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ABSTRACT

Context. Tidal dissipation in late-type stars is presently poorly understood and the study of planetary systems hosting hot Jupiters can
provide new observational constraints to test proposed theories.
Aims. We focus on systems with F-type main-sequence stars and find that the recently discovered system CoRoT-11 is presently the
best suited for this kind of investigation.
Methods. A classic constant tidal lag model is applied to reproduce the evolution of the system from a plausible nearly synchronous
state on the zero-age main sequence (ZAMS) to the present state, thus putting constraints on the average modified tidal quality factor
〈Q′s〉 of its F6V star. Initial conditions with the stellar rotation period longer than the orbital period of the planet can be excluded on
the basis of the presently observed state in which the star spins faster than the planet orbit.
Results. It is found that 4 × 106 <∼ 〈Q′s〉 <∼ 2 × 107, if the system started its evolution on the ZAMS close to synchronization, with
an uncertainty related to the constant tidal lag hypothesis and the estimated stellar magnetic braking within a factor of ≈5–6. For a
non-synchronous initial state of the system, 〈Q′s〉 <∼ 4×106 implies an age younger than ∼1 Gyr, while 〈Q′s〉 >∼ 2×107 may be tested by
comparing the theoretically derived initial orbital and stellar rotation periods with those of a sample of observed systems. Moreover,
we discuss how the present value of Q′s can be measured by a timing of the mid-epoch and duration of the transits as well as of the
planetary eclipses to be observed in the infrared with an accuracy of ∼0.5–1 s over a time baseline of ∼25 yr.
Conclusions. CoRoT-11 is a highly interesting system that potentially allows us a direct measure of the tidal dissipation in an F-type
star as well as the detection of the precession of the orbital plane of the planet that provides us with an accurate upper limit for the
obliquity of the stellar equator. If the planetary orbit has a significant eccentricity (e >∼ 0.05), it will be possible to also detect the
precession of the line of the apsides and derive information on the Love number of the planet and its tidal quality factor.
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1. Introduction

1.1. Tidal dissipation theories

Tidal dissipation in close binary systems with late-type compo-
nents is generally constrained by the ranges of orbital periods
that correspond to circular orbits as observed in clusters of dif-
ferent ages. Ogilvie & Lin (2007) review recent observations
and conclude that the equilibrium tide theory is insufficient to ex-
plain binary circularization by at least two orders of magnitude.
Therefore, in addition to the dissipation of the kinetic energy of
the flow associated with the tidal bulge, which is considered in
the equilibrium tide theory (e.g., Zahn 1977, 1989), other ef-
fects must be included. The dynamical tide theory treats the dis-
sipation of waves excited by the oscillating tidal potential in the
stellar interior whose kinetic energy is ultimately extracted from
the orbital motion. For simplicity, we shall assume that stars are
rotating rigidly.

We consider a reference frame rotating with the stellar an-
gular velocity Ω = 2π/Prot, where Prot is the stellar rota-
tion period. In that frame, the tidal potential experienced by
the star can be written as a sum of rigidly rotating compo-
nents proportional to the spherical harmonics Ylm(θ, φ), viz.,
Re [ΨlmrlYl

m(θ, φ) exp(−iω̂lmt)], where (r, θ, φ) are spherical po-
lar coordinates with the origin in the centre of the star, ω̂lm is the

tidal frequency in that frame, Ψlm the amplitude of the compo-
nent of degree l and azimuthal order m, and t the time. The tidal
frequency is given by ω̂lm = ln − mΩ, where n = 2π/Porb is the
mean motion of the binary, Porb being its orbital period. Waves
are expected to be excited with the different frequencies ω̂lm that
correspond to the various components of the tidal potential and
their amplitudes will depend on that of the exciting component
and on the response of the stellar interior. For a nearly circular
orbit, the l = m = 2 component is the dominant one and is re-
sponsible for the synchronization of the stellar rotation with the
orbital motion (e.g., Ogilvie & Lin 2004).

The efficiency of tidal dissipation is usually parameterized
by a dimensionless quality factor Q proportional to the ratio of
the total kinetic energy of the tidal distortion to the energy dissi-
pated in one tidal period 2π/ω̂ (e.g., Zahn 2008). In the theory,
Q always appears in the combination Q′ ≡ (3/2)(Q/k2), where
k2 is the Love number of the star that measures its density strat-
ification1. Therefore, the lower the value of Q′, the stronger the
tidal dissipation. In general, Q′ depends on l, m, and the tidal
frequency ω̂, thus a rigorous treatment of the tidal dissipation
should consider the sum of the effects associated with the differ-
ent tidal components each having its specific Q′. In practice, we

1 Note that k2 is twice the apsidal motion constant of the star, often
indicated with the same symbol, as in, e.g., Claret (1995).
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Table 1. Parameters of the transiting planetary systems having stars with Teff ≥ 6250 K.

Name Teff M R Prot Porb Mp Rp τsyn Refs.
(K) (M
) (R
) (days) (days) (MJ) (RJ) (Gyr)

CoRoT-11 6440 ± 120 1.27 ± 0.05 1.37 ± 0.03 1.73 ± 0.26 2.994 2.33 ± 0.34 1.43 ± 0.03 8.673 Ga10
HAT-P-06 6570 ± 80 1.29 ± 0.06 1.46 ± 0.06 8.49 ± 1.34 3.853 1.06 ± 0.12 1.33 ± 0.06 28.38 To08, No08
HAT-P-07 6350 ± 80 1.47 ± 0.07 1.84 ± 0.17 24.51 ± 5.59 2.205 1.78 ± 0.01 1.36 ± 0.14 0.166 Na09
HAT-P-09 6350 ± 150 1.28 ± 0.13 1.32 ± 0.07 5.61 ± 0.78 3.923 0.78 ± 0.09 1.40 ± 0.06 205.8 Am09, Sh09
HAT-P-14 6600 ± 90 1.30 ± 0.03 1.47 ± 0.05 8.85 ± 0.85 4.628 2.20 ± 0.04 1.20 ± 0.58 15.21 To10, Si10
HAT-P-24 6373 ± 80 1.19 ± 0.04 1.32 ± 0.07 6.67 ± 0.68 3.355 0.69 ± 0.03 1.24 ± 0.07 58.49 Ki10
HD147506 6290 ± 110 1.32 ± 0.08 1.42 ± 0.06 3.14 ± 0.30 5.633 8.62 ± 0.55 0.98 ± 0.04 4.379 Ba07, Lo08
HD15082 7430 ± 100 1.50 ± 0.03 1.44 ± 0.03 0.81 ± 0.11 1.220 4.10 ± 4.00 1.50 ± 0.05 0.347 Ca10
HD197286 6400 ± 100 1.28 ± 0.16 1.24 ± 0.05 3.68 ± 0.59 4.955 0.96 ± 0.20 0.93 ± 0.04 553.7 He09a
Kepler-05 6297 ± 60 1.37 ± 0.06 1.79 ± 0.06 18.91 ± 4.80 3.548 2.11 ± 0.06 1.43 ± 0.05 1.009 Ko10
Kepler-08 6213 ± 150 1.21 ± 0.07 1.49 ± 0.06 7.16 ± 0.78 3.523 0.60 ± 0.19 1.42 ± 0.06 61.17 Je10
OGLE-TR-L9 6933 ± 60 1.52 ± 0.08 1.53 ± 0.04 1.97 ± 0.07 2.486 4.50 ± 1.50 1.61 ± 0.04 0.927 Sn09
WASP-03 6400 ± 100 1.24 ± 0.09 1.31 ± 0.09 4.95 ± 0.91 1.847 1.76 ± 0.09 1.29 ± 0.09 1.002 Gi08, Po08
WASP-12 6250 ± 150 1.35 ± 0.14 1.57 ± 0.07 36.12 ± 49.03 1.091 1.41 ± 0.09 1.79 ± 0.09 0.012 He09
WASP-14 6475 ± 100 1.21 ± 0.12 1.31 ± 0.07 23.68 ± 6.35 2.244 7.34 ± 0.50 1.28 ± 0.08 0.017 Jos08, Jo09
WASP-15 6300 ± 100 1.18 ± 0.12 1.48 ± 0.07 18.69 ± 13.64 3.752 0.54 ± 0.05 1.43 ± 0.08 22.41 We09
WASP-17 6550 ± 100 1.20 ± 0.12 1.38 ± 0.20 7.76 ± 2.49 3.735 0.49 ± 0.06 1.74 ± 0.24 128.7 An09
WASP-18 6400 ± 100 1.25 ± 0.13 1.22 ± 0.07 5.60 ± 1.11 0.941 10.30 ± 0.69 1.11 ± 0.06 0.002 He09b
XO-3 6429 ± 100 1.21 ± 0.07 1.38 ± 0.08 3.81 ± 0.23 3.192 11.79 ± 0.59 1.22 ± 0.07 0.814 Joh08, Wi09
XO-4 6397 ± 70 1.32 ± 0.02 1.56 ± 0.05 8.97 ± 0.80 4.125 1.78 ± 0.08 1.34 ± 0.05 11.32 Mc08, Na10

