
 
 

Proceedings of the 2012 

International Conference on 

Computational and Mathematical 

Methods in Science and Engineering 

Murcia, Spain 

July 2-5, 2012 

 

 

 

CMMSE 

   VOLUME I 
Editor: J. Vigo-Aguiar  

 

Associate Editors:  

A.P. Buslaev, A. Cordero, M. Demiralp, 

I. P. Hamilton, E. Jeannot, V.V. Kozlov,  

M.T. Monteiro, J.J. Moreno, J.C. Reboredo,  

P. Schwerdtfeger, N. Stollenwerk, J.R. Torregrosa,  

E. Venturino, J. Whiteman  

 



Proceedings of the 2012 

International Conference on 
Computational and Mathematical 

Methods in Science and Engineering 
 

 

 

La Manga, Murcia, Spain 

 

July 2-5, 2012 

 

 
 

Editor 

J. Vigo-Aguiar 
 
 

Associate Editors 

A.P. Buslaev, A. Cordero, M. Demiralp, 
I. P. Hamilton, E. Jeannot, V.V. Kozlov,  

M.T. Monteiro, J.J. Moreno, J.C. Reboredo,  
P. Schwerdtfeger, N. Stollenwerk, J.R. Torregrosa,  

E. Venturino, J. Whiteman  



@CMMSE  Preface- Page ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ISBN 978-84-615-5392-1 
 
  @Copyright 2012  CMMSE  
 
  Printed on acid-free paper 
 
 

 
 
 
 

Volume I, II & III articles edited with LaTeX

Volume IV articles edited with Microsoft Word

Front cover: Arab anonymous painting

"The origin of Algebra"



Proceedings of the 12th International Conference

on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2012

July, 2-5, 2012.

Quadratic B-splines on criss-cross triangulations for solving

elliptic diffusion-type problems

Isabella Cravero1, Catterina Dagnino1 and Sara Remogna1

1 Department of Mathematics, University of Torino, via C. Alberto, 10 - 10123 Torino,

Italy

emails: isabella.cravero@unito.it, catterina.dagnino@unito.it,
sara.remogna@unito.it

Abstract

In this paper we propose a method for the solution of elliptic diffusion-type prob-
lems based on bivariate quadratic B-splines on criss-cross triangulations. This technique
considers the weak form of the differential problem and the Galerkin method to approxi-
mate the solution. As finite-dimensional space, we choose the space of quadratic splines
on a criss-cross triangulation and we use its local basis both for the reconstruction of
the physical domain and for the representation of the solution.

Beside the theoretical description, we provide some numerical examples.

Key words: elliptic diffusion-type problem, bivariate B-spline, criss-cross triangula-

tion

MSC 2000: 65D07; 65N99

1 Introduction

Let Ω ⊂ R
2 be an open, bounded and Lipschitz domain, whose boundary ∂Ω is partitioned

into two relatively open subsets, ΓD and ΓN , i.e. they satisfy ∅ ⊆ ΓD,ΓN ⊆ ∂Ω, ∂Ω =
Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. In this paper, we consider an elliptic diffusion-type problem
with mixed boundary conditions















−∇ · (K∇u) = f, in Ω,
∂u

∂nK
= gN , on ΓN , (Neumann conditions)

u = g, on ΓD, (Dirichlet conditions)

(1)
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where K ∈ R
2×2 is a symmetric positive definite matrix, nK = Kn is the outward conormal

vector on ΓN , f ∈ L2(Ω), gN ∈ L2(ΓN ) and g is the trace on ΓD of an H1(Ω) function, i.e.
g ∈ H1/2(ΓD) (see [7]).

As noticed in [11], the diffusion type problem (1) arises in a variety of applications such
as the temperature equation in heat conduction, the pressure equation in flow problems,
and also mesh smoothing algorithms. If K is the identity matrix, (1) simplifies to Poisson’s
problem.

A standard method to find the approximate solution of (1) is the Finite Element Method
(see e.g. [7]) and, over the last years, the Isogeometric Analysis (IGA) (see e.g. [5]). Usually
IGA is based on NURBS defined by B-splines of tensor product type (see e.g. [1, 4]) or,
recently, on quadratic Powell-Sabin splines (see [10]). In this paper we propose an IGA
approach for (1), based on bivariate quadratic B-splines on criss-cross triangulations. As
remarked in [13], functions having total degree are preferable, in some cases, to tensor
product ones that may have some inflection points, due to their higher coordinate degree.

