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Abstract 

Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or 

pasteurized cow milk. This study proposed an alternative production of Minas cheese using 

raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ 

investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis 

GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production 

of biogenic amines (BA) was assessed as a safety aspect. Minas cheese was produced in two 

treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in 

three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and 

independent (rep-PCR and PCR-DGGE) methods were employed to characterize the 

microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. 

BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci 

was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). 

The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, 

separating them into two different clusters. Lactococcus sp. was found as the main 

microorganism in both cheeses, and the microbiota of cheese A presented a higher number of 

species. High concentrations of tyramine were found in both cheeses and, at specific ripening 

times, the BA amounts in cheese B were significantly higher than in cheese A (p < 0.05). The 

interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by 

demonstration of its influence in the complex microbiota naturally present in a raw goat milk 

cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis 

GLc05 influenced also the production of BA determining their amounts in the cheeses were 

maintained at acceptable levels for human consumption. 

Keywords: Minas cheese, raw goat milk, microbial ecology, PCR-DGGE, rep-PCR, biogenic 

amines 



1. Introduction 

 

Minas cheese is a ripened cheese with milky and buttery notes that is produced by enzymatic 

coagulation of pasteurized cow milk, added or not of starter cultures. Minas cheese is the 

most traditionally cheese produced in the Minas Gerais state, Brazil, being produced by small 

farmers and by large dairy industries. Minas cheese can also be produced using raw cow milk 

in Brazil, since they are subjected to at least 60 days of ripening, unless scientific studies 

demonstrate that fewer days of ripening do not jeopardize their quality and safety (Brasil, 

2013). 

Goat milk and its dairy products are widely appreciated due to their nutritional quality, high 

digestibility, and therapeutic values for human nutrition (Ribeiro & Ribeiro, 2010). Raw goat 

milk has a rich autochthonous microbiota that develops specific sensory characteristics in 

fermented products, such as cheeses. Consumers appreciate these characteristics due to the 

presence of specific flavor nuances present in these products (Bonetta et al., 2008b; Medina 

et al., 2011; Montel et al., 2014). Due to these advantages, the production of a Minas cheese 

using raw goat milk can represents a healthier alternative to use raw cow milk.  

Despite the sensorial characteristics, the main concern in using raw milk in manufacturing of 

dairy products is the possible contamination by foodborne pathogens (Brito et al., 2008; Pinto 

et al., 2009) and the occurrence of spoilage microorganisms that can reduce their shelf life 

and produce undesirable substances, such as biogenic amines (BA). BA are basic compounds 

that can occur in fermented foods and once ingested at high levels can cause several 

toxicological problems in the consumers (Bover-Cid & Holzapfel, 1999). 

A natural alternative in cheese production is the use of autochthonous lactic acid bacteria 

(LAB) strains, which are capable of producing antimicrobial substances, such as bacteriocins. 

Bacteriocins are antimicrobial peptides, widely produced by several different bacterial 



species, that are active against other bacteria (Cotter et al., 2005). However bacteriocinogenic 

LAB strains have been extensively studied as biological preservatives in food systems as they 

are Generally Recognized as Safe - GRAS (Pingitore et al., 2012; Schirru et al., 2012; 

Biscola et al., 2013; Kruger et al., 2013; Perin et al., 2013 ). However, few studies have 

investigated the in situ interaction between inoculated bacteriocinogenic LAB strains and the 

autochthonous microbiota of natural matrices, such as raw milk cheeses. LAB may interfere 

in the quality and variety of dairy products if they are used as starter or co-adjuvants cultures 

for technological purposes or as biological preservatives (Scintu & Piredda, 2007).  

The main problem of applying bacteriocin-producing strains in food fermentation is related to 

the in situ antimicrobial efficacy which can be negatively influenced by various factors, such 

as binding of the bacteriocins to food components, inactivation by proteases, the chemical 

and physical properties of the food (pH, proteins, fat and starch), and changes in the cell 

membrane of the target bacteria (Settanni et al., 2004). Because of these possible limitations, 

the knowledge of the autochthonous microbiota diversity during cheese production and 

ripening, as well as the influence of inoculated LAB strains in in situ tests need to be 

enhanced.  

These information could be enhanced by using both culture-dependent and independent 

methods. Many studies have already demonstrated the ineffectiveness of using only 

conventional culture-dependent methods to understand the ecology of fermented foods. To 

overcome its limitations, the use of culture-independent methods have been applied to a 

variety of dairy products (Rantsiou et al., 2008; Dolci et al., 2010; Arcuri et al., 2013; 

Delgado et al., 2013;) and allowed the simultaneous characterization of whole ecosystems as 

well as the identification of different species (Cocolin et al., 2013). These methods are 

usually employed to evaluate the ecological dynamic of artisanal products and are very useful 

to demonstrate the interactions that might occur due to the addition of strains with technology 



or biopreservative interests.   

The present study proposed an in situ investigation to evaluate the interactions between the 

nisin producer L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas 

cheese produced with raw goat milk after the production and during the ripening; as that 

cheeses are artisanal products, the production of biogenic amines (BA) was assessed as a 

safety aspect ensuring its quality for human consumption. 

 

2. Material and Methods 

 

2.1. Cheese production  

 

2.1.1. Preparation of L. lactis subsp. lactis GLc05 culture 

L. lactis subsp. lactis GLc05 was previously characterized by Perin & Nero (2014) as able to 

produce a novel nisin variant. L. lactis subsp. lactis GLc05 was grown in de Man, Rogosa 

and Sharpe broth (MRS, Oxoid Ltd., Basingstoke, England) at 35°C for 24 h. The obtained 

culture was diluted with 0.85% NaCl (w/v) until turbidity equivalent to McFarland scale 1, 

corresponding to approximately 3x108 colony forming units per mL (CFU/mL). An aliquot of 

10 mL of this culture was transferred to 1 L of sterile skimmed milk and incubated at 30°C 

for 24 h. The obtained culture was used for Minas cheese production. 