Notes. MJ = 1.90 × 1027 kg and RJ = 7.15 × 107 m indicate the mass and the radius of Jupiter.

References. Am09: Ammler-von Eiff et al. (2009); An09: Anderson et al. (2010); Ba07: Bakos et al, (2007); Ca10: Cameron et al. (2010);
Ga08: Gandolfi et al. (2010); Gi08: Gibson et al. (2008); He09a : Hellier et al. (2009a); He09b: Hellier at al. (2009b); He09: Hebb et al. (2009);
Je10: Jenkins et al. (2010); Jos08: Joshi et al. (2008); Joh08: Johns-Krull et al. (2008); Jo09: Johnson et al. (2009); Ki10: Kipping et al (2010);
Ko10 : Koch et al. (2010); Lo08: Loeillet et al. (2008); Mc08: McCullough et al. (2008); Na09: Narita et al. (2009); Na10: Narita et al. (2010);
No08: Noyes et al. (2008); Po08: Pollacco et al. (2008); Sh09: Shporer et al, (2009); Si10: Simpson et al. (2011); Sn09: Snellen et al. (2009);
To08 : Torres et al. (2008); To10: Torres et al. (2010); We09: West et al. (2009); Wi09: Winn et al. (2009)

adopt a single value of Q′ that represents an average of the con-
tributions of the different components. Moreover, we also aver-
age on the tidal frequency, which means averaging along the evo-
lution of a given system, because the tidal frequency decreases
with time and goes to zero when tidal dissipation has circular-
ized and synchronized the binary.

The observations reviewed by Ogilvie & Lin (2007) indi-
cate that an average Q′ ranging between 5 × 105 and 2 × 106

is adequate to account for the circularization of late-type main-
sequence binaries. These low values require an efficient tidal dis-
sipation mechanism that Ogilvie & Lin (2007), moving along
the lines of previous work, propose to be the damping of inertial
waves in the stellar interior. These waves have the Coriolis force
as their restoring force and are excited provided that the tidal
frequency ω̂ satisfies the relationship

|ω̂| ≤ 2Ω. (1)

The corresponding Q′ has a remarkable dependence on the tidal
and stellar rotation frequencies owing to the complex details of
wave excitation and dissipation that are still poorly understood
(cf. also Goodman & Lackner 2009). The main point, which can
be regarded as firmly established, is that Q′ decreases by 2−4 or-
ders of magnitude when |ω̂|/Ω ≤ 2 with respect to the case when
|ω̂|/Ω > 2, because the excitation of inertial waves is forbidden
in the latter case and only the damping of the equilibrium tide
contributes to the dissipation.

In view of the present uncertainties in the dynamical tide the-
ory, a precise determination of the tidal dissipation in binary sys-
tems with well known parameters is highly desirable. The case
of F-type main-sequence stars is particularly challenging from
a theoretical viewpoint because their internal structure consists
of a thin outer convective zone and a radiative interior hosting a

small convective core at the centre of the star. Since the propaga-
tion and dissipation of inertial waves are remarkably different in
the convective and radiative zones, the study of F-type stars pro-
vides a critical test for the theory. Because the mass of the outer
convection zone decreases rapidly with increasing stellar mass
between 1.2 and 1.5 M
, the value of Q′ is expected to increase
by 3−4 orders of magnitude within this mass range (Barker &
Ogilvie 2009).

1.2. Testing tidal theory with planetary systems

A new opportunity to test the tidal theory comes from the
star-planet systems, in particular those containing hot Jupiters.
Systems with transiting planets have the best determined stel-
lar and planetary parameters and are particularly suited to study
tidal dissipation (see, e.g., Carone & Pätzold 2007). F-type host
stars having a mass M ≥ 1.2−1.5 M
 evolve quite rapidly during
their main-sequence lifetime, thus significantly improving their
age estimate from model isochrone fitting in comparison with
lower mass stars. A good age estimate is important to constrain
the average value of Q′ by modelling the tidal evolution of a
particular system (cf. Sect. 3.3). In Table 1 we list the presently
known transiting systems with a star having an effective temper-
ature Teff ≥ 6250 K, which corresponds to a spectral type earlier
or equal to F8V.

The columns from left to right list the name of the sys-
tem, the effective temperature Teff, the mass M and the ra-
dius R of the star, its rotation period Prot, as derived from the
observed spectroscopic rotation broadening v sin i and the esti-
mated stellar radius assuming an equator-on view of the star, the
orbital period Porb, the mass Mp and radius Rp of the planet, the
timescale for the synchronization of the stellar rotation τsyn, and

A50, page 2 of 10



A. F. Lanza et al.: Tidal dissipation in F-type stars

the references. To compute the synchronization time, we assume
that the entire star is synchronized as is customary in tidal the-
ory and is suggested by the tidal evolution of close binaries ob-
served in stellar clusters of different ages. The synchronization
timescale is then a measure of the strength of the tidal dissipation
in the star and is computed according to the formula

τ−1
syn ≡

1
Ω

∣∣∣∣∣dΩdt

∣∣∣∣∣ = 9
2

1
γ2Q′s

(
Mp

M

)2 (R
a

)9/2 ∣∣∣∣∣1 −
( n
Ω

)∣∣∣∣∣
√

GM
R3
, (2)

where γR � 0.22 R is the gyration radius of the star (Siess et al.
2000), Q′s its modified tidal quality factor, here assumed to be

Q′s = 106, a the semimajor axis of the orbit, and G the gravitation
constant (see Mardling & Lin 2002). Equation (2) is valid for
circular orbits and when the spin axis is aligned with the orbital
angular momentum. In this regard, the values given here must
be considered as estimates and for illustration purpose only, be-
cause high eccentricity and/or obliquity have been measured for
some of these systems.