The paper is organized as follows. In Section 2 we recall definitions and properties of
bivariate quadratic B-splines on criss-cross triangulations and, in Section 3, we use them
for the solution of (1). Finally, in Section 4 we give some numerical examples.

2 Quadratic B-splines on criss-cross triangulations

In order to have a self-contained presentation, in this section we briefly recall definitions and
properties of unequally smooth bivariate quadratic B-splines on criss-cross triangulations
(for details see [3, 13] and the references therein).

Let Ω0 = {(s, t) | 0 ≤ s, t ≤ 1} and m, n be positive integers. We consider the sets
ξ̄ = (ξi)

m+1
i=0 and η̄ = (ηj)

n+1
j=0 , with 0 = ξ0 < ξ1 < . . . < ξm+1 = 1, 0 = η0 < η1 < . . . <

ηn+1 = 1, that partition Ω0 into (m+1)(n+1) rectangular cells. By drawing both diagonals
for each cell, we obtain a non-uniform criss-cross triangulation Tmn, made of 4(m+1)(n+1)

triangular cells. Let S
(µ̄ξ,µ̄η)
2 (Tmn) be the space of bivariate quadratic piecewise polynomials

on Tmn, where

µ̄ξ = (µξ
i )

m
i=1 and µ̄η = (µη

j )
n
j=1 (2)

are vectors whose elements can be either 1 or 0 and denote the smoothness C1, C0, respec-
tively, across the inner grid lines s− ξi = 0, i = 1, . . . ,m and t− ηj = 0, j = 1, . . . , n, while
the smoothness across all oblique mesh segments1 is C1.

Let L0
s and L0

t be the number of grid lines s − ξi = 0, i = 1, . . . ,m and t − ηj = 0,

j = 1, . . . , n, respectively, across which we want S ∈ S
(µ̄ξ,µ̄η)
2 (Tmn) has C0 smoothness. We

1According to [12], we call mesh segments the line segments that form the boundary of each triangular
cell of Tmn.
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recall that (see [3])

dimS
(µ̄ξ,µ̄η)
2 (Tmn) = mn + 3m + 3n + 8 + (n + 2)L0

s + (m + 2)L0
t .

We remark that, if S ∈ S
(µ̄ξ,µ̄η)
2 (Tmn) is globally C1 (i.e. L0

s = L0
t = 0), we obtain the

well-known dimension of S1
2 (Tmn) (see [12]).

Furthermore, we can provide a local basis for S
(µ̄ξ,µ̄η)
2 (Tmn) (see [3]). In order to do it,

we set M = 3 +
∑m

i=1(2 − µ
ξ
i ) and N = 3 +

∑n
j=1(2 − µ

η
j ), where µ

ξ
i , µ

η
j are defined as in

(2). Let s̄ = (si)
M
i=−2, t̄ = (tj)

N
j=−2 be the nondecreasing sequences of knots, obtained from

ξ̄ and η̄ by the following two requirements:

(i) s−2 = s−1 = s0 = ξ0 = 0, sM−2 = sM−1 = sM = ξm+1 = 1,
t−2 = t−1 = t0 = η0 = 0, tN−2 = tN−1 = tN = ηn+1 = 1;

(ii) for i = 1, . . . ,m, the number ξi occurs exactly 2 − µ
ξ
i times in s̄ and for j = 1, . . . , n,

the number ηj occurs exactly 2 − µ
η
j times in t̄.

For the above sequences s̄ and t̄, we consider the following set of functions belonging

to S
(µ̄ξ,µ̄η)
2 (Tmn)

B = {Bij(s, t)}(i,j)∈KMN
, (3)

where KMN = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1}. If both/either s̄ and/or t̄ have/has
double knots, then the Bij smoothness will change and the support will change as well.
Moreover, the Bij ’s have a local support, are non negative and form a partition of unity.
In B we find different types of spline functions. There are ρ = 2M + 2N − 4 unequally
smooth functions, that we call boundary B-splines, whose restrictions to ∂Ω0 are univariate
quadratic B-splines. The remaining MN −ρ functions, called inner B-splines, are such that
their restrictions to ∂Ω0 are equal to zero. The supports and the BB-coefficients of such
B-splines are reported in [2].

