, Lambrate, Venezia;
area 4 - Vittoria, Forlanini; area 5 - Vigentino, Chiaravalle, Gratosoglio; area
6 - Barona, Lorenteggio; area 7 - Baggio, De Angeli, San Siro; area 8 - Fiera,
Gallaratese, San Leonardo, Quarto Oggiaro; area 9 - Garibaldi station, Ni-
guarda.

For all zones, the hyperparameters for the base measure are set equal to
ξ0 = y, κ = s2, ψ0 = 1, and a = b = 1/2. The DP precision parameter
was assigned a Gamma hyperprior α ∼ Ga(1, 1). The thresholds are fixed to
aj = j for j = 15, . . . , 50. To implement our Gibbs sampler in Algorithm 2,
we discarded the first 1,000 iterations as a burn-in and we used the next 5,000
draws to calculate the posterior mean of the probability mass function for the
ages 15, . . . , 50 years of the women. As posterior estimate, we considered the
mean probability mass functions in the nine zones, reported in Figure 5 along
with the empirical estimate.

Our procedure allows for smoothing across the age of childbirth and this is
evident in Figure 5, where the mean of the posterior probability mass function
is smoother than the empirical estimate, which has an erratic behavior, by
showing a fine-scale noisy structure in the height the probability masses. How-
ever, our procedure is also able to catch the different shapes of the probability
mass functions in different areas. For example, zone 1, 3, and 5 are almost
symmetric with, in zone 3, only mild left skewness, and in zone 1 high con-
centration around the mean. These probability mass functions clearly show
a delay in childbirth, with respect to classical curves, but also suggest the
presence of a common fertility behavior inside these areas. These zones are in
general considered quite rich neighborhoods, where lower level socio-economic
family can hardly live and where immigrants are very rare: zone 1 is the cen-
ter of the city, and zone 3 and 5 are the areas where typically executives and
managers of the companies lives. Other areas, instead, present a small hump
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around 20–25 years. In zone 4 and 6 this is fairly evident, while in zone 8 and
9 this is only partially noticeable. The former areas, where large communities
of immigrants lives, are likely to have at least two subpopulations, with the
smaller consisting in women anticipating the childbirth. Most of the estimated
probability mass functions exhibit moderate skewness to the left, sign of a
general trend of the majority of women in the area to postpone the age at
childbirth, but also indicator of the presence of subgroups that anticipate it.

7 Discussion

In this paper we have discussed nonparametric location-scale-shape mixture of
skew-normal kernels for density estimation and its extension to model discrete
probability mass functions. For simplicity we focused on the DP prior for
the mixing measures, but it is clear that the modeling framework can be
generalized to general random probability measures, like the two-parameter
Poisson-Dirichlet process, the normalized inverse Gaussian process. Further
generalization involves substituting the univariate skew-normal kernels with
their multivariate counterpart or assume a density regression setting as in
Dunson et al. (2007).

The proposed location-scale-shape mixtures have the particular advantage
of determining clusters with different shapes, allowing for several degrees of
positive and negative skewness. This has been shown to have an impact in
real applications where the model-based clustering may have some specific
interpretation. We showed that this class of models has large support and
asymptotic posterior consistency. Simulations confirm the asymptotic behavior
and show a better quality of fit of the mixture of skew-normals with respect
to the mixture of Gaussians. Evidently the number of occupied clusters is
typically quite smaller in our model, thus allowing easier interpretation, when
it is needed.
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Fig. 5 Posterior mean probability mass function (black) and empirical probability mass function (dotted) for the age of the mother at childbirth in
the nine zone of Milan.
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