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Abstract

Moving from Beisert-Staudacher equations, the complete set of Asymptotic Bethe Ansatz

equations and S-matrix for the excitations over the GKP vacuum is found. The resulting

model on this new vacuum is an integrable spin chain of length R = 2 ln s (s = spin) with

particle rapidities as inhomogeneities, two (purely transmitting) defects and SU(4) (residual

R-)symmetry. The non-trivial dynamics of N = 4 SYM appears in elaborated dressing factors

of the 2D two-particle scattering factors, all depending on the ’fundamental’ one between two

scalar excitations. From scattering factors we determine bound states. In particular, we

study the strong coupling limit, in the non-perturbative, perturbative and giant hole regimes.

Eventually, from these scattering data we construct the 4D pentagon transition amplitudes

(perturbative regime). In this manner, we detail the multi-particle contributions (flux tube)

to the MHV gluon scattering amplitudes/Wilson loops (OPE or BSV series) and re-sum them

to the Thermodynamic Bubble Ansatz.
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1 Introduction

The study of the energy of the excitations on a suitably chosen vacuum state is a problem which

is common to very many physical theories. It often happens that most intriguing excitations arise

over a vacuum state which is an intricate superposition of ’basic’ states, i.e. a sort of Fermi sea

of interacting ’pseudoparticles’. In general, this vacuum may be dubbed antiferromagnetic as the

prototypical example in the realm of integrable models is the antiferromagnetic vacuum state of

the Heisenberg spin chain. In their turn, important excitations on it are called spinons or solitons,

whilst magnons are the (pseudo)particles forming the see on the ferromagnetic vacuum. In an easy

Bethe Ansatz perspective [1], spinons may appear as holes in a distribution of a large number of

real Bethe roots. As a consequence, these holes are constrained by quantisation conditions for their

rapidities, which may anew be seen as Bethe(-Yang) equations for these new ’fundamental’ parti-

cles. Of course, we expect this phenomenon to be of non-perturbative nature, so that integrability

is the right realm to exploit it.

A similar, but obviously much richer situation, arises in the framework of Beisert-Staudacher

Asymptotic Bethe Ansatz (ABA) equations determining, via a specific root configuration, the

anomalous dimension (energy) of the single trace fields in planar N = 4 SYM [2]. In this context

one can choose as ’antiferromagnetic’ vacuum the configuration which contains a large number,

s, of type-4 roots and which describes, up to wrapping corrections [3], high spin (= s) twist two

operators, namely, sketchily,

O = Tr ZDs
+Z + . . . , (1.1)

where Z is one of the three (complex) scalars of the theory. In fact, this is likely the ’simplest’

example of Wilson twist operator. It belongs to the paradigmatic sl(2) sector of scalar operators,

which are made up of only one (out of three) complex scalar Z and the (light-cone) covariant

derivative D+, so enjoying the sketchy form

Tr(Ds
+Z

L) + .... , (1.2)

where dots stand for permutations. Built up in this selected way they result to be perturbatively

closed under renormalisation, so forming a sector. These composite single trace operator have of

course Lorentz spin s and twist (or length in the ferromagnetic/half-BPS vacuum perspective) L,

with minimum value L = 2 for which (a descendant1 of) the GKP ’vacuum’ solution is realised [4].

Also, the AdS/CFT correspondence [5] relates an operator (1.2) to a spinning folded closed strings

on AdS5 × S5 spacetime, with angular momenta s/
√
λ and L/

√
λ on each space respectively, the

’t Hooft coupling in the multi-color Nc → ∞ (planar) regime

λ ≡ Ncg
2
YM ; g2 ≡ λ

8π2
, (1.3)

being connected to the string tension T =
√
λ

2π
[4, 6]. On the other hand we may think of the

operators (1.2) as obtained from the GKP vacuum (1.1) by adding scalar excitations on top of

1In this case, the spin may be shifted by a finite amount which does not affect our analysis and results at high

spin.
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it. Of course, when L > 2 we can realise states with different energies, at fixed L, and typically

the minimal energy has been more extensively studied for ’large size’ s → +∞. In particular,

the minimal anomalous dimension of (1.2) has been proven to enjoy at one loop the same leading

behaviour ∼ ln s at high spin (and fixed L) [7], as in the opposite string regime (strong coupling) [4].

Later on, the coefficient of this term2 was obtained at all loops from the solution of a linear integral

equation directly derived from the Beisert-Staudacher equations via the root density approach [10].

In very brief summary, as computed in [11], the high spin (asymptotic) expansion (at fixed g and

L) enjoys the peculiar form

γ(g, s, L) = f(g) ln s + fsl(g, L) +

∞
∑

n=1

γ(n)(g, L) (ln s)−n +O ((ln s)/s) , (1.4)

in inverse integer powers of the size3 R ∼ ln s, except the sub-leading (ln s)0 contribution fsl(g, L)

(defect contribution). The latter, which reduces to the so-called virtual scaling function for L = 2,

has been captured in [12] by a Non-Linear Integral Equation (NLIE) and in [13] by a linear integral

equation (by means of which explicit strong coupling expansions can be performed [14], along the

lines of those for the cusp [15]). Up to this order, we can be sure that this expansion enjoys the

same form at all perturbative orders in QCD, or its Mellin transform, i.e. the evolution kernels [16].

Moreover, in the supersymmetric case similar linear integral equations hold for all the coefficients

in (1.4) [11] and also for the next order O ((ln s)/s) [17], and all these, – importantly the first two

f(g) and fsl(g, L), – are now believed to be exactly given by the ABA without wrapping4, also

thanks to these recent studies.

The latter were focussed on the same scalar, Z, added to (1.1), but we can generalise to the

other fields: indeed, elementary one-particle excitations may correspond to inserting one of the

other fields i.e., besides the other two scalars, a gauge field (gluon) or a Fermi field (gaugino)5. In

other words, they are the lowest twist (=three) operators/states with the form

O1−particle = Tr ZDs−s′
+ ϕDs′

+Z + . . . , (1.5)

where ϕ = Z,W,X , the scalars, or ϕ = F+⊥, F̄+⊥, the two components of the gauge field, or

ϕ = Ψ+, Ψ̄+, the 4 + 4 (anti-)fermions, respectively. Besides the energy, one can determine also

the momentum of an operator through the Beisert-Staudacher ABA equations. Along this line,

the one-particle dispersion relations of the excitations (1.5) have been receiving much attention in

the different coupling regimes (cf. for instance [19] and references therein); but recently they have

been summarised, corrected and put forward in an illuminating work by Basso [20] (also reference

therein).

2This is the so-called universal scaling function, f(g), which does not depend on L and equals twice the cusp

anomalous dimension (renormalisation divergence [8]) of a light-like Wilson cusp, as in QCD[9].
3In fact, it is consistent with the length of the long classical string R ∼ ln(s/

√
λ) [4, 6].

4For instance in [18] wrapping corrections to ABA start to contribute at order e−R = e−2 ln s = 1/s2, inducing

to think of a factor 2 in the size of the folded string R = 2 ln s+ . . . .
5Notice that in the half-BPS vacuum description this state would belong to a longer spin chain of length L = 3.
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On the same footing, we start wondering in [21] about the scattering S-matrix which may be

attached to the two-particle states (of, at least, twist-4)

O2−particles = Tr ZDs−s1−s2
+ ϕ1D

s1
+ϕ2D

s1
+Z + . . . , (1.6)

where ϕ1 and ϕ2 may be any general elementary local field as ϕ in (1.5), whereas in [21] we confined

our attention to the peculiar (cf. below) case ϕ1 = ϕ2 = Z. In fact, as argued above, we expect

the Beisert-Staudacher quantisation conditions to give correct results at leading ln s and next to

leading order (ln s)0. And then, regarding R ∼ ln s as the size of the system, these orders are

exactly the ones we need to write down 2D (many-particle) scattering amplitudes, i.e. (on-shell)

quantisation conditions, for rapidities of excitations on the GKP vacuum. Generalising to all the

other scalars, [22] have deduced the entire SO(6) scattering, while we have computed in [23] all the

g-depending scalar factors of the different scattering channels, neglecting the SU(4) representation

structure.

Moving from this lack, we shall make here our analysis deeper, by computing explicitly the

matrix structures of the different SU(4) representations carried by the ’elementary’ particles and

by their bound states. We will not only consider the two-body scattering, but also in general the

multi-particle 2D scattering amplitudes. As a byproduct we will see a well know characterisation of

integrable theories, namely the elasticity and factorisation, i.e. the determination of many-particle

scattering by the two-particle one. Besides the traditional name of Bethe-Yang equations, we can

call these quantisation conditions Asymptotic Bethe Ansatz equations as well, but now the term

’Asymptotic’ refers to the new length ∼ ln s, which measures the validity of the equations (and

to the ’new’ vacuum). More precisely, from the BMN (ferromagnetic) vacuum [24] (no roots) we

will switch on, in the Beisert-Staudacher equations, the configurations corresponding to the GKP

(antiferromagnetic) vacuum and to all possible ’elementary’ excitations over the GKP vacuum;

to accomplish this, we will be using the idea of converting many (Bethe) algebraic equations

describing an excited state into few non-linear integral equations (NLIEs) [25, 26, 27, 12, 13]. In

this way, we will obtain the quantisation conditions of all the ’elementary’ excitations over the

GKP vacuum and show that the structure of these equations coincides with Bethe equations of

a inhomogeneous spin chain of length R = 2 ln s with two identical (purely transmitting) defects

and a SU(4) symmetry in different representations (where the particle rapidities represent the

inhomogeneities). Of course, the scalar pre-factors in front of the above SU(4) matrix structure

are dependent on g and characteristic of the theory (and GKP vacuum). Nevertheless, we can

express all in terms of the scalar-scalar one [23]. Moreover, we will discuss in many details the

consequences of switching to a different vacuum which basically means that any elementary particle

interacts with the sea of covariant derivatives namely the type-4 roots. For instance, the poles

of the new 2D scattering factors of these particle imply the entrance of bound states thereof into

the spectrum and then the existence of new scattering amplitudes for the latter particles. As

anticipated, not only the 2D scattering amplitudes, but also many physical quantities assume

novel expressions, as for instance the energy, momentum [20] and all the other conserved charges

carried by a single elementary or composite excitation (cf. below). Furthermore, the scattering

of any particle onto two defects arises, as anticipated in [22, 23], though they were absent in the
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ferromagnetic setup, and they are likely to be associated to the two external holes (or tips of the

GKP string). Together with the change of length, these are somehow unprecedented features in

the theory of (quantum) integrable systems though their common origin can be traced back to

the sl(2) spin chain (describing the one-scalar sector (1.2) at one-loop): nevertheless, we are used

to insert the defect ab initio in the theory on the ferromagnetic vacuum and then finding the

anti-ferromagnetic dynamics with defect (possibly characterised by a different scattering factor)

and the same length.

As a consequence of this new ABA, also the exact Thermodynamic Bethe Ansatz (TBA) [29, 28]

for the spectrum of anomalous dimensions as derived from its mirror version should ostensibly look

very differently6 than the usual one on the BMN vacuum [30], although they should give the same

spectrum after all. Even more interestingly, a recent series of papers extended to all terms the

operator product expansion of [31] and thus proposed a non-perturbative approach to 4D gluon

scattering amplitudes/null polygonal Wilson loops (which are allegedly the same [34, 35, 36])

in N = 4 SYM, which relies on these 2D scattering factors as input data or building blocks

[37, 38, 39, 40, 41]. In this perspective, light-like polygonal Wilson loops (WLs) can thought of

as an infinite sum over more fundamental polygons, namely square and pentagonal WLs, whose

knowledge relies on the GKP scattering factors. By virtue of the AdS/CFT strong/weak duality,

this superposition of pentagons and squares should lead, at large coupling g, to the classical string

regime, namely the minimisation of the supersymmetric string action [34]. In general, this is a

complicated problem of minimal area (string action) subtending a polygon living on the boundary

of AdS5, and results in a set of non-linear coupled integral equations [32, 31]. For some still

hidden reason, their form resembles that of a relativistic Thermodynamic Bethe (or Bubble, in

this case!) Ansatz (TBA) system whose free energy yields the area [28, 29]7. Instead, we wish in

this paper construct this TBA set-up by summing the infinite BSV series and performing a saddle

point evaluation. For this aim, we will perform a propaedeutic analysis of all the different strong

coupling regimes.

The article is organised according to the following plan. In section 2 we derive the ABA

equations, first at one-loop as exemplifying case so to highlight all the relevant features, then for any

value of the coupling. In section 3 the conserved charges of the excitations (on the GKP vacuum)

are computed. In section 4 the strong coupling limit of the scattering factors is considered, in the

different dynamical regimes, i.e. non-perturbative, perturbative and giant hole regimes. Section

5 contains equivalent forms for the momentum associated to any elementary particle excitation,

in particular that elaborated in [20]. Section 6 is a study of the strong coupling behaviour of

(the scattering factor for) the spin chain defects. In section 7 the properties of the different kinds

of particles under the SU(4) symmetry are taken into exam, so that in section 8 we are able

to describe the structure of the overall S-matrix. In section 9 the so-called string hypothesis is

used on the GKP ABA (Asymptotic Bethe Ansatz), in order to survey the on-shell states and, in

particular, the bound states of elementary particles; for later purposes, an accurate study is devoted

6The attentive reader may guess many aspects of it from the form of string/stack solutions as reported in section

9.
7In the particular case of the hexagon WL [32] the system does coincide with the usual TBA one [42]
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to the behaviour of bound states of gluons at any coupling and fermion-antifermion=meson bound

states which, instead, do appear only at the leading order of perturbative strong coupling regime,

i.e. in the classical string theory. Section 10 computes all the string perturbative expressions of

the pentagonal amplitudes (contributing to the BSV series). Finally, these infinite contributions

are summed up exactly in section 11 as for the hexagonal Wilson loop; the result is remarkably

coinciding with the Yang-Yang functional and Thermodynamic Bubble Ansatz (TBA) equations

for minimal area solution [32, 31, 33]. After the conclusions (section 12), several appendices follow.

In appendices A and B the definition of the functions employed throughout the text, as well as some

useful formulae and integrals are listed. Appendix C is a synopsis of scattering factors, displayed

at arbitrary coupling, one-loop, strong coupling (mirror transformed too), while appendix D gives

some details about their derivation. Finally, in appendix E all the ABA equations are listed.

2 General equations

2.1 Excitations

The main aim of this section is to write Bethe equations describing ’elementary’ excitations over the

long GKP string, in the more general case when H scalars (uh, h = 1, ..., H), NF large fermions,

NF̄ large antifermions, Nf small fermions, Nf̄ small antifermions, Ng gauge fields F+⊥ and Nḡ

gauge fields F̄+⊥ are present.

In the notation of Beisert-Staudacher equations [2] the GKP vacuum is described by a large

even number s of type-4 roots filling the interval [−b, b] of the real axis, together with two external

holes [43, 7]. In the large s limit b is approximated with s/2 and the positions of the two external

holes with ±s/
√
2: corrections to those estimates give rise to O(1/s2) terms in the final Bethe

equations, that we will neglect.

It is a general fact that, in order to deal with a large number of Bethe roots, it is convenient

to use their counting function Z4(v), which satisfies a nonlinear integral equation [25, 26]. We

found then natural to apply that strategy to the study of GKP vacuum and its excitations. In

this approach scalar excitations, which are represented by holes in the distribution of type-4 roots

in [−b, b], are classified by quantisation conditions for Z4(v). The same function Z4(v) governs the

interaction between roots with different flavour and scalars.

Coming in specific to the classification of the various excitations [20], we have already said

that scalars are represented by holes in the distribution of type-4 roots. Large (small) fermions

are described by u3-type (u1-type) roots and large (small) antifermions are described by u5-type

(u7-type) roots. Rapidity of large fermions is the function xF (u3) = x(u3), where (g is related to

the ’t Hooft coupling λ by λ = 8π2g2)

x(u) =
u

2

[

1 +

√

1− 2g2

u2

]

, u2 ≥ 2g2 , (2.1)

with the arithmetic definition of the square root. Therefore, rapidity of large fermions satisfies the

inequality |xF | ≥ g/
√
2. On the other hand rapidity of small fermions is the function xf (u1) =

8



g2

2x(u1)
, with definition (2.1) for x(u) and, consequently, it is constrained by the inequality |xf | ≤

g/
√
2. Changing u3 → u5 and u1 → u7 allows to describe large and small antifermions, respectively.

Gauge fields F+⊥ with rapidity ugj correspond to stacks,

u2,j = ugj , u3,j = ugj ± i/2 , j = 1, ..., Ng , (2.2)

with real centres ugj , while gauge fields F̄+⊥ with rapidity uḡj are described by stacks,

u6,j = uḡj , u5,j = uḡj ± i/2 , j = 1, ..., Nḡ , (2.3)

with real centres uḡj .

We consider also the presence of isotopic roots, which do not carry momentum and energy,

but take into account internal degrees of freedom, i.e. the residual SU(4) symmetry of the GKP

vacuum. In specific, we have Ka roots ua,j of type u2,

ua,j = u2,j , j = 1, ..., Ka , (2.4)

Kc roots uc,j of type u6
uc,j = u6,j , j = 1, ..., Kc , (2.5)

and Kb stacks,

u4,j = ub,j ±
i

2
, ub,j = u3,j = u5,j , j = 1, ..., Kb , (2.6)

with centers ub,j.

We are now going to present our derivation of the full set of Bethe-Yang equations for excitations

on the GKP vacuum. For excitations with rapidity um belonging to the representation ρ of the

symmetry group SU(4) of the GKP vacuum such equations will appear in the following form

∏

m

uq,k − um + i~αq · ~wρ

uq,k − um − i~αq · ~wρ
=

Kq
∏

j 6=k

uq,k − uq,j + i~αq · ~αq

uq,k − uq,j − i~αq · ~αq

∏

q′ 6=q

Kq′
∏

j=1

uq,k − uq′,j + i~αq · ~αq′

uq,k − uq′,j − i~αq · ~αq′
, (2.7)

1 = eiRP (um)+iD(um)
∏

q

Kq
∏

k=1

um − uq,k + i~αq · ~wρ

um − uq,k − i~αq · ~wρ

∏

m′ 6=m

S(um, um′) , (2.8)

where {αq} are the set of simple roots of SU(4), uq,k are the isotopic roots associated and ~wρ the

highest weight of the representation ρ. The structure of these equations agrees with the general

pattern shown in [44]. While the first equation (2.7) comes from the symmetry properties of the

vacuum, the second one (2.8) is a quantisation condition for the rapidity um of an excitation moving

in a one dimensional chain. Within this interpretation, R is given the meaning of the physical

length of the chain, P (um) that of the momentum of an excitation with rapidity um. The extra

term D(um) in the exponent is interpreted as the effect of two purely transmitting (i.e. without

reflection [45]) defects related to the tips of the GKP string. The rational factor in the right hand

side of (2.8) takes into account the internal degrees of freedom: solving (2.7) one obtains uq,k
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in terms of um: plugging this result in the rational term in (2.8) one obtains, together with the

products over the various S(um, um′), the phase change due to the scattering between an excitation

with rapidity um and the other excitations with rapidity um′ .

We will start with the one loop case, where all factors entering equations (2.8) are written in

an explicit form, specifically in terms of products of Euler Gamma functions. The general all loops

case will appear as a technical complication of the one loop, since the building blocks of the various

equations (2.8) will be obtained after solving a linear integral equation.

2.2 Equations at one loop

Scalars

In order to show how our strategy works, we first concentrate on the one loop case. We

start from the fourth of the Beisert-Staudacher equations, in the presence of a large number s of

real type-4 roots, together with the general pattern of excitations and isotopic roots described in

previous section. We remark that in the one loop case only large fermions and large antifermions

are present: for uniformity of notations in this subsection we will denote large fermions rapidity

xF with uF and large antifermions rapidity xF̄ with uF̄ .

We introduce the counting function

Z4(v) = iL ln
i
2
− v

i
2
+ v

+ i

K4
∑

j=1

ln
i− v + u4,j
i+ v − u4,j

+ 2i

Kb
∑

j=1

ln
i
2
+ v − ub,j

i
2
− v + ub,j

+ i

NF
∑

j=1

ln
i
2
+ v − uF,j

i
2
− v + uF,j

+

+ i

NF̄
∑

j=1

ln
i
2
+ v − uF̄ ,j

i
2
− v + uF̄ ,j

+ i

Ng
∑

j=1

ln
i+ v − ugj
i− v + ugj

+ i

Nḡ
∑

j=1

ln
i+ v − uḡj

i− v + uḡj
, (2.9)

where the sum up to K4 = s + 2Kb is a sum over s real type-4 roots and over the 2Kb complex

type-4 roots contained in the stack (2.6). In terms of Z4 the fourth of Beisert-Staudacher equations

reads as

e−iZ4(u4,k) = (−1)L+K4+2Kb+NF+NF̄+Ng+Nḡ−1 . (2.10)

In addition, in the large s limit the behaviour of Z4(v) is dominated by the second term in the

right hand side, which implies that for v real Z ′
4(v) < 0. With this information we can prove that

the length L is not independent of the total number of excitations. Indeed, it is widely known

[43, 7] that condition (2.10) is satisfied on the real axis not only by the type-4 real roots, but also

by H+2 real numbers, called holes. Since Z ′
4(v) < 0 for v real, the difference between the extremal

values on the real axis Z4(+∞)− Z4(−∞) has to count the total number of real roots and holes,

i.e.

