
27 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

High-Performance Haplotype Assembly

Publisher:

Published version:

DOI:10.1007/978-3-319-24462-4_21

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer-Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1523292 since 2016-11-19T17:34:36Z

High-Performance Haplotype Assembly

Marco Aldinucci3, Andrea Bracciali1, Tobias Marschall4,5, Murray Patterson6,
Nadia Pisanti2, and Massimo Torquati2

1 Computer Science and Mathematics, Stirling University. abb@cs.stir.ac.uk
2 Computer Science Dep., University of Pisa. {pisanti,torquati}@di.unipi.it

3 Computer Science Dep., University of Torino. aldinuc@di.unito.it
4 Center for Bioinformatics, Saarland University. t.marschall@mpi-inf.mpg.de

5 Computational Biology & Applied Algorithmics, Max Planck Inst. for Informatics.
6 Lab. Biométrie et Biologie Evolutive, Univ. Lyon. murray.patterson@univ-lyon1.fr

Abstract. The problem of Haplotype Assembly is an essential step
in human genome analysis. It is typically formalised as the Minimum
Error Correction (MEC) problem which is NP-hard. MEC has been
approached using heuristics, integer linear programming, and fixed-
parameter tractability (FPT), including approaches whose runtime is ex-
ponential in the length of the DNA fragments obtained by the sequencing
process. Technological improvements are currently increasing fragment
length, which drastically elevates computational costs for such methods.
We present pWhatsHap, a multi-core parallelisation of WhatsHap, a
recent FPT optimal approach to MEC. WhatsHap moves complexity
from fragment length to fragment overlap and is hence of particular in-
terest when considering sequencing technology’s current trends. pWhat-
sHap further improves the efficiency in solving the MEC problem, as
shown by experiments performed on datasets with high coverage.

1 Introduction

The differences among genomes of distinct individuals of the same species are
called polymorphisms. Given two DNA sequences, a Single Nucleotide Polymor-
phism (SNP) is a variation of a single nucleotide occurring at a specific position
in the two sequences. SNPs may occur in genomes of different individuals of the
same species or in different copies of chromosomes of the same individual. The
different forms that a chromosome may exhibit are called alleles. The Human
genome consists of two copies of each chromosome, i.e. it is diploid. Each copy
comes from one of the two parents.

Genomic data obtained from a sequencing experiment of a human genome is
a mixture of the two copies of the chromosomes in the form of many DNA frag-
ments, called reads, which may exhibit one of the forms, i.e. alleles, of parental
chromosomes. Haplotyping is the task of phasing the SNPs, i.e., determining
which one of the two alleles they come from.

Haplotyping is an essential task for genome annotation and for several kinds
of downstream (comparative) genome analyses, such as finding patterns in hu-
man genetic variations for population genomics, or associating genetic variants
to diseases, response to drugs, and environmental effects.

When SNP phasing is performed directly on raw sequencing reads, it is re-
ferred to as haplotype assembly or read-based phasing. In this case, reads are first
mapped to a reference genome and are then assigned to one of the two haplotypes
based on the SNPs they cover. For each SNP position, reads that indicate differ-
ent alleles must be assigned to different haplotypes. The result is a partition of
the reads in two classes according to their originating haplotype. Unfortunately,
in real data, such a partition may not exist, due to sequencing errors and also
due to reads being misplaced in the mapping phase. For this reason, the task of
haplotype assembly becomes a computational optimisation problem where one
has to minimise the number of adjustments to the data needed to define a bi-
partition that is then a candidate to represent the correct haplotypes. In the
literature, several optimisation problems that formalise haplotype assembly are
considered. Minimum Fragment Removal (MFR) removes the minimum number
of conflicting fragments and hence focuses on mapping errors (that is, misplaced
reads in the mapping phase). Minimum Error Correction (MEC), asks for the
minimum number of characters (nucleotides) to be corrected in the input reads.
Minimum Error Removal (MER) removes a minimum number of characters from
the reads, where removed characters are handled as if the read would not cover
these positions at all. MEC and MER have been proved to be equivalent [11],
and, since they can be reduced from MAX-CUT [9], are NP-hard. Published
algorithms to solve MEC include statistical/heuristic approaches, integer linear
programming, or are exact fixed-parameter tractable algorithms [10], whose com-
plexity is exponential in the number of SNPs per read. Due to ever-increasing
read lengths, leading to more SNPs per read, provided by evolving sequencing
biotechnologies, methods that are exponential in the read length will perform
worse with future-generation longer reads.

