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Abstract The construction of regions with assigned probability p and minimum geometric measure has
theoretical and practical interests, such as the construction of tolerance regions. Following Azzalini (2001)
and exploiting the normal approximation of the extended skew-normal distribution when some of its param-
eters go to infinity, we discuss an approach for the construction of regions with assigned probability p for
the bivariate extended skew-normal distribution.
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1 Introduction

Usual normality assumptions are unrealistic in a lot of concrete situations and for this reason the construction
of asymmetric distributions, like the skew-normal of Azzalini (1985), has received more and more attention
in the last two decades. Recently the skew-normal has been successfully applied in many fields including
finance (Adcock, 2010), spatial analysis (Zhang and El-Shaarawi, 2010), survival analysis (Callegaro and
Iacobelli, 2012), and insurance (Vernic, 2006).

Here we deal with the construction of regions with assigned probability p and minimum geometric
measure. Such regions are very important in practice for the construction of tolerance regions, i.e. random
regions with applications in quality control, industry, medicine, and environmental monitoring among others.
See the book of Krishnamoorthy and Mathew (2009) for a recent discussion on the topic. The present note
extends the work of Azzalini (2001) in which the author studies the construction of regions with given
probability p and minimum volume under the assumption of skew-normality. A well known result for the
normal distribution is that if X is a d-dimensional normal with correlation matrix Ω and cp is the p-th
quantile of a χ2

d distribution, then

RN = {x : xTΩ−1x ≤ cp} (1)

is the region with minimum volume and probability p. Our generalization substitutes the normal distribution
with the extended skew-normal (ESN) one. The ESN family of distributions is introduced in the seminal
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paper of Azzalini (1985) and it has been extensively studied in literature (Arnold et al., 1993; Arnold and
Beaver, 2000; Capitanio et al., 2003; Canale, 2011). A d-dimensional random variable Z is distributed as a
ESN with position vector ξ ∈ R

d, positive definite d×d scale matrix Ω, shape vector α ∈ R
d, and truncation

τ ∈ R, written Z ∼ ESN(ξ,Ω, α, τ) if its probability density function (pdf) is

fESN (z) = φd (z − ξ;Ω)Φ
(

α0(τ) + αTω−1(z − ξ)
)

/Φ(τ), (2)

where α0(τ) = τ(1 + αTΩ−1α)1/2, ω is the diagonal matrix formed by standard deviations of Ω, φd(·) is
the d-dimensional standard normal pdf and Φ(·) is the cumulative distribution function (cdf) of a standard
normal. If τ = 0, the density belongs to the skew-normal (SN) family of distribution, i.e. Z ∼ SN(ξ,Ω, α).

To determine regions with given probability and minimum volume, the work of Azzalini (2001), that we
aim to extend here, considers the region

RSN = {z : fSN (z) ≥ f0}, (3)

and discusses how to choose the value f0 in function of p and of the parameters of the model.
In Section 2 the results of Azzalini (2001) are shortly recalled while in Section 3 regions of the form

RESN = {z : fESN (z) ≥ f0}, (4)

are introduced. Unfortunately the construction of such regions for the ESN distribution has a clear and
intrinsic bottleneck: if Z ∼ ESN(ξ,Ω, α, τ), the quadratic form ZTΩ−1Z is not distributed as χ2

d when
τ 6= 0. Section 3.1 bypasses this problem using a new result on the approximation of ESN densities when
|τ | → ∞ while in Section 3.2 a direct modification of the approach of Azzalini (2001) is discussed.

