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Abstract

By converting the Asymptotic Bethe Ansatz (ABA) of N = 4 SYM into non-linear integral

equations, we find 2D scattering amplitudes of excitations on top of the GKP vacuum. We

prove that this is a suitable and powerful set-up for the understanding and computation of the

whole S-matrix. We show that all the amplitudes depend on the fundamental scalar-scalar

one.
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1 Introduction

In integrable system and condensed matter theories the study of the scattering of excitations over

the antiferromagnetic vacuum is at least as much important as that over the ferromagnetic one (cf.

one of the pioneering papers [1] and its references). Often the excitations over the ferromagnetic

vacuum are called magnons, as well as those over the antiferromagnetic one kinks or solitons

or spinons. Also, two dimensional (lattice) field theories (like, for instance, Sine-Gordon) are

often examples with an antiferromagnetic vacuum [2]. If we wish to parallel this reasoning in the

framework of the Beisert-Staudacher asymptotic (i.e. large s) Bethe Ansatz (ABA) for N = 4

SYM [3], we are tempted to choose, as antiferromagnetic vacuum, the GKP long (i.e. fast spinning)

AdS5 string solution [4]. According to the AdS/CFT correspondence [5], the quantum GKP string

state is dual to a single trace twist two operator of N = 4 (at high spin); thus let us consider two

complex scalars, Z, at the two ends of a long series of s (light-cone) covariant derivatives, D+.

Then, excitations of the GKP string correspond to insertions of other operators over this Fermi

sea, thus generating higher twist operators. More precisely, operators associated to one-particle ϕ

states are built as

O′ = Tr ZDs−s′
+ ϕDs′

+Z + . . . . (1.1)

The set of lower twist (twist three) excitations includes ϕ = Z, one of the three complex scalars;

ϕ = F+⊥, F̄+⊥, the two components of the gluon field; ϕ = Ψ+, Ψ̄+, the 4+4 fermions, respectively.

All these fields are the highest weight of a precise representation of the residual so(6) ≃ su(4)

symmetry of the GKP vacuum: the scalar of the vector 6, the fermions of the 4 and 4̄, respectively,

and the gluons of the 1 representation. All these features and the exact dispersion relations for

these excitations in the different regimes have been studied recently in deep and interesting detail

by Basso [6]. Now, as for the scattering, we shall consider at least two particles states (twist-4),

namely

O′′ = Tr ZDs−s1−s2
+ ϕ1D

s1
+ϕ2D

s2
+Z + . . . . (1.2)

This situation was already analysed in partial generality in the case when both the excitations are

identical ϕ1 = ϕ2 = Z [7]. Importantly, an impressive recent paper [8] proposed a non-perturbative

approach to 4D scattering amplitudes in N = 4 SYM by using as building blocks the 2D scattering

amplitudes we wish to compute here: we will see some non-trivial checks of their conjectures.

Computing the scattering matrix has a long history (see, for instance, [9] and references therein).

From this wide literature we can argue that an efficient method of computation rests on the non-

linear integral equation (for excited states) [10]. In fact, the same idea of counting function gives

a quantisation condition which can be interpreted as (asymptotic) Bethe Ansatz, defining the

scattering matrix (elements). In this note we will use this strategy to provide general formulæ for

the scattering amplitudes between the aforementioned excitations. This should give the non-trivial

part (in front) of the scattering matrices, the so-called scalar factor, being the matrix structure

fixed by the aforementioned residual symmetry representations. Remarkably, all the scattering

phases (eigenvalues) are expressible in terms of the scalar-scalar one. Moreover, we evaluate one

loop and strong coupling limits of (scalar-scalar and) gluon-gluon scattering amplitudes and find

confirmation of the conjecture of [8].
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2 Scalar excitations

A sl(2) state of L (=twist) scalars and s (=spin) derivatives is described by the counting function

Z(u) = LΦ(u)−
s
∑

k=1

φ(u, uk) , (2.1)

where Φ(u) = Φ0(u) + ΦH(u) , φ(u, v) = φ0(u− v) + φH(u, v) , with

Φ0(u) = −2 arctan 2u , ΦH(u) = −i ln





1 + g2

2x−(u)2

1 + g2

2x+(u)2



 , (2.2)

φ0(u− v) = 2 arctan(u− v) , φH(u, v) = −2i

[

ln

(

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

)

+ iθ(u, v)

]

, (2.3)

θ(u, v) being the dressing phase [11] and x(u) = u
2

[

1 +
√

1− 2g2

u2

]

, x±(u) = x(u± i
2
).