Since ♯B > dim S
(µ̄ξ,µ̄η)
2 , the functions belonging to B are linearly dependent. Let:

(i) {Ω0,r}
γ
r=1 be a partition of Ω0 into rectangular subdomains, generated by the grid

lines with associated C0 smoothness, with γ = (L0
s + 1)(L0

t + 1);

(ii) B be defined as in (3);

(iii) B1 ⊂ B be the set of inner B-splines with C1 smoothness everywhere or with C0

smoothness only on the boundary of their support;

(iv) {B(r)}γ
r=1 be a partition of B1, where each B(r) contains B-splines with support in

Ω0,r.
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Then, we can prove that a B-spline basis for S
(µ̄ξ,µ̄η)
2 (Tmn) can be extracted from B, by

removing γ B-splines, one in each B(r), r = 1, . . . , γ (see [3]). We denote the corresponding
set of indices of the B-spline basis by K̄MN .

We remark that, if S
(µ̄ξ,µ̄η)
2 (Tmn) ≡ S1

2 (Tmn), then, from [9] and standard arguments in
approximation theory, for all H ∈ C3(Ω0) there exist a constant C > 0 such that

inf
S∈S1

2
(Tmn)

‖H − S‖∞ ≤ Ch3 max {‖Dα1,α2f‖∞ : α1 + α2 = 3}

where h = max{diam(T ) | T is a triangle of Tmn}.
Since we are interested in the application of bivariate quadratic B-splines to the solution

of (1), given the physical domain Ω ⊂ R
2, defined as in Section 1, we assume that such a

domain can be exactly described through a parametrization of the form

G : Ω0 → Ω̄, G(s, t) =

(

x

y

)

(4)

expressed as quadratic B-spline surface

G(s, t) =
∑

(i,j)∈KMN

Pij Bij(s, t), (5)

where {Pij}(i,j)∈KMN
is a bidirectional net of control points, with Pij ∈ R

2. We assume
pij = (sp

i , t
p
j ) ∈ Ω0 as the pre-image of Pij , with

s
p
i =

si−1 + si

2
, t

p
j =

tj−1 + tj

2
. (6)

We remark that, in order to construct the surface, it is not necessary to work with the
basis, but we can use all the functions in the spanning set B. In this case, the surface (5)
has both the convex hull property and the affine transformation invariance one.

The proposed parametrization (5) is able to exactly reproduce domains whose boundary
is made of linear and parabolic sections. In order to do it, the control points are obtained
either by interpolation or quasi-interpolation spline operators (see [9, 12]).

Since the domains of interest in engineering problems are often described by conic
sections, a possible extension of the current paper is to consider bivariate NURBS based on
the B-splines here presented and we are working on it.

3 The Galerkin method based on bivariate quadratic B-splines

In this section, we consider an elliptic diffusion-type problem (1), where, for the sake of sim-
plicity, we first assume homogeneous Dirichlet conditions, i.e. g ≡ 0. The weak formulation
of (1) (see e.g. [5, 7]) is to find u ∈ V such that

a(u, v) = F (v), ∀v ∈ V, (7)
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where:

- V = {v ∈ H1(Ω) : v = 0 on ΓD} is the space of functions with vanishing trace on ΓD;

- a : V × V → R is the bilinear form given by a(u, v) =
∫

Ω(K∇u) · ∇v dΩ;

- F : V → R is the linear functional given by F (v) =
∫

Ω fv dΩ +
∫

ΓN
gNv dΓN .

In the Galerkin method to approximate the solution of (7), we replace the infinite di-
mensional space V by a finite-dimensional subspace Vh ⊂ V, with the subscript h indicating
the relation to a spatial grid. Then, the discretized problem is to find uh ∈ Vh such that

a(uh, vh) = F (vh), ∀vh ∈ Vh, (8)

where a(uh, vh) =
∫

Ω(K∇uh) · ∇vh dΩ and F (vh) =
∫

Ω fvh dΩ +
∫

ΓN
gNvh dΓN .

Since, in (4), we have introduced the parametrization G, we consider

Vh =
{

vh ∈ V : vh = v0,h ◦ G−1, v0,h ∈ V0,h

}

,

where V0,h is the discrete space in the parametric domain, that has to be chosen. In this

paper, we consider V0,h as an opportune subspace of S
(µ̄ξ,µ̄η)
2 (Tmn).

Let Nh be the dimension of the spaces Vh and V0,h, and let {Φl}
Nh

l=1 be a basis for V0,h.