 

2.1.2. Minas cheese production 

Minas cheese was produced using raw goat milk according to Scholz (1995) and as described 

in the diagram presented in Figure 1. The cheeses were produced with the same kind of milk 

from the same origin, in the same period of the year and in three independent batches (R1, R2 

and R3). In each batch, the cheeses were produced considering two different treatments (A 



and B): 

� Cheese A: prepared according to Figure 1, by adding the L. lactis subsp. lactis GLc05 

culture to milk before the coagulation step, resulting in a final concentration of 106 CFU/mL; 

� Cheese B: control cheese, prepared according to Figure 1 without adding the L. lactis 

subsp. lactis GLc05. 

For both cheeses (A and B), 50 L of raw goat milk were heated at 34°C and added to 

saturated CaCl2 (20%, w/v) and 2.5 mL of commercial rennet (CHY-MAX®M; CHR 

Hansen, Hørsholm, Denmark). After 30 min, the curd was cut into cubes with a size of 1 cm3, 

and slowly mixed for 40 min. Then, the curd was transferred into circular perforated cheese 

containers (200 g), pressed for 1 h and maintained at 10°C overnight. The cheeses were salted 

in brine with NaCl (20% w/v) at 10°C for 2 h, left to dry for 5 days, packed into plastic bags 

under vacuum, and ripened at 15°C for 60 days.  

 

2.2. Evaluation of in situ interactions using culture-dependent methods 

 

2.2.1. Microbial analysis and pH values 

 

Samples of cheeses A and B were immediately collected after cheese making (t = 0), after 

salting (t = 1 day), and during ripening (every 5 days until 30 days, and after 60 days); the 

samples were subjected to microbial analysis. Samples of 25 g of cheese were homogenized 

in 225 mL of 0.1% saline peptone solution, using a Stomacher (Seward Ltd., Worthing, 

England) for 1 min, and plated onto selective media for enumeration of the following  

microbial groups: mesophilic aerobes on Petrifilm™ Aerobic Count (3M, St. Paul, MN, 

USA) at 35°C for 48 h, coliforms and Escherichia coli on Petrifilm™ Escherichia coli (3M) 

at 35°C for 48 h, Enterococcus on Kanamycin Aesculin Azide Agar (KAA, Oxoid) at 35°C 



for 48 h, thermophilic and mesophilic LAB cocci on M17 (Oxoid) at 35 and 42°C for 48 h, 

thermophilic and mesophilic LAB rods on MRS at 35 and 42°C for 48 h under anaerobiosis, 

coagulase-negative and coagulase-positive cocci (CNC and CPC, respectively) on Fibrinogen 

Rabbit Plasma agar (bioMérieux, Marcy l'Etoile, France) at 35°C for 48 h and yeast and 

molds on Petrifilm™ Yeast and Molds (3M) at 25°C for 5 days.  

The pH of each sample was measured in the cheese homogenates in 0.1% saline peptone 

solution, using a pH meter (HI 221, Hanna Instruments, São Paulo, Brazil).  

The results were expressed as log CFU/g and the mean counts were compared by analysis of 

variance (ANOVA; p < 0.05), followed by the Fisher test (p < 0.05), to identify significant 

differences between the results obtained for each cheese during the production and ripening 

steps, using Statistica 8.0 (StatSoft Inc., Tulsa, OK, USA). 

After collection of samples for microbiological analysis at each time, the cheese samples 

were immediately frozen at -80°C. 

 

2.2.2. Extraction of antimicrobial activity from the cheese samples 

 

The presence of antimicrobial substances in the cheese samples was verified according to 

Ávila et al. (2006), with modifications. Briefly, frozen samples were thawed, and 5 g were 

homogenized with 5 mL of 0.02 N HCl in a Stomacher and centrifuged (12,000 × g, 20 min, 

4°C). The supernatants were adjusted to pH 6.0 using 1 N NaOH and then lyophilized. The 

lyophilized samples were diluted in 200 µL of Ringer solution, and 50 µL of each sample 

was transferred to a 5 mm well on BHI (Oxoid) semi-solid agar (0.8% w/v agar-agar) 

inoculated with Staphylococcus aureus ATCC 6538 (at a concentration of 105 CFU/mL), as 

the target-microorganism. The samples that presented clear zones around the wells after 24 h 

at 35°C were considered as positive for the presence of antimicrobial substances. 



 

2.3. Evaluation of in situ interactions using culture-independent methods 

 

2.3.1. Nucleic acid extraction 

 

The total DNA was extracted directly from the cheeses samples, in the same times previously 

described (see section 2.2.1.), according to Rantsiou et al. (2008). Briefly, 10 g of samples 

were homogenized in 40 mL of Ringer solution, using a Stomacher, for 1 min. Aliquots of 2 

mL were centrifuged for 5 min and the pellets were re-suspended in 120 µL of proteinase K 

buffer [50 mM Tris–HCl, 10 mM EDTA, pH 7.5, 0.5% (w/v) sodium dodecyl sulfate], 25 µL 

of proteinase K (25 mg/mL, Sigma-Aldrich, St. Louis, MO, USA), and 50 µL of lysozyme 

(50 mg/mL, Sigma), and incubated at 50°C for 1 h. Samples were transferred to 1.5 mL tubes 

with glass beads and 150 µL of 2x breaking buffer [4% Triton X-100 (v/v), 2% (w/v) SDS, 

200 mM NaCl, 20 mM Tris, pH 8, 2 mM EDTA, pH 8] was dispensed. Phenol-chlorophorm-

isoamyl alcohol (300 µL, 25:24:1, pH 6.7; Sigma-Aldrich) was subsequently added before 

performing three cycles (30 s at 4.5 motion/s) in a bead-beater machine (Fast Prep-24, MP 

Biomedicals, Solon, OH). Then, 300 µL of TE (10 mM Tris, 1 mM EDTA) was added to the 

tubes and centrifuged at 20,000 × g for 5 min. The aqueous phase was transferred to a new 

tube and precipitated with ice-cold absolute ethanol. The nucleic acids were obtained after 

centrifugation at 20,000 × g for 10 min, washed briefly in 70% ethanol, and re-suspended in 

50 µL of sterile water. NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Waltham, 

MA USA) was used to quantify the total DNA extracted, which was diluted to the final 

concentration of 100 ng/µL. 