According to the dynamical tide theory by Ogilvie & Lin
(2007), the stars experiencing the strongest tidal interaction are
those with n/Ω = Prot/Porb ≤ 2 because they have |ω̂|/Ω ≤ 2
when the l = m = 2 component of the tidal potential is
considered (Barker & Ogilvie 2009). For these stars, the or-
bital decay (or expansion) owing to the tidal interaction can
be observed in principle. Among those systems, the best can-
didate is CoRoT-11 (Gandolfi et al. 2010) because it has a
tidal synchronization timescale in between those derived for sys-
tems like HD 197286/WASP-7 or HAT-P-09, i.e., much longer
than the main-sequence lifetime of the system, and those of,
e.g., OGLE-TR-9 or WASP-3 that are shorter than the expected
ages of the systems, which implies that the synchronous final
state has possibly already been reached. Other systems, e.g.,
HD15082/WASP-33, have a star so massive that a Q′s too large to
be measurable is expected, or show a remarkable misalignment
between the stellar spin and the orbital angular momentum that
makes the derivation of the rotation period from the v sin i quite
uncertain, as in the case of XO-4.

In view of the peculiar characteristics of the CoRoT-11 sys-
tem, we shall consider it for a detailed study of the tidal evolu-
tion. We shall derive constraints on the average Q′s value of its
F6V star by considering a possible initial state for the system
when its star settled on the ZAMS (see Sect. 2.4). Moreover, we
shall demonstrate how the present value of Q′s can be directly
measured with suitable transit observations extended on a time
interval of a few decades.

2. Method: tidal evolution model and initial
conditions

2.1. The constant quality-factor approximation

We adopt the classic equilibrium tidal model after Hut (1981),
in the formulation given by Leconte et al. (2010). It assumes that
the energy of the tidal perturbation raised by the tidal potential
is dissipated by viscous effects producing a constant time lag Δt
between the maximum of the tidal potential and the tidal bulge.
When Q  1, Q−1 � ω̂Δt ∼ 2δ(ω̂), where δ(ω̂) is the lag angle
between the maximum of the deforming potential and the tidal
bulge. Since Δt is assumed to be constant during the tidal evolu-
tion, Q and Q′ vary as ω̂−1. To model the evolution of a system
by assuming a constant (or, better, an average) Q′, we need to
make an approximation. Following Leconte et al. (2010), we
assume for the star and the planet k2sΔts = 3/(2nobsQ′s) and

k2pΔtp = 3/(2nobsQ′p), where the indexes s and p refer to the
star and the planet, respectively, and nobs is the present mean or-
bital motion of the system corresponding to the orbital period
Porb = 2.99433 days. As we shall see (cf. Sect. 3), the mean
motion n varies by a factor of ≈4−5 during the evolution of the
system, but we shall neglect this change because we are inter-
ested in deriving the order of magnitude of the average Q′s along
the evolution.

The theory of dynamical tides predicts that the dissipation
is a complex function of the tidal frequency, the properties of
the interior of the body, and, possibly, the strength of the tidal
potential because of non-linear effects. All these dependencies
are lumped together into the coefficients Q′s and Q′p and in prin-
ciple could be included in an equilibrium model provided that
the relationship between their variations along the evolution of
the system and the time lag value were known. In view of our
ignorance of the processes contributing to the tidal dissipation
in stars and planets (cf., e.g., Ogilvie & Lin 2004; Goodman
& Lackner 2009) and the presently limited observational con-
straints, we shall consider constant, i.e. average, values of Q′s and
Q′p all along the evolution and integrate the equations in Sect. 2.2
of Leconte et al. (2010) accordingly.

2.2. Range of considered Q′s

The dynamical tide theory of Barker & Ogilvie (2009) gives the
dependence of Q′s on the tidal and the rotation frequencies of the
star when the dissipation of inertial waves is regarded as the main
source of energy dissipation – see their Fig. 8, and consider that
Q′s ∝ Ω−2 for a fixed ratio ω̂/Ω (cf. Sect. 3.6 of Ogilvie & Lin
2007). In view of the simplified treatment of the interaction of

these waves with turbulent convection and radiative-convective
boundaries, their results can be regarded only as an approxima-
tion of the complex dependence of Q′s on the relevant parame-
ters. For a star of 1.2 M
 and Prot ∼ 1.5 days, the average Q′s for
|ω̂|/Ω ≤ 2 can be roughly estimated to be 5 × 107 with an uncer-
tainty of at least one order of magnitude and some preference
for the lower bound because of the approximate treatment of
the above mentioned processes. Outside such a frequency range,
Q′s ∼ 1010, i.e., the tidal dissipation is reduced by at least three
orders of magnitudes.

2.3. Range of considered Q′p

An estimate of the tidal quality factor of the hot Jupiters may be
based on astrometric observations of the Jupiter-Io system that
give Q′p � (1.36 ± 0.21) × 105 for Jupiter (see Lainey et al.
2009). Nevertheless, the quality factor of hot Jupiters can be dif-
ferent from that of Jupiter owing to their different internal struc-
ture. Assuming the observed eccentrity of the orbits of several
hot Jupiters to be of primordial origin, Matsumura et al. (2008)
infer 105 ≤ Q′p ≤ 109, with most of the planets having Q′p ≤ 108.
Therefore, we shall consider 106 ≤ Q′p ≤ 108 when integrating
the equation of tidal evolution of our system. The timescale to
achieve the pseudosynchronization of the planetary rotation for
CoRoT-11 and of the other systems containing hot Jupiters is of
the order of 105 yr when Q′p ∼ 106 (cf. Sect. 2.2 of Leconte et al.
2010). Even if Q′p ∼ 108 this timescale is shorter than 3× 107 yr,
i.e., much shorter than the typical timescales for the tidal evo-
lution of the orbital parameters and the stellar spin. Therefore,
we shall consider the planet to be always in a state of pseu-
dosynchronization, which simplifies the integration of the tidal
equations.
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Fig. 1. Upper panel: the synchronization parameter n/Ω vs. the effective
temperature of the star Teff in transiting planetary systems with Teff ≥
6000 K. WASP-12 with n/Ω ≈ 33 has been omitted for the sake of
clarity; lower panel: an enlargement of the lower portion of the upper
panel to better show the domains close to n/Ω = 1 and n/Ω = 2, which
are marked by horizontal dashed lines. The names of the systems are
reported in both panels, although they are omitted for n/Ω ≤ 4.0 in the
upper panel to avoid confusion.