2 Bivariate regions for the SN model

Rewriting the quadratic form ZTΩ−1Z when Z is normally distributed as

2 log φd(z;Ω)− d log(2π)− log |Ω|,

Azzalini (2001) suggests to consider the analogous expression for the skew-normal case and to let

RSN = {z : 2 log fSN (z) ≥ −cp − d log(2π)− log |Ω|} (5)

as a candidate solution to the problem.
Empirical inspections of rule (5) suggest that an additive correction term h should be inserted with such

h depending on α. Simulations and graphical inspections of the relations between (log(eh/2 − 1))−1 and

α∗ =
√
αTΩα, suggest a proportional relation of ratio −0.6478 leading to define

ĥ = 2 log(1 + exp{−1.544/α∗}) (6)

and hence to correct equation (5) with

RSN = {z : 2 log fSN (z) ≥ −cp − d log(2π)− log |Ω|+ ĥ}. (7)

See Azzalini (2001) for further insights and details.
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Table 1 Nominal and actual values of the coverage probability using rule (10) when α1 = 2, α2 = 6, ω = −0.5, and (a)
τ = −10, (b) τ = −2, (c) τ = 1, (d) τ = 4.

p 0.99 0.975 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.025 0.01
p̃ (a) 0.989 0.973 0.946 0.893 0.790 0.687 0.489 0.292 0.193 0.097 0.049 0.024 0.010
p̃ (b) 0.959 0.928 0.886 0.818 0.702 0.598 0.411 0.240 0.158 0.078 0.039 0.020 0.008
p̃ (c) 0.993 0.982 0.962 0.922 0.836 0.746 0.549 0.339 0.228 0.114 0.058 0.030 0.012
p̃ (d) 0.990 0.975 0.950 0.901 0.801 0.701 0.501 0.299 0.199 0.099 0.050 0.025 0.010

3 Bivariate regions for the ESN model

3.1 Limiting cases: τ → ±∞

Let further assume, without loss of generality, that ξ = (0, 0) and that the matrix Ω has unit diagonal and
off diagonal elements equal to ω.

Canale (2011) showed that for τ → ±∞ the pdf of the scalar ESN approaches that of a normal with
suitable parameters. Exploiting this behavior we approximate the density of the bivariate ESN with its limit
normal density. Particularly for τ → +∞ the following approximate result holds

Z
·∼ N2(0, Ω), (8)

while for τ → −∞

Z + δτ
·∼ N2(0, Ω̃), Ω̃ =

(

1− δ2
1

δ1δ2 − ω
δ1δ2 − ω 1− δ2

2

)

, (9)

where δ = (1 + αTΩα)−1/2αTΩ, and δ = (δ1, δ2)
T . The derivation of (8) and (9) is of independent interest

and it is reported in the Appendix.

Regions with approximate probability p can be constructed using previous results and the rule

RESN = {z : 2 log fi(z) ≥ −cp − d log(2π)− log |Ωi|} (10)

where fi(·) and Ωi are suitable normal pdf and matrices related to expressions (8) and (9). Henceforth we
will refer to rule (10) using the convention to use approximation (8) for τ > 0 and (9) for τ < 0.

To test the performance of rule (10) we conducted a simulation experiment similar to the one of Azzalini
(2001). Various parameters combinations have been selected and, for each choice, 106 replicated samples
have been generated from the given ESN distribution. Applying rule (10) to the set of p values

p = (0.99, 0.975, 0.95, 0.90, 0.80, 0.70, 0.50, 0.30, 0.20, 0.10, 0.05, 0.025, 0.01),

we obtained a vector of observed relative frequencies p̃ reported in Table 1. Figure 1 shows the main features
of the results. Circles are for the points (cp, cp̃), where cp̃ denotes the quantile function of a χ2

2
evaluated

at p̃.

As expected, rule (10) performs well for large |τ | while it has poor performance for τ close to zero. Ideally
the points in Figure 1 should lie on the dashed line corresponding to the identity function as in panel (a)
and (d). Evidently rule (10) can be used only for large values of |τ |.
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Fig. 1 Actual versus nominal values of the probability p using rule (10) transformed to the quantile scale. α1 = 2, α2 = 6,
ω = −0.5, and (a) τ = −10, (b) τ = −2, (c) τ = 1, and (d) τ = 4.