 

2.3.2. rep-PCR 



 

The rep-PCR analysis was performed using the total DNA extracted directly from the cheese 

samples. The PCR reactions were performed according to Gevers et al. (2001), with 

modifications, using a single primer (GTG)5 (5’-GTGGTGGTGGTGGTG-3’). PCR final 

concentration contained 1x PCR buffer, 1.5 mmol/L MgCl2, 0.2 mmol/L deoxynucleoside 

triphosphates, 0.75 U Taq polymerase (Sigma-Aldrich), 50 pMol of the primer, 2 µL DNA 

(50 ng/µL), and ultrapure PCR water (Promega Corporation, Madison, WI, USA) was added 

to a final volume of 25 µL. The PCR conditions were: 5 min at 95°C, 30 cycles of 30 s at 

95°C; 1 min at 40°C; 8 min at 65°C; and a final extension of 16 min at 65°C. The PCR 

products were electrophoresed in 2% (w/v) agarose gels for 2 h at a constant voltage of 120 V 

in 1x Tris/Borate/EDTA buffer (TBE). A 1 Kb DNA ladder (Sigma-Aldrich) was used as a 

molecular-size marker. Gels were stained using ethidium bromide (0.5 µg/mL, Sigma-

Aldrich) and the images were recorded using transilluminator UVIpro Platinum 1.1 Gel 

Software (Eppendorf, Hamburg, Germany). Fingerprints were analysed using BioNumerics 

6.6 (Applied Maths, Sint-Martens-Latem, Belgium). The similarities between the profiles 

were calculated using the Pearson correlation and the dendrograms were constructed using 

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). 

 

2.3.3. DGGE 

 

PCR of the extracted DNA was performed using the universal primers 338f (5′-ACT CCT 

ACG GGA GGC AGC AGCAG-3′) and 518r (5′-ATT ACC GCG GCT GCT GG-3′) (Ampe 

et al., 1999), annealing to the bacterial V3 region of the 16S rRNA gene. A GC clamp (5′-

CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G-3′) was 

attached to the 5′ end of primer 338f for DGGE analysis. The PCR was performed in a final 



volume of 25 µL, containing 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 

mM deoxynucleoside triphosphates, 1.25 U Taq polymerase (Eppendorf), 0.2 µM of each 

primer, and 2 µL of template DNA. PCR conditions were: 10 min at 95°C; 35 cycles of 1 

min, at 95 °C; 1 min at 42°C; 2 min at 72°C; and a final extension of 7 min at 72°C. The PCR 

products were electrophoresed in 2% (w/v) Tris-acetate-EDTA agarose gels. 

The Dcode universal mutation detection system (Bio-Rad Laboratories, Hercules, CA, USA) 

was used for DGGE analysis. Electrophoresis was performed in a polyacrylamide gel (8% 

w/v acrylamide: bisacrylamide 37.5:1) using a denaturing gradient from 25 to 55% of 

urea/formamide in a 1x TAE buffer (40mM Tris base, 20mM acetic acid, and 1mM EDTA, 

pH 8). The electrophoresis was performed at a constant voltage of 120 V for 4 h at 60°C, 

stained in 1x TAE containing 1x SYBR Green I (Sigma-Aldrich), and then analyzed and 

photographed under UV illumination using UVIpro Platinum 1.1 Gel Software (Eppendorf) 

(Dolci et al., 2008). Fingerprints were analysed using BioNumerics 6.6 (Applied Maths). The 

similarities between the profiles were calculated using the Pearson correlation and 

dendrograms were constructed using UPGMA. 

Selected DGGE bands were extracted from the gels, checked by means of DGGE, and 

sequenced in MWG Biotech in order to identify the species (Dolci et al., 2008). The obtained 

sequences were compared to the database of the National Center for Biotechnology 

Information (NCBI, http://www.ncbi.nlm.nih.gov/genbank), using the Basic Alignment 

Search Tool (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi) software. 

 

2.4. Quantification of BA by HPLC 

 

Cheese samples were collected after cheese making (t = 0) and after 10, 30, and 60 days of 

ripening. The BA amounts were quantified after the extraction and derivatization steps as 



reported by Innocente et al. (2007), with modifications.  

For extraction, the cheese samples (5 g) were added to 10 mL of 0.1 M HCl and 0.5 mL of a 

1 g/L solution of 1,7-diaminoheptane (internal standard, IS) in 0.1 M HCl and then 

homogenized in Stomacher (Seward) for 15 min and centrifuged at 1,400 × g for 20 min at 

10°C. The supernatant was recovered and the residue was re-extracted using the same 

procedure. The supernatants were then submitted to the following derivatization process: a 

0.5 mL aliquot was added to 150 µL of 0.1 M NaOH, 150 µL of saturated NaHCO3 solution, 

and 2 mL of 10 mg/mL dansyl chloride solution in acetone and incubated at 40°C for 1 h 

whilst stirring using a digital pulse mixer (Glas-Col, Terre Haute, USA). At the end of the 

derivatization reaction, 300 µL of NH3 were added and the samples were kept at 20°C for 30 

min before filtering on PTFE filters (0.45 µm).  

BA quantification was performed using a Thermo-Finnigan Spectra System HPLC (Thermo 

Scientific) equipped with a P2000 binary gradient pump, a SCM 1000 degasser, an AS 3000 

automatic injector, and a Finnigan Surveyor PDA Plus detector (PDA, Thermo Scientific). 