Z4(+∞)− Z4(−∞) = −2π(s+H + 2) , (2.11)

On the other hand, the definition (2.9) implies the asymptotic behaviours

Z4(±∞) = ∓π(L+K4 − 2Kb −NF −NF̄ −Ng −Nḡ) = ∓π(L+ s−NF −NF̄ −Ng −Nḡ) . (2.12)
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Comparison between (2.11) and (2.12) gives the desired connection

L = H + 2 +NF +NF̄ +Ng +Nḡ , (2.13)

between the length L and the total number of excitations.

Relation (2.13) once plugged in the exponent of the rhs of (2.10), provides a simplification of

quantisation condition for type-4 roots and real holes. Restricting to holes, whose position we call

uh, h = 1, ..., H , we get the compact formula (remember that s is always even)

e−iZ4(uh) = (−1)H−1 . (2.14)

After fixing these preliminary aspects, we come back to equation (2.9). In order to get manageable

expressions, we convert the sum over real type-4 roots into an integral by means of the master

equation [26]:

u4,j real ⇒
s
∑

j=1

f(u4,j) = −
H
∑

h=1

f(uh)−
∫ +∞

−∞

dv

2π
f(v)

d

dv
[Z4(v)− 2L4(v)] , (2.15)

where L4(v) = Im ln[1 + (−1)H eiZ4(v−i0+)]. We specialise formula (2.15) to our case and get

K4
∑

j=1

i ln
i− v + u4,j
i+ v − u4,j

=

Kb
∑

j=1

i ln
( i
2
− v + ub,j)(

3i
2
− v + ub,j)

( i
2
+ v − ub,j)(

3i
2
+ v − ub,j)

− i ln
(i− v + s√

2
)(i− v − s√

2
)

(i+ v − s√
2
)(i+ v + s√

2
)
−

− i
H
∑

h=1

ln
i− v + uh
i+ v − uh

+

∫ +∞

−∞

dw

π

1

1 + (v − w)2
[Z4(w)− 2L4(w)] . (2.16)

Eventually, plugging (2.9) into (2.16) we find that

Z4(v) = F (v) + 2

∫ +∞

−∞
dwG(v − w)L4(w) , (2.17)

where F (v), G(v) satisfy the linear integral equations

F (v) = iL ln
i
2
− v

i
2
+ v

+ i

Kb
∑

j=1

ln
i
2
+ v − ub,j

i
2
− v + ub,j

3i
2
− v + ub,j

3i
2
+ v − ub,j

+ i

Ng
∑

j=1

ln
i+ v − ugj
i− v + ugj

+

+ i

Nḡ
∑

j=1

ln
i+ v − uḡj

i− v + uḡj
+ i

NF
∑

j=1

ln
i
2
+ v − uF,j

i
2
− v + uF,j

+ i

NF̄
∑

j=1

ln
i
2
+ v − uF̄ ,j

i
2
− v + uF̄ ,j

+ (2.18)

+ i
H
∑

h=1

ln
i+ v − uh
i− v + uh

+ i ln
i+ v − s√

2

i− v + s√
2

i+ v + s√
2

i− v − s√
2

+

∫ +∞

−∞

dw

π

1

1 + (v − w)2
F (w) ,

G(u− v) = −1

π

1

1 + (u− v)2
+

∫ +∞

−∞

dw

π

1

1 + (u− w)2
G(w − v) . (2.19)
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Equation (2.18) is solved exactly; however, we remember that the pattern of excitations discussed

before holds only in the large spin limit. To be consistent with that, we have to use the large s

asymptotic behaviour

i ln
Γ
(

1 + iv − i s√
2

)

Γ
(

1− iv + i s√
2

) + i ln
Γ
(

1 + iv + i s√
2

)

Γ
(

1− iv − i s√
2

) → −4v ln
s√
2
+O(1/s2) , (2.20)

and write the final result for F (v) as

F (v) = −iL ln
Γ
(

1
2
+ iv

)

Γ
(

1
2
− iv

) − 4v ln
s√
2
+ i

H
∑

h=1

ln
Γ(1 + iv − iuh)

Γ(1− iv + iuh)
+

+ i

Kb
∑

j=1

ln
i
2
+ v − ub,j

i
2
− v + ub,j

+ i

Ng
∑

j=1

ln
Γ(1 + iv − iugj )

Γ(1− iv + iugj )
+ i

Nḡ
∑

j=1

ln
Γ(1 + iv − iuḡj )

Γ(1− iv + iuḡj )
+ (2.21)

+ i

NF
∑

j=1

ln
Γ(1

2
+ iv − iuF,j)

Γ(1
2
− iv + iuF,j)

+ i

NF̄
∑

j=1

ln
Γ(1

2
+ iv − iuF̄ ,j)

Γ(1
2
− iv + iuF̄ ,j)

+O(1/s2) .

On the other hand, the solution of (2.19) for G reads as

G(v − w) =
1

2π
[ψ(1 + iv − iw) + ψ(1− iv + iw)] . (2.22)

Then, we notice that in the large s limit Z4(v) ∼ F (v) ∼ −4v ln(s/
√
2) +O(s0). This means that

the leading behaviour of the nonlinear term in (2.17) is the same as that of the analogous term

for the GKP vacuum: therefore, we can use results of [12] and approximate the non linear term in

(2.17) as

2

∫ +∞

−∞
dwG(v − w)L4(w) = −2v ln 2 +O(1/s2) . (2.23)

Plugging (2.21) and (2.23) into (2.17), we eventually get

Z4(v) = −iL ln
Γ
(

1
2
+ iv

)

Γ
(

1
2
− iv

) − 4v ln s+ i
H
∑

h=1

ln
Γ(1 + iv − iuh)

Γ(1− iv + iuh)
+

+ i

Kb
∑

j=1

ln
i
2
+ v − ub,j

i
2
− v + ub,j

+ i

Ng
∑

j=1

ln
Γ(1 + iv − iugj )

Γ(1− iv + iugj )
+ i

Nḡ
∑

j=1

ln
Γ(1 + iv − iuḡj )

Γ(1− iv + iuḡj )
+ (2.24)

+ i

NF
∑

j=1

ln
Γ(1

2
+ iv − iuF,j)

Γ(1
2
− iv + iuF,j)

+ i

NF̄
∑

j=1

ln
Γ(1

2
+ iv − iuF̄ ,j)

Γ(1
2
− iv + iuF̄ ,j)

+O(1/s2) .

Now, it is clear that imposing quantisation condition (2.14) on (2.24) provides a constraint between

the rapidity uh of a scalar and the rapidities of all the other excitations. As in all integrable models,

this constraint has the general form (2.8): therefore we could be tempted to use (2.14) to define

momenta and scattering factors of excitations, as well as the effective length of the chain. Such

12



procedure, however, will provide scattering factors i lnS which diverge as u∗ ln u∗ when the rapidity

u∗ of a generic excitation becomes very large. Fortunately, it happens that this problem can be

avoided if we make use of the zero momentum condition, which is a selection rule to extract physical

states out of the Beisert-Staudacher equations. To be specific, all physical states have to satisfy

the condition eiP = 1, where

P = i
K4
∑

j=1

ln
u4,j +

i
2

u4,j − i
2

. (2.25)

Since K4 = s+ 2Kb is even, we can also write

P = i

K4
∑

j=1

ln
i
2
+ u4,j

i
2
− u4,j

+ 2πZ . (2.26)

This expression is regular for u4,j = 0 and, therefore, it is more convenient for our calculations:

P = i

K4
∑

j=1

ln
i
2
+ u4,j

i
2
− u4,j

= i
H
∑

h=1

ln
i
2
− uh

i
2
+ uh

+ i

Kb
∑

j=1

ln
i+ ub,j
i− ub,j

+

+ πKb − i

∫ +∞

−∞

dv

2π
ln

i
2
+ v

i
2
− v

d

dv
[Z4(v)− 2L4(v)] = πKb − i

H
∑

h=1

ln
Γ
(

1
2
+ iuh

)

Γ
(

1
2
− iuh

) −

− i

Ng
∑

j=1

ln
Γ
(

3
2
+ iugj

)

Γ
(

3
2
− iugj

) − i

Nḡ
∑

j=1

ln
Γ
(

3
2
+ iuḡj

)

Γ
(

3
2
− iuḡj

) −

− i

NF
∑

j=1

ln
Γ
(

1 + iuFj
)

Γ
(

1− iuFj
) − i

NF̄
∑

j=1

ln
Γ
(

1 + iuF̄j
)

Γ
(

1− iuF̄j
) +O(1/s2) . (2.27)

As a technical remark, we notice that nonlinear terms give no contributions at the orders ln s and

(ln s)0.

Putting together (2.24) and (2.27) we obtain the equality

Z4(v)− P = i

Kb
∑

j=1

ln
v − ub,j +

i
2

v − ub,j − i
2

+

+ i
H
∑

h=1

ln
Γ
(

1
2
− iv

)

Γ
(

1
2
+ iuh

)

Γ(1 + iv − iuh)

Γ
(

1
2
+ iv

)

Γ
(

1
2
− iuh

)

Γ(1− iv + iuh)
+

+ i

Ng
∑

j=1

ln
Γ
(

1
2
− iv

)

Γ
(

3
2
+ iugj

)

Γ(1 + iv − iugj )

Γ
(

1
2
+ iv

)

Γ
(

3
2
− iugj

)

Γ(1− iv + iugj )
+ (g → ḡ) + (2.28)

+ i

NF
∑

j=1

ln
Γ
(

1
2
− iv

)

Γ(1 + iuFj )Γ
(

1
2
+ iv − iuFj

)

Γ
(

1
2
+ iv

)

Γ(1− iuFj )Γ
(

1
2
− iv + iuFj

) + (F → F̄ )−

− 2i ln
Γ
(

1
2
+ iv

)

Γ
(

1
2
− iv

) − 4v ln s+O(1/s2) .
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Therefore, we have gained the possibility to write the condition e−i[Z4(uh)−P ] = (−1)H−1 as a

convenient alternative to (2.14):

1 = e4iuh ln s

(

Γ(1
2
− iuh)

Γ(1
2
+ iuh)

)2 H
∏

h′=1
h′ 6=h

(−)
Γ
(

1
2
− iuh

)

Γ
(

1
2
+ iuh′

)

Γ(1 + iuh − iuh′)

Γ
(

1
2
+ iuh

)

Γ
(

1
2
− iuh′

)

Γ(1− iuh + iuh′)

Kb
∏

j=1

uh − ub,j +
i
2

uh − ub,j − i
2

·

·
Ng
∏

j=1

Γ
(

1 + i(uh − ugj )
)

Γ
(

1
2
− iuh

)

Γ
(

3
2
+ iugj

)

Γ
(

1− i(uh − ugj)
)

Γ
(

1
2
+ iuh

)

Γ
(

3
2
− iugj

)

Nḡ
∏

j=1

Γ
(

1 + i(uh − uḡj)
)

Γ
(

1
2
− iuh

)

Γ
(

3
2
+ iuḡj

)

Γ
(

1− i(uh − uḡj )
)

Γ
(

1
2
+ iuh

)

Γ
(

3
2
− iuḡj

)

·
NF
∏

j=1

Γ(1
2
+ i(uh − uF,j))Γ(1 + iuF,j)Γ(

1
2
− iuh)

Γ(1
2
− i(uh − uF,j))Γ(1− iuF,j)Γ(

1
2
+ iuh)

NF̄
∏

j=1

Γ(1
2
+ i(uh − uF̄ ,j))Γ(1 + iuF̄ ,j)Γ(

1
2
− iuh)

Γ(1
2
− i(uh − uF̄ ,j))Γ(1− iuF̄ ,j)Γ(

1
2
+ iuh)

(2.29)

We take (2.29) as Bethe-Yang equations for scalars. In the spirit of (2.8) we make the following

identifications:

• Length of the chain R = 2 ln s

• Momentum of a scalar P
(s)
0 (uh) = 2uh

The terms in (2.29) depending on two rapidities have the natural interpretation of scattering

factors between scalars and other excitations. Using notations given in Appendix C, we write

1 = eiRP
(s)
0 (uh)

[

Γ(1
2
− iuh)

Γ(1
2
+ iuh)

]2 Kb
∏

j=1

uh − ub,j +
i
2

uh − ub,j − i
2

H
∏

h′=1
h′ 6=h

S
(ss)
0 (uh, uh′) ·

·
Ng
∏

j=1

S
(sg)
0 (uh, u

g
j)

Nḡ
∏

j=1

S
(sḡ)
0 (uh, u

ḡ
j )

NF
∏

j=1

S
(sF )
0 (uh, uF,j)

NF̄
∏

j=1

S
(sF̄ )
0 (uh, uF̄ ,j) , (2.30)

where S
(s∗)
0 denotes the scattering factors between a scalar and a generic excitation. We remark

that i lnS
(s∗)
0 behaves like ln u∗ when the rapidity of an excitation becomes large. Eventually, the

last term
[

Γ(1
2
− iuh)

Γ(1
2
+ iuh)

]2

(2.31)

has the form of the phase delay due to two purely reflecting defects.

Finally, in view of generalisations to all loops we find convenient to identify the various pieces

entering the function Z4(v)

Z4(v) = Θ′
0(v, s/

√
2) + Θ′

0(v,−s/
√
2) +

H
∑

h=1

Θ′
0(v, uh) + i

Kb
∑

j=1

ln
i
2
+ v − ub,j

i
2
− v + ub,j

+

+

Ng
∑

j=1

FG
0 (v, ugj) +

Nḡ
∑

j=1

FG
0 (v, uḡj) +

NF
∑

j=1

F F
0 (v, uF,j) +

NF̄
∑

j=1

F F
0 (v, uF̄ ,j)− 2v ln 2 ,(2.32)
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as solutions of integral equations

Θ′
0(v, u) = φ0(v − u) + Φ0(v)−

∫ +∞

−∞
dwϕ0(v − w)Θ′

0(w, u) =

= i ln
Γ (1 + iv − iu) Γ(1/2− iv)

Γ (1− iv + iu) Γ(1/2 + iv)
, (2.33)

F F
0 (v, u) = χ0(v − u|1) + Φ0(v)−

∫ +∞

−∞
dwϕ0(v − w)F F

0 (w, u) =

= i ln
Γ (1/2 + iv − iu) Γ(1/2− iv)

Γ (1/2− iv + iu) Γ(1/2 + iv)
, (2.34)

FG
0 (v) = χ0(v − u|2) + Φ0(v)−

∫ +∞

−∞
dwϕ0(v − w)FG

0 (w, u) =

= i ln
Γ (1 + iv − iu) Γ(1/2− iv)

Γ (1− iv + iu) Γ(1/2 + iv)
, (2.35)

where Φ0, φ0, χ0 are defined in Appendix A. In (2.32) the large s limit has to be taken in the first

two terms in the right hand side. This limit gives

Θ′
0(v, s/

√
2) + Θ′

0(v,−s/
√
2) → −4v ln

s√
2
− 2i ln

Γ
(

1
2
+ iv

)

Γ
(

1
2
− iv

) . (2.36)

Fermions

The equations for (large) fermions with rapidity xF,k = uF,k come from the (inverse of the)

third of the Beisert-Staudacher equations. We have

1 =

Ka
∏

j=1

uF,k − ua,j +
i
2

uF,k − ua,j − i
2

Ng
∏

j=1

uF,k − ugj +
i
2

uF,k − ugj − i
2

(−1)K4

K4
∏

j=1

i
2
+ u4,j − uF,k

i
2
+ uF,k − u4,j

=

=

Ka
∏

j=1

uF,k − ua,j +
i
2

uF,k − ua,j − i
2

Ng
∏

j=1

uF,k − ugj +
i
2

uF,k − ugj − i
2

(−1)Kb

Kb
∏

j=1

i− uF,k + ub,j
i+ uF,k − ub,j

H
∏

h=1

i
2
+ uF,k − uh

i
2
+ uh − uF,k

·

· exp
[

−
∫ +∞

−∞

dv

2π
ln

i
2
+ v − uF,k

i
2
− v + uF,k

d

dv
(Z4(v)− 2L4(v))

]

, (2.37)

since K4 = s+2Kb is even. Then, we evaluate the integral (L4 contributes with subleading O(1/s2)

terms)

−
∫ +∞

−∞

dv

2π
ln

i
2
+ v − uF,k

i
2
− v + uF,k

d

dv
(Z4(v)− 2L4(v)) = L ln

Γ(1− iuF,k)

Γ(1 + iuF,k)
+ 4iuF,k ln s−

−
H
∑

h=1

ln
Γ(3

2
+ iuh − iuF,k)

Γ(3
2
− iuh + iuF,k)

−
Ng
∑

j=1

ln
Γ
(

3
2
+ iugj − iuF,k

)

Γ
(

3
2
− iugj + iuF,k

) −
Nḡ
∑

j=1

ln
Γ
(

3
2
+ iuḡj − iuF,k

)

Γ
(

3
2
− iuḡj + iuF,k

) −

−
NF
∑

j=1

ln
Γ(1 + iuF,j − iuF,k)

Γ(1− iuF,j + iuF,k)
−

NF̄
∑

j=1

ln
Γ(1 + iuF̄ ,j − iuF,k)

Γ(1− iuF̄ ,j + iuF,k)
+

Kb
∑

j=1

ln
i+ uF,k − ub,j
i− uF,k + ub,j

. (2.38)

15



Now, in order to reproduce scattering factors already appearing in equations for scalars (2.29,

2.30), we use the zero momentum condition: we multiply (2.37) with 1 = eiP , with P given by

(2.27). Using notations defined in Appendix C we write the final Bethe equations for fermionic

excitations as

1 = eiRP
(F )
0 (uF,k)

[

Γ(1− iuF,k)

Γ(1 + iuF,k)

]2 Ka
∏

j=1

uF,k − ua,j + i/2

uF,k − ua,j − i/2

H
∏

h=1

S
(Fs)
0 (uF,k, uh) ·

·
Ng
∏

j=1

S
(Fg)
0 (uF,k, u

g
j)

Nḡ
∏

j=1

S
(F ḡ)
0 (uF,k, u

ḡ
j )

NF
∏

j=1

S
(FF )
0 (uF,k, uF,j)

NF̄
∏

j=1

S
(F F̄ )
0 (uF,k, uF̄ ,j) , (2.39)

where we introduced the length R = 2 ln s of the chain and the momentum P
(F )
0 (uF,k) = 2uF,k of

a fermionic excitation. As for scalars, the term

[

Γ(1− iuF,k)

Γ(1 + iuF,k)

]2

(2.40)

stands for phase delay due to purely reflecting defects.

Equations for large antifermions come from the (inverse of the) fifth of the Beisert-Staudacher

equations and are obtained in a completely similar way as in the fermions case. The final result is:

1 = eiRP
(F )
0 (uF̄ ,k)

[

Γ(1− iuF̄ ,k)

Γ(1 + iuF̄ ,k)

]2 Kc
∏

j=1

uF̄ ,k − uc,j +
i
2

uF̄ ,k − uc,j − i
2

·

·
Ng
∏

j=1

S
(F̄ g)
0 (uF̄ ,k, u

g
j)

Nḡ
∏

j=1

S
(F̄ ḡ)
0 (uF̄ ,k, u

ḡ
j )

NF
∏

j=1

S
(F̄ F )
0 (uF̄ ,k, uF,j)

NF̄
∏

j=1

S
(F̄ F̄ )
0 (uF̄ ,k, uF̄ ,j) , (2.41)

where we introduced the length R = 2 ln s of the chain, the momentum P
(F̄ )
0 (uF̄ ,k) = 2uF̄ ,k of a

antifermionic excitation and the ’defect’ term

[

Γ(1− iuF̄ ,k)

Γ(1 + iuF̄ ,k)

]2

. (2.42)

Gluons

In the presence of a large number s of real type-4 roots, a gluon with rapidity ugk is described

by a stack composed of a single type-2 root u2,k = ugk and a two-string formed by two type-3 roots

u3,k = ugk ± i/2. Rapidity ugk is then constrained by the equation obtained by multiplying together

the (inverse of the) second of the Beisert-Staudacher equations with u2,k = ugk with the (inverse of

the) third for u3,k = ugk ± i/2, i.e.