Then, we can define a basis for Vh as
{

ϕl = Φl ◦ G−1
}Nh

l=1
and the approximate solution uh

is given by

uh =

Nh
∑

l=1

qlϕl =

Nh
∑

l=1

ql(Φl ◦ G−1),

with unknown coefficients ql ∈ R. Therefore, (8) gives rise to

Nh
∑

l=1

qla(ϕl, ϕi) = F (ϕi), i = 1, . . . , Nh, (9)

that is equivalent to the linear system Aq = f , where

• A ∈ R
Nh×Nh is the stiffness matrix with elements

Ail = a(ϕl, ϕi) =

∫

Ω
(K∇ϕl) · ∇ϕi dΩ, i, l = 1, . . . , Nh; (10)

• f ∈ R
Nh is the vector with components

fi = F (ϕi) =

∫

Ω
fϕi dΩ +

∫

ΓN

gNϕi dΓN = f
(1)
i + f

(2)
i , i = 1, . . . , Nh; (11)
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• q ∈ R
Nh is the vector of unknown coefficients ql, l = 1, . . . , Nh.

Here, we assume that the parametrization G is given by (5) and consequently, we get
Vh ⊂ span

{

Bij ◦ G−1
}

(i,j)∈K̄MN
. Note that the boundary condition u = 0 has also to be

considered and for this reason we write Vh as a subset of the span. Then, the approximate
solution is obtained taking into account the homogeneous boundary conditions.

The integrals Ail in (10) and f
(1)
i in (11), can be transformed as follows

Ail =

∫

Ω0

(

K
[

J−T∇Φl

])

·
[

J−T∇Φi

]

|detJ | dΩ0, i, l = 1, . . . , Nh,

f
(1)
i =

∫

Ω0

(f ◦ G) Φi |detJ | dΩ0, i = 1, . . . , Nh,
(12)

with J the Jacobian matrix of the parametrization G given in (4) and (5)

J = J(s, t) =

[

∂x(s,t)
∂s

∂x(s,t)
∂t

∂y(s,t)
∂s

∂y(s,t)
∂t

]

.

To evaluate the boundary term f
(2)
i in (11), we first define the mapping Gb : I := (0, 1) → ΓN

as the restriction of G to the subset of ∂Ω0 mapped into ΓN , assuming that each side of Ω0

is completely mapped into ΓN or ΓD. Then,

f
(2)
i =

∫

I
(gN ◦ Gb) Φi

∣

∣G′
b

∣

∣ dI. (13)

In order to compute ∇Φi, i = 1, . . . , Nh, and J in (12), we obtain the values of the
B-spline derivatives by means of their BB-coefficients (see [8]).

For the evaluation of the integrals in (12), we use a composite Gaussian Quadrature on
triangular domains (see [6]) implemented by the Matlab function triquad (see [14]). Given
in input the integer p and the vertices of a triangle of Tmn, this procedure computes the
p2 nodes and the corresponding weights of the rule, whose precision degree is 2p − 1. In
the numerical tests proposed in Section 4, we use p = 2. When G is the identity map (i.e.
Ω̄ ≡ Ω0) then, in (12),

Ail =

∫

Ω0

(K∇Φl) · ∇Φi dΩ0, i, l = 1, . . . , Nh,

and it is exactly computed, since in each triangle of Tmn the integrand function is a bivariate
quadratic polynomial. To evaluate the integral in (13), we use a classical composite Gaussian
rule with precision degree three, inherited from the one defined in the whole domain.

In case of non-homogeneous Dirichlet boundary conditions, the boundary degrees of
freedom, i.e. the control variables associated with basis functions that do not vanish on
ΓD, have to be computed and we have to change the right term in the linear system (9)

c©CMMSE ISBN:978-84-615-5392-1Page  370 of  1573



I. Cravero, C. Dagnino, S. Remogna

(see [5, 7]). The implementation of the Dirichlet boundary conditions is not trivial and it is
still a matter of research (see e.g. [4] and the reference therein). In this paper we propose
some examples of the above kind, where we choose the control variables associated with
basis functions that do not vanish on ΓD as the solution of a univariate spline interpolation
problem.

4 Numerical examples

In this section we propose some numerical examples to show the performance of the bivariate
quadratic B-splines on criss-cross triangulations for the solution of Poisson’s problems with
mixed boundary conditions. We perform h-refinement by adding at every step a middle
knot in each interval of the partitions. With the global geometry function defined in (5),
we reproduce the physical domain and this initial exact representation is retained during
the refinement process.

In each table we give the number of subintervals m + 1 and n + 1 in the two directions
s and t, respectively and the discrete L2-norm of the error (u− uh), computed on a 35× 35
grid of evaluation points in Ω0, denoted by Ψ.