The ChromQuest software 5.0 (Thermo Scientific) was used for instrument control as well as 

for UV data collection and processing. Separation was achieved on a C18 RP Lichrosphere 

250 × 4.6 mm, 5 µm (Merck Millipore, Darmstadt, Germany) column equipped with a C18 

RP Lichrosphere guard column 5 µm (Merck Millipore). The mobile phase was composed of 

solvent A (ultrapure water) and solvent B (acetonitrile) (Moret & Conte, 1996; Moret et al., 

2005). The flow rate was set at 1 mL/min and the injection volume was 20 µL. The elution 

program was as follows: A 35%, kept isocratic for 6 min; A 25% for 1 min, kept isocratic for 

13 min; A 0% for 1 min; A 35% for 1 min, kept in isocratic for 10 min. PDA spectra were 

recorded in full-scan modality over the wavelength range of 200–600 nm, and quantification 

was performed by recording the peak area at 254 nm. The calibration curves were constructed 

by plotting the peak area ratios of each external-to-internal standard versus the external 



standard concentration. The following external standards were used: 2-phenylethylamine, 

putrescine, histamine, cadaverine, 1,7-diaminoheptane (IS), tyramine, and spermidine. All 

standards were of analytical grade and purchased from Sigma Aldrich. 

The results were expressed in mg/kg and the mean counts were compared by ANOVA (p < 

0.05), followed by the Fisher test (p < 0.05), to identify significant differences between the 

results obtained for each cheese during the production and ripening steps, using the software 

Statistica 8.0 (StatSoft). 

 

3. Results and Discussion 

 

3.1. Evaluation of in situ interactions using culture-dependent methods 

 

The mean values of the microbial populations after cheese making and during the ripening of 

Minas cheese, added (cheese A) or not (cheese B) by nisin producer L. lactis subsp. lactis 

GLc05, and the pH values of the samples are presented in Table 1. 

The mean counts of mesophilic aerobes, LAB cocci and bacilli at 35 and 42°C were higher (p 

< 0.05) in cheese A than in cheese B at the time of production (t = 0 h, Table 1). After one 

day of production, the counts of these groups in cheese B were statistically similar to the 

observed counts in cheese A (p > 0.05). The mean counts of mesophilic and thermophilic 

LAB, as well as presumptive lactococci and lactobacilli, did not present relevant differences 

in Minas cheeses and after 5 days of ripening reached values between 8 and 9 log CFU/g 

(Table 1). After 60 days of ripening, enterococci reached counts of approximately 7 log 

CFU/g in both cheeses (Table 1). Based on these mean values, LAB was the most prevalent 

microbial group in Minas cheese during ripening. 

Coliforms and E. coli counts can be considered high in the cheese samples (Table 1). The 



values were similar to those observed by Moraes et al. (2009) in raw soft cheese, which 

indicates the importance of ensuring the microbiological quality of the raw milk employed in 

the production. Even with an average decrease of 1.0 in the pH value, the mean counts of 

these groups did not decrease. LAB can be considered as the main group responsible for the 

pH decrease (Table 1), mainly because of the production of lactic acid, as reported by Dolci 

et al. (2008).  

The mean counts of yeasts and molds started to increase one day after production, until 

approximately 5 log CFU/g after 60 days of ripening. Yeasts could contribute to the final 

organoleptic characteristics of the cheese due to the production of volatile compounds; 

additionally, yeasts can metabolize lactic acid and also produce NH3 raising the pH value and 

allowing the growth of salt-tolerant and acid-sensitive bacteria (Montel et al., 2014).  

CPC counts in cheese A were significantly lower than in cheese B (p < 0.05), after one day of 

productions and 15 days of ripening; after 60 days of ripening, CPC counts were not recorded 

in cheese A (counts < 10 CFU/mL) (Table 1). Even though Minas cheese is a typical dairy 

product in Brazil, there are no standard regulations for its microbiological quality and safety 

when it is produced with raw milk. The normative instruction n.30 (Brasil, 2013) does not 

establish maximum limits for microbial counts in these cheeses or the pathogens that must be 

researched, what can not ensure the safety of this product. A major concern related to cheese 

production is the poor microbiological quality of the raw milk: inadequate manufacturing 

practices and improper cold storage during production could also allow the contamination 

and growth of undesirable microorganisms, such as spoilage and pathogens (Ortolani et al., 

2010; Perin et al., 2012). Carmo et al. (2002) described a food-poisoning event from 

Staphylococcus strains present in Minas cheese and raw milk in Brazil, demonstrating the 

relevance of controlling the growth of this group in dairy products.  

L. lactis subsp. lactis GLc05 most probably influenced the autochthonous microbiota from 



cheese A, determining the decrease in the CPC counts (Table 1). A previous in vitro study 

demonstrated the inhibitory activity of L. lactis subsp. lactis GLc05 against some S. aureus 

strains (Perin & Nero, 2014), even using the ripening temperature for Minas cheese (15 ºC, 

data not shown).  

In the present study, an in vitro test using cheeses A and B samples detected the presence of 

antimicrobial substance with inhibitory activity against S. aureus from the cheese A samples 

after 5 days of ripening in all repetitions (R1, R2 and R3) and during some ripening steps 

(variable depending on the repetition, data not shown).  

Other studies have also demonstrated the effectiveness of bacteriocinogenic LAB strains in 

raw milk in interfering with the autochthonous microbiota of this product and controlling 

spoilage and/or pathogenic micro-organisms (Gonzalez et al., 2003; Psoni et al., 2006; 

Xanthopoulos et al., 2000). This interference can occur in different pathways, such as 

competition for nutrients and the production of antagonistic substances like lactic acid, 

diacetyl, hydrogen peroxide, and bacteriocins (Gálvez et al., 2007). 

 

3.2. Evaluation of in situ interactions using culture-independent methods 

 

3.2.1. rep-PCR 

 

The dendrograms (for R1, R2, and R3) obtained by rep-PCR clustering of cheeses A and B 

are presented in Figure 2. rep-PCR is usually employed for clustering bacterial isolates as a 

previous screening for subsequent identification by sequencing (Cocolin et al., 2011). 

However, rep-PCR was considered in this study as a culture-independent method, using the 

total DNA extracted from the samples, to provide an evidence of the in situ interactions 

between the added L. lactis subsp. lactis GLc05 and the autochthonous microbiota from 



cheeses A. 