1 =

Ng
∏

j=1

j 6=k

ugk − ugj + i

ugk − ugj − i

Kb
∏

j=1

ugk − ub,j +
i
2

ugk − ub,j − i
2

NF
∏

j=1

ugk − uF,j +
i
2

ugk − uF,j − i
2

K4
∏

j=1

ugk − u4,j − i

ugk − u4,j + i
. (2.43)
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We concentrate on the last term in (2.43), which we rewrite as (remember that K4 is even)

K4
∏

j=1

ugk − u4,j − i

ugk − u4,j + i
=

K4
∏

j=1

i− ugk + u4,j
i+ ugk − u4,j

=

Kb
∏

j=1

[ 3i
2
− ugk + ub,j

3i
2
+ ugk − ub,j

i
2
− ugk + ub,j

i
2
+ ugk − ub,j

]

·

·
H
∏

h=1

i+ ugk − uh
i− ugk + uh

exp

[

−
∫ +∞

−∞

dv

2π
ln
i− ugk + v

i+ ugk − v

d

dv
(Z4(v)− 2L4(v))

]

. (2.44)

The integral term equals

−
∫

dv

2π
ln
i− ugk + v

i+ ugk − v

d

dv
(Z4(v)− 2L4(v)) = 4iugk ln s− L ln

Γ
(

3
2
+ iugk

)

Γ
(

3
2
− iugk

) +

+

H
∑

h=1

ln
Γ(2− iuh + iugk)

Γ(2 + iuh − iugk)
+

Ng
∑

j=1

ln
Γ(2− iugj + iugk)

Γ(2 + iugj − iugk)
+

Nḡ
∑

j=1

ln
Γ(2− iuḡj + iugk)

Γ(2 + iuḡj − iugk)
+

+

NF
∑

j=1

ln
Γ
(

3
2
− iuF,j + iugk

)

Γ
(

3
2
+ iuF,j − iugk

) +

NF̄
∑

j=1

ln
Γ
(

3
2
− iuF̄ ,j + iugk

)

Γ
(

3
2
+ iuF̄ ,j − iugk

) −
Kb
∑

j=1

ln
3i
2
− ugk + ub,j

3i
2
+ ugk − ub,j

. (2.45)

Putting the last two formulæ together, we have

K4
∏

j=1

ugk − u4,j − i

ugk − u4,j + i
= e4iu

g
k
ln s

[

Γ
(

3
2
− iugk

)

Γ
(

3
2
+ iugk

)

]L Kb
∏

j=1

i
2
− ugk + ub,j

i
2
+ ugk − ub,j

H
∏

h=1

Γ(1− iuh + iugk)

Γ(1 + iuh − iugk)
·

·
Ng
∏

j=1

Γ(2− iugj + iugk)

Γ(2 + iugj − iugk)

Nḡ
∏

j=1

Γ(2− iuḡj + iugk)

Γ(2 + iuḡj − iugk)

NF
∏

j=1

Γ
(

3
2
− iuF,j + iugk

)

Γ
(

3
2
+ iuF,j − iugk

)

NF̄
∏

j=1

Γ
(

3
2
− iuF̄ ,j + iugk

)

Γ
(

3
2
+ iuF̄ ,j − iugk

) .

We now plug such expression in (2.43) and multiply the resulting expression by 1 = eiP , where

P is given by (2.27). We observe the exact cancelation of the term depending on type-b isotopic

roots and get the final set of equations, written in terms of scattering factors listed in Appendix

C:

1 = eiRP (g)(ug
k
)

[

Γ
(

3
2
− iugk

)

Γ
(

3
2
+ iugk

)

]2 H
∏

h=1

S
(gs)
0 (ugk, uh) ·

·
Ng
∏

j=1

j 6=k

S
(gg)
0 (ugk, u

g
j)

Nḡ
∏

j=1

S
(gḡ)
0 (ugk, u

ḡ
j )

NF
∏

j=1

S
(gF )
0 (ugk, uF,j)

NF̄
∏

j=1

S
(gF̄ )
0 (ugk, uF̄ ,j) , (2.46)

where we introduced the length R = 2 ln s of the chain and the momentum P
(g)
0 (ugk) = 2ugk of a

gluon F+⊥. In this case, the effect of the two reflecting defects on gluons is

[

Γ
(

3
2
− iugk

)

Γ
(

3
2
+ iugk

)

]2

. (2.47)
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In analogous fashion, we obtain the equation for the gluon field F̄+⊥:

1 = eiRP (g)(uḡ

k
)

[

Γ
(

3
2
− iuḡk

)

Γ
(

3
2
+ iuḡk

)

]2 H
∏

h=1

S
(ḡs)
0 (uḡk, uh) ·

·
Ng
∏

j=1

j 6=k

S
(ḡg)
0 (uḡk, u

g
j)

Nḡ
∏

j=1

S
(ḡḡ)
0 (uḡk, u

ḡ
j )

NF
∏

j=1

S
(ḡF )
0 (uḡk, uF,j)

NF̄
∏

j=1

S
(ḡF̄ )
0 (uḡk, uF̄ ,j) , (2.48)

where again R = 2 ln s is the length of the chain and P
(g)
0 (uḡk) = 2uḡk is the momentum of the gluon

excitation F̄+⊥.

Isotopic roots

We remember (see (2.4, 2.5, 2.6) the definition of the three sets of isotopic roots, which do not

carry momentum and energy, but take into account the su(4) symmetry of the GKP vacuum.

We have Ka roots ua,j of type u2, Kc roots uc,j of type u6 and Kb stacks, u4,j = ub,j± i
2
, u3,j =

u5,j = ub,j with centers ub,j.

The equations for the isotopic roots ua and uc come directly from the second and the sixth

of the Beisert-Staudacher equations: we observe the cancelation of the contributions coming from

gauge field stacks:

1 =
Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

NF
∏

j=1

ua,k − uF,j − i
2

ua,k − uF,j +
i
2

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(2.49)

1 =

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

NF̄
∏

j=1

uc,k − uF̄ ,j − i
2

uc,k − uF̄ ,j +
i
2

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2

. (2.50)

For what concerns the isotopic roots ub, we consider the product of the third Beisert-Staudacher

equation for u3,k = ub,k with the fifth for u5,k = ub,k, the fourth for u4,k = ub,k + i/2 and the fourth

for u4,k = ub,k − i/2. We arrive at the following equation,

1 =

(

ub,k − i

ub,k + i

)L Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

·

·
K4
∏

j=1

ub,k − u4,j +
i
2

ub,k − u4,j − i
2

K4
∏

j=1

ub,k − u4,j − 3i
2

ub,k − u4,j +
3i
2

Kb
∏

j=1

(

ub,k − ub,j + i

ub,k − ub,j − i

)2

· (2.51)

·
Ng
∏

j=1

ub,k − ugj +
3i
2

ub,k − ugj − 3i
2

Nḡ
∏

j=1

ub,k − uḡj +
3i
2

ub,k − uḡj − 3i
2

NF
∏

j=1

ub,k − uF,j + i

ub,k − uF,j − i

NF̄
∏

j=1

ub,k − uF̄ ,j + i

ub,k − uF̄ ,j − i
.

We have
K4
∏

j=1

ub,k − u4,j +
i
2

ub,k − u4,j − i
2

=

K4
∏

j=1

i
2
+ ub,k − u4,j

i
2
− ub,k + u4,j

=

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

H
∏

h=1

i
2
− ub,k + uh

i
2
+ ub,k − uh

·

· exp

[

−
∫ +∞

−∞

dv

2π
ln

i
2
+ ub,k − v

i
2
− ub,k + v

(Z ′
4(v)− 2L′

4(v))

]

[

1 +O(1/s2)
]

. (2.52)
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Plugging (2.9) into the integral in the last term of (2.52), we find that

exp

[

−
∫ +∞

−∞

dv

2π
ln

i
2
+ ub,k − v

i
2
− ub,k + v

(Z ′
4(v)− 2L′

4(v))

]

=

(

i+ ub,k
i− ub,k

)L Kb
∏

j=1

(

i− ub,k + ub,j
i+ ub,k − ub,j

)2

·

·
K4
∏

j=1

3i
2
+ ub,k − u4,j

3i
2
− ub,k + u4,j

Ng
∏

j=1

3i
2
− ub,k + ugj

3i
2
+ ub,k − ugj

Nḡ
∏

j=1

3i
2
− ub,k + uḡj

3i
2
+ ub,k − uḡj

NF
∏

j=1

i− ub,k + uF,j
i+ ub,k − uF,j

NF̄
∏

j=1

i− ub,k + uF̄ ,j

i+ ub,k − uF̄ ,j

.

Putting all together, we eventually get the following equation, for the third isotopic root ub:

1 =

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

H
∏

h=1

ub,k − uh − i
2

ub,k − uh +
i
2

, (2.53)

which does not depend on the roots associated to gluons.

2.3 The general (all loops) case

We now generalise all the results discussed in the one loop case to the most general all loops case.

For the sake of clarity, the complete set of equations is summarised in Appendix E.

As we did in the one loop case, we start from scalar excitations.

Scalars

Let us introduce the counting function for the type-4 roots

Z4(v) = iL ln

(

−x
−(v)

x+(v)

)

+ i

K4
∑

j 6=k

ln



−x
−(v)− x+4,j
x+(v)− x−4,j

1− g2

2x+(v)x−
4,j

1− g2

2x−(v)x+
4,j

σ2(v, u4,j)



 + (2.54)

+ 2i

Kb
∑

j=1

ln
x+(v)− xb,j
xb,j − x−(v)

+ i

NF
∑

j=1

ln
x+(v)− xF,j
xF,j − x−(v)

+ i

NF̄
∑

j=1

ln
x+(v)− xF̄ ,j

xF̄ ,j − x−(v)
+

+ i

Nf
∑

j=1

ln
1− xf,j

x+(v)

1− xf,j

x−(v)

+ i

Nf̄
∑

j=1

ln
1− xf̄ ,j

x+(v)

1− xf̄ ,j

x−(v)

+

+ i

Ng
∑

j=1

ln
x+(v)− xg+j

x−(v)− xg+j

xg−j − x+(v)

x−(v)− xg−j
+ i

Nḡ
∑

j=1

ln
x+(v)− xḡ+j

x−(v)− xḡ+j

xḡ−j − x+(v)

x−(v)− xḡ−j
,

where σ2(v, u) is the so-called dressing factor [46, 10]. The property eiZ4(u4,k) = (−1)H−1 follows

from the definition (2.54) and from the relation (2.13) between L and the number of the vari-

ous excitations: the condition eiZ4(uh) = (−1)H−1 identifies the H internal holes, i.e. the scalar

excitations.
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It is convenient to write (2.54) in terms of functions Φ, φ, χ, introduced in the Appendix A

Z4(v) = LΦ(v)−
K4
∑

j=1

φ(v, uj) + 2i

Kb
∑

j=1

ln
x+(v)− xb,j
xb,j − x−(v)

+

+

Ng
∑

j=1

χ(v, ugj |1) +
Nḡ
∑

j=1

χ(v, uḡj |1) +
NF
∑

j=1

χF (v, uF,j) +

NF̄
∑

j=1

χF (v, uF̄ ,j)− (2.55)

−
Nf
∑

j=1

χH(v, uf,j)−
Nf̄
∑

j=1

χH(v, uf̄ ,j) ,

where s of the type-4 roots involved in the sum are real, while 2Kb are part of the stack defining

the isotopic root ub. We concentrate on the real type-4 roots and write the sum over them as an

integral, getting

Z4(v) = LΦ(v) + 2i

Kb
∑

j=1

ln
x+(v)− xb,j
xb,j − x−(v)

−
Kb
∑

j=1

[φ(v, ub,j + i/2) + φ(v, ub,j − i/2)] +

+

Ng
∑

j=1

χ(v, ugj |1) +
Nḡ
∑

j=1

χ(v, uḡj |1) +
NF
∑

j=1

χF (v, uF,j) +

NF̄
∑

j=1

χF (v, uF̄ ,j)− (2.56)

−
Nf
∑

j=1

χH(v, uf,j)−
Nf̄
∑

j=1

χH(v, uf̄ ,j) +

H
∑

h=1

φ(v, uh) +

+ φ(v, s/
√
2) + φ(v,−s/

√
2)−

∫ +∞

−∞
dwϕ(v, w)[Z4(w)− 2L4(w)] +O(1/s2) ,

where ϕ is defined in (A.4). Then, we can write

Z4(v) = F (v) + 2

∫ +∞

−∞
dwG(v, w)L4(w) , (2.57)

where F (v) satisfies the linear integral equation

F (v) = LΦ(v) + 2i

Kb
∑

j=1

ln
x+(v)− xb,j
xb,j − x−(v)

−
Kb
∑

j=1

[φ(v, ub,j + i/2) + φ(v, ub,j − i/2)] +

+

Ng
∑

j=1

χ(v, ugj |1) +
Nḡ
∑

j=1

χ(v, uḡj |1) +
NF
∑

j=1

χF (v, uF,j) +

NF̄
∑

j=1

χF (v, uF̄ ,j)− (2.58)

−
Nf
∑

j=1

χH(v, uf,j)−
Nf̄
∑

j=1

χH(v, uf̄ ,j) +

H
∑

h=1

φ(v, uh) +

+ φ(v, s/
√
2) + φ(v,−s/

√
2)−

∫ +∞

−∞
dwϕ(v, w)F (w) +O(1/s2) ,
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and

G(v, w) = ϕ(v, w)−
∫ +∞

−∞
dw′ϕ(v, w′)G(w′, w) . (2.59)

We now work out the solution to (2.58). The part depending on the isotopic roots is written in an

explicit form. For the remaining parts we remember that L = H + 2 +Ng +Nḡ +NF +NF̄ : this

allows to put LΦ(v) together with the other functions in the right hand side of (2.58). Eventually,

the solution to (2.58) is written in terms of solutions of linear integral equations. In specific, we

have

F (v) = Θ′(v, s/
√
2) + Θ′(v,−s/

√
2) +

H
∑

h=1

Θ′(v, uh) + i

Kb
∑

j=1

ln
i/2 + v − ub,j
i/2− v + ub,j

+

+

Ng
∑

j=1

FG(v, ugj ) +

Nḡ
∑

j=1

FG(v, uḡj) +

NF
∑

j=1

F F (v, uF,j) +

NF̄
∑

j=1

F F (v, uF̄ ,j) (2.60)

+

Nf
∑

j=1

F f(v, uf,j) +

Nf̄
∑

j=1

F f(v, uf̄ ,j) +O(1/s2) ,

where

Θ′(v, u) = φ(v, u) + Φ(v)−
∫ +∞

−∞
dwϕ(v, w)Θ′(w, u) , (2.61)

F F (v, u) = χF (v, u) + Φ(v)−
∫ +∞

−∞
dwϕ(v, w)F F (w, u) , (2.62)

F f(v, u) = −χH(v, u)−
∫ +∞

−∞
dwϕ(v, w)F f(w, u) , (2.63)

FG(v, u) = χ(v, u|1) + Φ(v)−
∫ +∞

−∞
dwϕ(v, w)FG(w, u) . (2.64)

We first analyse the s-depending terms. A tedious calculation8 shows that in the large s limit

Θ′(v, s/
√
2) + Θ′(v,−s/

√
2) = ln

s√
2
[−4v + ZBES(v)]− 2P̃ (v) +O(1/s2) , (2.65)

where ZBES(v) = −ZBES(−v) and d
dv
ZBES(v) = σBES(v), σBES(v) being the famous BES density

[10] and P̃ (v) is the solution of the integral equation9

P̃ (v) = −Φ(v)−
∫ +∞

−∞

dw

2
[ϕ(v, w)− ϕ(v,−w)]P̃ (w) . (2.66)

Then, we pass to study the nonlinear term NL(v) = 2
∫ +∞
−∞ dwG(v, w)L4(w). The same term was

computed in [21], where only real type-4 roots were present. Here we can use the same results, since

8Formula (2.65) clarifies the origin of the length 2 ln s and the ’defect’: they are both due to the interaction with

the two heavy large holes.
9We write the kernel of equation (2.66) in an explicitly antisymmetric form in order to avoid one loop divergencies.
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in the large s limit the leading behaviour of Z4(v) does not depend on the presence of excitations.

We have

NL(v) = −2v ln 2 +
ln 2

2
ZBES(v) +O(1/s2) . (2.67)

Putting everything together, we arrive at

Z4(v) = ln s [−4v + ZBES(v)]− 2P̃ (v) +

H
∑

h=1

Θ′(v, uh) + i

Kb
∑

j=1

ln
i/2 + v − ub,j
i/2− v + ub,j

+

+

Ng
∑

j=1

FG(v, ugj) +

Nḡ
∑

j=1

FG(v, uḡj) +

NF
∑

j=1

F F (v, uF,j) +

NF̄
∑

j=1

F F (v, uF̄ ,j) (2.68)

+

Nf
∑

j=1

F f (v, uf,j) +

Nf̄
∑

j=1

F f (v, uf̄ ,j) +O(1/s2) ,

Now, as in the one loop case, before imposing the quantisation condition for holes, we introduce

the momentum of the chain

P = i
K4
∑

j=1

ln
x+4,j
x−4,j

= −
K4
∑

j=1

Φ(u4,j) =
H
∑

h=1

Φ(uh) + i

Kb
∑

j=1

ln

(

−
x++
b,j

x−−
b,j

)

+

+

∫ +∞

−∞

dv

2π
Φ(v)

d

dv
[Z4(v)− 2L4(v)] . (2.69)

Terms containing L4 give no contributions at the orders ln s and (ln s)0. Terms containing ub
produce only a term πKb. The dependence on excitations is worked out after inserting for Z4(v)

expression (2.68). However, for our convenience we prefer to work directly on the expression

Z4(v)− P : after some calculation (see Appendix D for details) we arrive at the expression

Z4(v)− P = ln s [−4v + ZBES(v)]− 2P̃ (v) + i

Kb
∑

j=1

ln
v − ub,j +

i
2

v − ub,j − i
2

+

H
∑

h=1

Θ(v, uh) +

+

NF
∑

j=1

i lnS(sF )(v, uF,j) +

NF̄
∑

j=1

i lnS(sF̄ )(v, uF̄ ,j) +

Nf
∑

j=1

i lnS(sf)(v, uf,j) + (2.70)

+

Nf̄
∑

j=1

i lnS(sf̄)(v, uf̄ ,j) +

Ng
∑

j=1

i lnS(sg)(v, ugj) +

Nḡ
∑

j=1

i lnS(sḡ)(v, uḡj) ,

where we introduced the scalar-scalar phase

Θ(v, u) = Θ′(v, u) + P̃ (u) = i ln[−S(ss)(v, u)] (2.71)

and the scattering factors S(s∗)(v, u∗j) between scalars and other excitations, which are listed in

Appendix C. Imposing the quantisation condition e−i[Z4(uh)−P ] = (−1)H−1, we get the final Bethe
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equation for scalars

1 = eiRP (s)(uh)+iD(s)(uh)

Kb
∏

j=1

uh − ub,j +
i
2

uh − ub,j − i
2

H
∏

h′=1
h′ 6=h

S(ss)(uh, uh′)

Ng
∏

j=1

S(sg)(uh, u
g
j)

Nḡ
∏

j=1

S(sḡ)(uh, u
ḡ
j ) ·

·
NF
∏

j=1

S(sF )(uh, uF,j)

NF̄
∏

j=1

S(sF̄ )(uh, uF̄ ,j)

Nf
∏

j=1

S(sf)(uh, uf,j)

Nf̄
∏

j=1

S(sf̄)(uh, uf̄ ,j) , (2.72)

where we introduced the length of the chain R = 2 ln s, the momentum of a scalar excitation with

rapidity u

P (s)(u) = 2u− 1

2
ZBES(u) (2.73)

and the effect of the two purely transmitting defects

D(s)(u) = 2P̃ (u). (2.74)

Important properties of the scalar-scalar phase (2.71), which can be proven using equations (2.61,

2.66) are

Θ(u, v) = −Θ(−u,−v) , Θ(u, v) = −Θ(v, u) . (2.75)

Eventually, we remember an efficient way proposed in [23] to compute the scalar-scalar phase. We

found that

Θ(u, v) =M(u, v)−M(v, u) , (2.76)

where M(u, v) = Z(1)(u) + Z(u; v) and Z(1)(u), Z(u; v) are univocally defined by the conditions

d

du
Z(1)(u) = σ(1)(u) ,

d

du
Z(u; v) = σ(u; v) , Z(1)(u) = −Z(1)(−u) , Z(u; v) = −Z(−u; v) ,

(2.77)

with the functions σ(1)(u), σ(u; v) solutions of equations (B.22, B.23), respectively.

This procedure provides an alternative (with respect to solving equation (2.66)) way to deter-

mine the function P̃ (u), once ZBES(u), Z
(1)(u) and Z(u; v) are known. Indeed using (2.65) we

have

2P̃ (v) = lim
s→+∞

[

ln
s√
2
[−4v + ZBES(v)]−Θ(v, s/

√
2)−Θ(v,−s/

√
2)

]

=

= lim
s→+∞

[

ln
s√
2
[−4v + ZBES(v)]− 2Z(1)(v)− Z(v; s/

√
2)− Z(v;−s/

√
2)

]

. (2.78)

A final alternative to compute P̃ (u) is to look at equation (2.68) when no excitations nor isotopic

roots are present. Then we see that −2P̃ (u) represent the contribution O(ln s0) to the twist two

counting function of the pure sl(2) sector. This function has been analysed in [13, 14] (in notations

of the second of [14] it is connected to the function Sextra).