One loop or learning the art.– Let us start by reviewing the one loop formulation, in order to

outline the main steps of our procedure and to enucleate several conceptual features that will be

encountered again at all-loops. In the one loop case, the counting function for the twist sector is

Z0(u) = Φ0(u)−
s
∑

k=1

φ0(u, uk). We remark that by its definition Z0(u) is a monotonously decreasing

function. L holes, in positions xh, h = 1, ..., L are present. Two of them, in positions x1, xL are

external to Bethe roots (i.e. x1 < uk < xL); internal or ’small’ holes occupy positions we denote

with x2, ...xL−1. At one-loop, the counting function satisfies the non-linear integral equation [12]

Z0(u) =
L

i
ln

Γ
(

1
2
+ iu

)

Γ
(

1
2
− iu

)+i
L
∑

h=1

ln
Γ(1 + iu− ixh)

Γ(1− iu+ ixh)
+

∫ +∞

−∞

dv

π
[ψ(1+iu−iv)+ψ(1−iu+iv)]L0(v) ,

(2.4)

where L0(u) = Im ln[1 + (−1)L eiZ0(u−i0+)]. We want to study excitations on top of the GKP

string. The GKP string is dual to the large spin limit of the twist two operator with only the

two external holes, corresponding to the two Z scalars. Then, excitations arise when L > 2 and

are described by the L − 2 internal holes, corresponding to insertions of L − 2 fields Z. In the

high spin limit and within accuracy O((ln s)0), equation (2.4) linearises, because of the expansion
∫ +∞
−∞

dv
π
[ψ(1+ iu− iv)+ψ(1− iu+ iv)]L0(v) = −2u ln 2+O

(

1
s2

)

[12], and we can extract scattering

data in the following way. By definition of counting function

(−1)1−L = e−iZ0(xh) = eiRP0(xh)
L−1
∏

{h′=2, h′ 6=h}
(−S0(xh, xh′)) ⇒ eiRP0(xh)

L−1
∏

{h′=2, h′ 6=h}
S0(xh, xh′) = 1 ,

(2.5)

for h = 2, ..., L−1, where the last equalities represent the Bethe quantisation conditions: R is given

the interpretation of the effective length of the closed chain and P0(xh) that of the momentum

of the h-th excitation, so that RP0(xh) represents the ’free propagation’ phase of this excitation
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around the chain (the minus sign in front of iZ0(xh) is due to our definition of Z0(u) as a decreasing

function). On the contrary, S0(xh, xh′) allows for the interaction and is given the interpretation of

phase change due to the scattering between the h-th and the h′-th excitation. To ensure unitarity

and proper asymptotic behaviour to the scattering, we add and subtract one term in (2.4):

Z0(u) =

[

−i(L− 2) ln
Γ
(

1
2
+ iu

)

Γ
(

1
2
− iu

) + i

L−1
∑

h=2

ln
Γ
(

1
2
+ ixh

)

Γ
(

1
2
− ixh

) + i

L−1
∑

h=2

ln
Γ(1 + iu− ixh)

Γ(1− iu+ ixh)

]

+ (2.6)

[

−2i ln
Γ
(

1
2
+ iu

)

Γ
(

1
2
− iu

) − i
L−1
∑

h=2

ln
Γ
(

1
2
+ ixh

)

Γ
(

1
2
− ixh

) + i ln
Γ(1 + iu− ixL)Γ(1 + iu− ix1)

Γ(1− iu+ ixL)Γ(1− iu+ ix1)
− 2u ln 2

]

.

In the large spin limit we have [13] xL = −x1 = s√
2
+ O (s0), while xh ∼ 1

ln s
, 2 ≤ h ≤ L − 1[14].

Therefore, the second bracket in (2.6) reduces to −4u ln s − 2i ln
Γ( 1

2
+iu)

Γ( 1
2
−iu)

+ O
(

1
(ln s)2

)

. When no

internal hole is present at all, the first bracket in (2.6) is absent and we identify the effective length

of the string and the excitation momentum as R = 2 ln s and P0(xh) = 2xh, respectively. On the

other hand, to find the scattering matrix involving two scalar excitations, it is convenient to stick

to the L = 4 case (two internal holes). Now, the extra phase shift, due to the first bracket in (2.6)

is interpreted, via (2.5), as the scattering factor

S0(xh, xh′) = −Γ
(

1
2
− ixh

)

Γ
(

1
2
+ ixh′

)

Γ(1 + ixh − ixh′)

Γ
(

1
2
+ ixh

)

Γ
(

1
2
− ixh′

)

Γ(1− ixh + ixh′)
, (2.7)

between two internal holes with rapidities xh and xh′ . This expression enjoys unitarity and does

agree with result (3.8) of Basso-Belitsky [15], but seems to be the inverse of (2.13) in [16].

All loops.– Using results contained in Section 2 of [17], we write for the counting function the

following non-linear integral equation

Z(u) = F (u) + 2

∫ +∞

−∞
dvG(u, v)L(v) , (2.8)

where the functions F (u) and G(u, v) are obtained after solving the linear integral equations

F (u) = f(u)−
∫ +∞

−∞
dvϕ(u, v)F (v) , G(u, v) = ϕ(u, v)−

∫ +∞

−∞
dwϕ(u, w)G(w, v) , (2.9)

with

f(u) = LΦ(u) +

L
∑

h=1

φ(u, xh) , ϕ(u, v) =
1

2π

d

dv
φ(u, v) . (2.10)

Equations (2.10) and (2.9) entail the sum F (u) = LP̃ (u)+
L
∑

h=1

R(u, xh) of the two functions R(u, v),

such that 1
2π

d
dv
R(u, v) = G(u, v), and P̃ (u), solutions respectively of the two linear equations