In this paper, we present an optimised, parallel implementation of What-
sHap, which was introduced by some of the authors in [20]. WhatsHap focuses
on solving wMEC, a weighted version of MEC. Our choice of WhatsHap is
due to the fact that, remarkably, it is the first exact fixed-parameter tractable
algorithm for solving wMEC which, instead of being exponential in read length,
is instead exponential only in the sequencing coverage, i.e. the maximum num-
ber of different reads that cover a single SNP position. This makes WhatsHap
particularly appealing with respect to the other currently available proposals, in
the light of developments of future generation sequencing techniques, which will
provide longer reads.

In wMEC, each SNP value comes with an associated confidence degree, which
can be set to a combination of the confidence of the base call for that specific
position, i.e. which allele the read comes from, and of the confidence of the map-
ping of the whole read within the chromosome. The confidence degree associated
to each SNP is used as the cost of flipping/ignoring that SNP value in order to
remove errors. In this way, by minimising the total weight of corrected SNPs,
the optimisation problem corrects the most probable sequencing and mapping
errors and can be viewed as a maximum likelihood approach. This improves the
accuracy of WhatsHap in comparison to methods that solve the unweighted

MEC problem. The weighted variant of MEC was first suggested by [12], and
in [21] the authors proposed a heuristic for a special case of wMEC where they
also present experiments show that wMEC is more accurate than MEC.

WhatsHap is still a computationally demanding algorithm. Experimental
results show that single-chromosome datasets with a coverage up to 20 can be
treated in about 2 hours on a single core of an Intel Xeon E5-2620 CPU. The
analysis of a whole genome may require the solution of several independent
instances of the haplotype assembly problem. In this context, the possibility a
high-performance parallel WhatsHap appeared worth exploring.

The main contribution of this paper is to introduce pWhatsHap, an opti-
mised parallel version of WhatsHap. We will focus on the parallelisation of the
single chromosome haplotype assembly instance on a multi-core machine. Whole-
genome approaches can be built on top of “embarrassingly parallel” instances of
pWhatsHap on a range of different architectures.

pWhatsHap has been engineered by relying upon skeletons and parallel
design patterns provided by the FastFlow framework [2], a methodological ap-
proach that allows WhatsHap to be parallelised with minimal changes to the
original sequential code, while minimising the usage of typically slow classical
mutual exclusion mechanisms.

Obtained results show a clear performance increase, allowing us to handle
larger data sets, with bigger coverage, such as the ones that will be provided by
future generation sequencing technologies.

Haplotype assembly and WhatsHap will be recapped in the next two sec-
tions, then pWhatsHap and obtained performance results will be presented.

2 wMEC model for Haplotype Assembly

The input dataset for this problem is a set of reads mapped to a reference
genome. Arbitrarily re-labelling the alleles to 0 and 1 for each SNP position, the
input data is represented as a matrix, having a row for each read and a column
for each SNP position. Each element of the matrix reports the value of a given
SNP in a read.

More formally, the input dataset is represented as an n×m matrix F , with
n the number of reads and m the number of SNP sites. The elements fi,j of F
take values from the set {0, 1,−}, telling whether, at position j, the read i has
the SNP value of the allele 0, or of the allele 1. A value of “−” indicates that
the respective read does not cover the SNP position. In this case, we say that
the read is not active at that position. In addition, a confidence value (or weight)
vi,j is associated to each active fi,j as part of the input to the problem. The
weight vi,j is the confidence degree of the correctness of the value of fi,j , and in
the optimisation problem wMEC, it represents the cost of flipping fi,j .

A conflict between two reads rp and rq is a SNP position where the two
reads are active and have different values. In the absence of errors, a conflict
between two reads implies that the two reads come from different alleles. In this
framework, a correct haplotype assembly consists of a bipartition of the rows of

F (the reads), into two conflict free sets R and S. Each conflict free set contains
the complete set of reads assigned to the same haplotype. Unfortunately, such a
bipartition into conflict free sets usually does not exist in real data sets due to
sequencing and mapping errors. The problem thus becomes that of detecting a
minimum-weight set of error corrections that allow for a conflict free bipartition.
For instance, without correcting errors, no conflict-free bipartition exists for
(the rows of) the following 3× 2 matrix F of coverage 3 (see column 2), where
subscripts are the costs vi,j :

F =

19 19
03 18
− 08

However, the minimum cost, conflict-free bipartition R = {1, 2}, S = {3} can
be obtained by correcting f2,1, i.e. flipping it to 1 at a cost of 3.