Fermions
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The equations for large fermions come from the (inverse) of the third of the Beisert-Staudacher

equations. We have

1 =

Ka
∏

j=1

uF,k − ua,j + i/2

uF,k − ua,j − i/2

Ng
∏

j=1

uF,k − ugj + i/2

uF,k − ugj − i/2
(−1)K4

K4
∏

j=1

x+4,j − xF,k

xF,k − x−4,j
=

=

Ka
∏

j=1

uF,k − ua,j + i/2

uF,k − ua,j − i/2

Ng
∏

j=1

uF,k − ugj + i/2

uF,k − ugj − i/2

Kb
∏

j=1

x++
b,j − xF,k

xF,k − x−−
b,j

H
∏

h=1

xF,k − x−h
x+h − xF,k

·

· exp

[

i

∫ +∞

−∞

dv

2π
χF (v, uF,k)

d

dv

(

Z4(v)− 2L4(v)
)

]

, (2.79)

since K4 = s+2Kb is even. As in the one loop case, we multiply such expression by 1 = eiP . Then

we use expression (2.68) for Z4(v) and remember that the term containing L4(v) gives subleading

O(1/s2) contributions. We get

1 = eiRP (F )(uF,k)+iD(F )(uF,k)

Ka
∏

j=1

uF,k − ua,j + i/2

uF,k − ua,j − i/2

H
∏

h=1

S(Fs)(uF,k, uh) · (2.80)

·
NF
∏

j=1

S(FF )(uF,k, uF,j)

NF̄
∏

j=1

S(F F̄ )(uF,k, uF̄ ,j)

Nf
∏

j=1

S(Ff)(uF,k, uf,j)

Nf̄
∏

j=1

S(F f̄)(uF,k, uf̄ ,j) ·

·
Ng
∏

j=1

S(Fg)(uF,k, u
g
j )

Nḡ
∏

j=1

S(F ḡ)(uF,k, u
ḡ
j) ,

where R = 2 ln s is the length of the chain and

P (F )(u) = −
∫ +∞

−∞

dv

2π
[χF (v, u) + χF (−v, u)]

[

1− σBES(v)

4

]

, (2.81)

D(F )(u) = −
∫ +∞

−∞

dv

2π
[χF (v, u) + χF (−v, u)]

d

dv
P̃ (v) (2.82)

are the momentum of a fermion and the effect on it of the two defects.

The equations for large antifermions come from the (inverse of the) fifth of the Beisert-

Staudacher equations. Their derivation is analogous to the fermionic case:

1 = eiRP (F )(uF̄ ,k)+iD(F )(uF̄ ,k)

Kc
∏

j=1

uF̄ ,k − uc,j + i/2

uF̄ ,k − uc,j − i/2

H
∏

h=1

S(F̄ s)(uF̄ ,k, uh) · (2.83)

·
NF
∏

j=1

S(F̄ F )(uF̄ ,k, uF,j)

NF̄
∏

j=1

S(F̄ F̄ )(uF̄ ,k, uF̄ ,j)

Nf
∏

j=1

S(F̄ f)(uF̄ ,k, uf,j)

Nf̄
∏

j=1

S(F̄ f̄)(uF̄ ,k, uf̄ ,j)

·
Ng
∏

j=1

S(F̄ g)(uF̄ ,k, u
g
j )

Nḡ
∏

j=1

S(F̄ ḡ)(uF̄ ,k, u
ḡ
j)
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Equations for small fermions are obtained starting from the (inverse of the) first of the Beisert-

Staudacher equations. We have

1 =

K2
∏

j=1

uf,k − u2,j + i/2

uf,k − u2,j − i/2

K4
∏

j=1

1− xf,k

x+
4,j

1− xf,k

x−
4,j

=
Ka
∏

j=1

uf,k − ua,j + i/2

uf,k − ua,j − i/2

Ng
∏

j=1

uf,k − ugj + i/2

uf,k − ugj − i/2
·

·
Kb
∏

j=1

1− xf,k

x++
b,j

1− xf,k

x−−
b,j

H
∏

h=1

1− xf,k

x−
h

1− xf,k

x+
h

exp

[

−i
∫ +∞

−∞

dv

2π
χH(v, uf,k)

d

dv

(

Z4(v)− 2L4(v)
)

]

(2.84)

In contrast with the fermionic case, we do not multiply this equality by 1 = eiP . We use expression

(2.68) for Z4(v). Working out the various terms we get

1 = eiRP (f)(uf,k)+iD(f)(uf,k)

Ka
∏

j=1

uf,k − ua,j + i/2

uf,k − ua,j − i/2

H
∏

h=1

S(fs)(uf,k, uh) · (2.85)

·
NF
∏

j=1

S(fF )(uf,k, uF,j)

NF̄
∏

j=1

S(fF̄ )(uf,k, uF̄ ,j)

Nf
∏

j=1

S(ff)(uf,k, uf,j)

Nf̄
∏

j=1

S(ff̄)(uf,k, uf̄ ,j)

·
Ng
∏

j=1

S(fg)(uf,k, u
g
j)

Nḡ
∏

j=1

S(fḡ)(uf,k, u
ḡ
j) ,

where

P (f)(u) =

∫ +∞

−∞

dv

2π
[χH(v, u) + χH(−v, u)]

[

1− σBES(v)

4

]

, (2.86)

D(f)(u) =

∫ +∞

−∞

dv

2π
[χH(v, u) + χH(−v, u)]

d

dv
P̃ (v) (2.87)

In a completely analogous way we work on the (inverse of the) seventh of the Beisert-Staudacher

equations, which gives the quantisation condition for small antifermions:

1 = eiRP (f)(uf̄ ,k)+iD(f)(uf̄ ,k)
Kc
∏

j=1

uf̄ ,k − uc,j + i/2

uf̄ ,k − uc,j − i/2

H
∏

h=1

S(f̄s)(uf̄ ,k, uh) · (2.88)

·
NF
∏

j=1

S(f̄F )(uf̄ ,k, uF,j)

NF̄
∏

j=1

S(f̄ F̄ )(uf̄ ,k, uF̄ ,j)

Nf
∏

j=1

S(f̄f)(uf̄ ,k, uf,j)

Nf̄
∏

j=1

S(f̄ f̄)(uf̄ ,k, uf̄ ,j)

·
Ng
∏

j=1

S(f̄g)(uf̄ ,k, u
g
j)

Nḡ
∏

j=1

S(f̄ ḡ)(uf̄ ,k, u
ḡ
j)

Gluons

As in the one loop case, we multiply (the inverse of) the second of the Beisert-Staudacher

equations for u2,k = ugk with (the inverse of) the third for u3,k = ugk + i/2 and (the inverse of) the
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third for u3,k = ugk − i/2. We then get the following equations for the center of the gluonic string

ugk:

1 =

Ng
∏

j=1

j 6=k

ugk − ugj + i

ugk − ugj − i

K4
∏

j=1

(xg+k − x+4,j)(x
g−
k − x+4,j)

(xg+k − x−4,j)(x
g−
k − x−4,j)

NF
∏

j=1

ugk − uF,j + i/2

ugk − uF,j − i/2

Nf
∏

j=1

ugk − uf,j + i/2

ugk − uf,j − i/2
·

·
Kb
∏

j=1

ugk − ub,j + i/2

ugk − ub,j − i/2
. (2.89)

Making explicit the type-4 roots, we arrive at

1 =

Ng
∏

j=1

j 6=k

ugk − ugj + i

ugk − ugj − i

NF
∏

j=1

ugk − uF,j + i/2

ugk − uF,j − i/2

Nf
∏

j=1

ugk − uf,j + i/2

ugk − uf,j − i/2

Kb
∏

j=1

ugk − ub,j + i/2

ugk − ub,j − i/2
·

·
H
∏

h=1

(xg−k − x−h )(x
g+
k − x−h )

(xg+k − x+h )(x
+
h − xg−k )

Kb
∏

j=1

(−1)
(xg+k − x++

b,j )(x
++
b,j − xg−k )

(xg−k − x−−
b,j )(x

g+
k − x−−

b,j )
·

· exp

[

i

∫ +∞

−∞

dv

2π
χ(v, ugk|1)

d

dv

(

Z4(v)− 2L4(v)
)

]

(2.90)

Following what we did for (large) fermions, we multiply such expression by 1 = eiP . Then we use

expression (2.68) for Z4(v). We observe the exact cancelation of terms involving the isotopic root

ub and eventually for the field F+⊥ we obtain the equations

1 = eiRP (g)(ug

k
)+iD(g)(ug

k
)

Ng
∏

j=1,j 6=k

S(gg)(ugk, u
g
j )

Nḡ
∏

j=1

S(gḡ)(ugk, u
ḡ
j)

H
∏

h=1

S(gs)(ugk, uh) · (2.91)

·
NF
∏

j=1

S(gF )(ugk, uF,j)

NF̄
∏

j=1

S(gF̄ )(ugk, uF̄ ,j)

Nf
∏

j=1

S(gf)(ugk, uf,j)

Nf̄
∏

j=1

S(gf̄)(ugk, uf̄ ,j)

where

P (g)(u) = −
∫ +∞

−∞

dv

2π
[χ(v, u|1) + χ(−v, u|1)]

[

1− σBES(v)

4

]

, (2.92)

D(g)(u) = −
∫ +∞

−∞

dv

2π
[χ(v, u|1) + χ(−v, u|1)] d

dv
P̃ (v) (2.93)

The procedure for the field F̄+⊥ is completely analogous, hence we give only the final equations

1 = eiRP (g)(uḡ
k
)+iD(g)(uḡ

k
)

Ng
∏

j=1

S(ḡg)(uḡk, u
g
j)

Nḡ
∏

j=1,j 6=k

S(ḡḡ)(uḡk, u
ḡ
j)

H
∏

h=1

S(ḡs)(uḡk, uh) · (2.94)

·
NF
∏

j=1

S(ḡF )(uḡk, uF,j)

NF̄
∏

j=1

S(ḡF̄ )(uḡk, uF̄ ,j)

Nf
∏

j=1

S(ḡf)(uḡk, uf,j)

Nf̄
∏

j=1

S(ḡf̄)(uḡk, uf̄ ,j)
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Isotopic roots

The equations for the isotopic roots ua and uc come directly from the second and the sixth

of the Beisert-Staudacher equations and their derivation is completely analogous to the one loop

case: the only difference is that in the general all loops case also small fermions are present.

1 =

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

NF
∏

j=1

ua,k − uF,j − i/2

ua,k − uF,j + i/2

Nf
∏

j=1

ua,k − uf,j − i/2

ua,k − uf,j + i/2

Kb
∏

j=1

ua,k − ub,j − i/2

ua,k − ub,j + i/2
(2.95)

1 =

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

NF̄
∏

j=1

uc,k − uF̄ ,j − i/2

uc,k − uF̄ ,j + i/2

nf̄
∏

j=1

uc,k − uf̄ ,j − i/2

uc,k − uf̄ ,j + i/2

Kb
∏

j=1

uc,k − ub,j − i/2

uc,k − ub,j + i/2
(2.96)

Then, we consider the product of the third equation for u3,k = ub,k with the fifth for u5,k = ub,k,

the fourth for u4,k = ub,k + i/2 and the fourth for u4,k = ub,k − i/2. We arrive at the following

equation

1 =

Ka
∏

j=1

ub,k − ua,j − i/2

ub,k − ua,j + i/2

Kc
∏

j=1

ub,k − uc,j − i/2

ub,k − uc,j + i/2

K4
∏

j=1

ub,k − u4,j + i/2

ub,k − u4,j − i/2

Ng
∏

j=1

ub,k − ugj − i/2

ub,k − ugj + i/2
·

Nḡ
∏

j=1

ub,k − uḡj − i/2

ub,k − uḡj + i/2

(

x−−
b,k

x++
b,k

)L K4
∏

j 6=k

x−−
b,k − x+4,j

x++
b,k − x−4,j

1− g2

2x++
b,k

x−
4,j

1− g2

2x−−
b,k

x+
4,j

σ2(ub,k + i/2, u4,j)σ
2(ub,k − i/2, u4,j)

·
Kb
∏

j=1

(

x++
b,k − xb,j

x−−
b,k − xb,j

)2 NF
∏

j=1

x++
b,k − xF,j

x−−
b,k − xF,j

NF̄
∏

j=1

x++
b,k − xF̄ ,j

x−−
b,k − xF̄ ,j

Nf
∏

j=1

1− xf,j

x++
b,k

1− xf,j

x−−
b,k

Nf̄
∏

j=1

1− xf̄ ,j

x++
b,k

1− xf̄ ,j

x−−
b,k

·
Ng
∏

j=1

x++
b,k − xg+j

x−−
b,k − xg+j

x++
b,k − xg−j

x−−
b,k − xg−j

Nḡ
∏

j=1

x++
b,k − xḡ+j

x−−
b,k − xḡ+j

x++
b,k − xḡ−j

x−−
b,k − xḡ−j

, (2.97)

where

L = H + 2 +NF +NF̄ +Ng +Nḡ . (2.98)

We have

K4
∏

j=1

ub,k − u4,j + i/2

ub,k − u4,j − i/2
=

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

H
∏

h=1

ub,k − uh − i/2

ub,k − uh + i/2

(

1 +O(1/s2)
)

·

· exp

[

−
∫ +∞

−∞

dv

2π
ln
ub,k − v + i/2

ub,k − v − i/2

d

dv
(Z4(v)− 2L4(v))

]

(2.99)

where for Z4(v) it is convenient to use form (2.54). It is remarkable that, plugging (2.54) into the

integral in the last term of (2.99), we find that

exp

[

−
∫ +∞

−∞

dv

2π
ln
ub,k − v + i/2

ub,k − v − i/2

d

dv
Z4(v)

]

(2.100)
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produces 10 massive cancelations in (2.97). On the other hand, the nonlinear term containing L′
4(v)

gives a negligible O(1/s2) contribution. Eventually, for the third isotopic root ub we obtain the

same equation as in the one loop:

1 =

Ka
∏

j=1

ub,k − ua,j − i/2

ub,k − ua,j + i/2

Kc
∏

j=1

ub,k − uc,j − i/2

ub,k − uc,j + i/2

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

H
∏

h=1

ub,k − uh − i/2

ub,k − uh + i/2
(2.101)

3 Conserved observables

Momentum was already obtained in previous sections: therefore, we concentrate on higher charges

Qr and in particular on anomalous dimensions γ = Q2. Let us introduce the function

qr(u) =
ig2

r − 1

[

(

1

x+(u)

)r−1

−
(

1

x−(u)

)r−1
]

, r ≥ 2 , (3.1)

whose Fourier transform reads

q̂r(k) = 2πig2

(√
2

ig

)r−1

e−
|k|
2
Jr−1(

√
2gk)

k
. (3.2)

The r-th charge of an excited state over the GKP vacuum enjoys the expression

Qr =

K4
∑

j=1

qr(u4,j) =

Kb
∑

j=1

[qr(ub,j + i/2) + qr(ub,j − i/2)]−
H
∑

h=1

qr(uh)−

−
∫ +∞

−∞

dv

2π
qr(v)

d

dv
[Z4(v)− 2L4(v)] , (3.3)

10This cancelation was already noticed and proven by Basso in Appendix C.2 of [20].
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where for Z4(v) we use expression (2.68). Doing this, we observe the exact cancelation of the

dependence on the isotopic root ub and we are left with the formula

Qr = −
H
∑

h=1

qr(uh) + ln s

∫

dv

2π
qr(v)

d

dv
[4v − ZBES(v)] +

∫

dv

2π
qr(v)

d

dv
2P̃ (v)−

−
∫

dv

2π
qr(v)

d

dv

[

H
∑

h=1

Θ′(v, uh) +

Ng
∑

j=1

FG(v, u
g
j) +

Nḡ
∑

j=1

FG(v, u
ḡ
j) +

NF
∑

j=1

FF (v, uF,j) +

+

NF̄
∑

j=1

FF (v, uF̄ ,j) +

Nf
∑

j=1

Ff(v, uf,j) +

Nf̄
∑

j=1

Ff (v, uf̄ ,j) + 2

∫

dwG(v, w)L4(w)− 2L4(v)
]

=

= ln s

∫

dv

2π
qr(v)

d

dv
[4v − ZBES(v)] +

∫

dv

2π
qr(v)

d

dv
2P̃ (v) +

+

H
∑

h=1

Q(s)
r (uh) +

Ng
∑

j=1

Q(g)
r (ugj) +

Nḡ
∑

j=1

Q(g)
r (uḡj ) +

NF
∑

j=1

Q(F )
r (uF,j) +

NF̄
∑

j=1

Q(F )
r (uF̄ ,j) +

+

Nf
∑

j=1

Q(f)
r (uf,j) +

Nf̄
∑

j=1

Q(f)
r (uf̄ ,j) +O(1/s2) . (3.4)

The first two terms in the right hand side of (3.4) are contributions from the GKP background.

The remaining terms in (3.4) are the contributions that any single particle brings to the overall

value of the r-th charge.

• For scalars we have

Q(s)
r (u) = −qr(u)−

∫

dv

2π
qr(v)

d

dv
Θ′(v, u) . (3.5)

Restricting to r even, we use relation (2.21) of [23] to write

Q(s)
r (u) = −qr(u)−

∫ +∞

−∞

dk

4π2
q̂r(k)[σ̂

(1)(k) + σ̂(k; u)] , (3.6)

where the functions σ̂(1)(k), σ̂(k; u) satisfy equations (2.19), (2.20) of [23], respectively. It is

convenient to introduce the functions, defined for k > 0

S(1)(k) =
sinh k

2

πk

[

σ̂(1)(k) +
π

sinh k
2

(

1− e−
k
2

)

]

(3.7)

S(k; u) =
sinh k

2

πk

[

σ̂(k; u)− 2πe−k

1− e−k
(cos ku− 1)

]

(3.8)

and to expand them in Neumann series

S(1)(k) =

+∞
∑

p=1

S(1)
p

Jp(
√
2gk)

k
, S(k; u) =

+∞
∑

p=1

S ′
p(u)

Jp(
√
2gk)

k
. (3.9)
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We use defining equations (3.10) of [47] for S
(1)
p and (3.15) of [21] for S ′

p(u) to simplify (3.6) as

follows

Q(s)
r (u) =

ig2

r − 1

(√
2

ig

)r−1
[

S
(1)
r−1 + S ′

r−1(u)
]

. (3.10)

We could not find a formula analogous to (3.10) in the case r odd.

When r = 2, this simple expression can be connected with the first of (4.6) of [20]. We indeed

remember formula (4.36) of [48] and that

S ′
1(u) = −2π

+∞
∑

n=1

(−1)nu2n

(2n)!
S̃
(n)
1 (3.11)

where for S̃
(n)
1 we use formula (4.35) of [48] to connect with the solution of the BES equation.

Operating in this way we get, after some algebra

Q
(s)
2 (u) = γ(s)(u) =

∫ +∞

0

dt

t

[

e−
t
2 − cos tu

e
t
2 − e−

t
2

γø−(
√
2gt) +

cos tu− e
t
2

e
t
2 − e−

t
2

γø+(
√
2gt)

]

, (3.12)

i.e. the first of (4.6) of [20].