R(u, v) = φ(u, v)−
∫ +∞

−∞
dwϕ(u, w)R(w, v) , P̃ (u) = Φ(u)−

∫ +∞

−∞
dwϕ(u, w)P̃(w) . (2.11)
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Now, we consider the high spin limit, work out the nonlinear term and - following what we did

in the one loop case - identify the momentum of a hole and the scattering phase between two

holes. In fact, the nonlinear term NL(u) = 2
∫

dvG(u, v)L(v) depends on the function G(u, v). By

manipulating the second of (2.9) in Fourier space and using formula (3.2) of [7], we arrive at this

(approximated) integral equation N̂L(k) = −4π ln 2
ik

δ(k)− 1
1−e−|k|

∫ +∞
−∞

dp
2π
ϕ̂H(k, p)N̂L(−p)+O(1/s2),

which proves that NL(u) start contributing at order O(s0). Again, as in the one loop case, we use

the quantisation conditions

(−1)1−L = exp(−iZ(xh)) = eiRP (xh)

L−1
∏

{h′=2, h′ 6=h}
(−S(xh, xh′)) (2.12)

to define the momentum of a hole/scalar excitation of rapidity u as the function P (u) such that

− 2P̃ (u)−R(u, xL)− R(u, x1)−
L−1
∑

h=2

P̃ (xh)−NL(u) ≃ R · P (u) , (2.13)

with R ≃ 2 ln s (since xL = −x1 ≃ s√
2
) the effective length of the chain. On the other hand, the

scattering factor between two holes of rapidities u, v is the function S(u, v) defined by

i ln (−S(u, v)) = R(u, v) + P̃ (u)− P̃ (v) = Θ(u, v) . (2.14)

We remark that the following properties hold

P̃ (u) = −P̃ (−u) , R(u, v) = −R(−u,−v) , R(u, v) = −R(v, u) . (2.15)

In particular, the last property implies unitarity, i.e. Θ(u, v) = −Θ(v, u). To compute this phase,

we need first its ’reduced’ version Θ′(u, v) = R(u, v) + P̃ (u), which satisfies, in (double) Fourier

space,

Θ̂′(k, t) = φ̂(k, t) + Φ̂(k)2πδ(t)−
∫ +∞

−∞

dp

4π2
ipφ̂(k, p)Θ̂′(−p, t) , (2.16)

upon manipulating and adding equations (2.11). In fact, this function enters the even part (in the

second variable) of the scattering phase M(u, v) = Θ(u,v)+Θ(u,−v)
2

= Θ′(u,v)+Θ′(u,−v)
2

, whose (double)

Fourier transform, by virtue of (2.16), satisfies the equation

M̂(k, t) =
φ̂H(k, t) + φ̂H(k,−t)

2(1− e−|k|)
− 2π2δ(t)

J0(
√
2gk)

ik sinh |k|
2

+

+
2π2

ik

e−|k|

1− e−|k| [δ(k + t) + δ(k − t)]−
∫ +∞

−∞

dp

4π2

ipφ̂H(k, p)

1− e−|k| M̂(−p, t) . (2.17)

We observe that M̂(k, t) enjoys the parity properties

M̂(k, t) = M̂(k,−t) , M̂(k, t) = −M̂(−k, t) ; (2.18)

the first property is true by construction, the second one holds since the function φ̂H(k, t) +

φ̂H(k,−t) is an odd function of k. Now, the key point is that we can relate M̂(k, t) to functions

5



we found in the study of high spin twist sector. Let us consider the density corresponding to the

first generalised scaling function (i.e. the part of the density proportional to ln sL−2
ln s

, see [18] for

details1):

σ̂(1)(k) =
π

sinh |k|
2

[e−
|k|
2 − J0(

√
2gk)] +

ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[

2π + σ̂(1)(t)
]

. (2.19)

Then, consider the density ’all internal holes’, which satisfies equation (3.8) of [7]: we formally

put L = 3 and highlight the dependence of the solution of (3.8) of [7] on the position x of the

(fictitious) single internal hole

σ̂(k; x) =
2πe−|k|

1− e−|k| (cos kx− 1) +
ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[

2π(cos tx− 1) + σ̂(t; x)
]

. (2.20)

Fourier transforming with respect to x, it is easy to see that

ikM̂(k, t) =

∫ +∞

−∞
dxe−itx[σ̂(1)(k) + σ̂(k; x)] ⇒ d

du
M(u, v) = σ(1)(u) + σ(u; v) . (2.21)

In order to fixM from (2.21), we use properties (2.18): we obtain thatM(u, v) = Z(1)(u)+Z(u; v),

where Z(1)(u) and Z(u; v) are univocally defined by the conditions

d

du
Z(1)(u) = σ(1)(u) ,

d

du
Z(u; v) = σ(u; v) , Z(1)(u) = −Z(1)(−u) , Z(u; v) = −Z(−u; v) .