Considering a coefficient of similarity of 80%, two main clusters were obtained for each of 

the three generated dendrograms, one containing the cheese A samples and other containing 

the cheese B samples (Figure 2). This result indicates that the microbiota from cheese A, 

independent of production and ripening step, was different from cheese B based on their 

molecular profiles. Nevertheless, considering that the only difference between cheeses A and 

B was the addition of bacteriocinogenic L. lactis subsp. lactis GLc05, this result supports that 

in situ active bacteriocins can influence the microbial consortium of Minas cheese. 

Rep-PCR provided the first evidence of the in situ interference in the cheese A microbiota, 

that is apparently different from cheese B microbiota. However using only rep-PCR is not 

possible to assess which groups of microorganisms are present or absent in the cheese 

samples. 

 

3.2.2. PCR-DGGE 

 

Figure 3 presents the dendrograms (for R1, R2, and R3) obtained by DGGE of cheeses A and 

B. Considering the results obtained by the three repetitions, the similarity between the 

cheeses A and B was less than 40%, and they were separated into two main clusters (Figure 

3). These results confirmed the in situ interference of L. lactis subsp. lactis GLc05 on the 

cheese A microbiota, as observed by rep-PCR (Figure 2). 

The samples were grouped together depending on the production step and the time of 

ripening, indicating that the microbiota from cheeses A and B changed during the ripening 

(Figure 3). The obtained results indicate some differences in the microbiota of the cheeses 

produced in each repetition, indicating that the Minas cheese microbiota and dynamics could 

change, depending of the microbial consortia present in the raw milk used for production 



(data not shown). 

The microbiota fingerprints of cheeses A and B obtained by DGGE are shown in Figure 4. 

The DGGE profile of the L. lactis subsp. lactis GLc05 was used as a control. Fifteen bands 

were selected for sequencing (indicated by numbers in Figure 4). The results obtained after 

the sequencing of bands extracted from the DGGE gels are reported in Table 2. Cheese 

samples from the third repetition presented a lower diversity of species and bands (Figure 4), 

again indicating that the microbiota present in Minas cheese are dependent on the microbiota 

of the milk (data not shown). 

Four species were exclusively found in cheese A: Enterococcus faecalis (band 4, Figure 4), in 

all repetitions; Enterobacter sp. (band 7, Figure 4), in all ripening steps of the first repetition; 

Shigella flexneri (bands 12, 13, Figure 4), only in the second repetition and after one day of 

production; and Acetobacter sp. (band 9, Figure 4), in all repetitions and only after cheese 

making (t = 0). Instead, only one genera was exclusively found in cheese B: Bifidobacterium 

sp. (bands 11, 15, Figure 4), except in the third repetition, and only after cheese making (t = 

0). Only two species, L. lactis and Propionibacterium sp., were found in both cheeses A and 

B in all repetitions (Figure 4). In general, cheese A presented a higher number of bands and 

greater species diversity; this result in cheese A is an interesting finding, because it indicates 

that L. lactis subsp. lactis GLc05 enhanced the microbial diversity in this cheese, determining 

higher number of species than in cheese B. 

The bands identified as Shigella flexneri (bands 12, 13, Figure 4) could be considered a 

concern related to the microbiological quality of this product, but it was identified only in R2 

and during the first days of ripening (until 5 days, Figure 4). Also it can not ensure that this 

DNA came from live cells of S. flexneri. None of the bands were identified as S. aureus, 

probably because this microorganism was present in the samples at concentrations lower than 

104 - 105 CFU/g (Table 1); bacterial populations that are present at counts lower  than 103 or 



104 CFU/g can not be properly detected by DGGE-PCR (Cocolin et al., 2011). This result 

demonstrates the relevance of using different culture-dependent and -independent methods to 

assess the in situ interactions and possible influences caused by inoculated strains on the 

complex microbial ecology of food systems, such as the Minas cheese produced with raw 

goat milk in the present study. 

Some studies have characterized the safety and ecology of Minas cheese produced with 

pasteurized milk using only culture-dependent methods (Brito et al., 2008; Moraes et al., 

2009; Sant’Ana et al., 2013). And the majority of these studies are focused on its 

technological and sensory characteristics or on the occurrence of specific microorganisms 

(Nogueira et al., 2005; Brito et al., 2008; Pinto et al., 2009; Sant’Ana et al., 2013). To the 

best of our knowledge, only one study has investigated the ecology of Minas cheese produced 

with raw cow milk using PCR-DGGE (Arcuri et al., 2013). The authors identified that 

Streptococcus sp. and Lactobacillus sp., followed by L. lactis, were the main microorganisms 

present as autochthonous microbiota. In the present study, L. lactis (bands 2, 3, 5, and 6, 

Figure 4) was the only species present at all ripening times, both in cheeses A and B, and in 

all repetitions. Bands 2, 5, and 6 (Figure 4) were not present in the L. lactis subsp. lactis 

GLc05 profile, indicating the presence of an autochthonous L. lactis population coming from 

the raw goat milk used for cheese production. 

The present study represents the first demonstration of in situ interference of an artificially 

added strain on the autochthonous microbiota of a Brazilian artisanal cheese and one of the 

few to evaluate the effectiveness of a bacteriocinogenic Lactococcus in controlling 

pathogenic micro-organisms in production of fermented foods.  

 

3.3. Quantification of BA by HPLC 

 



BA contents in Minas cheeses A and B are reported in Table 3. Tyramine was present at the 

highest concentration, with a significant increase (p < 0.05) after 30 days of ripening in both 

cheeses A and B (Table 3). The evidence of a high concentration of tyramine in cheeses, 

especially in those produced with raw milk, has previously been reported (Bonetta et al., 

2008a; Schirone et al., 2011; Spizzirri et al., 2013). Some LAB strains are responsible for 

tyramine production (Martuscelli et al., 2005; Moraes et al., 2012; Pintado et al., 2008); 

however, L. lactis subsp. lactis GLc05 (inoculated in cheese A) is a low tyramine producer 

(1.19 ± 2.06 mg/kg, data not shown) and cannot be responsible for the observed amounts of 

tyramine in the samples. 