It can be of interest to express γ(s)(u) in the O(6) limit [49]. We introduce

m(g) =
2

5
8π

1
4

Γ
(

5
4

)g
1
4 e

− πg√
2

[

1 +O

(

1

g

)]

. (3.13)

In the O(6) limit
√
2gS

(1)
1 = m(g)− 1 and

√
2gS ′

1(u) = m(g)
(

cosh π
2
u− 1

)

. Substituting in (3.10)

we get

γ(s)(u) = m(g) cosh
π

2
u− 1 , (3.14)

and for the complete anomalous dimension in presence only of scalar excitations

γ = ln sf(g) + fsl(g) +
H
∑

h=1

(

m(g) cosh
π

2
uh − 1

)

. (3.15)

• For gluons we have

Q(g)
r (u) = −

∫

dv

2π
qr(v)

d

dv
FG(v, u) (3.16)

Using equations (2.61, 2.62), we arrive at the formula

Q(g)
r (u) = −

∫

dv

2π
[χ(v, u|1) + Φ(v)]

d

dv
Q(s)

r (v) (3.17)

When r = 2 we have

Q
(g)
2 (u) = γ(g)(u) =

∫ ∞

−∞

dk

4π2

iπ

e
k
2 − e−

k
2

(γø+(
√
2gk)− sgn(k)γø−(

√
2gk))

[

2π

ik
e−|k| l+1

2 e−iku−(3.18)

−2π

ik
e−

|k|
2

∞
∑

n=1

((

g√
2ix(u+ il

2
)

)n

+

(

g√
2ix(u− il

2
)

)n)

Jn(
√
2gk)− 2π

ik
J0(

√
2gk)e−

|k|
2

]

.
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By means of the relation (3.40) in [20], and making use of the identity
∫ ∞

0

dk

k
e−k( l

2
±iu) Jn(

√
2gk) =

(±1)n

n

(

g√
2ix(u∓ il

2
)

)n

, (3.19)

the expression above becomes

γ(g)(u) =

∫ ∞

0

dk

k

γø+(
√
2gk)

1− e−k
[cos ku e−k l

2 − 1]−
∫ ∞

0

dk

k

γø−(
√
2gk)

ek − 1
[cos ku e−k l

2 − 1] (3.20)

• Large fermions and antifermions with rapidity u carry an amount of r-charge equal to

Q(F )
r (u) = −

∫

dv

2π
qr(v)

d

dv
FF (v, u) . (3.21)

Using equations (2.61, 2.62), we arrive at the formula

Q(F )
r (u) = −

∫

dv

2π
[χF (v, u) + Φ(v)]

d

dv
Q(s)

r (v) . (3.22)

For small fermions we have

Q(f)
r (u) =

∫

dv

2π
χH(v, u)

d

dv
Q(s)

r (v) . (3.23)

When r = 2, the very same reasonings outlined above apply to large fermions, so that (Q
(F )
2 (u) =

γ(F )(u))

γ(F )(u) =

∫ ∞

0

dk

k

γø+(
√
2gk)− γø−(

√
2gk)

ek − 1
[cos ku− 1] +

∫ ∞

0

dk

k
γø+(

√
2gk) [

1

2
cos ku− 1] (3.24)

Analogously for r = 2 and small fermions

Q
(f)
2 (u) = γ(f)(u) = −1

2

∫ ∞

0

dk

k
γø+(

√
2gk) cos ku (3.25)

3.1 One loop

All the previous expression are explicitly computed at one loop, upon introducing the following

notation for the derivatives of the digamma function

ψ(n)(z) ≡
(

d

dz

)n

ψ(z) (3.26)

ψ(0)(z) ≡ ψ(z) (3.27)

• Scalars

Q(s)
r (u) = − irg2

(r − 1)!

[

ψ(r−2)(1/2− iu) + (−1)rψ(r−2)(1/2 + iu)− ψ(r−2)(1)(1 + (−1)r)
]

; (3.28)

• Fermions and antifermions

Q(F )
r (u) = − irg2

(r − 1)!

[

ψ(r−2)(1− iu) + (−1)rψ(r−2)(1 + iu)− ψ(r−2)(1)(1 + (−1)r)
]

(3.29)

• Gluons

Q(g)
r (u) = − irg2

(r − 1)!

[

ψ(r−2)(3/2− iu) + (−1)rψ(r−2)(3/2 + iu)− ψ(r−2)(1)(1 + (−1)r)
]

(3.30)

31



4 Strong coupling regimes of 2D scattering factors

In this section we want to give a detailed analysis of the different strong coupling limits of the 2D

scattering factors S∗∗′(u, v) of sub-section 2.3. In fact there are different ways of performing the

g → +∞ limit as these give rise to different results or regimes, so paralleling what happens to the

energy/momentum dispersion relations [20].

First, we shall discuss the regime, relevant only for scalars (as the other excitations decouples to-

wards very high energy), where we keep their rapidities fixed, namely the so-called non-perturbative

regime. In this case integrations inside the expressions for the various scattering factors receive

the leading contributions from the region where the integration variables are fixed (while sending

g → +∞). This regime is dominated by scalars which are the only ones to have a non-trivial

(finite) S-factor, whilst the other S-factors involving other excitations reduce to one. Here we

find out the (usual) O(6) non-linear sigma model scattering theory as low energy string theory

[49, 47, 50] 11. Alternatively, we can first rescale the external rapidities u =
√
2gū, v =

√
2gv̄ and

then send g → +∞. If the rescaled variables, ū and v̄, have modulus smaller than one we are

(with the exception of scalars, see discussion below) in the perturbative string regime (where the

irrelevant and relevant perturbations of the O(6) non-linear sigma prevail on it putting at zero its

mass); while if their modulus is greater than one we are in the so-called giant hole (semiclassical

soliton) regime. In both cases, in order to have the maximum contribution to the integrals, after

rescaling external rapidities, we have to perform the same rescaling of the integration variables

ui =
√
2gūi and eventually take the limit g → +∞.

4.1 Scalars

Scalars in the non-perturbative regime

We report the strong coupling limit of the scalar-scalar scattering factor in the non-perturbative

regime, i.e. g → +∞, with u, v fixed (details on the calculation can be found in [23], see also [21]

and [22]):

g → +∞ ⇒ Θ(u, v) → Θnp(u−v) = −i ln Γ
(

1− iu−v
4

)

Γ
(

1
2
+ iu−v

4

)

Γ
(

1 + iu−v
4

)

Γ
(

1
2
− iu−v

4

)−gd

(

π(u− v)

2

)

, (4.1)

which depends only on the difference of the rapidities and coincide with the pre-factor of the

S-matrix, as derived in [51], of the O(6) non-linear sigma model upon the identification (of the

hyperbolic rapidities) θ = πu/2 and θ′ = πv/2. This definitely supports the proposal of the latter

model by [49] as that describing the string at low energy (see also subsequent studies [47, 50]).

Scalars in the perturbative regime

Following [20] the perturbative regime for scalars is defined by introducing a new rapidity z as

u =
2

π
ln
z

m
, for u > 0 (right mover); u =

2

π
ln
m

z
, for u < 0 (left mover) . (4.2)

11At next approximation it would be perturbed by irrelevant fields as suggested by the expansion of the energy

in inverse powers of the size (R) [21] (cf. also the dispersion relation in [20] and the effective field theory of [52]).
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The rapidity z is kept fixed in the region m < z < 1 as g → +∞. If m < z < 1 formula (4.1) is

valid, therefore the function Θ in the perturbative regime is obtained by plugging (4.2) into (4.1).

Scalars in the scaling regimes

We rescale the rapidities u =
√
2gū, v =

√
2gv̄ and then send g → +∞, with ū, v̄ fixed and

|ū| > 1, |v̄| > 1. This is the so-called giant hole regime. Details on the calculation can be found in

[23]. We give the final result for the double derivative, which will be useful for next computations

d

dū

d

dv̄
Θ(

√
2gū,

√
2gv̄) =

√
2g

(

ū+1
ū−1

)1/4 ( v̄−1
v̄+1

)1/4
+
(

ū−1
ū+1

)1/4 ( v̄+1
v̄−1

)1/4

ū− v̄
+O(g0) . (4.3)

This result (4.3) agrees with corresponding formula coming from using the scattering phase (2.34)

of [53].

Another possibility is to define rescaled rapidities (with a bar) u =
√
2gū, v =

√
2gv̄ and

then send g → +∞, with ū, v̄ fixed and |ū| < 1, |v̄| < 1. Although for the other particles this

second possibility gives rise to the perturbative string regime (giving for understood an obvious

modification u → x(u) for the (small) fermion, cf. below), it does not in the case of scalars as given

in [20], because of their non-perturbative, dynamically generated mass. Yet, we need to consider

the scalar Θ in this regime at least to access the other S-matrix elements (depending on it). In

fact, we may write the limiting value

d2

dūdv̄
Θ(u, v) = 2π

d

dū
δ(ū− v̄) +

1√
2g

d2

dv̄2
P

1

v̄ − ū
+O(1/g2) . (4.4)

Importantly, formula (4.4) is valid also in the domains |ū| < 1, |v̄| > 1 and |ū| > 1, |v̄| < 1. We

will make frequent use of (4.4) in this Section.

From (4.4) we can infer

Θ(u, v) = −πsgn(u− v)− 1√
2g

1

v̄ − ū
+O(1/g2) ⇒ S(ss)(u, v) = e

i√
2g

1
v̄−ū

+O(1/g2)
(4.5)

4.2 Gluons

Gluons in the perturbative regime

We want to study the gluon-gluon scattering factor (C.13) in the limit g → +∞, with u = ū
√
2g,

v = v̄
√
2g, ū, v̄ fixed and ū2 < 1, v̄2 < 1 (perturbative regime).

We have

i ln
(

−S(gg)(u, v)
)

= I1 + I2 + I3 (4.6)

where

I1 = χ̃(u, v|1, 1) = −2 arctan
√
2g(v̄ − ū) =

= −πsgn(v̄ − ū) +

√
2

g(v̄ − ū)
+O(1/g3) (4.7)

33



Passing to study I2 and I3, we first remark that in the perturbative regime

x∓(u) =

[

g√
2
+

1

4
√
1− ū2

]

(ū∓ i
√
1− ū2) +O(1/g) . (4.8)

Since we have to work out χ(w, u|1)+Φ(w), in addition to (4.8) we need also to know the behaviour

of x±(w) when w = w̄
√
2g and g → +∞. When |w̄| < 1 we can use (4.8). On the other hand, for

|w̄| > 1 we have

x±(w) =
√
2gx̄(w̄)± i

4

1 +
√

1− 1
w̄2

√

1− 1
w̄2

+O(1/g) , x̄(w̄) =
w̄

2

[

1 +

√

1− 1

w̄2

]

. (4.9)

Using results (4.8, 4.9), we arrive at the relations, valid for w = w̄
√
2g and g → +∞:

χ(w, u|1) + Φ(w) =
1√

2g(ū− w̄)
+O(1/g2) , when |w̄| > 1 (4.10)

χ(w, u|1) + Φ(w) = O(1/g) , when |w̄| < 1 . (4.11)

Therefore, we have

I2 = −
∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
[χ(w, v|1) + Φ(w)] = O(1/g2) . (4.12)

For what concerns the last term I3 in the rhs of (C.13), we find convenient to perform the change

of variables w =
√
2gw̄, x =

√
2gx̄:

I3 =

∫ +∞

−∞

dw̄

2π

∫ +∞

−∞

dx̄

2π
[χ(w, u|1) + Φ(w)]

[

d

dw̄

d

dx̄
Θ(

√
2gw̄,

√
2gx̄)

]

[χ(x, v|1) + Φ(x)] (4.13)

Now, from formulæ (4.3, 4.4), we deduce that the leading behaviour of the double derivative of the

scalar-scalar phase is realised in the giant hole regime |w̄| > 1, |x̄| > 1. Therefore, we can write

I3
∼=
∫

|w̄|>1

dw̄

2π

∫

|x̄|>1

dx̄

2π

1√
2gw̄ −

√
2gū

1√
2gx̄−

√
2gv̄

d

dw̄

d

dx̄
Θ(

√
2gw̄,

√
2gx̄) (4.14)

Plugging (4.3) into (4.14) and performing the integrations we arrive at

I3 =
1

2
√
2g(ū− v̄)

[

2−
(

1 + ū

1− ū

)1/4(
1− v̄

1 + v̄

)1/4

−
(

1− ū

1 + ū

)1/4(
1 + v̄

1− v̄

)1/4
]

(4.15)

Now, summing up (4.7, 4.12, 4.15) we obtain the final result for the gluon-gluon scattering phase

at the order O(1/g):

S(gg)(u, v) = exp

[

i√
2g(ū− v̄)

(

1 +
1

2

(

1 + ū

1− ū

)1/4(
1− v̄

1 + v̄

)1/4

+
1

2

(

1− ū

1 + ū

)1/4(
1 + v̄

1− v̄

)1/4
)]

.

(4.16)
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The expression above agrees with the correspondent result of Basso, Sever, Vieira [37].

Gluons in the giant hole regime

We now want to compute the gluon-gluon scattering factor (C.13) in the limit g → +∞, with

u = ū
√
2g, v = v̄

√
2g, ū, v̄ fixed and ū2 > 1, v̄2 > 1 (giant hole regime).

As a preliminary calculation we consider the quantity χ(v, u|1) + Φ(v). For its expression we

refer to (A.7). Computing the scaling limit u = ū
√
2g, v = v̄

√
2g, g → +∞, ū, v̄ fixed and ū2 > 1,

v̄2 > 1, we find that

χ(v, u|1) + Φ(v) = πsgn(v − u)− πsgnv +O(1/g) . (4.17)

Since χ(v, u|1) + Φ(v) is at most O(g0), properties (4.3, 4.4) imply that the following part of the

integral I3,

I>
3 =

∫

|w̄|>1

dw̄

2π

∫

|x̄|>1

dx̄

2π
[χ(w, u|1) + Φ(w)]

[

d

dw̄

d

dx̄
Θ(

√
2gw̄,

√
2gx̄)

]

[χ(x, v|1) + Φ(x)] , (4.18)

gives actually the dominant contribution (proportional to g) to i ln
(

−S(gg)(u, v)
)

. The integrations

in (4.18) are easily performed and the final result12 is

i ln
(

−S(gg)(u, v)
)

= i ln
(

−S(gḡ)(u, v)
)

= Θ(u, v) +O(g0) = i ln
(

−S(ss)(u, v)
)

+O(g0) . (4.19)

Gluons in the non-scaling regime

In this regime we send g → +∞ keeping the excitations rapidities fixed. For what concerns

gluons, if we send g → +∞, with gluons and scalar rapidities, u, v respectively, fixed, we get that

χ(v, u|1) + Φ(v) = O(1/g2) . (4.20)

In order to get (4.20), relation

g → +∞ , u fixed ⇒ x±(u) = ± ig√
2
+
u± i

2

2
∓ i

(

u± i
2

)2

4
√
2g

+O(1/g3) , (4.21)

is useful. Result (4.20) means that in this regime the gluon-gluon scattering phase S(gg)(u, v)

reduces to u−v+i
u−v−i

.

4.3 Fermions

Fermions in the perturbative regime

We want to find the strong coupling limit of the fermion-fermion scattering factor in the per-

turbative regime. As we will show in a moment, this regime fits in the small fermion case. We

start from

S(ff)(u, v) = exp
{

i

∫ +∞

−∞

dw

2π
χH(w, u)

d

dw
χH(w, v)− i

∫

dw

2π

dz

2π
χH(w, u)

d2

dwdz
Θ(w, z)χH(z, v)

}

(4.22)

12In order to get (4.19) we use the properties Θ(u,±
√
2g) = Θ(±

√
2g, v) = 0 which are proven using expressions

given in [53].
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where

χH(w, u) = −i ln
1− xf (u)

x+(w)

1− xf (u)

x−(w)

, xf (u) =
u

2

[

1−
√

1− 2g2

u2

]

. (4.23)

In the perturbative regime the fermion rapidity scales as xf (u) =
√
2gx̄f (ū), u =

√
2gū, with

x̄f (ū) =
ū

2

[

1−
√

1− 1

ū2

]

, |ū| ≥ 1 , |x̄f (ū)| ≤
1

2
. (4.24)

It is then clear that we are in the small fermion case.

For what concerns scalar rapidity, we make the rescaling w =
√
2gw̄ and we develop at strong

coupling. We have to distinguish two cases.

• If |w̄| > 1, then

x±(w) =
√
2gx̄(w̄)± i

4

1 +
√

1− 1
w̄2

√

1− 1
w̄2

+O(1/g) , x̄(w̄) =
w̄

2

[

1 +

√

1− 1

w̄2

]

. (4.25)

In this case we have

χH(w, u) = −i ln
1− xf (u)

x+(w)

1− xf (u)

x−(w)

∼= − x̄f (ū)√
2g

1

w̄
√

1− 1
w̄2

1

x̄f (ū)− x̄(w̄)
+O(1/g2) . (4.26)

• If |w̄| < 1, then

x±(w) =
g√
2
[w̄ ± i

√
1− w̄2] +O(g0) (4.27)

In this second case

χH(w, u) = −i ln 1− 2x̄f (w̄ − i
√
1− w̄2)

1− 2x̄f (w̄ + i
√
1− w̄2)

+O(1/g) . (4.28)

In general we write −i lnS(ff) = I1 + I2, where

I1 =

∫ +∞

−∞

dw

2π
χH(w, u)

d

dw
χH(w, v) = I>1 + I<1 (4.29)

where

I>1 =

∫

|w̄|>1

dw

2π
χH(w, u)

d

dw
χH(w, v) ∼ O(1/g2) (4.30)

I<1 =

∫

|w̄|<1

dw

2π
χH(w, u)

d

dw
χH(w, v) (4.31)

and

I2 = −
∫

dw

2π

dz

2π
χH(w, u)

d2

dwdz
Θ(w, z)χH(z, v) = I>2 + Irest2 (4.32)

36



where

I>2 = −
∫

|w̄|,|z̄|≥1

dw̄

2π

dz̄

2π
χH(w, u)

d2

dw̄dz̄
Θ(w, z)χH(z, v) (4.33)

Irest2 = −
∫

|w̄|or|z̄|≤1

dw̄

2π

dz̄

2π
χH(w, u)

d2

dw̄dz̄
Θ(w, z)χH(z, v) (4.34)

In order to evaluate I2 we need first to compute (the second derivative of) Θ(w, z). This happens

to depend on the domain of w, z. When |w̄| and |z̄| are both greater than one, we can use formula

(2.33) of the letter [23]: in particular, in this domain d2

dw̄dz̄
Θ(w, z) = O(g). In the remaining

domains (i.e |w̄| and |z̄| are not both greater than one), we have formula (4.4):

d2

dw̄dz̄
Θ(w, z) = 2π

d

dw̄
δ(w̄ − z̄) +

1√
2g

d2

dz̄2
P

1

z̄ − w̄
+O(1/g2) (4.35)

Using this formula we can estimate Irest2 . We have

Irest2 = −
∫

|w̄|<1

dw

2π
χH(w, u)

d

dw
χH(w, v)−

− 1√
2g

∫

|w̄|,|z̄|≤1

dw̄

2π

dz̄

2π
χH(w, u)

d2

dw̄2
P

1

z̄ − w̄
χH(z, v) +O(1/g2) (4.36)

where we used the fact that χH(w, u) is O(1/g) when |w̄| > 1. The first term in (4.36) cancels I<1 .

The second term equals

− 1√
2g

∫

|w̄|,|z̄|≤1

dw̄

2π

dz̄

2π
χH(w, u)

d2

dw̄2
P

1

z̄ − w̄
χH(z, v) =

= −2
√
2

g
(x̄f (ū)− x̄f (v̄))

1 + 4x̄f(ū)x̄f (v̄)

1− 4x̄f(ū)x̄f(v̄)

x̄f(ū)x̄f (v̄)

(1− 4x̄f(ū)2)(1− 4x̄f (v̄)2)
. (4.37)

In order to get this result, we made use of the approximation

d

dw̄
χH(w, u) =

w̄ − 2x̄f (ū)√
1− w̄2(w̄ − ū)

− 1

2
√
2g(w̄ − ū)2

+O

(

1

g2

)

(4.38)

and of the integral (B.31). For what concerns I>2 , we have

I>2 = − 1√
2g

∫

|w̄|≥1

dw̄

2π

∫

|z̄|≥1

dz̄

2π

1

w̄
√

1− 1
w̄2

x̄f (ū)

x̄f(ū)− x̄(w̄)
·

·
(

w̄−1
w̄+1

)
1
4
(

z̄+1
z̄−1

)
1
4 +

(

w̄+1
w̄−1

)
1
4
(

z̄−1
z̄+1

)
1
4

w̄ − z̄

1

z̄
√

1− 1
z̄2

x̄f (v̄)

x̄f (v̄)− x̄(z̄)
(4.39)

Now, we use the identity

(

w̄−1
w̄+1

)
1
4
(

z̄+1
z̄−1

)
1
4 +

(

w̄+1
w̄−1

)
1
4
(

z̄−1
z̄+1

)
1
4

w̄ − z̄
=

1

x̄(w̄)− x̄(z̄)

√

1 +
√

1− 1
w̄2

√

1 +
√

1− 1
z̄2

(

1− 1
w̄2

) 1
4
(

1− 1
z̄2

) 1
4

(4.40)

37



and arrive at

I>2 = − 1√
2g

∫

|w̄|≥1

dw̄

2π

∫

|z̄|≥1

dz̄

2π

1

w̄
√

1− 1
w̄2

x̄f (ū)

x̄f(ū)− x̄(w̄)
·

· 1

x̄(w̄)− x̄(z̄)

√

1 +
√

1− 1
w̄2

√

1 +
√

1− 1
z̄2

(

1− 1
w̄2

)
1
4
(

1− 1
z̄2

)
1
4

1

z̄
√

1− 1
z̄2

x̄f (v̄)

x̄f (v̄)− x̄(z̄)
(4.41)

We now use the symmetry properties of the integrand under the exchange w̄ with z̄ and factorise

the integral as

I>2 = − 1

2
√
2g
x̄f (ū)x̄f (v̄)[x̄f(v̄)− x̄f (ū)]ג(ū, v̄)

2 (4.42)

where

,ū)ג v̄) =

∫

|w̄|≥1

dw̄

2π

√

1 +
√

1− 1
w̄2

w̄
(

1− 1
w̄2

)
3
4

1

(x̄f (ū)− x̄(w̄))(x̄f (v̄)− x̄(w̄))
(4.43)

We change variable of integration from w̄ to x̄(w̄) = y. We get

,ū)ג v̄) =

∫

|y|≥1/2

dy

2πy

√

2

1− 1
4y2

1

x̄f (ū)− y

1

x̄f (v̄)− y
, (4.44)

which can be exactly computed by means of (B.31):

,ū)ג v̄) =

√
2

x̄f (ū)− x̄f (v̄)

[

1
√

1− 4x̄f (ū)2
− 1
√

1− 4x̄f(v̄)2

]

(4.45)

Therefore, we obtain

I>2 = − 1√
2g

x̄f (ū)x̄f (v̄)

x̄f (v̄)− x̄f (ū)

[

1
√

1− 4x̄f (v̄)2
− 1
√

1− 4x̄f(ū)2

]2

. (4.46)

Adding (4.37, 4.46) we arrive at the final formula

S(ff)(u, v) = exp
{

−2i
√
2

g
(x̄f (ū)− x̄f (v̄))

1 + 4x̄f(ū)x̄f (v̄)

1− 4x̄f(ū)x̄f(v̄)

x̄f(ū)x̄f (v̄)

(1− 4x̄f (ū)2)(1− 4x̄f (v̄)2)
−

− i√
2g

x̄f (ū)x̄f (v̄)

x̄f (v̄)− x̄f (ū)

[

1
√

1− 4x̄f (v̄)2
− 1
√

1− 4x̄f(ū)2

]2

+O(1/g2)
}

. (4.47)

Fermions in the giant hole regime

In the giant hole regime which fits into the large fermion case the fermion rapidity scales as

xF (u) =
√
2gx̄F (ū), u =

√
2gū, with

x̄F (ū) =
ū

2

[

1 +

√

1− 1

ū2

]

, |ū| ≥ 1 , |x̄F (ū)| ≥
1

2
. (4.48)
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Referring then to formula (C.11) for large fermions, we first show that if w = w̄
√
2g, u = ū

√
2g

and g → +∞, with |w̄| > 1, then

χF (w, u) + Φ(w) = πsgn(w − u)− πsgn(w) +O(1/g) . (4.49)

In order to prove (4.49), it is convenient to start from (A.9) and then use (4.9). Therefore, the

situation is completely analogous to the gluon case: relation (4.49) implies that in (C.11) the

dominant contribution comes from integrations in the second term in the region |w̄| > 1, |x̄| > 1,

where the scalar-scalar factor Θ is proportional to g. The final result is

i lnS(FF )(u, v) = Θ(u, v)+O(g0) = i ln(−S(ss)(u, v))+O(g0) = i ln(−S(gg)(u, v))+O(g0) . (4.50)

Fermions in the non-scaling regime

We send g → +∞ by keeping fixed all the rapidities. For fermions, rapidities are the variables

x: therefore if we keep x fixed, we are necessarily in the small fermion case, i.e. |xf | < g/
√
2. We

can then show that

lim
g→+∞

χH(u, v) = xf(v)

[

−2
√
2

g
+

1

g2
+O(1/g3)

]

(4.51)

This means that in this regime i lnS(ff)(u, v) = O(1/g2).