Example 1

Firstly we consider a very simple example, where Ω̄ ≡ Ω0











−∆u = f, in (0, 1)2,
u = g, on x = 0, y = 0
∂u

∂n
= gN , on x = 1, y = 1,

with f , g and gN obtained from the exact solution u(x, y) = 3x2 + 2y2. In order to
reproduce the domain, we consider the coarse knot partitions ξ̄ = η̄ = (0, 1). Therefore, we
have M = N = 3, KMN = K33 = {(i, j) : 0 ≤ i, j ≤ 2} and G(s, t) =

∑

(i,j)∈K33
PijBij(s, t),

with (s, t) ∈ Ω0. Since G is the identity map, the control points are the nine points
Pij = {(sp

i , t
p
j ), 0 ≤ i, j ≤ 2}, defined as in (6). Then, we perform h-refinement, considering

m, n = 1, 3, 7, 15, 31 and smoothness vectors µ̄ξ, µ̄η with elements equal to one. We report
the results in Table 1. According to Section 2, we remark that we have to neglect one
inner B-spline either with C1 smoothness everywhere or with C0 smoothness only on the
boundary of its support, in order to obtain a basis.

m + 1 = n + 1 2 4 8 16 32

L2-error 4.0(-15) 2.5(-15) 3.6(-15) 1.3(-15) 1.6(-14)

Table 1: Example 1. Error in L2-norm versus interval number per side.
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We can notice that the solution, i.e. a quadratic polynomial, is reproduced. The
computation of derivatives and integrals is stable, because there is not deterioration of the
approximation error increasing the refinement.

Example 2

In this example we consider the Poisson’s problem in the L-shape domain shown in Fig.
1(b)

{

−∆u = f, in Ω,

u = 0, on ΓD = ∂Ω,

where f is obtained from the exact solution u(x, y) = sin(πx) sin(πy). In order to reproduce
the domain, we can use two approaches, as in [11]. To introduce a discontinuity in the first
derivative and create the corners, we can place two control points at the same location in
physical space or we can use suitable double knots in s̄ and t̄. In the first case, we ensure
that the basis has C1 continuity throughout the interior of the domain. The only place
where the basis is not C1 is on the boundary itself, at the location of the repeated control
points. We consider both cases in order to compare the corresponding results.

Approach 1: Double control point. We start with the coarse knot partitions ξ̄ = (0, 1
2 , 1),

η̄ = (0, 1) and we assume µ̄ξ̄ = (1). Therefore, we have M = 4, N = 3, KMN = K43 =
{(i, j) : 0 ≤ i ≤ 3, 0 ≤ j ≤ 2} and G(s, t) =

∑

(i,j)∈K43
PijBij(s, t), with (s, t) ∈ Ω0 and the

control points given in Fig. 1(c). In Fig. 1(a) we show the parameter domain Ω0, with the
associated knot sequences and, in Fig. 1(b), the corresponding physical domain Ω, with the
control points.

(a) (b)

i Pi0 Pi1 Pi2

0 (−1, 1) (−0.65, 1) (0, 1)
1 (−1,−1) (−0.7, 0) (0, 0)
2 (−1,−1) (0,−0.7) (0, 0)
3 (1,−1) (1,−0.65) (1, 0)

(c)

Figure 1: Example 2, Approach 1. (a) Parameter domain Ω0, (b) physical domain Ω and
(c) control points.

Then, we perform h-refinement, considering m = 1, 3, 7, 15, 31, n = 0, 1, 3, 7, 15,
the smoothness vectors µ̄ξ, µ̄η with elements equal to one and we report the results in the
second row of Table 2.

In Figs. 2(a)÷(c) we give the graphs of the exact solution, the approximation computed
with m = 7, n = 3 and the discrete L∞-norm error computed on Ψ.
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(a) (b) (c)

Figure 2: Example 2, Approach 1. The graphs of (a) the exact solution, (b) the approxi-
mation computed with m = 7, n = 3, (c) the discrete L∞-norm error computed on Ψ.

Approach 2: Double knot. We start with the coarse knot partitions ξ̄ = (0, 1
2 , 1),

η̄ = (0, 1) and we assume µ̄ξ̄ = (0). Therefore, we have M = 5, N = 3, KMN = K53 =
{(i, j) : 0 ≤ i ≤ 4, 0 ≤ j ≤ 2} and G(s, t) =

∑

(i,j)∈K53
PijBij(s, t), with (s, t) ∈ Ω0 and the

control points given in Fig. 3(c). In Fig. 3(a) we show the parameter domain Ω0, with the
associated knot sequences and, in Fig. 3(b), the corresponding physical domain Ω, with the
control points.