Several heuristic approaches to solve MEC have been put forward in the last
ten years, such as the greedy approaches of [19, 15] to assemble the haplotype
of a genome, a method to sample a set of likely haplotypes under the MEC
model [7], and the much faster follow-up to [7], based on the definition of a graph,
analogously to [9], and an iterative greedy heuristic to optimise the MAX-CUT
of that graph [6]. The latter outperforms [19, 15] while showing similar accuracy
to [7]. In [18], reducing MEC to MAX-SAT and using a (heuristic) MAX-SAT
solver has been proposed.

All of the abovementioned tools are heuristics – they provide no guarantee
on the quality of the solution. To solve the MEC problem to optimality, sev-
eral exact algorithms have been proposed. To this end, integer linear program-
ming techniques have been developed [11, 8]. Fixed-parameter tractable (FPT)
algorithms are another way of approaching the MEC problem and have been
employed in [13]. However, as noted, these approaches have an exponential com-
plexity in the number of SNPs per read or in the read length, which is going to
increase soon and fast with emerging sequencing technologies. Most recently, this
problem has been overcome by WhatsHap [20] which is a FPT algorithm with
coverage as the cost parameter. It is thus better suited to the current develop-
ment trends of sequencing technologies. Shortly after WhatsHap, an equivalent
algorithm formulated in terms of belief propagation was independently proposed
by Kuleshov [14]. The next section recaps WhatsHap.

3 WhatsHap

WhatsHap is a sequential algorithm, based on dynamic programming, that
takes as input the fragment matrix F (one row per read, one column per SNP
position, and values in {0, 1,−}) and a set of confidence values associated to the
active positions of the reads, as described in the previous section. It computes,
with a dynamic programming method, a minimum-cost conflict-free bipartition
of the set of reads.

WhatsHap builds a cost matrix C with as many columns as F (i.e., one
column for each SNP). C is constructed incrementally, one column at a time.
Let Fj be the set of all reads that are active in the j-th column, let (R,S)
be one of the possible bipartitions of Fj , and let C(j, (R,S)) be the entry for
(R,S) in the j-th column of C. Then, WhatsHap computes the minimum cost
C(j, (R,S)) of making (R,S) conflict free, for all possible (R,S).

In general, a read spanning several consecutive positions will induce depen-
dencies across columns, because a single read must be consistently assigned to
the same allele throughout all the positions at which it is active (see read 2 in the
example of section 2). Therefore, when computing the cost of the bipartitions of
Fj for the construction of the j-th column of C, WhatsHap also needs to con-
sider the (minimum) cost inherited by the construction of compatible partitions
in Fj−1.

Entries C(1, (R,S)) in the first column of C, with (R,S) a bipartition of F1,
only depend on the cost of making R and S conflict free (clearly, no inheritance
from previous columns). R ⊆ F1 can be made conflict free by flipping all 0s in
f1,k, with rk ∈ R, into 1s, at a cost that is equal to the sum of all the weights
associated to the 0s that must be flipped, denoted as W (1)1R. Alternatively, R
can be made conflict free by flipping all 1s into 0s, paying W (1)0R. That is, taking
the most advantageous alternative,

C(1, (R,S)) = min{W (1)1R,W (1)0R}+min{W (1)1S ,W (1)0S}.

When considering the j-th column, both the contribution of the column itself
(computed in the same way as for the first column), and the cost of a compatible
bipartition inherited from previous columns must be taken into account.

Consider, for instance, C(j, (R,S)), with j > 1 and (R,S) a bipartition of
Fj . The local contribution of column j is, again, just the cost of the best way
to make R and S conflict free over the column j of F (first row in the formula
below). To this cost, the cost of keeping (R,S) consistent on all the columns
i < j has to be added. This cost is the minimum cost of C(j − 1, (R′, S′)), for
any (R′, S′) which is “compatible” with (R,S).

A partition (R,S) defined at j and one (R′, S′) defined at j−1 are compatible,
written (R,S) ∼= (R′, S′), if each element in Fj ∩ Fj−1, i.e. the reads active in
both j and j−1, is assigned to the same subset in both (R,S) and (R′, S′). It is
important to note that, because of the incremental way of proceeding, the cost
in the immediately preceding column j − 1 summarises all the corrections made
in columns 1 to j − 1 for keeping (R′, S′) conflict free. Summing up,

C(j, (R,S)) = min{W (j)1R,W (j)0R}+min{W (j)1S ,W (j)0S}+

min{C(j − 1, (R′, S′)) | (R′, S′) ∼= (R,S)}

The schema of the generic j-th step of the algorithm consists of defining all
the possible (R,S) at j and then performing the following three steps:

(a) determine the minimum local cost for making the j-th column conflict free
by flipping some bits on the column according to their weights and the various
correction possibilities;

(b) select the minimum-cost partition amongst those computed at step/column
j − 1 which are compatible with the current partition;

(c) fill in entry C(j, (R,S)) with the sum of the outcomes of (a) and (b).
Once the whole matrix C is computed, the result of the wMEC problem

is identified by the conflict-free partition (R∗, S∗) of minimum cost in the last
column. The actual solution will also comprise all the minimum-cost corrections
made throughout the construction of the matrix, which have assigned each read
in F to partitions compatible with (R∗, S∗).