Tyramine and histamine have great impact on human health (Bover-Cid & Holzapfel, 1999) 

and they are described as the main BA found in cheese produced with goat milk, while 2-

phenylethylamine is usually found at low concentrations (Novella-Rodríguez et al., 2004). In 

the present study, histamine was detected in cheese A, only after 60 days of ripening, but in 

low concentration; a non significant increase in the histamine concentration was observed 

after 30 days of ripening of cheeses B (p > 0.05) (Table 3). Histamine has already been 

recorded at high concentrations in cheeses made with raw milk, demonstrating its relevance 

towards safety (Bonetta et al., 2008a; Ladero et al., 2008). 

2-phenylethylamine was present at higher levels in cheese B than in cheese A after 60 days of 

ripening (p < 0.05, Table 3). The presence of this BA at high concentrations in cheese was 

previously described (Martuscelli et al., 2005; Schirone et al., 2011). Cadaverine was present 

at lower levels in the cheese A than in cheese B during the production and ripening (p < 0.05; 

Table 3). Spermidine and putrescine were found in cheeses A and B at low concentrations 

(Table 3). L. lactis subsp. lactis GLc05 influenced the production of BA in cheese A 

determining lower amounts of 2-phenylethylamine, cadaverine, and histamine (p < 0.05 by 

comparing cheeses A and B, Table 3) and also controlling its production at acceptable levels 



for human consumption. 

The presence of BA in cheeses can vary, depending on the type of cheese, precursor amino-

acid availability, the ripening time and temperature, the manufacturing process, the quality of 

raw material used for production and the microbial ecology of the food matrix (Schirone et 

al., 2011). The higher BA content in ripened cheeses, compared to fresh ones, is commonly 

evidenced due to their accumulation over time ( Loizzo et al., 2013). However, Buňková et 

al. (2013) compared the amount of BA in cheeses produced with both raw and pasteurized 

milk, and did not find significant differences among them.  

High amounts of BA in cheeses can be originated by both starter and non-starter LAB that are 

used in the manufacture of these products or that can get into products during their 

processing, respectively. But BA can also be produced in contaminated microflora, especially 

by the Enterobacteriaceae and other Gram-negative bacteria, mainly observed when cheeses 

are manufactured with raw milk (Coton et al., 2012). 

 

The safety concentration of BA in foods was not being determinate yet in any regulation, but 

considering their toxicity to humans, their investigation and control is of extreme importance. 

 

4. Conclusions 

 

The importance to use a novel strain nisin producer L. lactis subps. lactis GLc05 to offset the 

possible risks related to the use of raw milk, was demonstrated by a significant decrease of 

coagulase-positive cocci in the cheeses A. Moreover, by culture-independent methods (rep-

PCR and PCR-DGGE) it was possible to clearly demonstrate the differences between the 

microbiota from cheese A and B. L. lactis subsp. lactis GLc05 also influenced the production 



of BA determining that their amounts in the cheeses were maintained at acceptable levels for 

human consumption. 
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Table 1. Mean counts (log CFU/g) and standard deviation of the main microbial populations in Minas cheese inoculated (A) or not (B) with L. lactis 

subsp. lactis GLc05 during the production and ripening. 

Step Time 
(days) 

Cheese pH Mesophilic 
aerobes 

Coliforms Escherichia 
coli 

Enterococci Coagulase 
positive 
cocci 

Coagulase 
negative 
cocci 

Yeasts and 
Molds 

LAB cocci 35 
°C 

LAB cocci 42 
°C 

LAB bacilli 35 
°C 

LAB bacilli 
42 °C 

production 0 A 6.1 ± 0.5 8.0 ± 0.0 Aa 4.2 ± 0.5 Ba 4.1 ± 1.5 Aa 6.0 ± 1.2 Aa 4.3 ± 0.8 Aa 2.3 ± 0.0 Aa 2.7 ± 0.4 Ba 7.6 ± 0.7 Ba 7.0 ± 1.9 Ba 7.6 ± 0.6 Ba 6.9± 0.6 Aa 

  B 7.0 ± 0.1 5.4 ± 0.3 Bb 4.4 ± 0.4 Ba 3.0 ± 0.3 Aa 4.4 ± 1.3 Ba 4.7 ± 0.7 Aa 3.6 ± 0.40 Aa 2.8 ± 0.3 Ba 5.3 ± 0.4 Cb 4.9 ± 0.0 Cb 4.8 ± 0.5 Cb 4.6 ± 0.6 Cb 
               

salting 1 A 5.7 ± 0.4 8.3 ± 0.5 Aa 6.3 ± 0.8 ABa 5.7 ± 1.4 Aa 6.6 ± 0.6 Aa 2.9 ± 1.3 Ab 4.5 ± 0.8 Aa 4.0 ± 1.1 ABa 8.2 ± 0.5 ABa 7.9 ± 1.0 Aa 8.0 ± 0.9 ABa 7.2 ± 0.4 Aa 

  B 6.2 ± 0.7 7.8 ± 0.2 Ca 6.3 ± 0.5 aAB 5.4 ± 0.7 Aa 5.8 ± 0.4 ABa 5.3 ± 0.2 Aa 4.6 ± 1.3 Aa 4.6 ± 1.0 ABa 7.3 ± 0.7 Ba 7.2 ± 0.7 Ba 7.6 ± 0.4 Ba 6.5 ± 1.4 BCa 
               

ripening 5 A 5.7 ± 0.1 8.7 ± 0.5 Aa 6.9 ± 0.4 Aa 5.7 ± 1.3 Aa 7.0 ± 0.4 Aa 3.3 ± 0.0 Aa 4.4 ± 0.5 Aa 4.0 ± 1.1 ABa 8.5 ± 0.1 ABa 8.6 ± 0.2 Aa 8.4 ± 0.3 ABa 7.5 ± 0.6 Aa 

  B 5.5 ± 0.2 8.6 ± 0.4 ACa 7.4 ± 0.4 Aa 6.1 ± 0.9 Aa 6.4 ± 0.2 ABa 5.3 ± 0.3 Aa 5.1 ± 0.7 Aa 4.5 ± 1.6 ABa 8.8 ± 0.5 Aa 8.9 ± 0.3 ABa 9.2 ± 0.2 Aa 7.9 ± 0.5 ABa 
               

