
High-level lock-less programming for multi-core
Fabio Tordini◦, Marco Aldinucci◦, and Massimo Torquati†

◦ University of Torino, Italy † University of Pisa, Italy

THE PROBLEMS

Peak performance is hard to achieve on cache-coherent multi-core architectures and requires sub-
stantial programming and tuning efforts. Performance portability is even harder.

Performance is (often) not about Flops, it is about data movement.

Coarse Grain Concurrency is nearly exhausted. Programming systems should be designed to sup-
port fast data movement and enforce locality. They should be efficient at fine grain.

Non-blocking algorithms coupled with concurrent data structures can be fast but are complex to
be exploited. They can be hardly composed and should be abstracted out.

High-level approaches should be used to provide effective abstractions. A computer language
is not a computing model. A library is not a computing model. A litmus paper: system
programmers use the techniques they advocate?

THE APPROACH

� Dijkstra’s structured programming approach (“go-to statement considered harmful”)

◦ Are send/receive, lock/unlock and CAS harmless than go-to?

� Manage communications and synchronizations by way of high-level constructs

◦ Skeletons & Patterns [Col89]. Exploited in several frameworks, inter alia: Intel TBB, Fast-
Flow [ADKT12], Google’s MapReduce.

◦ Patterns typically used to discipline true dependencies and process-to-CPUs mapping.

� Message-passing/shared-memory is not a dichotomy. They can be coupled in a richer program-
ming model, e.g. messages for synchronizations and shared-memory for data exchanges.

FASTFLOW: THE BIG PICTURE – http://mc-fastflow.sourceforge.net

class ff node {
protected:

virtual bool push(void∗ data) {
return qout−>push(data);

}
virtual bool pop(void∗∗ data) {

return qin−>pop(data);
}

public:
virtual void∗ svc(void ∗ task) = 0;
virtual int svc init () {

return 0;
};
virtual void svc end() {}
...

private:
SPSC∗ qin;
SPSC∗ qout;

};

Arbitrary streaming networks layer
implements the ff_node, i.e. the building
block of networks and serves as a container
for business code and "mediators". Cyclic
networks use uSPSC to avoid deadlocks.

... ...
pipelinefarm Divide&Conquer

+ ... their
composition

#include <iostream>
#include <string>
#include <ff/pipeline.hpp>
using namespace std;

class Stage1: public ff :: ff node {
private: int c;
public:

Stage1(): c(0) {};
void ∗ svc(void ∗ task) {

string ∗s = NULL;
if (c++<3) s = new string(”Hello”);
return s;

}
};

class Stage2: public ff :: ff node {
public:

void ∗ svc(void ∗ task) {
string ∗s = (string ∗) task;
cout << s−>append(” world!\n”);
delete (s);
return GO ON;

}
};

int main(int argc, char ∗ argv[]) {
ff :: ff pipeline pipe;
pipe.add stage(new Stage1());
pipe.add stage(new Stage2());
pipe.run and wait end();

}

Streaming network patterns layer provides (streaming) parallel
programming patterns: farm, farm-with-feedback (i.e. Divide&Conquer),
pipeline, and their arbitrary nesting and composition. Patterns discipline
true dependencies whereas data is moved via shared memory.

bool push(void∗ data) {
if (buf[pwrite]==NULL) {

WMB(); // write−memory−barrier
buf[pwrite] = data;
pwrite+=(pwrite+1>=size)?(1−size):1;
return true;

}
return false;

}
bool pop(void∗∗ data) {

if (buf[pread]==NULL)
return false;

∗data = buf[pread];
buf[pread]=NULL;
pread+=(pread+1>=size)?(1−size):1;
return true;

}

Simple streaming networks layer
implements efficient SPSC bound and
unbound wait-free queues. They requires
no CAS and no fences (TSO, a WMB for
WO consistency). SPSC: 2x faster than
Lamport queue, uSPSC 20x faster than
Michael-Scott linked-list [ADKM12].

 0

 20

 40

 60

 80

 100

64 1k 8k

La
te

nc
y

(n
s)

Nehalem E5@2.2GHz
Nehalem E7@2.0GHz

Sandy Bridge E5@2.0GHz
Opteron Magny-Cours@2.3GHz

Cortex A9@1.0GHz

Buffer size

Unbound FF uSPSC
linked list of circular buffers

head

tail

Bound FF SPSC
circular buffer

head tail

+
Streaming network patterns

Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
cc-UMA & cc-NUMA - TSO and WO consistency

Applications on multicore and manycore
Efficient and portable - designed with high-level patterns

Applications are build using Fastflow
patterns or extending them in a OO style.
Synchronizations are hidden within the library.

MPI core2core on E7@2Ghz: ~190 ns

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

N. of cores

Tc = 5 µs (medium grain)

Ideal
FastFlow

TBB
OpenMP

Cilk

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

N. of cores

Tc = 0.5 µs (fine grain)

Ideal
FastFlow

TBB
OpenMP

Cilk

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

N. of cores

Tc = 50 µs (coarse grain)

Ideal
FastFlow

TBB
OpenMP

Cilk

EXAMPLE: A STREAM-ORIENTED MEM ALLOCATOR BUILT WITH FASTFLOW

FFalloc

FFalloc

FFalloc

FFalloc
P

Cn

C2

C1

Producer P:
for(i=0;i<10M;i++){
 pi = malloc(rnd(size));
 *pi=...;
 dispatch_RR pi;
}

...

Consumer Ci:
while (pi=get())
 do_work(1μs,pi);
 free(pi);
}

uSPSC queue

P

Cn

C2

C1

...

FFalloc

FFalloc

FFalloc

FFalloc

...

uSPSC queue

+= malloc

free

free

free

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal

FUTURE DIRECTIONS

A significant speed edge over state-of-the-art parallel allocators can be achieved by specializing a (rel-
atively simple, built on top of the SLAB allocator) memory allocator with high-level patterns. The al-
location technique get advantages from the low-overhead of the run-time (based on lock-free uSPSC)
and the knowledge of high-level semantics (producer-consumer). We believe the approach can be
improved on both directions, i.e.

Memory Affinity concerns mapping and allocation of data structures in memory. Data structures can
be coupled with parallel patterns (also thanks to specialized allocation strategies). Experimen-
tation is feasible thanks to the lock-free allocator already implemented in FastFlow.

Lock-free run-time support can be extended with more (location-aware) Multiple-
Producer/Multiple-Consumer data structures and transactional primitives.

REFERENCES

ADKM12 M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. An efficient un-
bounded lock-free queue for multi-core systems. In Proc. of Euro-Par, LNCS, Rhodes Island,
Greece, Aug. 2012. Springer.

ADKT12 M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: high-level and efficient

streaming on multi-core. In Programming Multi-core and Many-core Computing Systems,
Parallel and Distributed Computing, chap. 13. Wiley, 2012.

Col89 M. Cole: Algorithmic Skeletons: Structured Management of Parallel Computations. Research
Monographs in Par. and Distrib. Computing. Pitman, 1989.