The complexity of WhatsHap algorithm is dominated by the maximum
number of bipartitions that must be taken into account at a column. The num-
ber of possible bipartitions of the reads at column j is 2|Fj |, and therefore the
complexity is exponential in the amount of active reads that can be found at
a position. This critical (i.e. exponential) parameter is therefore the sequencing
coverage (see [20] for details).

We conclude this section with a few implementation details of WhatsHap
that are relevant for its paralellisation.

In the construction of the j-th column of C, the possible bipartitons of Fj

are considered according to a Gray code enumeration, i.e. their binary encodings
are ordered in a way that the next entry differs from the previous one by only
one bit, e.g. 0001 and 0011, where 0 and 1 indicate the assignment of an active
read to either R or S. This implies that two subsequent partitions differ in the
position of a single read r that moves from set R to set S (or vice versa). This
allows for an efficient incremental computation, since, accounting only for the
impact of moving r, the computation of the cost of the next partition can be
obtained in constant time from the cost of the previous one because updating
the values of W (j)1R,W (j)0R,W (j)1S ,W (j)0S requires constant time.

4 pWhatsHap: high-performance haplotype assembly

The development of a parallel solution for a given problem can be addressed
either by developing a parallel algorithm from scratch, or by parallelising an
existing sequential algorithm. Our work follows the second approach, where the
time complexity of WhatsHap is a strong motivation for choosing this path. In-
deed, WhatsHap is the first algorithm solving wMEC with a complexity which is
exponential only in the sequencing coverage. As explained, solving the weighted
version of the problem caters to its accuracy and exhibiting a complexity in-
dependent of the length of the fragments makes it particularly suitable for the
current trends in sequencing technology, which will provide fragments of increas-
ing length.

We will here focus on pWhatsHap, a parallel version of WhatsHap for a
single chromosome. The Multiple instances of haplotype assembly needed for a
whole genome are fully independent. Such independent runs can be executed con-
currently in an embarrassingly parallel fashion, exhibiting best scalability when
executed on truly independent platforms (e.g. clusters or cloud resources) where
there is no performance degradation due to the concurrent usage of resources,

which instead may happen on multi-core architectures. For instance, multiple
instances of pWhatsHap could be supported by cloud infrastructures, rightly
considered enabling technologies for bioinformatics and computational biology
that provide a large amount of computing power and storage in an elastic and
on-demand fashion.

Our pWhatsHap targets multi-core architectures and relies upon the Fast-
Flow parallel programming framework [2].

4.1 Technological background

After decades of increasing clock-frequency and instruction-level parallelism in
single core architectures, the current trends for providing high-end performances
have steadily focused on increasing the number of cores per chip. Since current
multi-core architectures are de-facto small-scale on-chip parallel machines, the
most effective way to increase their performance is to use thread-level parallelism.
However, legacy sequential code does not necessarily benefit from multi-core ar-
chitectures, where single-core complexity and clock are typically lower than tra-
ditional single-core, and sequential code may perform even worse. Furthermore,
parallel programs are inherently more difficult to write than sequential ones due
to concurrency issues. Developers, including bioinformatics scientists, are then
facing the challenge of achieving a trade-off between high-end performances and
time to solution in developing applications and algorithms on current and forth-
coming multi-core platforms.

Parallel software engineering addressed this challenge via high-level language
extensions and coding patterns aimed at simplifying the porting of sequential
codes to parallel architecture, while guaranteeing the efficient exploitation of
concurrency [5]. Parallel design patterns (PDP) [16] have been recognised to
have the potential to induce a radical change in the parallel programming sce-
nario, allowing parallel programs to fully exploit the high parallelism provided by
hardware vendors, simplifying programmer’s tasks, and making whole applica-
tion development more efficient. PDPs provide tested and efficient parallel pat-
terns as composable building blocks, which eliminate the need of implementing,
tuning and maintaining ad-hoc solutions. The machinery available to application
developers is then at a higher level of abstraction with respect to traditional ap-
proaches, such as the Message Passing Interface (MPI), where the programmer
is fully responsible for the parallel behaviour of an application.

The FastFlow parallel framework provides algorithm skeletons and parallel
design patterns, enabling a good trade-off between performance, sequential code
reuse and time to solution.