 10 A 5.6 ± 0.2 8.8 ± 0.4 Aa 7.1 ± 0.7 ABa 5.8 ± 1.8 Aa 7.1 ± 0.4 Aa 3.2 ± 0.2 Aa 4.8 ± 0.8 Aa 5.4 ± 0.8 Aa 8.5 ± 0.1 ABa 8.5 ± 0.1 Aa 8.5 ± 0.0 ABa 7.6 ± 0.5 Aa 

  B 5.4 ± 0.2 8.6 ± 0.4 ACa 7.3 ± 0.7 Aa 6.3 ± 0.8 Aa 6.7 ± 0.5 ABa 5.3 ± 0.4 Aa 5.8 ± 0.2 Aa 5.0 ± 0.3 ABa 9.2 ± 0.2 Aa 8,9 ± 0.7 Aa 9.3 ± 0.1 Aa 8.4 ± 0.8 ABa 
               

 15 A 5.4 ± 0.0 8.8 ± 0.5 Aa 6.7 ± 0.8 ABa 6.3 ± 1.8 Aa 7.4 ± 0.1 Aa 3.0 ± 0.0 Ab 4.9 ± 0.4 Aa 5.7 ± 0.3 Aa 8.8 ± 0.5 Aa 8.6 ± 0.3 Aa 8.7 ± 0.4 Aa 8.2 ± 1.0 Aa 

  B 5.4 ± 0.0 9.0 ± 0.5 Aa 7.2 ± 0.7 Aa 6.4 ± 0.8 Aa 7.1 ± 0.5 Aa 5.2 ± 0.0 Aa 5.9 ± 0.5 Aa 5.5 ± 0.4 Aa 9.0 ± 0.5 Aa 9.0 ± 0.3 ABa 9.0 ± 0.5 Aa 8.6 ± 0.4 Aa 
               

 20 A 5.4 ± 0.0 8.7 ± 0.4 Aa 6.2 ± 0.7 ABa 5.8 ± 1.6 Aa 6.5 ± 1.6 Aa 3.8 ± 0.0 Aa 4.5 ± 0.4 Aa 5.4 ± 0.5 Aa 9.0 ± 0.2 Aa 8.6 ± 0.2 Aa 8.9 ± 0.2 Aa 8.4 ± 0.6 Aa 

  B 5.4 ± 0.1 9.0 ± 0.2 Aa 7.2 ± 0.6 Aa 6.1 ± 1.1 Aa 7.2 ± 0.5 Aa 5.3 ± 0.5 Aa 5.5 ± 0.6 Aa 5.3 ± 0.5 Aa 9.1 ± 0.3 Aa 8.8 ± 0.3 ABa 9.2 ± 0.3 Aa 8.4 ± 0.7 ABa 
               

 25 A 5.4 ± 0.0 8.9 ± 0.3 Aa 6.4 ± 1.0 ABa 5.3 ± 1.5 Aa 7.7 ± 0.5 Aa 4.2 ± 1.0 Aa 4.8 ± 0.4 Aa 5.1 ± 0.5 Aa 9.0 ± 0.2 Aa 8.5 ± 0.2 Aa 9.1 ± 0.2 Aa 8.6 ± 0.6 Aa 

  B 5.4 ± 0.0 8.7 ± 0.2 ACa 7.0 ± 0.8 Aa 5.9 ± 1.3 Aa 7.2 ± 0.3 Aa 5.8 ± 0.5 Aa 5.3 ± 0.8 Aa 5.8 ± 0.4 Aa 8.7 ± 0.1 Aa 8.3 ± 0.1 ABa 8.7 ± 0.2 ABa 8.4 ± 0.3 ABa 
               

 30 A 5.4 ± 0.1 8.9 ± 0.2 Aa 6.2 ± 1.0 ABa 5.5 ± 1.6 Aa 7.6 ± 0.3 Aa 3.5 ± 0.0 Aa 4.4 ± 0.2 Aa 5.4 ± 1.0 Aa 9.1 ± 0.1 Aa 8.6 ± 0.2 Aa 9.0 ± 0.2 Aa 8.4 ± 0.7 Aa 

  B 5.4 ± 0.1 8.8 ± 0.4 ACa 7.0 ± 1.0 Aa 5.8 ± 1.0 Aa 7.3 ± 0.7 Aa 4.7 ± 0.3 Aa 5.3 ± 1.0 Aa 5.5 ± 0.8 ABa 8.8 ± 0.3 Aa 8.4 ± 0.4 ABa 8.8 ± 0.4 Aa 8.5 ± 0.7 Aa 
               

 60 A 5.6 ± 0.1 8.2 ± 0.4 Aa 5.6 ± 0.8 ABa 4.6 ± 1.3 Aa 7.0 ± 0.4 Aa ND 4.5 ± 0.9 Aa 5.3 ± 0.1 ABa 8.3 ± 0.3 ABa 7.7 ± 0.1 Aa 8.4 ± 0.2 ABa 7.9 ± 0.1 Aa 

   B 5.6 ± 0.1 8.4 ± 0.3 ACa 5.9 ± 0.5 ABa 5.1 ± 1.1 Aa 7.0 ± 0.4 Aa 3.0 ± 0.0 Aa 5.1 ± 0.5 Aa 5.2 ± 1.1 ABa 8.5 ± 0.2 Aa 7.9 ± 0.4 ABa 8.5 ± 0.1 ABa 8.2 ± 0.4 ABa 

Obs.: Capital letters: mean differences of each treatment in different days of production/ripening (Fisher test, p < 0.05); lowercase letters: mean difference 
between treatments, inoculated or not with GLc05 (ANOVA, p < 0.05); ND: not detected, counts lower than 10 CFU/g. 



Table 2. Identification of bacterial species present in Minas cheese from the DGGE bands based on 
the BLAST sequence comparison in GenBank.  

 

Banda Closest sequence relative % identityb GenBank accession no. 