(2.22)

Now, we easily analyse the odd part of the scattering phase N(u, v) = Θ(u,v)−Θ(u,−v)
2

=
R(u,v)−R(u,−v)

2
− P̃ (v), for which properties (2.15) bring about M(v, u) = −N(u, v). As a con-

sequence, the scattering phase Θ(u, v) can be expressed in terms of only the function M as

Θ(u, v) =M(u, v)−M(v, u) . (2.23)

Two strong coupling limits

Using (2.21, 2.23), we want to study the strong coupling limit of the holes scattering phase. We

analyse two limits: the so-called non-perturbative regime [19], in which g → +∞, with u, v ∼ 1

fixed and the scaling cases, when we first rescale the rapidities, u =
√
2gū, v =

√
2gv̄, and then

send g → +∞, with ū, v̄ fixed. In the latter case, two regimes appear: if |ū| < 1, |v̄| < 1, we are

in the perturbative regime, if |ū| > 1, |v̄| > 1, we are in the giant-hole [20] regime.

In the non-perturbative regime we use results (3.21,3.22) of [7], i.e.:

σ̂(1)(k) + σ̂(k; x) → σ̂
(1)
lim(k) cos kx , σ̂

(1)
lim(k) = 2π

[

e−|k|

1− e−|k| −
e

|k|
2

2 sinh |k|
2
cosh k

]

. (2.24)

1In previous literature integral equations are often written by using the ’magic kernel’ K̂ [11], related to φ̂H by

φ̂H(k, t) + φ̂H(k,−t) = 8iπ2g2e−
t+k

2 K̂(
√
2gk,

√
2gt) , t, k > 0 .
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Going back to the coordinate space, we have

g → +∞ ⇒ d

du
M(u, v) → 1

2
[σ

(1)
lim(u− v) + σ

(1)
lim(u+ v)] ,

σ
(1)
lim(u) = −1

4

[

ψ
(

1− i
u

4

)

+ ψ
(

1 + i
u

4

)

− ψ

(

1

2
− i

u

4

)

− ψ

(

1

2
+ i

u

4

)

+
2π

cosh π
2
u

]

⇒

M(u, v) = − i

2
ln

Γ
(

1− iu−v
4

)

Γ
(

1
2
+ iu−v

4

)

Γ
(

1− iu+v
4

)

Γ
(

1
2
+ iu+v

4

)

Γ
(

1 + iu−v
4

)

Γ
(

1
2
− iu−v

4

)

Γ
(

1 + iu+v
4

)

Γ
(

1
2
− iu+v

4

) −

− 1

2
gd

(

π(u− v)

2

)

− 1

2
gd

(

π(u+ v)

2

)

. (2.25)

Therefore, for the scattering phase Θ(u, v) we have the expression [21]

g → +∞ ⇒ Θ(u, v) → −i ln Γ
(

1− iu−v
4

)

Γ
(

1
2
+ iu−v

4

)

Γ
(

1 + iu−v
4

)

Γ
(

1
2
− iu−v

4

) − gd

(

π(u− v)

2

)

, (2.26)

which depends only on the difference of the rapidities.

We now rescale the rapidity u =
√
2gū and then send g → +∞, with ū fixed. It is easier

to compute the double derivative of the scattering factor Θ(u, v), since it depends on the density

σ(u; v) only:
d

du

d

dv
Θ(u, v) =

d

dv
σ(u; v)− d

du
σ(v; u) . (2.27)

On the other hand, the function d
dx̄
σ(u; x) is written (at the leading order g0) as

d

dx̄
σ(u; x) ∼=

∫ +∞

0

dt̄√
2g

cos t̄ū

[

d

dx̄
Γ−(t̄; x̄)−

d

dx̄
Γ+(t̄; x̄)−

2e
− t̄√

2g

1− e
− t̄√

2g

t̄ sin t̄x̄

]

, (2.28)

where the functions d
dx̄
Γ(t̄; x̄) satisfy the integral equation, valid for |ū| ≤ 1:

∫ +∞

0

dt̄

[

eit̄ū
d

dx̄
Γ−(t̄; x̄)− e−it̄ū d

dx̄
Γ+(t̄; x̄)

]

=

∫ +∞

0

dt̄eit̄ū
t̄ sin t̄x̄

sinh t̄
2
√
2g

∼= 2
√
2g

x̄

x̄2 − ū2
, (2.29)

We set Γ+(t̄; x̄) =
∫

dk cos kt̄ Γ̃(k; x̄), Γ−(t̄; x̄) = −
∫

dk sin kt̄ Γ̃(k; x̄) and solve (2.29):

d

dx̄
Γ̃(k; x̄) = −

√
2g[δ(k − x̄)− δ(k + x̄)] + O(1/g) , |x̄| < 1 (2.30)

d

dx̄
Γ̃(k; x̄) = −g

π

[
(

1+k
1−k

)1/4 ( x̄−1
x̄+1

)1/4

x̄− k
+

(

1+k
1−k

)1/4 ( x̄+1
x̄−1

)1/4

x̄+ k

]

+O(1/g) , |k| < 1, |x̄| > 1(2.31)

while for |x̄|, |k| > 1 Γ̃(k; x̄) is exponentially small. Plugging (2.30, 2.31) into (2.28), we find the

following behaviour at the leading order g0:

d

dx̄
σ(
√
2gū;