(a) (b)

i Pi0 Pi1 Pi2

0 (−1, 1) (−0.6, 1) (0, 1)
1 (−1, 0) (−0.55, 0) (0, 0.5)
2 (−1,−1) (−0.5,−0.5) (0, 0)
3 (0,−1) (0,−0.55) (0.5, 0)
4 (1,−1) (1,−0.6) (1, 0)

(c)

Figure 3: Example 2, Approach 2.(a) Parameter domain Ω0, (b) physical domain Ω and (c)
control points.

Then, we perform the same h-refinement of Approach 1. In this case the smoothness
vector µ̄η has elements equal to one, while µ̄ξ has all of the elements equal to one except
the element corresponding to s = 1

2 , that is equal to zero. We report the results in the
third row of Table 2. In order to obtain a basis, according to Section 2, we remark that
we have to neglect two inner B-splines either with C1 smoothness everywhere or with C0

smoothness only on the boundary of their support, because in this case the domain Ω is
subdivided into two subdomains.

In Figs. 4(a)÷(c) we give the graphs of the exact solution, the approximation computed
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with m = 7, n = 3 and the discrete L∞-norm error computed on Ψ.

(a) (b) (c)

Figure 4: Example 2, Approach 2. The graphs of (a) the exact solution, (b) the approxi-
mation computed with m = 7, n = 3, (c) the discrete L∞-norm error computed on Ψ.

(m + 1, n + 1) (2,1) (4,2) (8,4) (16,8) (32,16)

L2-error for Approach 1 7.1(-1) 4.5(-1) 5.3(-2) 6.4(-3) 6.2(-4)

L2-error for Approach 2 8.3(-1) 2.2(-1) 1.7(-2) 1.6(-3) 1.8(-4)

Table 2: Example 2. Error in L2-norm versus interval number per side.

In [11] the authors solve the same problem, by considering the two above approaches,
but they use a method based on biquadratic tensor product B-splines. If we analyse our
results and theirs, we can conclude that the two methods are comparable.

Example 3

In this example we consider the Poisson’s problem in the domain shown in Fig. 5(b)











−∆u = f, in Ω,

u = g, on ΓD,
∂u

∂n
= gN , on ΓN ,

where ΓN is given by the two segments with endpoints (-4,0), (0,0) and (-2,4), (2,4), respec-
tively and ΓD is given by the two parabolic sections with endpoints (-4,0), (-2,4) and (0,0),

(2,4). The functions f , g and gN are obtained from the exact solution u(x, y) = sin (x2+y2−1)
5 .

In order to reproduce the domain, we consider the coarse knot partitions ξ̄ = η̄ = (0, 1).
Therefore, we have M = 3, N = 3, KMN = K33 = {(i, j) : 0 ≤ i, j ≤ 2, } and G(s, t) =
∑

(i,j)∈K33
PijBij(s, t), with (s, t) ∈ Ω0 and the control points given in Fig. 5(c). In Fig.

5(a) we show the parameter domain Ω0, with the associated knot sequences and, in Fig.
5(b), the corresponding physical domain Ω, with the control points.
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(a) (b)

i Pi0 Pi1 Pi2

0 (−4, 0) (−3, 0) (−2, 4)
1 (−2, 0) (−1, 0) (0, 4)
2 (0, 0) (−1, 0) (2, 4)

(c)

Figure 5: Example 3.(a) Parameter domain Ω0, (b) physical domain Ω and (c) control
points.

Then, we perform h-refinement, considering m, n = 1, 3, 7, 15, 31 and, in Table 3,
we report the results. In Figs. 6(a) ÷ (c) we give the graphs of the exact solution, the
approximation computed with m = n = 7 and the discrete L∞-norm error computed on Ψ.

m + 1 = n + 1 2 4 8 16 32

L2-error for Case 1 9.9(-1) 1.3(-1) 3.4(-2) 4.3(-3) 4.5(-4)

Table 3: Example 3. Error in L2-norm versus interval number per side.

(a) (b) (c)

Figure 6: Example 3. The graphs of (a) the exact solution, (b) the approximation computed
with m = n = 7, (c) the discrete L∞-norm error computed on Ψ.
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