4.4 Mixed factors

Scalar-gluon

• Perturbative regime

We start from the exact expression (C.18)

i ln[S(sg)(u, v)] = χ(u, v|1) + Φ(u)−
∫

dw

2π

dΘ

dw
(u, w)[χ(w, v|1) + Φ(w)] , (4.52)

where both the scalar and the gluon are in the perturbative regime. This means that the u rapidity

is parametrised as (4.2) and the v rapidity is scaled as v =
√
2gv̄. In these hypothesis we have

that

χ(u, v|1) + Φ(u) =
1√
2g

1

v̄ − sgn(u)
. (4.53)

In addition, in first approximation, we can integrate in the region |w| < 2
π
lnm and use for Θ the

expression (4.1) in which rapidities are parametrised as (4.2). The final result is

i ln[S(sg)(u, v)] =
1

2π
√
2g

1

v̄ − sgn(u)

[

π −Θnp

(

2

π
ln z

)]

. (4.54)

• Giant hole regime

In the giant hole regime we use formula (4.17) for the limiting expression of χ(v, u|1)+Φ(v) when

both |v̄| and |ū| are greater than one. Then the leading (i.e. O(g)) contribution to i lnS(sg)(u, v)
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comes from integration in the second term of (C.18) in the region |w̄| > 1. This integration is

easily done and the result is

i lnS(sg)(u, v) = i lnS(sḡ)(u, v) = Θ(u, v) +O(g0) . (4.55)

• Non-scaling regime

In order to compute the scattering phase S(sg)(u, v) in the non-scaling regime, we have to plug

the expressions (4.4) and (4.20) into (C.18). Since χ(u, v|1) + Φ(u) is of order O(1/g2), we claim

that

i lnS(sg)(u, v) = [χ(u, v|1) + Φ(u)]−
∫

dw

2π

d

dw
Θ(u, w) [χ(w, v|1) + Φ(w)] = O

(

1

g2

)

. (4.56)

Gluons-fermions

• Perturbative regime

We study the scattering factor between gluons with rapidity u and (small) fermions with ra-

pidity xf (v) in perturbative regime of the strong coupling limit, i.e. u =
√
2gū, with |ū| ≤ 1 and

xf (v) =
√
2gx̄f(v̄), v =

√
2gv̄, with |v̄| ≥ 1, |x̄f (v̄)| ≤ 1/2.

We start from

i ln
(

−S(gf)(u, v)
)

= I1 + I2 + I3 (4.57)

where

I1 = 2 arctan 2(u− v) (4.58)

I2 =

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
χH(w, v) (4.59)

I3 = −
∫

dw

2π

dz

2π
[χ(w, u|1) + Φ(w)]

d2

dwdx
Θ(w, x)χH(x, v) (4.60)

In the perturbative regime

I1 = πsgn(ū− v̄)− 1√
2g(ū− v̄)

+O(1/g2) . (4.61)

I2 =

∫

|w̄|<1

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
χH(w, v) +O(1/g2) (4.62)

I3 =

∫

|w̄|,|z̄|≥1

dw̄

2π

dz̄

2π

1

ū− w̄

(

w̄+1
w̄−1

)
1
4
(

z̄−1
z̄+1

)
1
4 +

(

w̄−1
w̄+1

)
1
4
(

z̄+1
z̄−1

)
1
4

w̄ − z̄

x̄f (v̄)
√
2gz̄
√

1− 1
z̄2

1

x̄f (v̄)− x̄(z̄)
−(4.63)

−
∫

|w̄|<1

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
χH(w, v) +O(1/g2) (4.64)
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We evaluate the sum I2 + I3 by first performing integration in w̄ with the help of (B.33), getting

I2 + I3 = − x̄f (v̄)
2g

∫

|z|≥1

dz̄

2π

1

z̄
√

1− 1
z̄2

1

x̄f(v̄)− x̄(z̄)

(

1+ū
1−ū

)
1
4
(

z̄−1
z̄+1

)
1
4 −

(

1−ū
1+ū

)
1
4
(

z̄+1
z̄−1

)
1
4

ū− z̄
+O(1/g2)

(4.65)

Then, we integrate in z̄, using (B.34). We obtain

I2 + I3 =
1

4g

√

1−2x̄f (v̄)

1+2x̄f (v̄)

(

1+ū
1−ū

)
1
4 +

√

1+2x̄f (v̄)

1−2x̄f (v̄)

(

1−ū
1+ū

)
1
4 −

√
2

v̄ − ū
+O(1/g2) (4.66)

Summing up I1 + I2 + I3 we get the final result

S(gf)(u, v) = exp





i

4g

√
2 +

√

1−2x̄f

1+2x̄f

(

1+ū
1−ū

) 1
4 +

√

1+2x̄f

1−2x̄f

(

1−ū
1+ū

) 1
4

ū− v̄
+O(1/g2)



 (4.67)

For what concerns i lnS(ḡf)(u, v) = I2 + I3, we have

S(ḡf)(u, v) = exp





i

4g

√

1−2x̄f

1+2x̄f

(

1+ū
1−ū

)
1
4 +

√

1+2x̄f

1−2x̄f

(

1−ū
1+ū

)
1
4 −

√
2

ū− v̄
+O(1/g2)



 (4.68)

• Giant hole regime

Since both χ(v, u|1) + Φ(v) and χF (v, u) + Φ(v) have the same limiting nonzero expression

(4.17) when |v̄| > 1, |ū| > 1, the leading expressions for i ln(−S(gF )(u, v)) and i ln(S(ḡF )(u, v))

coincide with the one for i lnS(FF )(u, v). Therefore,

i ln(−S(gF )(u, v)) = i ln(S(ḡF )(u, v)) +O(g0) = Θ(u, v) +O(g0) . (4.69)

• Non-scaling regime

As written before, in this regime fermions are necessarily small. Then, since χ(w, u|1) + Φ(w)

is O(1/g2) and χH(w, v) is O(1/g), integrals I2, I3 are both O(1/g3). For what concerns I1, since

fermionic rapidies uf,k are bounded by the inequality u2f,k > 2g2, we can safely approximate

−eiI1 = 1 + O(1/g). Therefore, in the non-scaling regime S(gf)(u, v) = S(ḡf̄)(u, v) = 1 + O(1/g)

and S(ḡf)(u, v) = S(gf̄)(u, v) = 1 +O(1/g3).

Scalars-fermions

• Perturbative regime

We start from the exact expression (C.16),

− i lnS(sf)(u, v) = χH(u, v)−
∫ +∞

−∞

dw̄

2π

dΘ

dw̄
(u, w)χH(w, v) , (4.70)
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and make the parametrisations (4.2) for u and v =
√
2gv̄. At leading order we have

χH(u, v) = 2
3
4

√

ln g√
2

πg

1

v̄ − 1 +
√
v̄2 − 1

. (4.71)

Then, as for the scalar-gluon case, in first approximation, we can integrate in the region |w| <
2
π
lnm and use for Θ the expression (4.1) in which rapidities are parametrised as (4.2). The final

result is

− i lnS(sf)(u, v) = i lnS(fs)(v, u) = 2−
1
4

√

ln g√
2

πg

1

v̄ − 1 +
√
v̄2 − 1

[

1− 1

π
Θnp

(

2

π
ln z

)]

. (4.72)

• Giant hole regime

Since χF (v, u) +Φ(v) and χ(v, u|1)+Φ(v) go to the same limit, i.e. πsgn(v− u)− πsgn(v), by

comparing (C.16) and (C.18) we get the equality i lnS(sF )(u, v) = −i lnS(gs)(v, u) +O(g0), which,

together with (4.55), gives

i lnS(sF )(u, v) = Θ(u, v) +O(g0) . (4.73)

• Non-scaling regime

We perform the non-perturbative limit of the scalar-fermion scattering phase

i lnS(sf)(u, v) = −χH(u, v) +

∫ ∞

−∞

dw

2π

d

dw
Θ(u, w)χH(w, v) (4.74)

by taking g −→ ∞ while keeping the scalar rapidities finite, whereas the modulus of the fermionic

rapidities xf must be |xf | < g/
√
2. Under these assumptions, we can make use of the approxima-

tions (4.51) and (4.1) for χH(u, v) and Θ(u, v); eventually, we find:

i lnS(sf)(u, v) = O

(

1

g3

)

. (4.75)

4.5 Remark on the non-scaling regime

We showed that in the non-scaling regime all the factors S∗∗′(u, v) go as 1 + O(1/g2), with the

exception of the scalar-scalar one which goes as

S(ss)(u, v) = −Γ
(

1 + iu−v
4

)

Γ
(

1
2
− iu−v

4

)

Γ
(

1− iu−v
4

)

Γ
(

1
2
+ iu−v

4

)exp
[

igd
π

2
(u− v)

]

[1 +O(1/g)] . (4.76)

In addition to that, we recall that the fermionic rapidities uf,k satisfy the inequalities u2f,k > 2g2.

Therefore in this regime all the rational factors involving fermionic rapidities (which appear in the

quantisation conditions for fermions and in the equations for isotopic roots ua and uc) go to one.

In addition all the exponentials of momenta and defect (= ei(P +D)) go to 1, with the exception
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of those for scalars. Summarising, in the limit g → +∞ with rapidities fixed (and finite), the

non-trivial equations are

1 = eiRP (s)(uh)+iD(s)(uh)

Kb
∏

j=1

uh − ub,j +
i
2

uh − ub,j − i
2

H
∏

h′=1
h′ 6=h

S(ss)(uh, uh′) (4.77)

1 =

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i/2

ua,k − ub,j + i/2

H
∏

h=1

ub,k − uh + i/2

ub,k − uh − i/2
=

Ka
∏

j=1

ub,k − ua,j − i/2

ub,k − ua,j + i/2

Kc
∏

j=1

ub,k − uc,j − i/2

ub,k − uc,j + i/2

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

1 =

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i/2

uc,k − ub,j + i/2

1 =

Ng
∏

j 6=k

ugk − ugj + i

ugk − ugj − i
,

1 =

Nḡ
∏

j 6=k

uḡk − uḡj + i

uḡk − uḡj − i
,

with S(ss) given by (4.76). Since equations for gluons have no solutions for finite rapidities (i.e.

Ng = Nḡ = 0), equations (4.77) show that in the non-perturbative regime the only active excita-

tions are the six scalars. The other excitations are obliged to assume infinite rapidities and thus

decouple to very high energy from the scalars. The latter satisfy the above ABA (4.77) which is

the same we can derive from the O(6) non-linear sigma model S-matrix of [51]. Therefore, also

the exact TBA would be that of the O(6) model (if we can neglect the exchange of the g → +∞
limit with the thermodynamics).

5 Particle momentum in different forms

Momentum was already thoroughly discussed by Basso in [20]. The aim of this section is to show

that the expressions for momenta of the various excitations we found (in our notations) in previous

sections agree with corresponding formulæ of [20].

• Scalars

We found (2.73) that the momentum of a scalar excitation is

P (s)(u) = 2u− 1

2
ZBES(u) . (5.1)

Now, using the mapping (B.19), valid for k > 0,

i sinh k
2

π
ẐBES(k) =

γø+(
√
2gk) + γø−(

√
2gk)

k
, (5.2)
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between our quantities and quantities used in [20], we immediately write (5.1) in the form reported

in [20] (second of the (4.6)).

• Gluons

For a gluon with rapidity u we found for the momentum the expression (2.92), which we can

write in Fourier space as

P (g)(u) =

∫ +∞

−∞

dk

4π2

[

−2π
sin ku

k
e−|k| + i

∑

n=1

(

g

i
√
2x−(u)

)n
2π

k
e−

|k|
2 Jn(

√
2gk) +

+i
∑

n=1

(

g

i
√
2x+(u)

)n
2π

k
e−

|k|
2 Jn(

√
2gk)

]

(−4πδ(k) +
1

2
σ̂BES(k)) =

= 2u−
(

g2

x−
+
g2

x+

)

+

∫ +∞

−∞

dk

8π2

[

−2π
sin ku

k
e−|k| + i

+∞
∑

n=1
n odd

(

g

i
√
2x−(u)

)n
2π

k
e−

|k|
2 Jn(

√
2gk) +

+i

+∞
∑

n=1
n odd

(

g

i
√
2x+(u)

)n
2π

k
e−

|k|
2 Jn(

√
2gk)

]

σ̂BES(k)

Now, we use the equalities
∫ +∞

−∞

dk

k
e−

|k|
2 Jn(

√
2gk)σ̂BES(k) = 4π[

√
2gδn,1 − γøn] , n odd, , (5.3)

and ∞
∑

n=1
n odd

[(

g

i
√
2x−

)n

+

(

g

i
√
2x+

)n]

γøn = −i
∫ +∞

0

dk

k
sin ku e−

k
2 γø−(

√
2gk) (5.4)

to eventually obtain

P (g)(u) = 2u−
∫ +∞

0

dk

k
sin ku e−

k
2

[

γø−(
√
2gk)

1− e−k
+
γø+(

√
2gk)

ek − 1

]

, (5.5)

which agrees with the second of (4.9) of [20].

• Large fermions

The momentum associated to a large fermion with rapidity u enjoys the expression (2.81). In

Fourier space it reads

P (F )(u) =

∫ ∞

−∞

dk

2π

[

sin ku

k
e−

|k|
2 +

∑

n=1

(

g

i
√
2x(u)

)n
e−

|k|
2

ik
Jn(

√
2gk)

]

(4πδ(k)− σ̂BES(k)

2
) =

= 2u−
∫ +∞

0

dk

k
sin ku

γø+(
√
2gk) + γø−(

√
2gk)

ek − 1
− 1

2

∫ +∞

0

dk

k
sin ku γø−(

√
2gk) ,

which recalls the second of (4.10) of [20]. In order to obtain the equation in the last line, we made

use of the relation
∫ ∞

0

dk

2k
sin ku γø−(

√
2gk) = i

∞
∑

n=1

(

g√
2ix(u)

)2n−1

γø2n−1 , (5.6)
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which holds for u2 > 2g2.

• Small fermions

The reasonings for the momentum of a small fermion with rapidity u mimic very closely the

large fermion case. We start from our expression (2.86) and in Fourier space we eventally get the

result (u2 > 2g2)

P (f)(u) =
1

2

∫ +∞

0

dk

k
sin(ku) γø−(

√
2gk) , (5.7)

therefore matching the second of (4.12) of [20].

6 Strong coupling analysis of the defect term

We now perform a quantitative analysis of the strong coupling limit of the defect which appears

in the Bethe equations on the GKP vacuum.

6.1 Scalars

It is convenient to concentrate on the function Z4 (2.68) in absence of excitations, which equals

Z4(u)|NE = −2 ln sP (s)(u)−D(s)(u) (6.8)

The study of this function, which relies also on previous results, provides information on both the

momentum and the defect of the scalar.

Non-perturbative regime

In this regime we send g → +∞, keeping the rapidity u fixed. We can use results from [21]

where the non perturbative regime for the pure sl(2) sector is studied. We found that the function

(6.8) has the form

Z4(u)|NE = −2m(g) ln
2
√
2s

g
sinh

π

2
u+O(m(g)3) , (6.9)

where m(g) is given by (3.13). Therefore, the contribution of the two defect is proportional to the

momentum

D(s)(u) = −2m(g) ln
2
√
2

g
sinh

π

2
u+O(m(g)3) , (6.10)

so allowing us to fully re-absorb them into a re-definition of the size R(g) as in [63, 21]

Perturbative regime

Formulæ for this regime are obtained by plugging (4.2) in (6.10). We obtain

D(s)(u) = − ln
2
√
2

g
z +O(m(g)2) (6.11)

for right movers (u > 0) and

D(s)(u) = ln
2
√
2

g
z +O(m(g)2) (6.12)
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for left movers (u < 0).

Scaling regimes

We introduce the density σ4(u)|NE = d
du
Z4(u)|NE and rescale the rapidity u =

√
2gū. By using

techniques developed in [15], we eventually find

σ4(
√
2gū)|NE =

∫ +∞

0

dh̄√
2g

cos h̄ū



− e
− h̄

2
√

2g

cosh h̄√
2g

Γ+(h̄) +
e

h̄

2
√

2g

cosh h̄√
2g

Γ−(h̄)



− 4 ln s +

+
2π

cosh π
√
2gū

+ 2ψ

(

1

2
+ iū

√
2g

)

+ 2ψ

(

1

2
− iū

√
2g

)

+ (6.13)

+ ψ

(

5

8
+
i
√
2gū

4

)

+ ψ

(

5

8
− i

√
2gū

4

)

− ψ

(

7

8
+
i
√
2gū

4

)

− ψ

(

7

8
− i

√
2gū

4

)

where the functions Γ± satisfy the relations, valid when |ū| < 1:

∫ +∞

0

dh̄√
2g

sin h̄ū[Γ−(h̄) + Γ+(h̄)] = −2i[ψ(1− iū
√
2g)− ψ(1 + iū

√
2g)] (6.14)

∫ +∞

0

dh̄√
2g

cos h̄ū[Γ−(h̄)− Γ+(h̄)] = 4 ln s− 2[ψ(1− iū
√
2g) + ψ(1 + iū

√
2g)] . (6.15)

Going to the strong coupling limit g → +∞, with ū fixed, we find

σ4(
√
2gū)|NE =

∫ +∞

0

dh̄√
2g

cos h̄ū



− e
− h̄

2
√

2g

cosh h̄√
2g

Γ+(h̄) +
e

h̄

2
√

2g

cosh h̄√
2g

Γ−(h̄)



− 4 ln
s

g
+O(g0) , (6.16)

where
∫ +∞

0

dh̄√
2g

sin h̄ū[Γ−(h̄) + Γ+(h̄)] = O(g0) , |ū| < 1 , (6.17)

∫ +∞

0

dh̄√
2g

cos h̄ū[Γ−(h̄)− Γ+(h̄)] = 4 ln
s

g
+O(g0) , |ū| < 1 . (6.18)

Solutions to these equations go differently according to the value of |ū|. If |ū| < 1 we have

σ4(u)|NE = −
√
2π

g
δ(ū) +O(1/g2) , (6.19)

which means that P (s)(u) is exponentially small and that D(s)(u) = −
√
2π
g
δ(ū) +O(1/g2).