√
2gx̄) = −1

2
H(ū2 − 1)H(x̄2 − 1)

[

(

x̄−1
x̄+1

)1/4 ( ū−1
ū+1

)1/4
+
(

x̄+1
x̄−1

)1/4 ( ū+1
ū−1

)1/4

ū+ x̄
+

+

(

x̄−1
x̄+1

)1/4 ( ū+1
ū−1

)1/4
+
(

x̄+1
x̄−1

)1/4 ( ū−1
ū+1

)1/4

x̄− ū

]

, (2.32)
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with H(x) the Heaviside function. Inserting (2.32) into (2.27), we obtain the leading order

d

dv̄

d

dw̄
Θ(

√
2gv̄,

√
2gw̄) =

√
2gH(v̄2 − 1)H(w̄2 − 1)

(

v̄+1
v̄−1

)1/4 ( w̄−1
w̄+1

)1/4
+
(

v̄−1
v̄+1

)1/4 ( w̄+1
w̄−1

)1/4

v̄ − w̄
. (2.33)

Result (2.33) agrees with corresponding formula coming from the scattering phase (2.34) of [16].

3 Gluonic excitations

The excitations of gauge fields on GKP string correspond to insertions of partons of the type

Dl−1
⊥ F+⊥ or D̄l−1

⊥ F̄+⊥. As for the ABA, the field Dl−1
⊥ F+⊥ is represented as a stack of l + 1 roots

u3, l u2 and l − 1 u1 roots [6] of the Beisert-Staudacher equations [3] (similarly, D̄l−1
⊥ F̄+⊥ comes

out from the replacement (u1, u2, u3) → (u7, u6, u5)). Then, these large s equations (an operator

with some fields Dl−1
⊥ F+⊥ on a sea of covariant derivatives D+ (u4 roots)) can take on the form

• 1 = e−ipkL
′

s
∏

j=1

S(44)(uk, uj)
∏

m

Nm
∏

i=1

S(4g)
m (uk, u

m
i ) (3.1)

• 1 =
∏

m

Nm
∏

i=1

S(gg)
lm (ulk, u

m
i )

s
∏

j=1

S(g4)
l (ulk, uj) , (3.2)

where S(44)(uk, uj) describes the scattering involving two type-4 Bethe roots, while S(4g)
m (uk, u

m
i )

that of a type-4 root colliding with a gluonic stack (of length m and real centre umi ) and finally

S(gg)
lm (ulk, u

m
i ) represents the matrix for the scattering of gluonic bound states, in terms of real cen-

tres. We are going to take into account a system composed of Q gluonic bound states, represented

by stacks of length mk and real centre ũk, with k = 1, . . . , Q, together with L− 2 scalars, i.e. in-

ternal holes in the distribution of main roots: the length L′ appearing in (3.1) equals L+Q. As a

matter of fact, in order to accommodate a gluonic excitation, a type-4 root has to be ’pulled away’

from the sea, and a gluon substitute it, then. The state we are thus considering is characterised

by L+Q missing main roots in the sea, the vacuum corresponding to L = 2, Q = 0.

The counting function for a gluonic stack, with real centre u and length l, which collides only

with scalars and other gluonic excitations (centre rapidity ũk, length mk) is

Zg(u|l) =
Q
∑

k=1

χ̃(u, ũk|l, mk)−
∫ +∞

−∞

dv

2π
χ(v, u|l) d

dv
[Z(Qg)(v)− 2L(Qg)(v)]−

L
∑

h=1

χ(xh, u|l) , (3.3)

whereas the counting function (2.1) adapted to the case at hand, including the Q gluonic stacks,

takes on the form:

Z(Qg)(v) = (L+Q)Φ(v) +

∫ +∞

−∞

dw

2π
φ(v, w)

d

dw
[Z(Qg)(w)− 2L(Qg)(w)] +

+

L
∑

h=1

φ(v, xh) +

Q
∑

k=1

χ(v, ũk|mk) . (3.4)
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In addition to definitions (2.2, 2.3), we introduced

χ(v, u|l) ≡ χ0(v − u|l + 1) + χH(v, u−
il

2
) + χH(v, u+

il

2
) , (3.5)

χ̃(u, v|l, m) ≡ χ0(u− v|l +m)− χ0(u− v|l−m) + 2
l−1
∑

γ=1

χ0(u− v|l +m− 2γ) , (3.6)

where we split the function χ into its one-loop and higher than one loop parts, respectively

• χ0(u|l) ≡ 2 arctan
2u

l
= i ln

il + 2u

il − 2u
• χH(u, v) ≡ i ln

(

1− g2

2x−(u)x(v)

1− g2

2x+(u)x(v)

)

. (3.7)

Equation (3.4) suggests that Z(Qg)(v) satisfies the nonlinear integral equation

Z(Qg)(v) = F (Qg)(v) + 2

∫ +∞

−∞
dwG(v, w)L(Qg)(w) , (3.8)

where the function F (Qg)(v) is written as

F (Qg)(v) = (L+Q)P̃ (v) +

L
∑

h=1

R(v, xh) +

Q
∑

k=1

T (v, ũk|mk) , (3.9)

with R(v, u) and P̃ (v) solutions of (2.11) respectively, and T (v, ũ|m) equals

T (v, ũ|m) = χ(v, ũ|m)−
∫ +∞

−∞
dwG(v, w)χ(w, ũ|m) . (3.10)

We are interested in the scattering factors involving gluons, which correspond to l = 1 stacks.