2.4. Initial state of the tidal evolution of planetary systems

The observed distribution of the synchronization parameter
n/Ω ≡ Prot/Porb provides us with information on the initial state
of star-planet systems. We show n/Ω vs. the effective tempera-
ture Teff of the host star for stars with Teff ≥ 6000 K in Fig. 1
where the most impressive feature is the lack of systems in the
range 1 ≤ n/Ω ≤ 2, with the exception of HAT-P-09 and XO-3.

As conjectured by Lanza (2010), this may be related to the
processes occuring in the systems before their stars settle on the
ZAMS. After the planet forms in the circumstellar disc, it mi-
grates inwards by transferring its orbital angular momentum to
the disc via resonant interactions (e.g., Lin et al. 1996). The
migration ends where the orbital period of the planet is half the
orbital period of the particles at the inner edge of the disc where
it is truncated by the magnetic field of the protostar. Since the
protostellar magnetic field is also responsible for the locking of
the stellar rotation to the inner edge of the disc, the value of
the synchronization ratio at this stage is n/Ω ≡ Prot/Porb � 2.
After a few million years, the disc disappears and the subsequent
evolution depends on the interplay between tidal and magnetic
interactions coupling the star and the planet. As the star con-
tracts towards the ZAMS, it accelerates its rotation leading to
a decrease of n/Ω (cf. Fig. 8 of Lanza 2010). The loss of
angular momentum through the stellar magnetized wind, how-
ever, counteracts such an acceleration. If the lifetime of the disc
is <∼10−15 Myr, the contraction prevails and the system enters
into the domain n/Ω < 2 characterized by a strong tidal inter-
action due to the dissipation of inertial waves in the extended
convective envelope of the pre-main-sequence star (Ogilvie &
Lin 2007). Angular momentum is transferred from the orbit to
the spin of the star, leading to the infall of the planet towards the
star (Hut 1980). Considering a star similar to the Sun, Q′s = 105,
a planet of Mp = 1 MJ, and an orbital period of 3 days, eq. (8)
of Ogilvie & Lin (2007) gives an infall timescale of ≈250 Myr,
which may account for the lack of systems with 1 < n/Ω < 2
given that typical stellar ages are between ∼1 and ∼8 Gyr.

On the other hand, if the magnetic braking prevails, the sys-
tem may be driven into the domain where n/Ω > 2 and the tidal
interaction becomes so weak (Q′s ∼ 108−109) that the planet
will spiral towards the star on a timescale much longer than the
main-sequence lifetime of the star (Ogilvie & Lin 2007), thus
populating the region of the diagram where n/Ω > 2. Only when
the planet is more massive than ∼5−10 MJ and the star is late F
or cooler, the tidal interaction may lead to the infall of the planet
during the main-sequence lifetime of the star (cf., e.g., Bouchy
et al. 2011).

Another possible scenario occurs when the magnetic field of
the pre-main-sequence star is so strong (≈3−5 kG) as to effec-
tively couple the orbital motion of the planet to the rotation of the
star after the disc has disappeared (Lovelace et al. 2008; Vidotto
et al. 2010). In this case, a synchronous state is attained on a
timescale of ≈2−3 Myr and maintained until the field strength
decreases rapidly as the star gets close to the ZAMS. If the mag-
netic braking prevails over the final stellar contraction, the sys-
tem would reach the ZAMS with 1 < n/Ω < 2 and the planet
will eventually fall into the star owing to the strong tidal interac-
tion. On the contrary, if the stellar contraction prevails, the star
will spin up, reach n/Ω < 1 on the ZAMS, and the tides will
push the planet away from the star. This may explain why sev-
eral systems populate the domain n/Ω < 1 in the diagram. The
present value of n/Ω is lower than the initial value on the ZAMS
because the tidal interaction transfers angular momentum from
the stellar spin to the planetary orbit, leading to an increase of
the semimajor axis. Thus we shall base our calculations on the
hypothesis that the systems observed today with n/Ω ≤ 1, as
CoRoT-11, have reached the ZAMS in a state close to synchro-
nization.

Finally, a few remarks concerning the two systems that have
1 < n/Ω < 2. The peculiar state of the HAT-P-9 system having
n/Ω � 1.4 may be explained by the weakness of the tidal inter-
action owing to the relatively small planetary mass (∼0.7 MJ),
and/or the young age of the system. For XO-3, the system has
significant measured eccentricity and projected obliquity (e =
0.288 and λ = 37.3 ± 3.7◦ respectively), so it is possible that the
rotation period of the star is ill estimated or that the system has
undergone a different evolution.

3. Application to CoRoT-11

3.1. System parameters

Gandolfi et al. (2010) present the observations leading to the
discovery of CoRoT-11 and derive the parameters of the system
that are reported in their Table 4 together with their uncertain-
ties. The stellar rotation period can be inferred only from the ob-
served v sin i and the estimated radius of the star because no evi-
dence of rotational modulation of the optical flux has been found
in the CoRoT photometry. Indeed, a modulation with a period of
≈8 days appears in the photometric time series, but it is incom-
patible with the maximum rotation period of 1.73 ± 0.25 days
as derived from the v sin i = 40.0 ± 5 km s−1 and the star radius
R = 1.37±0.03 R
. It is likely to arise from a nearby contaminant
star about 2 arcsec from CoRoT-11 that falls inside the CoRoT
photometric mask.

The eccentricity of the planetary orbit is ill-constrained by
the radial velocity curve because of the uncertainty of the radial
velocity measurements for such a rapidly rotating F-type star.
An upper limit of 0.2 comes from the modelling of the transit
light curve that would lead to a mean stellar density that is in-
compatible with a F6V star for greater values. In any case, the
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present radial velocity and transit data are fully compatible with
a circular orbit.

The angle λ between the projections of the stellar spin and
the orbital angular momentum on the plane of the sky can be
measured through the Rossiter-McLaughlin effect (e.g., Ohta
et al. 2005). Owing to the limited precision of the available
measurements, Gandolfi et al. (2010) could not measure λ,
but they established that the planet orbits in a prograde direc-
tion, i.e., in the same direction as the stellar rotation, and that
λ <∼ 50◦−80◦. An aligned system, i.e., having λ = 0◦, is compat-
ible with their observations. The obliquity ε of the stellar equa-
tor with respect to the orbital plane of the planet is given by
cos ε = cos Ip cos i + sin Ip sin i cos λ, where Ip and i are the an-
gles of inclination of the orbital plane and the stellar equator to
the plane of the sky. Since Ip = 83.◦3, cos ε � sin i cosλ, thus the
measurement of λ provides us with a lower limit for the obliquity
of the stellar rotation axis.