On the other hand, if |ū| > 1, we have

σ4(u)|NE = −2 ln
s

g

d

du
P (s)(u) +O(g0) (6.20)

with P (s)(u) ∼ O(g) or, alternatively, the proportionality to the momentum

D(s)(u) = −2 ln gP (s)(u) +O(g) , (6.21)
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which would allow us to re-absorb, at this order (only), fully the defect into a simple redefinition

of the size R. Using now (5.27) of [20] we can then express D(s)(u) in terms of the rapidity

x̄ = 1
2
ū+ 1

2
ū
√

1− 1
ū2 as

D(s)(u) = −2
√
2g ln g

[

2x̄

√

1− 1

4x̄2
− arctan

(

2x̄

√

1− 1

4x̄2

)]

+O(g) . (6.22)

6.2 Gluons

Perturbative and giant hole regimes

We start from the formula

2 ln s P (g)(u) +D(g)(u) =

∫

dv

2π
[χ(v, u|1) + χ(−v, u|1)] 1

2
σ4(v)|NE (6.23)

Scaling u =
√
2gū and v =

√
2gv̄, we have that χ(v, u|1) + Φ(v) is O(1/g) if |ū| < 1 and (at

most) O(g0) if |ū| > 1. Referring to (6.19, 6.20), we remark that the integration receives leading

contribution from the region |v̄| > 1. We conclude that

|ū| < 1 ⇒ 2 ln sP (g)(u) +D(g)(u) = 2 ln
s

g
P (g)(u) +O(g0) (6.24)

|ū| > 1 ⇒ 2 ln sP (g)(u) +D(g)(u) = 2 ln
s

g
P (g)(u) +O(g) (6.25)

We can now refer to formulæ of [20] for the momentum of the gauge field and arrive at the final

expressions

|ū| < 1 ⇒ D(g)(u) = −2 ln gP (g)(u) +O(g0) = −
√
2 ln g

[

(

1 + ū

1− ū

)
1
4

−
(

1− ū

1 + ū

)
1
4

]

+O(g0)

(6.26)

|ū| > 1 ⇒ D(g)(u) = −2 ln gP (g)(u) +O(g) =

−2
√
2g ln g

[

2x̄

√

1− 1

4x̄2
− arctan

(

2x̄

√

1− 1

4x̄2

)]

+ O(g) . (6.27)

6.3 Fermions

Perturbative regime

In this regime the rescaled rapidity |x̄f(ū)| < 1/2 (small fermions). Therefore, we start from

the formula

2 ln s P (f)(u) +D(f)(u) = −
∫

dv

2π
[χH(v, u) + χH(−v, u)]

1

2

d

dv
Z4(v)|NE (6.28)
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Scaling v =
√
2gv̄, we have that χH(v, u) is O(1/g) if |v̄| > 1 and O(g0) if |v̄| < 1. Referring to

(6.19, 6.20), we remark that the integration receives leading contribution from the region |v̄| > 1.

We conclude that

2 ln sP (f)(u) +D(f)(u) = 2 ln
s

g
P (f)(u) +O(g0) (6.29)

and

D(f)(u) = −2 ln gP (f)(u) +O(g0) = −4 ln g
x̄f (ū)

√

1− 4x̄f (ū)2
+O(g0) (6.30)

Giant hole regime

In this regime the rescaled rapidity |x̄F (ū)| > 1/2 (large fermions). Therefore, we start from

the formula

2 ln s P (F )(u) +D(F )(u) =

∫

dv

2π
[χF (v, u) + χF (−v, u)]

1

2
σ4(v)|NE (6.31)

Scaling v =
√
2gv̄, we now have that χH(v, u) is O(g0) for all |v̄|. Referring to (6.19, 6.20), we

remark that the integration receives leading contribution from the region |v̄| > 1. We conclude

that

2 ln sP (F )(u) +D(F )(u) = 2 ln
s

g
P (F )(u) +O(g) (6.32)

and, consequently, that

D(F )(u) = −2 ln gP (F )(u) =

= −2
√
2g ln g

[

2x̄

√

1− 1

4x̄2
− arctan

(

2x̄

√

1− 1

4x̄2

)]

+O(g) . (6.33)

7 The SU(4) symmetry

The particles we are addressing to (scalars, gluons, fermions and anti-fermions) belong to some

multiplet under the SU(4) symmetry (6, 1, 4 and 4̄, respectively). This fact entails that the

scattering matrix possess this symmetry. Starting from the scattering matrices retrieved in the

previous chapter, the Bethe equations may be assembled for every sort of excitation; anyway, they

are actually able to catch only a single state in each multiplet, precisely the one corresponding to

the highest weight state of the representation. In this section the focus moves to a few sectors of

the complete theory, which include just one type (or two at most) of excitations along with the

set of isotopic roots, aiming at elucidating the behaviour of the different kinds of particle under

SU(4).

Following [44], a set of Bethe equations can be formulated for any spin chain associated to

a simple Lie algebra. Therefore, given the set of simple roots of a simple Lie algebra{αq}, and
chosen a representation ρ by fixing its highest weight ~wρ (or equivalently a tern of positive integer
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Dynkin labels), the relative Bethe equations arise, with a further generalization stemming from

the introduction of a set of inhomogeneities (labelled by their rapidities um) along the spin chain:

∏

m

uq,k − um + i~αq · ~wρ

uq,k − um − i~αq · ~wρ
=

Kq
∏

j 6=k

uq,k − uq,j + i~αq · ~αq

uq,k − uq,j − i~αq · ~αq

∏

q′ 6=q

Kq′
∏

j=1

uq,k − uq′,j + i~αq · ~αq′

uq,k − uq′,j − i~αq · ~αq′
. (7.1)

Turning to the su(4) algebra, we perform a choice of three simple roots ~αk, along with the three

simple roots ~ϕk, resulting from the defining condition
2~αj · ~ϕk

(~αj)2
= δkj :

~α1 =

(

1

2
,

√
3

2
, 0

)

~ϕ1 =

(

1

2
,

1

2
√
3
,

1

2
√
6

)

~α2 =

(

1

2
,−

√
3

2
, 0

)

~ϕ2 =

(

1

2
,− 1

2
√
3
,
1√
6

)

(7.2)

~α3 =

(

−1

2
,

1

2
√
3
,
2√
6

)

~ϕ3 =

(

0, 0,
3

2
√
6

)

.

To sum up, the Bethe equations in (7.1) specialize to the su(4) algebra:

∏

m

ua,k − um + i~α1 · ~wρ

ua,k − um − i~α1 · ~wρ
=

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i/2

ua,k − ub,j + i/2

∏

m

ub,k − um + i~α2 · ~wρ

ub,k − um − i~α2 · ~wρ
=

Kb
∏

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i/2

ub,k − ua,j + i/2

Kc
∏

j=1

ub,k − uc,j − i/2

ub,k − uc,j + i/2

∏

m

uc,k − um + i~α3 · ~wρ

uc,k − um − i~α3 · ~wρ

=
Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i/2

uc,k − ub,j + i/2
(7.3)

• Scalar sector:

When considering a system composed only of L−2 scalar excitations with rapidities {uh}, together
with Ka roots of type ua, Kb of type ub and Kc type-c roots, the equations for the isotopic roots

(2.49)(2.50)(2.53) take the form :

1 =

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(7.4)

L−1
∏

h=2

(

ub,k − uh +
i
2

ub,k − uh − i
2

)

=

Kb
∏

j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

1 =
Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2
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A comparison with (7.3) promptly reveals that the equations (7.4) coincide with those for a spin

chain associated to the antisymmetric (6) representation of su(4), whose highest weight is, accord-

ing to our convention, ~w6 = ~ϕ2. The L − 2 hole rapidities (uh, h = 2, . . . , L − 1) can be read as

inhomogeneities along the spin chain, and their dynamics are regulated by the equations (2.72),

suitably adapted to the case at hand.

• (Large) Fermionic sector

Let us stick now to a system composed of NF large fermions uF,j, j = 1, ..., NF , together with Ka

roots of type ua, Kb of type and Kb uc roots. While the fermions satisfy the Bethe equations (2.80)

the auxiliary roots obey to the relations:

NF
∏

j=1

(

ua,k − uF,j +
i
2

ua,k − uF,j − i
2

)

=

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(7.5)

1 =

Kb
∏

j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

1 =

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2

A look at (7.3) suggests the equations (7.5) should be associated to a spin chain related to the

fundamental representation (4) of su(4) (with highest weight ~w4 = ~ϕ1), where the large fermions

behave as inhomogeneities, with rapidities uF,j, j = 1, . . . , NF .

Otherwise, when only large antifermions (in number of NF̄ ) appears on the vacuum, again

accompanied by isotopic roots ua (Ka), ub (Kb) and Kc (Kc), the system is described by the set

of Bethe equations (2.83) together with the isotopic root equations:

1 =
Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(7.6)

1 =

Kb
∏

j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

NF̄
∏

j=1

(

uc,k − uF̄ ,j +
i
2

uc,k − uF̄ ,j − i
2

)

=

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2

.

The (7.6) are in fact the equations for 4̄ spin chain (highest weight ~w4̄ = ~ϕ3), as may be read from

(7.3).

Some interest should be paid to a system including both NF (large) fermions and NF̄ (large)
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antifermions; in this case, the isotopic roots satisfy the relations:

NF
∏

j=1

(

ua,k − uF,j +
i
2

ua,k − uF,j − i
2

)

=

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(7.7)

1 =

Kb
∏

j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

NF̄
∏

j=1

(

uc,k − uF̄ ,j +
i
2

uc,k − uF̄ ,j − i
2

)

=
Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2

.

Staring at the su(4) simple roots and fundamental weights (7.2) we can claim the equations (7.7)

are associated to a spin chain, related to the representation of su(4) whose Dynkin labels be

(1, 0, 1), or in other terms we found as its highest weight ~w15 = ~ϕ1 + ~ϕ3, and that leads to the 15.

The reason lies in the way how fermions (in the 4) and antifermions (in the 4̄) scatter, since the

process can be decomposed into two channels, according to the rule

4⊗ 4̄ = 1⊕ 15 ; (7.8)

the singlet 1 channel is not apparent in (7.7), it could be revealed upon imposing some costraints

on the isotopic roots (see next section).

• Gauge field sector

When only Ng gluons (with rapidities ugj) are excited over the vacuum, the isotopic roots decouple

from them, since

1 =

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i
2

ua,k − ub,j +
i
2

(7.9)

1 =

Kb
∏

j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka
∏

j=1

ub,k − ua,j − i
2

ub,k − ua,j +
i
2

Kc
∏

j=1

ub,k − uc,j − i
2

ub,k − uc,j +
i
2

1 =

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i
2

uc,k − ub,j +
i
2

:

therefore, gluon excitations behave like singlets (1) under SU(4). The very same reasoning applies

to barred-gluons.

8 Eigenvalues

While commenting on the equations (7.7), we hinted the role the SU(4) symmetry takes in the

scattering between fermions and antifermions. Now we are going to examine in some more detail

several scattering processes involving different kinds of particles. In general, given two types of
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particles α and β, transforming under the representations of su(4) ρα and ρβ , which act respectively

on the spaces Vα and Vβ, their scattering decomposes according to the Clebsch-Gordan rule:

ρα ⊗ ρβ =
⊕

Ω

ρΩ (8.1)

Recalling [44], the scattering matrix Ŝ(αβ) (defined on Vα⊗Vβ) between excitations α and β enjoys

the spectral decomposition

Ŝ(αβ) =
∑

Ω

S
(αβ)
Ω PΩ (8.2)

where S
(αβ)
Ω are the eigenvalues of the matrix Ŝ(αβ), relatives to the (normalized) eigenvectors PΩ,

which act as projectors onto the space VΩ, i.e. PΩ(Vα ⊗ Vβ) = VΩ. In this section we list the

eigenvalues corresponding to the scattering between excitations on the top of the GKP string.

Scalar-scalar

The scalar-scalar scattering was completely clarified in [22], here we list eigenvalues and corre-

sponding isotopic roots; since scalars belong to the 6, the decomposition follows:

6⊗ 6 = 1⊕ 15⊕ 20 . (8.3)

The singlet 1 channel involves two type-b isotopic roots, which shall be related to the hole rapidities

uh, uh′ according to ub,1 = 1
2

(

uh + uh′ −
√

1+(uh−uh′)
2

3

)

and ub,2 = 1
2

(

uh + uh′ +
√

1+(uh−uh′ )
2

3

)

,

together with a and c roots ua = uc =
uh+uh′

2
. These constraints on the isotopic roots lead us to

the eigenvalue

S
(ss)
1

(uh, uh′) =
uh − uh′ + 2i

uh − uh′ − 2i

uh − uh′ + i

uh − uh′ − i
S(ss)(uh, uh′) , (8.4)

where the scalar factor S(ss)(uh, uh′) can be read from (C.10). The adjoint channel Ω = 15 requires

one b-type root, satisfying ub =
uh+uh′

2
and no a nor c roots Ka = Kc = 0. Eventually, the resulting

eigenvalue follows

S
(ss)
15

(uh, uh′) =
uh − uh′ + i

uh − uh′ − i
S(ss)(uh, uh′) . (8.5)

Finally, the Ω = 20 channel request no isotopic roots (Ka = Kb = Kc = 0), so that the eigenvalue

simply coincides with (C.10)

S
(ss)
20

(uh, uh′) = S(ss)(uh, uh′) . (8.6)

Fermion-fermion

In the fermion-fermion scattering, we have two eigenvalues corresponding to the decomposition

4⊗ 4 = 10⊕ 6. The first one, for Ω = 10, corresponds to no isotopic roots and therefore it holds

S
(FF )
10

(uF,1, uF,2) = S(FF )(uF,1, uF,2) ,

where the scalar factor corresponds to (C.11). The second one, for the Ω = 6 channel, is obtained

from the solution with Ka = 1, Kb = 2, Kc = 0, such that ua =
uF,1+uF,2

2
, while ub,1 = uF,1 and

ub,2 = uF,2; consequently, we find that:

S
(FF )
6

(uF,1, uF,2) =
uF,1 − uF,2 + i

uF,1 − uF,2 − i
S(FF )(uF,1, uF,2) .
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Fermion-antifermion

As previously mentioned, the fermion-antifermion scattering is associated to the decomposition

4 ⊗ 4̄ = 15 ⊕ 1. Turning to the Ω = 15 channel, no isotopic roots are involved, therefore the

eigenvalue equals the scalar factor:

S
(FF )
15

(uF,1, uF̄ ,1) = S(FF )(uF,1, uF̄ ,1) . (8.7)

The singlet channel instead is obtained from the solution with Ka = Kb = Kc = 1, where the

isotopic roots satisfy the constraints ua =
3
4
uF,1+

1
4
uF̄ ,1, ub,1 =

1
2
uF,1+

1
2
uF̄ ,1 and uc,1 =

1
4
uF,1+

3
4
uF̄ ,1.

As a consequence, we obtain as the eigenvalue for the Ω = 1 channel:

S
(FF )
1

(uF,1, uF̄ ,1) =
uF,1 − uF̄ ,1 + 2i

uF,1 − uF̄ ,1 − 2i
S(FF )(uF,1, uF̄ ,1) . (8.8)

The same result holds for small fermions.

9 Classification of possible bound states

9.1 String solutions at large size

In the large size limit, R → +∞, solutions to Bethe Ansatz equations show many (numerical

and analytic) evidences organise into strings or stacks (generalised strings with different isospin

or nested degrees of freedom). Their derivation follows as customary [54]. Let a complex rapidity

u∗k exist, whose imaginary part be positive (negative), therefore the factor eiRP (u∗
k
) goes to zero

(infinity) in the large R limit: then another rapidity u∗
′

j must exist with the same real part but

imaginary part lowered (raised) by an appropriate quantity, in order to drive rational factors in

S∗∗′(u∗k, u
∗′
j ) to infinity (zero), thus balancing the ABA equations. The process can continue by

involving further rapidities displaced at regular distances until a string of m roots disposed around

a real ’center’ is formed. Since the ’wave function’ of a string of m roots is by construction rapidly

decreasing at ±∞, we naturally associate such a configuration with a bound state ofm ’elementary’

excitations.

In this section we discuss some possible bound states, with the important caveat that the list

below is not meant to provide a complete classification of the particles living in the theory. This

is indeed an interesting problem in itself and will be possibly dealt with in a future publication.

We also remark that, strictly speaking, the complexes of solutions we provide below are meant

to be valid for finite values of the coupling constant, i.e. g 6= 0 and g <∞. At g = +∞ the situation

ought to be different, as it can be inferred from considerations on the classical (quadratic) string

theory action. Indeed, its small fluctuations in the bosonic sector consists of two mass =
√
2 (real)

bosons and one mass 2 (real) boson, besides the five massless bosons (of the O(6) non-linear sigma

model) [6, 49]. Seemingly, this mass 2 boson degree of freedom is missing in the gauge theory,
13 but, in the following, we find evidence that, with this mass, there is indeed a composite state

13Before us, many authors shared this concern, as, for instance, [49, 20, 52, 39].
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made up of a small fermion and a small anti-fermion. By means of the string mechanism discussed

before, this bound state cannot exist at any finite g, since divergences (zeroes) of the phase factor

eiRP (uf ) of small fermions for complex rapidities go together with divergences (zeroes) of the S

matrices, then not compensating each other. However, this remains true as long as g is finite,

while this bound state can appear as a new particle’ when the value of g is strictly +∞. In fact,

the point g = +∞ is rather peculiar and singular, as complex scaled rapidities (ū) all collapse

into the real axis, thus making possible a solution of ABA equations with a stack with two (small)

fermion-antifermion rapidities (besides the isotopic rapidities, cf. below). This is indeed a new

(real) boson, named here ’meson’, coming to life only in the classical string regime g = +∞ 14. In

summary, our following analysis of the ABA scattering on the GKP vacuum shows evidence for

the existence of this bosonic particle with mass 2 as long as g → +∞. And not only: the same

mechanism at g → +∞ sustains the existence of a bound state of k = 1, 2, 3, . . . mesons with mass

mk = 2k (zero static binding energy, as well as for gluon bound states). This is a new bosonic

sector with respect to the classical (quadratic) string spectrum (and, a fortiori, to previous gauge

theory analyses), but yet indispensable to be considered in the BSV series for 4D amplitudes, – as

we shall see –, for making checks with and reproducing the string minimal area solution (in other

words the Thermodynamic Bubble Ansatz (TBA)). On the other end if this is an important way

to check the validity of the series, it also confirms the pentagonal amplitude values and the 2D

scattering factors entailing them. Eventually, the formation of mesons and bound states thereof

shows a sort of confinement phenomenon at strong coupling as for the 4D amplitudes/Wilson loops,

in that the contribution of the constituents, the fermions, to them is subtlety sub-dominant (as

g → +∞, cf. [39] and below). In fact, this negligibility is not true for the 2D scattering amplitudes

in themselves, but in their contribution to the 4D ones.

A more mathematical understanding of the small fermion-antifermion state ought to arrive [57]

from the collision of the poles into the integration (real) axis [58, 59, 60, 61, 39]: this will give us

the opportunity to explain the meson bound states and hence the confinement under a different

light.15

• Gluonic strings:

A first example is provided by strings made up of gluons or, alternatively, barred gluons, as

equations (E.6) and (E.7) suggest. In this case one remarks the emergence of complex of solutions

characterized by length m and real centre ug,mk :

ug,mk′ = ug,mk +
i

2
(m− 1− 2k′) , k′ = 0, ..., m− 1 ; (9.1)

the very same structure may be built by assembling barred-gluon rapidities, too. We will study

more extensively bound states of gluons in next subsection, where we will show that they can be

also obtained starting from the BMN vacuum by considering stacks of roots of type 1, 2 and 3.

14Only at this value its rapidity, otherwise virtual [55], enters the physical domain [56, 55].
15We are particularly grateful to I. Kostov and J.-E. Bourgine for explanatory discussions on this point.
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• More bound states:

Along with gluonic strings, whose structure is quite ordinary, the ABA equations also admit the

existence of more peculiar kinds of complexes whose composition and length result completely

determined by the SU(4) symmetry of the vacuum. In fact, the structure of the Bethe equations

for the SU(4) spin chain (7.1), reflected in the equations for auxiliary roots (E.8, E.9, E.10),

prevents these strings from including more than two massive roots (or exceptionally three, as in

(9.6) below), intertwined with isotopic roots which are spaced by a constant distance fully fixed by

(7.1). The presence of isotopic roots is necessary for these strings to effectively represent solutions

of the ABA equations and live in some definite scattering channel (see section 8), thus behaving

in a broad sense like bound states which belong to some SU(4) ’isospin’ multiplet. Below, such

peculiar strings are listed according to their composition and SU(4) behaviour.

• Bound states of large fermions in the 6 channel:

uF,k,± = uk ±
i

2
ua,k = uk ub,k,± = uk ±

i

2
; (9.2)

the same structure occurs with antifermions too, upon substituting fermions with antifermions and

the central a-root with a c-root.