Our multi-core parallelisation of WhatsHap is based on FastFlow and ex-
ploits the physical shared memory of the underlying architecture, making it un-
necessary to move data between threads, a typical source of overhead. However,
if this greatly simplifies the parallelisation, it also introduces data sharing and
concurrent access related problems. Parallel patterns provided by the FastFlow
framework solve these problems by defining clear dependencies among different
parts of the computations, hence avoiding costly synchronisations.

FastFlow has been demonstrated to be effective in parallelising and redesign-
ing several sequential and concurrent applications, e.g. [1, 3, 17], and offers an
important methodological approach for the parallelisation of WhatsHap with
minimal changes to the original sequential code.

4.2 Parallel WhatsHap

WhatsHap follows a dynamic programming approach based on recording so-far
computed results in the incremental construction of the solution, i.e. the matrix
of all the possible conflict-free partitions of minimum cost. In seeking for a pos-
sible decomposition of the algorithm into sub-problems to be solved in parallel
by different executors, two obvious alternatives are possible: a vertical decompo-
sition, where each executor builds a number of columns, i.e. they solve different
parts of the genome, and a horizontal decomposition, where each executor builds
some of the entries of the current column (combinations of the two alternatives
could also be considered). The former would constitute a substantial departure
from the original structure of WhatsHap, whose incremental approach induces
linear dependencies on columns: each one depends on the results of the previous
one, i.e., the minimum-cost compatible partitions of the previous step (see p. 5).
Such dependencies make a vertical decomposition difficult, left for future work.

This paper focusses on a horizontal decomposition: each executor evaluates
a subset of the possible bipartitions (R,S) of the set Fj of reads that are active
in column j.

The first step in the design of pWhatsHap has been to profile the perfor-
mance of WhatsHap by measuring the time cost of generating the j-th column
in the minimum cost matrix C (see p. 5). The time required in the construction
of a typical column of a given dimension, i.e. the number of possible bipartitions
of the column, depends on the coverage, i.e. the number of active fragments of
that column (there are ∼ 2c bipartitions for a coverage c). The cost of building
columns with a coverage less than 15 is minimal (< 1ms), and does not justify
the overhead of a parallel construction. The situation is different for c > 15,
where the cost of building columns varies from a few milliseconds to a few sec-
onds. In these cases it may be worth adopting an adaptive partitioning, varying
the number of executors according to the dimension of the column.

Fig. 1 illustrates the first steps of the parallel construction of the columns
of a minimum cost matrix C (Fig. 1(b)) for a fragment matrix F (Fig. 1(a)),
with, e.g., read f1 being 0 in SNP 1 with confidence 5 and read f2 covering SNPs
1 and 2. In Fig. 1(b), C(1, (R,S)) (left matrix) is built by considering all the
possible bipartitions (R,S) of the reads active on SNP 1, i.e. f1, f2 and f3, which
are represented as binary strings and Gray-code ordered (first three columns).
The set of all possible bipartitions is split between two executors (thick horizontal
line). Each executor builds C starting from the respective entry points (marked
by As) and, in order to maintain as much as possible the original structure of
the sequential algorithm, processes bipartitions in Gray code order (see p. 6).
A bit of care was necessary to properly identify the entry points A in the Gray
code sequence.

ADDED FOR LNBI FIGURES
—starting from 1—

1 2
f1 05 -
f2 13 02

f3 16 11

f4 - 02

… … …

f1 f2 f3 c1 (R,S)
0 0 0 5 1 1 1
0 0 1 3 0 0 1
0 1 1 0 0 1 1
0 1 0 5 1 1 1
1 1 0 3 0 0 1
1 1 1 5 1 1 1
1 0 1 5 1 1 1
1 0 0 0 0 1 1

f2 f3 min ((R,S),1)
0 0 0
0 1 3
1 0 3
1 1 0

f2 f3 f4 c2 m(c1)
)1

∑
0 0 0 1 0 1
0 0 1 1 0 1
0 1 1 1 3 4
0 1 0 0 3 3
1 1 0 1 0 1
1 1 1 1 0 1
1 0 1 0 3 3
1 0 0 1 3 4

R

A

W

W

A

R

(a)

ADDED FOR LNBI FIGURES
—starting from 1—

1 2
f1 05 -
f2 13 02

f3 16 11

f4 - 02

… … …

f1 f2 f3 c1 (R,S)
0 0 0 5 1 1 1
0 0 1 3 0 0 1
0 1 1 0 0 1 1
0 1 0 5 1 1 1
1 1 0 3 0 0 1
1 1 1 5 1 1 1
1 0 1 5 1 1 1
1 0 0 0 0 1 1

f2 f3 min ((R,S),1)
0 0 0
0 1 3
1 0 3
1 1 0

f2 f3 f4 c2 m(c1)
)1

∑
0 0 0 1 0 1
0 0 1 1 0 1
0 1 1 1 3 4
0 1 0 0 3 3
1 1 0 1 0 1
1 1 1 1 0 1
1 0 1 0 3 3
1 0 0 1 3 4