1 Lactobacillus plantarum  98% KF682392.1 
2 Lactococcus lactis  97% KF623100.1 
3 Lactococcus lactis  99% KF623100.1 
4 Enterococcus faecalis  99% AB761302.1 
5 Lactococcus lactis  99% KF623100.1 
6 Lactococcus lactis 99% KF673548.1 
7 Enterobacter sp. 99% AJ564061.1 
8 Lactobacillus sp.  99% JX520291.1 
9 Acetobacter sp.  99% HF969863.1 
10 Propionibacterium freudenreichii subsp. shermanii  99% NR_102946.1 
11 Bifidobacterium psychraerophilum  99% NR_029065.1 
12 Shigella flexneri  100% AM777394.1 
13 Shigella flexneri   99% AM777394.1 

Escherichia coli  99% GU646146.1 
14 Propionibacterium freudenreichii subsp. shermanii  100% NR_102946.1 
15 Bifidobacterium sp.  99% EF990663.1 

a The numbers correspond to the band numbers in Figure 4. 
b  Percentage of similarity between the sequences obtained from the DGGE band and the sequence of 
the closest species in the GenBank database.
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Table 3. Mean concentrations (mg/kg) and standard deviation of the biogenic amines in Minas 1 
cheese inoculated (A) or not (B) with L. lactis subsp. lactis GLc05 during the production and 2 
ripening. 3 

Biogenic Amine Cheese Production and ripening steps (days) 

    0 10 30 60 

2-Phenylethylamine A 45.3 ± 5.2 Ba 135.1 ± 55.8 Aa 94.8 ± 42.2 Aa 135.4 ± 24.9 Ab 

 B 203.6 ± 186.7 Ba 135.4 ± 54.6 Ba 244.7 ± 160.7 Ba 592.8 ± 314.0 Aa 

      
Putrescine A 5.3 ± 8.2 Ab 5.8 ± 5.0 Aa 10.3 ± 8.1 Aa 11.0 ± 10.5 Aa 

 B 64.4 ± 48.1 Aa 25.7 ± 24.8 Aa 40.3 ± 46.3 Aa 55.9 ± 63.4 Aa 

      
Histamine A ND ND ND 25.4 ± 39.4 a 

 B 24.7 ± 38.3 ABa ND 325.8 ± 503.7 Aa 32.9 ± 25.5 ABa 

      
Cadaverine A 42.9 ± 27.0 Bb 172.8 ± 92.6 Ab 130.3 ± 42.2 Ab 156.2 ± 84.8 Ab 

 B 104.9 ± 11.7 Ba 370.9 ± 160.4 ABa 354.8 ± 215.2 ABa 565.4 ± 366.6 Ba 

      
Tyramine A 1,719.1 ± 110.2 Ba 1,855.5 ± 233.5 Ba 2,523.2 ± 515.9 Aa 2,846.0 ± 547.2 Aa 

 B 1,626.9 ± 196.9 Ba 1,780.6 ± 269.3 Ba 2,637.6 ± 162.0 Aa 2,956.9 ± 461.6 Aa 

      
Spermidine A 45.1 ± 35.2 Ba 68.6 ± 5.1 Aa 75.8 ± 9.5 Aa 81.1 ± 10.5 Aa 

 B 56.0 ± 16.9 Ba 70.1 ± 8.6 ABa 75.0 ± 11.2 Aa 77.8 ± 14.1 Aa 

Obs. Capital letters: mean differences of each treatment in different days of production/ripening 4 

(Fisher test, p < 0.05); lowercase letters: mean difference between treatments, inoculated or not with 5 

GLc05 (ANOVA, p < 0.05); ND: not detected. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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Raw goat milk (50 L) 18 

↓ 19 

Addition of CaCl2, rennet and GLc05 (34°C) - Cheese A 20 

or 21 

Addition of CaCl2 and rennet (34°C) - Cheese B 22 

↓ 23 

Coagulation step (35°C/30 min) 24 

↓ 25 

Curd cutting and mixing (40 min) 26 

↓ 27 

Transfer to perforated containers 28 

↓ 29 

Pressing and dripping (room temperature/1 h) 30 

↓ 31 

Storage (10°C/overnight) 32 

↓ 33 

Salting (10°C/2 h) 34 

↓ 35 

Drying (10°C/5 days) 36 

↓ 37 

Transfer to plastic bags 38 

↓ 39 

Ripening (15°C/60 days) 40 

 41 

Figure 1. 42 
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Figure 2 48 
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Figure 3 53 
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Figure 1. Diagram for Minas cheese production, demonstrating the differences for cheese A 58 

and cheese B production in the second step of processing. GLc05: nisin producer 59 

Lactococcus lactis subsp. lactis. 60 

 61 

Figure 2. Cluster analysis of rep-PCR fingerprints obtained from Minas cheese produced 62 

with raw goat milk inoculated (A) or not (B) with nisin producer L. lactis subsp. lactis 63 

GLc05. The dendrograms were generated for each cheese production (R1, R2 and R3) after 64 

cluster analysis of the digitized fingerprints and were derived from UPGMA linkage of 65 

Pearson correlation coefficient. 66 

 67 

Figure 3. Cluster analysis of PCR-DGGE fingerprints obtained from Minas cheese produced 68 

with raw goat milk inoculated (A) or not (B) with nisin producer L. lactis subsp. lactis 69 

GLc05. The dendrograms were generated for each cheese production (R1, R2 and R3) after 70 

cluster analysis of the digitized fingerprints and were derived from UPGMA linkage of 71 

Pearson correlation coefficient. 72 

 73 

Figure 4. DGGE fingerprintings of the bacterial ecology of the tree production of Minas 74 

cheese (R1, R2 and R3) manufactured with raw goat milk and inoculated (lines indicated as 75 

“A”) or not (lines indicated as “B”) with the nisin producer L. lactis subsp. lactis GLc05 from 76 

0 day of production to 60 days of ripening. The numbers indicate the bands sequenced for 77 

molecular identification. These results are reported in Table 2. 78 

 79 