3.2 Cases for small |τ |

In order to generalize rule (5), we applied it to 1250 samples drawn from ESN with different combinations
of α and τ parameters. Figure 2 reports the results.

As for the SN we observe a relation

cp̃ = h+ cp

where here h = h(α∗, τ) is a function of both α∗ and τ . Figure 3 (a) shows the value of h versus α∗ for the
1250 simulated samples. Different point shapes represent different values of τ .

The relation between h and (α, τ) seems to be approximate by (6) times a coefficient k depending on τ ,
i.e.

ĥ = k(τ)2 log(1 + exp{−1.544/α∗}). (11)
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Fig. 2 Actual versus nominal values of the probability p, transformed to the quantile scale using rule (5) for α1 = 2, α2 = 6,
ω = −0.5 and for τ = −6 (circles), τ = 0 (triangles), and τ = 3 (crosses)
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Fig. 3 Observed values of h plotted versus α∗ and (a) interpolating function (6), (b) interpolating function (11) calculated for
a grid of values of τ between −5 and 5, from top to the bottom.

To obtain an approximation for k(τ), we computed the ratio between h(τi) and h(0) for every α∗ of Figure
3. Then for each τ we compute k as

k(τi) =
1

l

l
∑

j=1

h(τi, α
∗

j )

h(0, α∗

j )
, (12)

where l is the number of α∗ values, here l = 25.



6 Antonio Canale

To get an expression for k(τ) we plotted the values obtained through (12) against τ . Several attempts
have been made to find an accurate approximation, leading to

k̂ =
π2

4
ζ2(τ)

2, (13)

where ζi(·) is the ith derivative of ζ0 = log(2Φ(·)). Note that for τ = 0, k̂ = 1.
Using (13) we obtain Figure 3 (b) which gives a resonable approximation for negative τ and an excellent

approximation for positive τ . This behavior can be explained noting that h goes to zero for τ → +∞, i.e.
when the density approaches the normal. For some negative values of τ , expression (11) over/under-estimates
h for small and large values of α∗ respectively. Figure 4 and Table 2 show the results obtained with (13) for
the same samples of Figure 1.

Table 2 Nominal values of probability p versus actual values using rule (11) when α1 = 2, α2 = 6 and ω = −0.5 for the same
samples used in Figure 1 with (a) τ = −10, (b) τ = −2, (c) τ = 1, and (d) τ = 4.

p 0.990 0.975 0.950 0.900 0.800 0.700 0.500 0.300 0.200 0.100 0.050 0.025 0.010
p̃ (a) 0.991 0.979 0.958 0.915 0.834 0.752 0.590 0.431 0.351 0.272 0.232 0.213 0.201
p̃ (b) 0.987 0.969 0.940 0.883 0.775 0.673 0.482 0.303 0.219 0.135 0.094 0.074 0.062
p̃ (c) 0.992 0.979 0.958 0.914 0.824 0.731 0.540 0.330 0.219 0.099 0.039 0.008 0.000
p̃ (d) 0.990 0.974 0.950 0.899 0.799 0.698 0.499 0.299 0.200 0.101 0.050 0.025 0.010

4 Discussion

The approach discussed in Section 3.2 is more accurate than the approach of Section 3.1 for small values of
τ . Despite this general behavior, the method introduced in Section 3.1 has dramatically better performance
for large |τ |, namely when a quadratic form of Z is approximately chi-squared distributed. From a practical
viewpoint the choice between the former or the latter approach has to be done on a case by case basis.
Specifically, for moderate or large positive τ (say τ ≥ 3) one should use (10) and approximation (8), for
large negative τ (say τ ≤ −6) rule (10) and approximation (9), and the rule discussed in Section 3.2
otherwise. Note that these limits are merely qualitative.