3.2. Stellar magnetic braking

Late-type stars lose angular momentum through their magne-
tized stellar winds. For F-type stars, Barker & Ogilvie (2009)
assumed a braking law of the form (dΩ/dt)mb = −γwΩ

3, where
γw = 1.5 × 10−15 yr is a factor that accounts for the effi-
ciency of magnetic braking. It can be integrated to give Ω(t) =
Ω0[1+ γwΩ0(t − t0)]−0.5, where Ω0 is the angular velocity at ini-
tial time t0. For Ω � Ω0 this yields the usual Skumanich brak-
ing law of stellar rotation. Applying that equation to CoRoT-
11a leads to an unrealistically fast initial rotation for an age
between 1 and 3 Gyr. Indeed, the above law of angular mo-
mentum loss does not apply to fast rotators such as CoRoT-
11a for which a saturation of the angular momentum loss rate
is required to explain the observed distribution of stellar ro-
tation periods (cf., e.g. Bouvier et al. 1997). Therefore, we
shall assume: (dΩ/dt)mb = −γwΩ

2
satΩ, where Ωsat is the an-

gular velocity that corresponds to the transition to the unsatu-
rated regime. The value of Ωsat for solar-mass stars is ≈8 Ω
,
where Ω
 is the angular velocity of the present Sun (Irwin &
Bouvier 2009). However, its value is highly uncertain in the
case of mid-F stars because they do not show a rotational mod-
ulation measurable from the ground and experience a remark-
ably lower magnetic braking than G-type stars. Considering the
data in Table 4 of Wolff & Simon (1997), we estimate a rota-
tion period corresponding to saturation of ≈2.8 days for mid-F
stars with v sin i ∼ 20−25 km s−1 at the age of the Hyades and
the adopted value of γw. However, if CoRoT-11a is older than
∼2 Gyr, the value of the saturation period must be longer by a
factor of at least ≈2, otherwise the star would have been rotating
faster than the brake-up velocity on the ZAMS. This reduction
of the angular momentum loss rate in the saturated regime can
be a consequence of the initially fast angular velocity that led to
a supersaturated dynamo regime for CoRoT-11a, or an effect of
the close-in massive planet that reduced the efficiency of the stel-
lar wind to extract angular momentum from the star (cf. Lanza
2010).

3.3. Backward integration from the present state to the initial
condition

We integrate the tidal evolution equations in Sect. 2.2 of Leconte
et al. (2010) backwards in time starting from the present con-
dition, i.e., with the following parameters: stellar rotation period
Prot = 1.73 days, planet orbital period Porb = 2.99433 days,

Fig. 2. Total angular momentum of the CoRoT-11 system in units of
the critical angular momentum as defined in Eq. (4.1) of Hut (1980)
versus the orbital mean motion in units of the present mean motion nobs.
The stellar magnetic braking law has Psat = 6.0 days. The black solid
line indicates the total angular momentum values corresponding to tidal
equilibrium. The black dotted line represents the stability limit for the
equilibrium as given by Eq. (4.2) of Hut (1980). The solid blue lines
show the backward evolution of the system for different values of the
tidal quality factor Q′s. From left to right, the values of Q′s are: 5 × 107,
3× 107, 2× 107, 107, 3.8× 106, and 106, respectively. The initial points
of the evolution are marked by the filled blue dots.

star mass M = 1.27 M
, star radius R = 1.37 R
, planet mass
Mp = 2.33 MJ, planet radius Rp = 1.43 RJ (where MJ and RJ
are the mass and radius of Jupiter), orbital eccentricity e = 0,
and stellar obliquity ε = 0◦. The stellar quality factor Q′s is re-
garded as a free parameter (see also Sect. 2.2). We account for
the angular momentum loss of the star due to its magnetized
wind by adopting a saturated loss rate with two possible values
for Psat = 2π/Ωsat, i.e., 6.0 or 8.0 days. Note that the results do
not depend on the planet quality factor Q′p, provided that the or-
bital eccentricity is zero and the planet is assumed to be in the
synchronous rotation state.

The present state of the system and its backward evolution
are represented in a tidal stability diagram similar to that of Hut
(1980) in Fig. 2. The black solid line represents the value of the
total angular momentum of the system when tidal equilibrium
is established. For each value of the total angular momentum
exceeding a minimum critical value (see Hut 1980), two equi-
librium states are possible. The one on the left of the dotted line
is stable, the other on the right is unstable. The filled square indi-
cates the present state of the CoRoT-11 system with the assump-
tion that i = 90◦, i.e., the stellar rotation period is 1.73 days.

The results of the backward integrations of the tidal equa-
tions are represented by the solid blue lines for different values
of Q′s and a braking law with Psat = 6.0 days. All the back-
ward evolutions asymptotically approach an initial equilibrium
state where all the time derivatives of the relevant variables van-
ish. Such an equilibrium is unstable, i.e., it leads to the transfer
of angular momentum from the stellar spin to the planet that is
pushed outwards. Increasing the value of Q′s the tidal interaction
weakens so that the evolution of the total angular momentum is
dominated by the magnetic braking of the star. This leads to an
almost vertical evolution track in the diagram since the star was
initially rotating faster. There is no possible evolution track that
crosses the dashed line, indicating that the past system evolution
has occured only in the unstable region of the diagram, i.e., the
planet has been pushed outwards starting from its initial orbit
with n/Ω < 1 during all the system lifetime.
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Fig. 3. Backward evolution of the orbital period Porb (solid line) and
the rotation period Prot (dotted line) vs. time since the present epoch
for different values of the modified tidal quality factor Q′s and a stellar
braking law with Psat = 6.0 days. From left to right, the values of Q′s
are: 5 × 107, 2 × 107, 107, 3.8 × 106, and 106, respectively.

Given that the initial state is unstable, integrating the tidal
evolution equations backwards in time is recommended to en-
sure the stability of the obtained solutions. The instability of the
present tidal state is not a specific property of CoRoT-11, but it
is generally found in hot Jupiter systems (Levrard et al. 2009),
most of which evolve towards the infall of the planet into the
star. Therefore, what makes CoRoT-11 peculiar is the low value
of the n/Ω ratio pushing the planet outwards.

The orbital period of the planet and the rotation period of the
star are plotted vs. time in Fig. 3 for Psat = 6.0 days. If the initial
state of the system was characterized by a synchronization of
the stellar rotation with the planet orbital period, it is possible to
constrain the tidal quality factor, i.e., 3.8 × 106 ≤ Q′s ≤ 2 × 107.
Although we speculated that the system may have reached the
ZAMS close to synchronization in Sect. 2.4, other evolutionary
scenarios are possible. In some of these scenarios, the planet may
have started with an orbital period longer than the stellar rotation
period 3 Gyr ago, leading to the present state if Q′s ≥ 2 × 107.
As an example of such an evolution, we plot in Fig. 3 the case of
Q′s = 5× 107. Note that in this case the initial state of the system
has n/Ω � 0.25 that is significantly lower than the observed
values of n/Ω plotted in Fig. 1. Although the present sample
of systems with n/Ω < 1 is too small to draw conclusions on
the minimum value of n/Ω during their evolution, we hope that
such a statistical information can be used to constrain Q′s when
a larger sample is available.