R

A

W

W

A

R

(b)

Fig. 1. (a): First two columns of a fragment matrix F with associated weights.
(b): The (parallel) construction of the cost matrix C(j, (R,S))

The costs in C(1, (R,S)) (column c1) only depend on making the current
partitions conflict free, e.g. for ({f1, f2, f3}, ∅) (first row) by flipping f1 to 1 (last
three columns) at a cost of 5 (column c1), so that R is conflict free and S empty.
In general, for the construction of Cj , the j-th column of C with coverage cj and
k executors, each executor processes approximately 2cj/k possible bipartitions
(R,S) of Fj , with k dynamically depending on cj (and on the hardware config-
uration). In this phase, each executor computes its own bipartitions in parallel
with all other k − 1 executors (map phase, see Fig. 2).

The construction of Cj depends on the minimum costs of the bipartitions in
Cj−1 which are “compatible” with those in Cj , i.e. all those partitions in Cj−1
which “agree” on the values of common reads, i.e. f2 and f3 in Fig. 1(b). This
information is recorded on a suitable table (central matrix), where each executor
over-writes the currently discovered best cost. This may induce write conflicts
(W s in the figure), which have been addressed by constructing local copies of
the table for each executor, and then managing their merging by means of a
sequential reduction phase, executed in pipeline with the map phase (Fig. 2).
The information recorded in the table is then used to determine the costs in the
next column (right matrix) as the sum (Σ) of the minimum cost of compatible
bipartitions (m(c1)) and minimal corrections on the current bipartition (c2).
Concurrent read accesses (Rs) are of no particular concern.

Interestingly, if more than one minimum exists, the interplay of relative ex-
ecution speed among parallel executors, may cause non-determinism in the last
overwritten minimum, thus providing different solutions of equal minimum cost
over different executions. Comparison of different optimal solutions is left as
future work.

4.3 Implementation details

The parallel construction of each column of the minimum cost matrix C has
been implemented by using two FastFlow patterns pipeline and task-farm-with-
feedback (Fig.2). The pipeline pattern consists of a 2-stage pipeline whose first
stage is a task-farm pattern, with workers (W s) connected both to the scheduler
thread (S) and the second stage of the pipeline (R). The first stage implements

Fig. 2. The FastFlow skeleton used in pWhatsHap. Each entity is a concurrent thread.
The Emitter (S) produces and schedules tasks towards a pool of Workers (W s). Each
Worker sends results to the Reducer (R) and asks for new tasks from S.

the map phase of the proposed parallelisation, where a given number (chunksize)
of the bipartitions of the fragment set F are computed by each worker in parallel.

The second stage of the pipeline consists of a simple sequential node called
Reducer (R), which receives tasks from all workers (i.e. locally produced re-
sults) and then updates the matrix C with the minimum cost found (reduction
phase on all inputs received). By using these patterns it is possible to exploit: i)
Emitter–Workers pipeline parallelism: the Emitter computes all possible bipar-
titions sending disjoint sub-partitions to Workers using a dynamic scheduling
policy; ii) parallelism among Workers: computation of local minimum costs in
parallel; and iii) Workers–Reducer pipeline parallelisms: the Reducer receives
multiple results in chunks from each worker.

The proposed parallelisation is quite direct and, importantly, requires min-
imal changes to the original sequential WhatsHap code. Furthermore, a high
degree of parallelisation is involved due to the many entries of the large fragment
table F corresponding to many (small) tasks that can be executed in parallel on
the available cores.

5 Experimental results

In this section we report the results of experiments showing how effective the pro-
posed parallelisation is. All the experiments were run using a workstation hosting
two E5-2695 Ivy Bridge Intel Xeon processors, each with 12 cores, 64 Gbytes of
main memory, Linux Red Hat 4.4.7 with kernel 2.6.32. Each core has two hard-
ware contexts and thus a total of 48 threads are directly supported in hardware.
The compiler used was gcc 4.8.2 with optimisation level –O3. For each experi-
ment, CPU frequency was set to the maximum value possible for the considered
platform (2.40 GHz, no turbo boost). The parallel version was executed using the

Time (S)max.
cov.

n. col.
TSeq TPar

Speedup
TSeq
TPar

20 23,000 534 171 3.12

22 9,000 568 160 3.55

24 2,600 581 188 3.09

26 600 523 150 3.49

Table 1. Overall speedup and columns
considered for each data sets.