Concerning the generalization for d other than 2 some problems may arise in using the approaches
previously discussed. For d = 1 the required region is just an interval and we can obtain the solution via
numerical methods. For d > 2, we investigated suitable modifications of rule (7) and behaviors similar to
those described in Section 3.2 were noticed for d = 3, 4. On the other side, the normal approximation used
in Section 3.1 is available in closed form only for d = 2. The existence of such an approximation for d > 2
is, in fact, very likely since it arises from the truncation representation of the ESN extensively discussed
by Arnold et al. (1993). However the lack of an explicit expression does not allow us to study approaches
similar to that of Section 3.1 for d > 2. Clearly our contribution to the topic discussed by Azzalini (2001)
is still merely approximate, however it can be of interest at least from a practical viewpoint and we hope it
can stimulate further studies involving the ESN model.

Acknowledgements This work is part of the master thesis of the author. The author would like to thank his advisor, professor
Adelchi Azzalini, for the comments he kindly offered in early versions of the manuscript.
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Fig. 4 Actual versus nominal values of the probability p using rule (11) transformed to the quantile scale. α1 = 2, α2 = 6,
ω = −0.5, and (a) τ = −10, (b) τ = −2, (c) τ = 1, and (d) τ = 4.
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Appendix

Details on how to obtain equations (8) and (9) are discussed below. These limit expressions are of independent interest since
they provide a generalization for d = 2 of some results discussed by Canale (2011). Say fESN (z;Ω,α, τ) the bivariate ESN
density function. For τ → +∞, one easily gets

lim
τ→+∞

fESN (z;Ω,α, τ) = lim
τ→+∞

φ2(z;Ω)Φ(τ(1 + αTΩα)1/2 + αT z)/Φ(τ) = φ2(z;Ω).

For τ → −∞, using de l’Hospital Theorem, we have

lim
τ→+∞

fESN (z;Ω,α, τ) = lim
τ→−∞

φ2(z;Ω)Φ(τ(1 + αTΩα)1/2 + αT z)/Φ(τ)

= (1 + αTΩα)1/2 lim
τ→−∞

φ2(z;Ω)φ(τ(1 + αTΩα)1/2 + αT z)/φ(τ)

=
1

(1− δTΩ−1δ)1/2
lim

τ→−∞

φ2(z;Ω)φ(τ(1 + αTΩα)1/2 + αT z)/φ(τ)

=
1

(1− δTΩ−1δ)1/2
lim

τ→−∞

1

2π|Ω|
exp

{

−
1

2
zTΩ−1z

}

×

exp

{

−
1

2

(

τ(1 + αTΩα)1/2 + αT z
)2

}

exp

{

τ2

2

}

=
1

(1− δTΩ−1δ)1/2
1

2π|Ω|
lim

τ→−∞

exp

{

−
1

2
A

}

,

where

A = zTΩ−1z +
(

τ(1 + αTΩα)1/2 + αT z
)2

− τ2

= zTΩ−1z + τ2αTΩα+ (αT z)2 + 2ταT z(1 + αTΩα)1/2

= zTΩ−1z + τ2
δTΩ−1δ

1− δTΩ−1δ
+

(δTΩ−1z)2

1− δTΩ−1δ
+ 2τ

δTΩ−1z

1− δTΩ−1δ

=
1

1− δTΩ−1δ

(

zTΩ−1z + (zTΩ−1zδTΩ−1δ) + τ2δTΩ−1δ +

(δTΩ−1z)2 + 2τδTΩ−1z

)

.

Explicitly computing each quantity in equation (14) and letting δ = (δ1, δ2)T , z = (z1, z2)T we can recollect a quadratic form
in z. Recalling the expressions for the scalar case presented by Canale (2011) we let µ = (−δ1τ,−δ2τ)T . This allow us to obtain

Ω̃ =

(

1− δ2
1

δ1δ2 − ω
δ1δ2 − ω 1− δ2

2

)

,

and to conclude that
lim

τ→+∞

fESN (z + δτ ;Ω,α, τ) = φ2(z; Ω̃).