On the other hand, Q′s < 3.8 × 106 implies a system younger
than ∼1 Gyr. To illustrate this point, we plot in Fig. 3 the evolu-
tion for Q′s = 106 for which the system reached synchronization
∼0.4 Gyr ago. Although the backward evolution can be contin-
ued to earlier times, this initial state is unstable as well as all
the allowed initial states with Porb > Prot. For Q′s < 3.8 × 106,
the tidal interaction would be so strong and the evolution so fast
that the system would reach a present value of Porb longer than
observed. Therefore, we can set a lower limit on Q′s on the ba-
sis of the estimated age of the system. Note that if the system
were younger than ∼0.7−1 Gyr, the Q′s value could be so low
that we might directly measure it after a few decades of timing
observations (see Sect. 4).

The evolution tracks obtained for Psat = 8.0 days and dif-
ferent values of the average Q′s are plotted in Fig. 4. They show
that a decrease of the braking rate of CoRoT-11a by ∼30 per-
cent leads to a comparable decrease in the values of the average

Fig. 4. Backward evolution of the orbital period Porb (solid line) and
the rotation period Prot (dotted line) vs. time since the present epoch
for different values of the modified tidal quality factor Q′s and a stellar
braking law with Psat = 8.0 days. From left to right, the values of Q′s
are: 2 × 107, 1.4 × 107, 8 × 106, 3 × 106, and 106, respectively.

Q′s because a stronger tidal interaction is needed to transfer the
required amount of angular momentum from the stellar spin to
the planet when the stellar rotation was initially slower. On the
other hand, if we adopt Psat = 2.8 days, as estimated from the
data of Wolff & Simon (1997), the stellar braking was so rapid
that only for a system younger than 1 Gyr we may find an ac-
ceptable evolution with Q′s ∼ 9 × 106. For higher values of Q′s,
the evolution takes longer, and this leads to a planet approaching
the Roche lobe radius and/or an initial stellar rotation exceeding
the break-up velocity. Therefore, the assumption that Psat is at
least ∼5−6 days seems to be more likely for CoRoT-11a than
Psat ∼3−4 days. In the latter case, the system would be so young
and the average Q′s so small that we expect to detect the tidal
increase of the orbital period within a few decades (see Sect. 4).

3.3.1. Initial eccentricity of the orbit

In the scenario introduced in Sect. 2.4, the initial eccentricity of
the planetary orbit would be close to zero (Sari & Goldreich
2004), unless an encounter with some planetary or stellar body
would have excited it. Assuming that no third body has been
perturbing the system after that event, the evolution of any
primordial eccentricity is ruled by the dissipation inside both
the star and the planet, the latter being the most important for
Q′p <∼ 108. The timescale for the damping of the eccentricity
τ−1

e ≡ (1/e)(de/dt) adopting the present parameters of the sys-
tem is ∼120 Myr for e = 0.2, Q′s = 5 × 106, and Q′p = 106,
and increases to ∼1.1 Gyr for Q′p = 107. Since the tidal interac-
tion was initially stronger – it scales as a−5 – the initial τe was
one order of magnitude shorter than the above values, leading
to a rapid damping of any initial eccentricity, unless Q′p >∼ 107.

Moreover, for initially high eccentricities (i.e., e >∼ 0.3) and an
initial n/Ω ≈ 1, the evolution of the system may be signifi-
cantly affected and the infall of the planet occurs as the orbital
angular velocity at the periastron exceeds the stellar angular ve-
locity. To prevent such an infall, we must assume that the star
was initially rotating remarkably faster than considered above.
Because the rotation braking on the main sequence is expected
to be small, this is hardly compatible with the present estimated
rotation period. We conclude that the present eccentricity of
CoRoT-11 is likely to be close to zero. In any case, we describe
in Sect. 4 observations that can constrain the present value of e to
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Fig. 5. Forward evolution of the obliquity from the ZAMS for different
initial values of the angle itself. The planetary orbit is assumed circular
and the initial orbital period is 0.7 days, while the initial rotation period
of the star is 0.48 days for ε(t = 0) = 45◦, 0.60 days for ε(t = 0) = 30◦,
and 0.67 days for ε(t = 0) = 15◦, to prevent the infall of the planet.

allow us to distinguish among different scenarios for the system
evolution.

3.3.2. Initial obliquity of the orbit

The obliquity of the CoRoT-11 system may be significantly dif-
ferent from zero, as indeed found for several stars accompanied
by hot Jupiters with Teff > 6250 K (Winn et al. 2010). For a
system born close to n/Ω = 1, we need Ω cos ε > n to prevent
the tidal infall of the planet, and the observational result that
CoRoT-11 is compatible with an aligned system agrees with this
constraint. Initial values of the obliquity ε > 30◦ require a fast-
rotating star, which is difficult to reconcile with the presently
observed v sin i and stellar radius. However, lower values of the
obliquity cannot be excluded. They are damped on a timescale
that depends on the value of Q′s, as illustrated in Fig. 5 where
the time has been scaled inversely to the stellar tidal quality fac-
tor. These plots show that after an initial remarkable damping of
the obliquity, it asymptotically approaches a value about half its
initial value that practically corresponds to the present value. In
Sect. 4 we shall discuss how this value can be constrained with
accurate timing observations of the system.

4. Measuring the present tidal dissipation

The main conclusion of the previous section is that the mean
modified tidal quality factor of CoRoT-11a Q′s <∼ 2 × 107, pro-
vided that the system started its evolution on the ZAMS from a
nearly synchronous state. Since Q′s is subject to remarkable vari-
ations during the evolution of the system, this result is of limited
value to constrain dynamical tide theory, as for the mean values
of Q′s derived from close binaries in clusters. However, a much
more interesting opportunity offered by CoRoT-11 is the possi-
bility to measure the present value of Q′s from the rate of orbital
period variation. Moreover, as we shall see, the rate of orbital pe-
riod variation also depends on the orbit parameters, and we can
extract a wealth of information from CoRoT-11 using the timing
method.

4.1. The circularized and aligned system hypothesis

If the present orbit is circular, the semimajor axis is subject to a
secular increase because the star is rotating faster than the orbital
motion of the planet, so angular momentum is transferred from
the stellar spin to the orbit via the tidal interaction. When e = 0
and the stellar obliquity is negligible (ε ∼ 0◦), the rate of this
transfer depends on the system parameters, which are known to
a good level of precision, and on Q′s only. Therefore, we can
compute the rate of orbital period increase dPorb/dt and use it to
derive the difference (O–C) between the observed time of mid-
transit and that computed with a constant period ephemeris after
N orbital periods, viz.:

(O−C)(N) =
1
2

(
dPorb

dt

)
PorbN(N + 1), (3)

where we have assumed that the constant period of the
ephemeris is the orbital period at N = 0, i.e., at the epoch of
the first transit. Using the tidal evolution model of Leconte et al.
(2010) and assuming e = 0, ε = 0◦, and the maximum stellar

rotation period Prot = 1.73 days, we find:

(O−C) = 8.34

(
Q′s
106

)−1

s (4)

after N = 3000 orbital periods, i.e., 24.6 years.
The epoch of mid transit can be determined with an accuracy

that depends on the depth and duration of the transit, the accu-
racy of the photometry, and the presence of noise sources, e.g.,
related to stellar activity. In the case of CoRoT-11, because the
star shows no signs of magnetic activity, the precision of the tran-
sit timing is dominated by the photometric accuracy. Gandolfi
et al. (2010) report in their Table 4 a precision of ∼25 s for the
initial epoch of their ephemeris as obtained from a sequence of
∼50 transits observed with a photometric accuracy of ∼250 parts
per million (ppm) and a cadence of ∼130 s. Recently, Winn et al.
(2009) using the Magellan/Baade 6.5-m telescope, observed two
transits of the hot Jupiter WASP-4b, reaching a photometric ac-
curacy of ∼500 ppm (standard deviation) in their individual mea-
surements obtained with a cadence of 30 s. The average standard
deviation of the epoch of mid-transit is ∼5 s, which can be as-
sumed as the limit presently attainable with ground-based pho-
tometry. The transit of WASP-4b has a depth of ≈0.028 mag and
the star has a magnitude of V � 12.5, while that of CoRoT-11 has
a depth of ≈0.011 mag and the star has V = 12.94. Therefore,
it is reasonable to assume that a timing accuracy of 0.5−1 s can
be reached with a space-borne dedicated telescope of aperture
2−3 m, since the precision is expected to scale with the accu-
racy of the photometry that should reach 200−300 ppm in ∼15 s
integration time. This instrument would allow us to detect the
expected transit time variation (hereafter TTV) with 3σ signif-
icance after an interval of ∼25 years for Q′s ∼ 5 × 106. Even
if no significant TTV is detected, a stringent lower limit can be
placed on Q′s, with the sensitivity increasing as the square of the
considered time baseline (cf. Eq. (3)).

4.2. The eccentric system hypothesis

A significant eccentricity of the planetary orbit can affect the
O–C of the TTV, particularly when tidal dissipation in the planet
is not negligible. This happens because the angular momen-
tum of the planetary orbit is given by Lp = [(MsMp/(Ms +

Mp)]na2
√

1 − e2, so an increase of Lp does not necessarily lead
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to an increase of a when the eccentricity is damped. Assuming
e = 0.2, Q′s = 5 × 106, and Q′p = 106, we find O−C = −8.33 s
after 24.6 yr, owing to the strong dissipation inside the planet
that dumps the eccentricity with a timescale of ∼120 Myr. If the
dissipation inside the planet is weaker, the absolute value of the
O–C decreases. For instance, if Q′p = 107, we obtain O–C=
0.49 s after 24.6 yr.

Furthermore, if the orbit of CoRoT-11 is indeed eccentric,
the measurement of the O–C of the primary transit are not suf-
ficient to determine Q′s. This happens because in addition to the
tidal evolution, also the precession of the line of the apsides (due
to the planetary and stellar tidal deformations and general rel-
ativistic effects) produces a TTV (see Miralda-Escudé 2002;
Ragozzine & Wolf 2009). For e = 0.2, and a planet Love number
k2 = 0.3, similar to that of Saturn, we have a precession period
of only ∼3300 yr, which leads to a maximum O−C = 18.1 s after
N = 3000 orbital periods, i.e., 24.6 yr. To separate the effects of
the apsidal precession from those of tidal origin, we note that the
apsidal precession produces an oscillation of the O–C of the mid
of the secondary eclipse, i.e., when the planet is occulted by the
star, which is always shifted in phase by 180◦ with respect to that
of the primary transit. In other words, the two oscillations have
always opposite signs, as is well known for the apsidal preces-
sion of close binaries (see, e.g., Gimenez et al. 1987). On the
other hand, the O–C of tidal origin has the same sign for both the
primary transit and the secondary eclipse, so it can be separated
from that arising from apsidal precession.

We conclude that a measurement of the eccentricity (or a de-
termination of a more stringent upper limit) is critical to derive
Q′s from the O–C observations. A direct constraint on the ec-
centricity can be obtained from the observation of the time of
the secondary eclipse. Gandolfi et al. (2010) did not find evi-
dence of a secondary eclipse in the CoRoT light curve, which
sets an upper limit of ∼100 ppm to its depth in the spectral range
300−1100 nm. However, it should be possible to detect the sec-
ondary eclipse in the infrared, thus deriving the value of e cosω,
where ω is the longitude of the periastron, from the deviation
of the time of the secondary eclipse from half the orbital pe-
riod. For HD 189733 Knutson et al. (2007) found, observing in
a band centred at 8 μm with IRAC onboard of Spitzer, that the
secondary eclipse occurred 120±24 s after the time expected for
a circular orbit, leading to e cosω = 0.001 ± 0.0002. The same
method has been applied to constrain the eccentricity of the or-
bit of CoRoT-2 finding e cosω = −0.00291 ± 0.00063 (Gillon
et al. 2010). Moreover, the duration of the primary transit and
the secondary eclipse can provide a measurement of e sinω, al-
though with a precision significantly poorer than for the sec-
ondary eclipse timing (see Sect. 2.5 of Ragozzine & Wolf 2009).
In conclusion, we recommend to perform infrared photometry of
CoRoT-11 to constrain its orbital eccentricity.

The present fast rotation of CoRoT-11a can in principle ex-
cite the eccentricity of the orbit during the phase of the evo-
lution when Prot/Porb < 11/18 (cf. Eq. (6) of Leconte et al.
2010). However, the tidal dissipation inside the planet is effec-
tive at damping the eccentricity and only for Q′p ≥ 2.5 × 107 we
find an increasing eccentricity for the present state of the system.
Imposing that the eccentricity is always damped along the past
evolution of the system, we find Q′p ≤ 1.6×107 for Q′s ≥ 4×106.

4.3. Non-negligible obliquity hypothesis

If the present obliquity of the system is not negligible, the rate
of orbital period increase and the corresponding O–C in Eq. (4)

must be multiplied by(
Porb
Prot

)
cos ε − 1(

Porb
Prot

)
− 1

, (5)

because the component of the stellar angular momentum inter-
acting with the orbit is Ls cos ε, where Ls is the modulus of the
angular momentum of the star (cf. Eq. (2) of Leconte et al.
2010).

It is interesting to note that the obliquity can be constrained
not only through the observation of the Rossiter-McLaughlin ef-
fect, but also by measuring the precession of the orbital plane of
the planet around the total angular momentum of the system that
is expected when ε � 0◦. This precession arises because the stel-
lar gravitational quadrupole moment is non-negligible owing to
its fast rotation. More precisely, adopting a stellar Love number
k2s = 0.0138 after Claret (1995) and Prot = 1.73 days, we find
J2 = 4.19 × 10−5. The contribution to J2 arising from the tidal
deformation of the star induced by the planet is about 1100 times
smaller and can be safely neglected.