Time (S)max
cov

col. with
cov. ≥ 218 TSeq TPar

Speedup

(TSeq
TPar

)
20 77% 439 88 5.00

22 86% 485 87 5.59

24 83% 503 96 5.25

26 80% 422 70 6.06

Table 2. Speedup of the single column
and % of columns with coverage ≥ 18.

shell command numactl --interleave=all to exploit all the available memory
bandwidth of the 2 NUMA nodes of the hardware platform.

Since this paper aims at long reads, synthetic data sets with maximum cov-
erage of 20, 22, 24 and 26 have been generated and used in the presented exper-
iments. Such coverages correspond to quite large data sets. These data sets were
produced by generating a single data set with an average coverage of 30 mapped
to human genome, and then pruned to smaller coverage data sets (see [20] for
details on the construction). Time performance was evaluated by measuring the
time elapsed in the computation of subsets (i.e. a given number of columns) of
each data set. The dimension of each subset was chosen to guarantee that the
entire produced output could be stored in main memory.

First, we ran a set of tests aimed at determining the time spent when com-
puting columns of different coverage. We found that, on the considered platform,
it is worth parallelising only columns with a coverage ≥ 18, which we call higher
coverage. Columns with coverage of 18 have an average computation time of
about 7.4ms. Columns with a coverage of less than 18 (lower coverage) are pro-
cessed in less than 1ms on average.

For higher coverage columns, we found that the best execution time was
obtained by using all the cores of the platform (24), in particular by using 23
worker threads for the map phase and 1 thread for the reduction phase. Con-
versely, columns with lower coverage were computed using the same parallel
pattern but with just 1 worker thread for the entire map phase (see Fig. 2). In
this case the parallel skeleton is reduced to a pipeline of 2 sequential stages.

The experimental results obtained from running both the original sequential
WhatsHap and the new parallel pWhatsHap are summarised in Table 1. For
instance, for the data with maximum coverage of 20 (column max. cov.), we
considered a subset of 23, 000 contiguous columns (n. col.). The WhatsHap
execution time was 534s (Tseq) while the pWhatsHap time was 171s (Tpar),
thus obtaining an overall improvement of 3.12 (Speedup). For all coverages, the
amount of main memory used was fixed to ∼ 63 GB in all the tested cases. The
overall obtained improvement ranges from 3 to 3.5 (see also Fig. 3. Left).

Since it has been observed that the fraction of sequential computation (in-
cluding both the construction of columns with lower coverage and inherently
sequential parts of the application) amounts to about 20% of the overall com-

 0

 100

 200

 300

 400

 500

 600

 700

20 22 24 26

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
)

max. coverage

Sequential vs. Parallel total execution time

WhatsHap pWhatsHap

1
1.7

3
5

10

20

40

80

160

300

600

1200

2400

15 16 17 18 19 20 21 22 23 24 25 26

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
 −

 l
o
g
 s

c
a
le

)

column’s coverage

Sequential vs. Parallel execution time for a single column

WhatsHap pWhatsHap

Fig. 3. Left: total execution time varying the maximum columns coverage. Right:
Average execution time for computing a single column with a given coverage.

putation time (see Table 2), from Amdahl’s law [4] it follows that the maximum
possible speedup would be at most 5.0 7.

The results obtained considering only the columns with higher coverage (i.e.
the ones we compute in parallel) are summarised in Table 2. In this case, the
overall speedup ranges from 5 to 6 times.

The average execution time for computing a single column for several differ-
ent coverages is reported in Fig. 3. Right (logarithmic scale). The per-column
gain obtained, is always in the range 5 - 6.1, both for the smallest coverage (18),
which has a very small computation time (∼ 7ms), and for the biggest coverage
(26), which requires more than 2s of sequential execution for each column. The
fact that we obtained almost the same speedup for very different computation
granularities, clearly demonstrates that the limited scalability is not due to the
overhead introduced by the parallel run-time code. Instead, we found that the
limiting factor is mainly the extensive and non-regular memory access pattern
exhibited by WhatsHap, which does not allow the memory hierarchy of the
chosen platform to be fully exploited in concurrent executions. This seems to
be connected to the fact that the computation for higher-coverage columns is
memory bound. However, further investigation is needed in order to clearly un-
derstand how, and if, it is possible to suitably re-organise WhatsHap’s data
structures to overcome this issue.