Therefore, we restrict to this case and, for clarity’s sake, denote the scalar-scalar factor as

S(ss)(xh, xh′) = −exp[−iΘ(xh, xh′)]. The quantisation conditions for holes and gluons are

• (−1)L−1 = e−iZ(Qg)(xh) = eiRP (xh)
L−1
∏

h′=2,h′ 6=h

(

−S(ss)(xh, xh′)
)

Q
∏

j=1

S(sg)(xh, ũj) (3.11)

•(−1)Q−1 = e−iZg(ũk|1) = eiRP g(ũk)

Q
∏

j=1,j 6=k

(

−S(gg)(ũk, ũj)
)

L−1
∏

h′=2

S(gs)(ũk, xh′) . (3.12)

In order to gain S(gg) we consider (3.3) when the system is composed just of two gluons (Q = 2

and l = 1) with rapidities ũ1 and ũ2 and no internal holes are present (L = 2):

Zg(u|1) = −4

∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
P̃ (v) +

∫ ∞

−∞

dv

π

dL(2g)

dv
(v) T (v, u|1)−

−
2
∑

h=1

T (xh, u|1) +
2
∑

k=1

[

χ̃(u, ũk|1, 1)−
∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
T (v, ũk|1)

]

. (3.13)
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Via quantisation condition (3.12), from (3.13) we can identify the momentum P (g)(u) of a gluon

with rapidity u

T (x1, u|1) + T (xL, u|1)−
∫ ∞

−∞

dv

π

dL(Qg)

dv
(v) T (v, u|1)−

L−1
∑

h=2

P̃ (xh) + (3.14)

+2

∫ +∞

−∞

dv

2π
χ(v, u|1) d

dv
P̃ (v) +

Q
∑

k=1

∫ +∞

−∞

dv

2π
χ(v, ũk|1)

d

dv
P̃ (v) ≃ R · P (g)(u) ,

with effective length R ≃ 2 ln s and the scattering phase between gluons with rapidities u and ũ:

i ln
(

−S(gg)(u, ũ)
)

= χ̃(u, ũ|1, 1)−
∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
T (v, ũ|1)−

∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
P̃ (v) +

+

∫ ∞

−∞

dv

2π
χ(v, ũ|1) d

dv
P̃ (v) = χ̃(u, ũ|1, 1)−

∫ +∞

−∞

dv

2π
[χ(v, u|1) + Φ(v)]

d

dv
[χ(v, ũ|1) + Φ(v)] +

+

∫ +∞

−∞

dv

2π

∫ +∞

−∞

dw

2π
[χ(v, u|1) + Φ(v)]

[

d

dv

d

dw
Θ(v, w)

]

[χ(w, ũ|1) + Φ(w)] , (3.15)

where Θ (2.23) enters the hole-hole scattering phase. This expression at one loop reduces to

S(gg)(u, ũ) = −Γ (1 + i(u− ũ))

Γ (1− i(u− ũ))

Γ
(

3
2
− iu

)

Γ
(

3
2
+ iu

)

Γ
(

3
2
+ iũ

)

Γ
(

3
2
− iũ

) , (3.16)

which agrees with relations (7) and (11) of [8]. Moreover, the gluonic counting function (3.3) allows

us to retrieve the scattering matrix between a gluon (l = 1 and rapidity ũ) and a scalar excitation

(internal hole with rapidity xh), once properly rewritten after fixing Q = 1 and L = 3:

Zg(u|1) = −4

∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
P̃ (v) +

∫ ∞

−∞

dv

π

dL(1g)

dv
(v) T (v, u|1) +

−
3
∑

h=1

T (xh, u|1) +
[

χ̃(u, ũ|1, 1)−
∫ ∞

−∞

dv

2π
χ(v, u|1) d

dv
T (v, ũ|1)

]

. (3.17)

Therefore, the gluon-scalar scattering phase reads

i ln
(

S(gs)(ũ, xh)
)

= −χ(xh, ũ|1)− Φ(xh) +

∫ +∞

−∞

dw

2π

[

d

dw
Θ(xh, w)

]

(χ(w, ũ|1) + Φ(w)) =

=

∫ +∞

−∞

dw

2π

[

d

dw
Θ(xh, w)− 2πδ(xh − w)

]

(χ(w, ũ|1) + Φ(w)) = −i ln
(

S(sg)(xh, ũ)
)

; (3.18)

at one loop, it becomes

S(gs)(ũ, xh) =
Γ (1 + i(ũ− xh))

Γ (1− i(ũ− xh))

Γ
(

1
2
+ ixh

)

Γ
(

1
2
− ixh

)

Γ
(

3
2
− iũ

)

Γ
(

3
2
+ iũ

) = [S(sg)(xh, ũ)]
−1 . (3.19)

Finally, we consider scattering between F+⊥, with rapidity ũ1, and F̄+⊥, with rapidity ˜̄u1. We stick

to L = 2 and consider Zg, counting function of F+⊥ and Z(gḡ), counting function of scalars in the