Even assuming an obliquity of a few degrees, the precession
period is so short as to give measurable effects. For instance,
for ε = 5◦, the precession of the orbital plane has a period of
∼7.0×104 years, according to Eq. (4) of Miralda-Escudé (2002).
This produces a variation of the length of the transit chord across
the disc of the star that leads to a variation of the transit duration
(transit duration variation, hereafter TDV). Applying Eq. (12)
of Miralda-Escudé (2002) and assuming that the total angular
momentum of the system is approximately perpendicular to the
line of sight, we find a maximum TDV of ∼8 s in one year.
Assuming a precision of ∼40 s in the measurement of the du-
ration of the transit as obtained with CoRoT observations, this
variation should be easily detected in ∼5 yr and can provide a
lower limit for the stellar obliquity, which is remarkably better
than what is achievable with the Rossiter-McLaughlin effect if
ε <∼ 15◦−20◦.

5. Role of a possible third body

The use of TTV to measure the tidal dissipation inside the star
(and the planet, in the case of an eccentric orbit) can be ham-
pered by the presence of a distant third body that induces appar-
ent O–C variations owing to the light-time effect related to the
revolution of the star-planet system around the common centre
of mass. In principle, any light-time effect induced by a third
body is periodic while the effects of tidal dissipation are secu-
lar, i.e., they do not change sign. However, if the orbital period
of the third body around the barycentre of the system is longer
than, say, three times the time baseline of our observations, it
may become difficult or impossible to separate the two effects.

To be specific, let us consider an O–C of 3 s observed with
a time baseline of ΔT ∼ 25 yr. If it is caused by a light-
time effect, the corresponding radial motion of the star-planet
system is Δz = c(O−C) ∼ 109 m, where c is the speed of
light, and the radial velocity of the barycentre of the system
is Δz/ΔT � 1.26 m s−1, too small to be detectable with the
present radial velocity accuracy (cf. Gandolfi et al. 2010). A
third body moving on a coplanar circular orbit with a period
of, say, Ptb = 75 yr, would have an orbital semimajor axis of
∼2.88×1012 m and a minimum mass of 0.2 MJ to induce a reflex
motion of the above amplitude. Its direct detection is very diffi-
cult because its apparent separation from the central star would
be only 0.034 arcsec, given an estimated distance to CoRoT-
11 of 560 ± 30 pc. Astrometric measurements with the GAIA
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or SIM satellites cannot be used to detect the reflex motion of
CoRoT-11 because it would correspond to a maximum displace-
ment of only ∼2.4 μarcsec during an interval of 5 yr, which is
impossible to separate from the much larger proper motion of
the system.

If the orbit of the third body is inclined to the orbital plane of
the star-planet system, the orbital plane of the planet will precede
around the total angular momentum of the system. Assuming a
third body mass of 0.2 MJ, a relative inclination of the orbits of
45◦, and a semimajor axis of ∼2.88 × 1012 m, equal to ∼20 AU,
Eq. (8) of Miralda-Escudé (2002) gives a precession period of
∼14 Gyr, i.e., too long to be observable.

Secular perturbations of the orbit of the planet by the distant
third body can be neglected because they induce a variation of
the O–C of the order of Porb/Ptb ∼ 10−4 of the light-time effect
(cf., e.g., Borkovits et al. 2003). On the other hand, a perturber
on a close-in orbit, possibly in resonance with the planet, would
induce O–C variations with a short periodicity and an amplitude
up to a few minutes (Agol et al. 2005), which would be easily
detectable.

It is interesting to note that CoRoT-11a has a low level of
magnetic activity in contrast to stars with lower effective tem-
perature. This implies that the orbital period modulation induced
by magnetic activity (Lanza et al. 1998; Lanza 2006) can be
excluded as a source of O–C variations in this case. This is
not possible for cooler stars (Watson & Marsh 2010) which
are therefore less suitable to measure the TTV induced by tidal
dissipation.

6. Conclusions

Assuming an initial state of the CoRoT-11 system close to syn-
chronization between the stellar spin and the orbital period of
the planet, we can put constraints on the average modified tidal
quality factor of its F-type star, finding 4 × 106 <∼ Q′s <∼ 2 ×
107. Rigorously speaking, we should have expressed these con-
straints in terms of the average tidal time lag Δt because our tidal
equations are valid for a constant Δt (cf. Sect. 2 and Leconte
et al. 2010). However, in view of the uncertainty on the above
constraints, we prefer to give them in terms of Q′s that varies by
a factor up to ≈4−5 during the evolution, if Δt is assumed to be
constant (cf. Sects. 2 and 3.3).

An initial state close to synchronization is not the only pos-
sible one. However, the minimum estimated age of the system
of ∼1 Gyr implies Q′s >∼ 4 × 106, otherwise the evolution from
any initial state with Porb > Prot would be too fast, leading to a
present Porb longer than observed. An upper limit on Q′s can be
set when a larger statistics of the values of the n/Ω = Prot/Porb

ratio will be available because for Q′s >∼ 5 × 107 the initial value
of n/Ω is predicted to be ∼0.25 that is smaller than the presently
observed minimum n/Ω ∼ 0.5 (see Sect. 3.3).

The above limits on Q′s are only a factor of 2−15 smaller
than the average value predicted by Barker & Ogilvie (2009),
which can be considered a success of the dynamic tide theory of
Ogilvie & Lin (2007) given the current uncertainty on the tidal
dissipation processes occurring in stellar convection zones.

We find that CoRoT-11 is one of the best candidates to look
for orbital period variations related to tidal evolution by mon-
itoring its transits and secondary eclipses in the optical and in
the infrared passbands. In contrast to several systems hosting
very hot Jupiters, e.g., WASP-12 or WASP-18, whose orbital
decay may be too slow to be measurable (Ogilvie & Lin 2007;
Li et al. 2010), the parameters of CoRoT-11 appear to be ideal

for a detection by measuring the times of mid-transit and mid-
eclipse with an accuracy of at least 1−5 s along a time baseline
of ∼25 yr. This is a consequence of the peculiar ratio of the ro-
tation period of the star to the orbital period of the planet that
is presently the smallest among systems having a radial velocity
curve compatible with zero eccentricity. The test is particularly
sensitive to values of Q′s between 105 and 106, leading to a fast
tidal evolution of the system, as discussed in Sect. 3.3.

The CoRoT-11 system is also particular because the preces-
sion of the orbital plane due to a non-zero obliquity of the stel-
lar spin can be measured through the variation of the duration
of the transit on a timescale as short as 5−10 yr by means of
ground-based observations with telescopes of the 6−8 m class.
Note that even an obliquity as low as 5◦ can be detected with
this method. On the other hand, the eccentricity of the planetary
orbit can be well constrained by measuring the times of the sec-
ondary eclipses in the infrared and their duration. If the system
turns out to have an eccentric orbit, this puts a constraint also on
the minimum value of the planet quality factor Q′p if we assume
that the eccentricity is of primordial origin, or is a clear indi-
cation of the presence of a perturbing body that excites it (e.g.,
Takeda & Rasio 2005). The light-time effect caused by a dis-
tant third body is indeed the only phenomenon that can seriously
hamper the detection of the transit time variations expected from
the tidal orbital evolution. The detection of a distant companion
may be particularly difficult, but this limitation is present also in
any other system candidate for a direct measurement of the tidal
dissipation.
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