6 Final considerations

pWhatsHap aims at further stretching the capabilities of the computational
analysis of DNA sequences, targeting high-coverage data sets of long fragments.
The performed experiments clearly demonstrated the validity of the proposed

7 Let f be the fraction of the algorithm that is strictly sequential, 1/5 here,
then the theoretical maximum speedup that can be obtained with n threads is
S(n) = 1

f+ 1
n
(1−f)

, i.e. 5 with n→∞.

parallelisation of WhatsHap, with an overall speedup of more than 3× for such
a fine-grained parallelism problem. Thanks to the design pattern methodology
adopted for the parallelisation, such results have been obtained with minimal
modifications to the original sequential code. Critical parts of the sequential
algorithm amenable to further optimisation have been identified in the process,
paving the way for future enhancements of the parallel algorithm. An extensive
experimentation on human data sets is planned for future work.

References

1. M. Aldinucci, A. Bracciali, P. Liò, A. Sorathiya, and M. Torquati. StochKit-FF:
Efficient systems biology on multicore architectures. In Euro-Par 2010 Workshops,
Proc. of the 1st Workshop on High Performance Bioinformatics and Biomedicine
(HiBB), volume 6586 of LNCS, pages 167–175, 2011.

2. M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. Accel-
erating code on multi-cores with fastflow. In Proc. of 17th International Euro-Par
2011 Parallel Processing, volume 6853 of LNCS, pages 170–181, 2011.

3. M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale, C. Calcagno,
and M. Coppo. Parallel stochastic systems biology in the cloud. Briefings in
Bioinformatics, June 2013.

4. G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS ’67 (Spring): Proc. of the April 18-20, 1967,
pages 483–485, 1967.

5. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N.
Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view
of the parallel computing landscape. Communications of the ACM, 52(10):56–67,
2009.

6. V. Bansal and V. Bafna. HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics, 24(16):i153–159, 2008.

7. V. Bansal, A.L. Halpern, N. Axelrod, and V. Bafna. An MCMC algorithm for hap-
lotype assembly from whole-genome sequence data. Genome Research, 18(8):1336–
1346, 2008.

8. Z.-Z. Chen, F. Deng, and L. Wang. Exact algorithms for haplotype assembly from
whole-genome sequence data. Bioinformatics, 29(16):1938–1945, August 2013.

9. R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. On the complexity of several
haplotyping problems. In Proc. of the 5th International Workshop on Algorithms
in Bioinformatics (WABI), volume 3692 of LNCS, pages 128–139, 2005.

10. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-
Verlag, 1999. 530 pp.

11. P. Fouilhoux and A. R. Mahjoub. Solving VLSI design and DNA sequencing prob-
lems using bipartization of graphs. Computational Optimization and Applications,
51(2):749–781, 2012.

12. H.J. Greenberg, W.E. Hart, and G. Lancia. Opportunities for combinatorial op-
timization in computational biology. INFORMS J. on Computing, 16(3):211–231,
2004.

13. D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. Optimal algo-
rithms for haplotype assembly from whole-genome sequence data. Bioinformatics,
26(12):i183–i190, 2010.

14. V. Kuleshov. Probabilistic single-individual haplotyping. Bioinformatics,
30(17):i379–i385, 2014.

15. S. Levy, G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, et al. The diploid genome
sequence of an individual human. PLoS Biol, 5(10):e254, 2007.

16. T. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming.
Addison-Wesley Professional, 2004.

17. C. Misale. Accelerating bowtie2 with a lock-less concurrency approach and memory
affinity. In Proc. of the 22nd International Euromicro Conference PDP 2014:
Parallel Distributed and network-based Processing, pages 578–585, 2014.

18. S.R. Mousavi, M. Mirabolghasemi, N. Bargesteh, and M. Talebi. Effective haplo-
type assembly via maximum Boolean satisfiablility. Biochemical and biophysical
research communications, 404(2):593–598, 2011.

19. A. Panconesi and M. Sozio. Fast hare: a fast heuristic for the single individual
SNP haplotype reconstruction. In Proc. of the 4th International Workshop on
Algorithms in Bioinformatics (WABI), volume 3240 of LNCS, pages 266–277, 2004.

20. M. Patterson, T. Marschall, N. Pisanti, L. van Iersel, L. Stougie, G. W. Klau, and
A. Schönhuth. Whatshap: Haplotype assembly for future-generation sequencing
reads. In Proc. of 18th ACM Annual International Conference on Research in
Computational Molecular Biology (RECOMB), pages 237–249, 2014.

21. Y.-T. Zhao, L.-Y. Wu, J.-H. Zhang, R.-S. Wang, and X.-S. Zhang. Haplotype as-
sembly from aligned weighted SNP fragments. Computational Biology and Chem-
istry, 29:281–287, 2005.