10



presence of F+⊥ and F̄+⊥:

Zg(u|1) = χ̃(u, ũ1|1, 1)−
∫ +∞

−∞

dv

2π
χ(v, u|1) d

dv
[Z(gḡ)(v)− 2L(gḡ)(v)]−

2
∑

h=1

χ(xh, u|1) ,(3.20)

Z(gḡ)(v) = 4P̃ (v) +

2
∑

h=1

R(v, xh) + T (v, ũ1|1) + T (v, ˜̄u1|1) +NL(v) . (3.21)

Plugging (3.21) into (3.20), computing Zg in u = ũ1 and neglecting non linear terms, we obtain

Zg(ũ1|1) = −
∫ +∞

−∞

dv

2π
χ(v, ũ1|1)

[

4
d

dv
P̃ (v) +

d

dv
T (v, ˜̄u1|1)

]

− T (x1, ũ1|1)− T (xL, ũ1|1) . (3.22)

The quantisation condition reads 1 = e−iZg(ũ1|1) = eiRP (g)(ũ1)S(gḡ)(ũ1, ˜̄u1), from which, using (3.14,

3.15) we obtain

i lnS(gḡ)(ũ1, ˜̄u1) = i ln
(

−S(gg)(ũ1, ˜̄u1)
)

− χ(ũ1, ˜̄u1|1, 1) ⇒ S(gḡ)(ũ1, ˜̄u1) = S(gg)(ũ1, ˜̄u1)
ũ1 − ˜̄u1 − i

ũ1 − ˜̄u1 + i
.

(3.23)

Analogously, considering the counting function of F̄+⊥ together with Z(gḡ), we find S(ḡg)(˜̄u1, ũ1) =

[S(gḡ)(ũ1, ˜̄u1)]
−1. Eventually, we also obtain S(ḡs)(u, v) = S(gs)(u, v).

Perturbative strong coupling gluon-gluon scattering

We want to study the gluonic scattering matrix (3.15) in the limit g → +∞, with u = ū
√
2g,

ũ = ¯̃u
√
2g, ū, ¯̃u fixed and ū2 < 1, ¯̃u2 < 1. We have

i ln
(

−S(gg)(u, ũ)
)

= I1 + I2 + I3 , (3.24)

where

I1 = χ̃(u, ũ|1, 1) = −2 arctan
√
2g(¯̃u− ū) = −πsgn(¯̃u− ū) +

√
2

g(¯̃u− ū)
+O(1/g3) , (3.25)

I2 = −2 arctan

[

g(¯̃u− ū)√
2

]

− 2 arctan[g(¯̃u− ū)
√
2] + 4 arctan

[

2
√
2g(¯̃u− ū)

3

]

= O(1/g3) . (3.26)

For what concerns the last term I3 in the right hand side of (3.15), we find convenient to perform

the change of variables v =
√
2gv̄, w =

√
2gw̄

I3
∼=
∫ +∞

−∞

dv̄

2π

∫ +∞

−∞

dw̄

2π

1√
2gv̄ −

√
2gū

1√
2gw̄ −

√
2g ¯̃u

d

dv̄

d

dw̄
Θ(

√
2gv̄,

√
2gw̄) . (3.27)

Plugging formula (2.33) into (3.27) and performing the integrations we arrive at

I3 =
1

2
√
2g(ū− ¯̃u)

[

2−
(

1 + ū

1− ū

) 1
4
(

1− ¯̃u

1 + ¯̃u

)
1
4

−
(

1− ū

1 + ū

) 1
4
(

1 + ¯̃u

1− ¯̃u

)
1
4

]

+O(1/g2) . (3.28)
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Now, summing up (3.25, 3.26, 3.28) we obtain the final result for the gluon-gluon scattering matrix

at the order O(1/g)

S(gg)(u, ũ) = exp

[

i√
2g(ū− ¯̃u)

(

1 +
1

2

(

1 + ū

1− ū

)
1
4
(

1− ¯̃u

1 + ¯̃u

)
1
4

+
1

2

(

1− ū

1 + ū

)
1
4
(

1 + ¯̃u

1− ¯̃u

)
1
4

+O(1/g2)

)]

,

(3.29)

which agrees with the result coming from (7), (15) and (16) of [8].

4 Fermionic Excitations

To parametrise the dynamics of a fermionic excitation, the rapidity to look at is actually x,

which is related to the Bethe rapidity u via the Zhukovski map u(x) = x + g2

2x
. To properly

invert the Zhukovski map for the complete range of values of x, we need to glue two u-planes

together, each corresponding to a Riemann sheet. The two sheets are related to two distinct

regimes of the fermionic excitations [6]: large fermions, embedded in Beisert-Staudacher equations

[3] as u3 roots, which do carry energy and momentum even at one-loop; small fermions, corre-

sponding to u1 roots, which couple to main root equations just at higher loops. The function

x(u) can be analytically continued from the u3 Riemann sheet to the u1-sheet by means of the

map x(u3) −→ (g2)/(2x(u1)), and Beisert-Staudacher equations are invariant under this exchange

u3 ↔ u1, provided we modify the spin-chain length (see [3] for details). Exactly the same reason-

ing applies for anti-fermions by replacing u3 → u5 and u1 → u7: turning on u3 (u1) roots means

exciting fermionic fields Ψ+, while u5 (u7) corresponds to Ψ̄+. Hence, we can extend (3.1, 3.2)

to include NF large fermions uF = u3, of physical rapidities xFj = x(uFj ) with the arithmetic

square root for x(u) = (u/2)
[

1 +
√

1− (2g2)/u2
]

, and nf small fermions uf = u1, of rapidities

xfj = (g2)/(2x(ufj )):

• 1 = e−ipkL
′

s
∏

j 6=k

S(44)(uk, uj)

NF
∏

j=1

S(4F )(uk, u
F
j )

nf
∏

j=1

S(4f)(uk, u
f
j )
∏

m

Nm
∏

j=1

S(4g)
m (uk, u

m
j ) (4.1)

• 1 =

s
∏

j=1

S(F4)(uFk , uj)
∏

m

Nm
∏

j=1

S(Fg)
m (uFk , u

m
j ) (4.2)

• 1 =

s
∏

j=1

S(f4)(ufk , uj)
∏

m

Nm
∏

j=1

S(fg)
m (ufk , u

m
j ) (4.3)

• 1 =
∏

m

Nm
∏

i=1

S(gg)
lm (ulk, u

m
i )

s
∏

j=1

S(g4)
l (ulk, uj)

NF
∏

j=1

S(gF )
l (ulk, u

F
j )

nf
∏

j=1

S(gf)
l (ulk, u

f
j ) , (4.4)

where L′ = L+NF +Q and, in addition to previously defined matrices, we introduce the scattering

matrices describing the collision between a type-4 root and a large fermion S(4F )(uk, u
F
j ) or small

fermion S(4f)(uk, u
f
j ) together with their inverses (respectively S(F4)(uFk , uj), S(f4)(ufk , uj)); the

matrices S(gF )
l (ulk, u

F
j ), S(Fg)

m (uFk , u
m
j ) (or S(gf)

l (ulk, u
f
j ) and S(fg)

m (ufk , u
m
j )) describe the scattering
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involving gluonic stacks and large (small) fermions. Explicitly, these scattering matrices over the

GKP vacuum are listed here (the definition χF (v, u) = χ0(v − u|1) + χH(v, u) is used):

• large (anti)fermion-large (anti)fermion: S(FF )(u, u′) = S(F F̄ )(u, u′) = S(F̄F )(u, u′) = S(F̄ F̄ )(u, u′),

i logS(FF )(u, u′) = −
∫

dv

2π

dw

2π
[χF (v, u) + Φ(v)]

d

dv

(

2πδ(v − w)− dΘ

dw
(v, w)

)

[χF (w, u
′) + Φ(w)]

(4.5)

• large (anti)fermion-small (anti)fermion: S(Ff)(u, u′) = S(F f̄)(u, u′) = S(F̄ f)(u, u′) = S(F̄ f̄)(u, u′),

i log S(Ff)(u, u′) =

∫

dv

2π

dw

2π
[χF (v, u) + Φ(v)]

d

dv

(

2πδ(v − w)− dΘ

dw
(v, w)

)

χH(w, u
′) (4.6)

• scalar-large (anti)fermion: S(sF )(u, u′) = S(sF̄ )(u, u′),

i logS(sF )(u, u′) = −
∫

dv

2π

[

dΘ

dv
(u, v)− 2πδ(u− v)

]

(χF (v, u
′) + Φ(v)) (4.7)

• gluonic stack-large (anti)fermion: S
(gF )
l (u, u′) = S

(ḡF̄ )
l (u, u′), S

(gF̄ )
l (u, u′) = S

(ḡF )
l (u, u′),

i log(−S(gF )
l (u, u′)) = χ0(u− u′|l) + i log S

(ḡF )
l (u, u′) = (4.8)

= χ0(u− u′|l)−
∫

dv

2π

dw

2π
[χ(v, u|l) + Φ(v)]

d

dv

(

2πδ(v − w)− dΘ

dw
(v, w)

)

[χF (w, u
′) + Φ(w)] .

We checked that unitarity holds, i.e. that S(sF )(u, u′) = [S(Fs)(u′, u)]−1, S
(gF )
l (u, u′) =

[S
(Fg)
l (u′, u)]−1 and so on. By virtue of the map between small and large (anti)fermions, from

the expressions above we recover the corresponding ones for small (anti)fermions by replacing

χF (v, u) + Φ(v) −→ −χH(v, u). Eventually, we note that all these scattering phases depend only

on the ’basic’ scalar-scalar one, except known functions.

Note Added: When completing to write this work, [22] on scalars appeared (one day in advance).

In fact, [22] focuses on scalars giving for them the complete S-matrix (namely the g dependent

scalar-scalar (pre)factor, which is also presented in this letter, times a matrix fixed by the O(6)

symmetry, as in the O(6) NLSM). In this letter we derive all the (pre)factors concerning the other

fields, i.e. gluons and fermions.
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