• Bound states of large fermions in the singlet channel16:

uF,k = uM,k + i ua,k = uM,k +
i

2
ub,k = uM,k

uF̄ ,k = uM,k − i uc,k = uM,k −
i

2
(9.3)

(the complex conjugate of (9.3) is a solution, too).

• Bound states of scalars in the 15 channel:

uh,k,± = uk ±
i

2
ub,k = uk . (9.4)

• Bound states of scalars in the singlet channel:

uh,k,± = uk ± i ub,k,± = uk ±
i

2
ua,k = uc,k = uk ; (9.5)

it is important to point out that these strings made of holes do not survive to the strong coupling

limit in the non perturbative regime, as they are destroyed by poles of (4.1). Indeed, it is a well

16Anyway we remark that bound states of this sort do not play any role in the strong coupling perturbative regime

and, noticeably, their centres need to lie on the real axis in the region |uM,k| <
√
2g, hence inside a square root

branch cut in the large fermionic u-rapidity plane, so that perhaps they should not even be considered physical. It

is thus far from being obvious that any relation exist with what in the following we will refer to as ’meson’ bound

states, which exclusively subsist at g = ∞ and are made of small fermions, instead.
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known result that in this regime the scalar dynamics is regulated by the O(6) non-linear σ-model,

which lacks bound states.

• Mixed bound states of large fermions and gluons in the 10 channel:

uF,k,± = uk ±
i

2
ugk = uk . (9.6)

(the same also holds for barred-gluons and large antifermions). 17

• (Purely) Magnonic strings:

Also three distinct kinds of massless strings made of isotopic roots only, one for each type, can be

found:

uAa,k,j = uAa,k +
i

2
(A− 1− 2j) , j = 0, ..., A− 1 ;

uBb,k,j = uBb,k +
i

2
(B − 1− 2j) , j = 0, ..., B − 1 ; (9.7)

uCc,k,j = uCc,k +
i

2
(C − 1− 2j) , j = 0, ..., C − 1 .

9.2 Bound states of gluons

On the BMN vacuum with a sea of u4 roots bound states of excitations F+⊥ with rapidity ug,mk

can be constructed [20] as stacks involving type 1, type 2 and type 3 roots:

u1,k = ug,mk +
i

2
(m− 2− 2k′) , k′ = 0, ..., m− 2

u2,k = ug,mk +
i

2
(m− 1− 2k′) , k′ = 0, ..., m− 1 (9.8)

u3,k = ug,mk +
i

2
(m− 2k′) , k′ = 0, ..., m .

Analogously, bound states of gauge fields F̄+⊥ with rapidity uḡ,mk are obtained from (9.8), with

g → ḡ and u1, u2, u3 → u5, u6, u7. In presence of bound states of gluons Bethe equations should be

modified as follows.

Bethe equations for bound states of F+⊥ (N l
g (N

l
ḡ) is the number of bound states of F+⊥ (F̄+⊥)

17In addition to the string configurations listed above, several further complexes of solutions could be found,

although strictly speaking they should not be considered actual bound states, since they are not endowed with real

valued momenta; an example is offered by strings made of one single scalar and one fermion (or antifermion) bound

together, whose distance gets fixed by the SU(4) symmetry to 3i
2 , and which could be probably related to a similar

state described in [39].
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with length l: their centers are indicated with ug,lj (uḡ,lj )) are

1 = eiRP
(g)
m (ug,m

k
)+iD

(g)
m (ug,m

k
)
+∞
∏

l=1

N l
g
∏

j=1

S
(gg)
ml (ug,mk , ug,lj )

+∞
∏

l=1

N l
ḡ
∏

j=1

S
(gḡ)
ml (ug,mk , uḡ,lj )

H
∏

h=1

S(gs)
m (ug,mk , uh) ·

·
NF
∏

j=1

S(gF )
m (ug,mk , uF,j)

NF̄
∏

j=1

S(gF̄ )
m (ug,mk , uF̄ ,j)

Nf
∏

j=1

S(gf)
m (ug,mk , uf,j)

Nf̄
∏

j=1

S(gf̄)
m (ug,mk , uf̄ ,j) , (9.9)

where momentum and defect are given by

P (g)
m (u) = −

∫ +∞

−∞

dv

2π
[χ(v, u|m) + χ(−v, u|m)]

[

1− σBES(v)

4

]

, (9.10)

D(g)
m (u) = −

∫ +∞

−∞

dv

2π
[χ(v, u|m) + χ(−v, u|m)]

d

dv
P̃ (v) (9.11)

and the various scattering factors are listed in Appendix C.

Exchanging g with ḡ we get Bethe equations for bound states of F̄+⊥. The other equations can

be obtained from the equations written when simple gluons are present (and collected in Appendix

E) by means of the replacements:

Ng
∏

j=1

S∗g(u∗, u
g
j ) →

+∞
∏

l=1

N
(l)
g
∏

j=1

S
(∗g)
l (u∗, u

g,l
j ) ,

Nḡ
∏

j=1

S∗ḡ(u∗, u
ḡ
j) →

+∞
∏

l=1

N
(l)
ḡ
∏

j=1

S
(∗ḡ)
l (u∗, u

ḡ,l
j ) . (9.12)

We now show that equations (9.9) and others, which constrain centers of the string (9.8), are not

independent of equations describing excitations on the GKP vacuum, but actually can be obtained

from these by considering strings involving gluons. It turns out that the strings we have to consider

are

ugk′ = ug,mk +
i

2
(m− 1− 2k′) , k′ = 0, ..., m− 1 (9.13)

uḡk′ = uḡ,mk +
i

2
(m− 1− 2k′) , k′ = 0, ..., m− 1 , (9.14)

where the real centers of the strings are in the region |ug,mk | <
√
2g, |uḡ,mk | <

√
2g. In order to get

(9.9), we first have to consider equations for gluons,

1 = eiRP (g)(ug

k′ )+iD(g)(ug

k′ )
Ng
∏

j=1

ugk′ − ugj + i

ugk′ − ugj − i
S
(gg)
red (u

g
k′, u

g
j )

NF
∏

j=1

ugk′ − uF,j +
i
2

ugk′ − uF,j − i
2

S
(gF )
red (ugk′, uF,j) ·

·
Nf
∏

j=1

ugk′ − uf,j +
i
2

ugk′ − uf,j − i
2

S
(gf)
red (ugk′, uf,j)

H
∏

h=1

S(gs)(ugk′, uh) · (9.15)

·
Nḡ
∏

j=1

S(gḡ)(ugk′, u
ḡ
j)

NF̄
∏

j=1

S(gF̄ )(ugk′, uF̄ ,j)

Nf̄
∏

j=1

S(gf̄)(ugk′, uf̄ ,j) ,
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where Sred stands for the S factor deprived of the rational factors −e±iχ0 , specialised to rapidities

(9.13). Performing the products over k′ we arrive at the equation

1 = eiRP
(g)
m (ug,m

k
)+iD

(g)
m (ug,m

k
)

Ng
∏

j=1

ug,mk − ugj +
i
2
(m+ 1)

ug,mk − ugj − i
2
(m+ 1)

ug,mk − ugj +
i
2
(m− 1)

ug,mk − ugj − i
2
(m− 1)

S
(gg)
red,m(u

g,m
k , ugj ) ·

·
NF
∏

j=1

ug,mk − uF,j +
im
2

ug,mk − uF,j − im
2

S
(gF )
red,m(u

g,m
k , uF,j)

Nf
∏

j=1

ug,mk − uf,j +
im
2

ug,mk − uf,j − im
2

S
(gf)
red,m(u

g,m
k , uf,j)

H
∏

h=1

S(gs)
m (ug,mk , uh)

·
Nḡ
∏

j=1

S(gḡ)
m (ug,mk , uḡj )

NF̄
∏

j=1

S(gF̄ )
m (ug,mk , uF̄ ,j)

Nf̄
∏

j=1

S(gf̄)
m (ug,mk , uf̄ ,j) , (9.16)

where

S
(g∗)
red,m(u, v) =

m−1
2
∏

l=−m−1
2

S
(g∗)
red (u+ il, v) , S(g∗)

m (u, v) =

m−1
2
∏

l=−m−1
2

S(g∗)
m (u+ il, v) . (9.17)

It is now immediate to recognize the scattering factors between a bound state of F+⊥ with center

u and ’length’ m and a fermion or a scalar:

S(gF )
m (u, v) =

u− v + im
2

u− v − im
2

S
(gF )
red,m(u, v) , S(gf)

m (u, v) =
u− v + im

2

u− v − im
2

S
(gf)
red,m(u, v) ,

S(gF̄ )
m (u, v) = S

(gF̄ )
red,m(u, v) , S(gf̄)

m (u, v) = S
(gf̄)
red,m(u, v) , S(gs)

m (u, v) = S
(gs)
red,m(u, v) . (9.18)

By means of (C.35) one shows that these factors equal the ones appearing in (9.9). Equations

(9.16) are then completed by taking into account that rapidities ugj , u
ḡ
j appear into strings (9.13,

9.14). Because of the properties

l−1
∏

k′=0

ug,mk − ug,lj − i
2
(l − 1− 2k′) + i

2
(m+ 1)

ug,mk − ug,lj − i
2
(l − 1− 2k′)− i

2
(m+ 1)

ug,mk − ug,lj − i
2
(l − 1− 2k′) + i

2
(m− 1)

ug,mk − ug,lj − i
2
(l − 1− 2k′)− i

2
(m− 1)

·

·S(gg)
red,m(u

g,m
k , ug,lj +

i

2
(l − 1− 2k′)) = S

(gg)
ml (ug,mk , ug,lj ) (9.19)

l−1
∏

k′=0

S(gḡ)
m (ug,mk , uḡ,lj +

i

2
(l − 1− 2k′)) = S

(gḡ)
ml (ug,mk , uḡ,lj ) (9.20)

which follow from (C.35), one finally finds that equations (9.9) are reproduced. In analogous

fashion other equations on the BMN vacuum are reproduced starting from equations on the GKP

vacuum.

Strong coupling limit

In the strong coupling perturbative regime we use the following results

exp [−iχ̃(u, v|m, l)] = exp

[ √
2ml

g(v̄ − ū)
+O(1/g3)

]

(9.21)
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and

χ(w, u|m) + Φ(w) =
m√

2g(ū− w̄)
+O(1/g2) , when |w̄| > 1 (9.22)

χ(w, u|m) + Φ(w) = O(1/g) , when |w̄| < 1 . (9.23)

Repeating all the steps we did for gluons we write up to terms O(1/g2) the scattering factor

between two bound states of m and l gluons, respectively, in the perturbative regime as

S
(gg)
ml (u, v) = exp

[

iml√
2g(ū− v̄)

(

1 +
1

2

(

1 + ū

1− ū

)1/4(
1− v̄

1 + v̄

)1/4

+
1

2

(

1− ū

1 + ū

)1/4(
1 + v̄

1− v̄

)1/4
)]

.

(9.24)

9.3 Mesons and their bound states (at infinite coupling)

As hinted before, at infinite coupling in the perturbative regime bound states of a small fermion

and a small antifermion are present. As anticipated, we will call these states ’mesons’.

The ABA equations satisfied by mesons are

1 = eiR[P (M)(θM,k)] ei[D
(M)(θM,k)]

H
∏

h=1

SMs(θM,k, uh)

Ng
∏

j=1

SMg(θM,k, θ
g
j ) ·

·
Nḡ
∏

j=1

SMḡ(θM,k, θ
ḡ
j )

Nf
∏

j=1

SMf(θM,k, θf,j)

Nf̄
∏

j=1

SMf̄(θM,k, θf̄ ,j)

NM
∏

j=1

SMM(θM,k, θM,j) , (9.25)

where P (M)(θ) = 2 sinh θ, D(M)(θ) = −2 ln gP (M)(θ) and

S(Ms)(θM , θh) = exp

[

i√
2g

1

coth 2θM − 1

]

[S(fs)(θM , uh)]
2 (9.26)

S(Mg)(θM , θ
g) = S(fg)(θM , θ

g) S(f̄g)(θM , θ
g) (9.27)

S(Mḡ)(θM , θ
ḡ) = S(fḡ)(θM , θ

ḡ) S(f̄ ḡ)(θM , θ
ḡ) (9.28)

S(Mf)(θM , θf ) = exp

[

i√
2g

1

(coth θM − coth θf )
+O

(

1

g2

)]

[S(ff)(θM , θf )]
2 (9.29)

S(Mf̄)(θM , θf̄ ) = exp

[

i√
2g

1

(coth θM − coth θf̄ )
+O

(

1

g2

)]

[S(ff)(θM , θf̄ )]
2 (9.30)

S(MM)(θM , θ
′
M) = exp

[

i
√
2

g

1

(coth θM − coth θ′M)
+O

(

1

g2

)

]

[S(ff)(θM , θ
′
M)]4 (9.31)

Matrix S(fs)(θM , uh) is given by (4.72), with v̄ = coth 2θM ; the S matrices in the right hand sides

of previous equations can be found in Appendix C.3.
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Concentrating on (9.31), we note that the exponential in the right hand side is the strong

coupling limit of a rational factor of the form
uM−u′

M+i

uM−u′
M

−i
. This suggests that bound states of mesons

may also exist, represented by strings in which all roots collapse on the real axis. The scattering

phase between a bound state of l mesons and a bound state of m mesons is then

S
(MM)
lm (θ, θ′) =

[

S(MM)(θ, θ′)
]lm

, (9.32)

while the scattering phase between a bound state of l mesons and a bound state of m gluons is

S
(Mg)
lm (θ, θ′) = [S

(gM)
ml (θ′, θ)]−1 = [S(Mg)(θ, θ′)]lm , S

(Mḡ)
lm (θ, θ′) = [S

(ḡM)
ml (θ′, θ)]−1 = [S(Mḡ)(θ, θ′)]lm .

(9.33)

Explicit expressions for (9.32, 9.33) in terms of hyperbolic variables are given by formulæ (C.45,

C.46) reported in Appendix C.

10 Pentagonal amplitudes at strong coupling (perturba-

tive regime) and confinement

An important application of the above scattering data, which implies a non-trivial check of them,

is the construction of the so-called pentagonal amplitudes, P [37, 38, 39, 40, 41]. The latter, in

their turn, are the building blocks of an infinite expansion – the BSV series – of the gluonic (MHV)

scattering amplitudes. In this section, we want to compute the pentagonal factors, P , relevant at

large g, so to prepare the analysis of the BSV series (at strong coupling) in next section.

The BSV series is a sum over the (intermediate) multi-particle states, where the particles may

be, – at generic finite coupling –, scalars, fermions, gluons and bound states thereof, as analysed

above. The simplest example is provided by the six-particle amplitude (or, in other terms, the

equivalent hexagonal Wilson loop)

Whex =

+∞
∑

N=0

1

N !

∑

a1

· · ·
∑

aN

∫ N
∏

i=1

[

dui
2π

µai(ui)e
−τEai

(ui)+iσpai (ui)+imiφ

]

×

× Pa1...aN (0|u1...uN)Pa1...aN (−uN ...− u1|0) , (10.1)

which is expressed by means of the measures µai(ui) (corresponding to quadrangular amplitudes)

and the multi-particle pentagonal amplitudes Pa1...aN (0|u1...uN), representing the transition from

the vacuum to an intermediate state with N particles of the kinds listed above, each one associated

to a label ai. When we go to the strong coupling limit, we have to disentangle the integrations

over internal rapidities by performing the limit g → +∞ in the integrand. This procedure means

that we have to add different contributions.

The first one comes from performing the limit g → +∞ with integration variables fixed. This

part depends on excitations in the non-perturbative regime and is dominated by scalars, and may

reserve very interesting surprises as anticipated in [40]. In fact, this contribution would come from

a (genuinely) quantised string in S5 and would elude the minimal area argument of the AdS5
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string. However, this regime misses contributions from regions in which rapidities are large: these

are recovered by adding the integrals in which integration rapidities are scaled before taking the

limit g → +∞.

More precisely, if we scale the integration rapidity u =
√
2gū, with ū fixed, we have the two

following regimes. If |ū| > 1 we are in the giant hole regime. In this regime all the excitations

behave in the same way. In particular, as we showed in Section 4, scattering phases −i lnS between

any pair of excitations are all the same and are all proportional to the coupling g (4.3). The same

happens to energies and momenta [20]. This property is crucial, since it implies that contributions

to scattering amplitudes coming from integrations in these regions (all scaled rapidities |ū| > 1)

are exponentially suppressed.

Instead, things are different if |ū| < 1, i.e. in the (string) perturbative regime (for all particles

except scalars: the rapidity of the latter in this regime does not scale, but instead ū = u+ 2
π
lnm(g),

where m(g) ∼ g1/4e
− π√

2
g
, as seen above). In this regime, energy, momentum and scattering factors

are expanded in inverse powers of the coupling constant g. Additional structure is added when

expressing the pentagonal transition between a M particle state to a N particle state in terms

of the one-particle-to-one-particle transitions because of the matrix representation carried by the

single particle (thus the singlets makes an exception to this). In this operation polynomials in the

rapidity appear as denominators, taking into account the different representations to which the S

matrices can belong. For instance, in the case of the hexagon (10.1), extensively discussed below, as

we start from the GKP vacuum, we need consider only pentagonal amplitudes to the other possible

singlet states. In particular, this polynomial is a monomial in the case of the transition (from the

vacuum) to a two particle state of a fermion and an anti-fermion (which, though, belong to the 4

and 4̄, respectively). This monomial ’squares’ in the integrand of the amplitude contribution to

(10.1)

P (ff̄)(0|u, v)P (f̄f)(−v,−u|0) = 1

(u− v)2 + 4

1

P (ff̄)(u|v)P (f̄f)(v|u) . (10.2)

Instead, the transition from the vacuum into the two scalar singlet is even more depressed, albeit

the rapidity does not scale (for a scalar, but is added a g-depending constant). In fact, the P factor

contains at the denominator a polynomial of degree 2 multiplied by g2 (cf. [38, 39] for details),

and then the two scalar contribution to the hexagonal amplitude writes down:

W
(ss)
hex = 3

∫

dudv

(2π)2
µs(u)µs(v)

g4[(u− v)2 + 4][(u− v)2 + 1]

e−τ [Es(u)+Es(v)]+iσ[ps(u)+ps(v)]

P (ss)(u|v)P (ss)(v|u) , (10.3)

where we ought to consider that µs(u) = O(g) and P (ss)(u|v) = O(1/g). Hence, this integral turns

out to be of order W
(ss)
hex = O(g0), then subdominant with respects to semi-classical approxima-

tion (contributed by the gluons, for instance). Actually, while the scalar contributions are really

subdominant in the perturbative regime, on the contrary fermion ones behave in a subtle manner:

in fact, the lorentzian function in front of (10.2) would entail a contribution from the singularity

ū− v̄ = ±
√
2i/g pinching the real axis when g → +∞ [39]. But in our picture this is is the con-

tribution given by their bound state, the meson indeed. Moreover, also the greater multi-fermion

coalescence are taken into account by the multi-meson and meson-bound-state contributions, cf.
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below. In summary, we are in the presence of a phenomenon in which the fermions coalesces at

least in a fermion and anti-fermion couple and disappear from the spectrum as free particles: as

anticipated, this is a sort of confinement typical of MHV gluon scattering amplitudes/Wilson loops

at strong coupling, not evident at first glance from the 2D scattering factors. To be fully precise,

although the string theory minimal surface confirms this disappearance, and the appearance of the

meson [49, 6] and its bound states [32, 31, 33], nevertheless a detailed multi-fermion description is

missing so far [57].

Concluding this preamble, these polynomials in the denominator produce in the general case

negative powers of the coupling constant after scaling18 the rapidities and thus ’depress’ the ampli-

tude. Of course, these polynomials are absent if the excitations belong to a SU(4) singlet (see also

[38, 39] for a detailed analysis of the two particle case). Therefore, we can argue that the leading

contributions in the perturbative regime are due to particles behaving as singlets under SU(4),

indeed. They are gluons and their bound states, as already proven by the detailed two particle

analysis of [39]. But, at strong coupling, we have shown necessary to add mesons and their bound

states to the spectrum, as well.

Now, the pentagonal amplitudes P enjoy at general coupling a series of axioms depending

on the S-matrix entries. Therefore for the latter we need to use our previous (strong coupling)

perturbative expansions at leading order and ’solve’ the axioms. For exposition’s sake, we give

in the following the complete list of the P factors (gluon-gluon, gluon-meson, meson-meson and

bound states, contributing at leading order), leaving the details of their derivation in the Appendix

C19.

We start from the gluon and then the bound states of ℓ of them. In this gluonic sector the

rapidity enjoys (at perturbative strong coupling) the parametrisation u =
√
2g tanh 2θ. Thanks

to this, the three axioms (6-8) in [37] for the gluon (g) and its barred companion (ḡ, the other

component of the massless spin 1 field) simplify their arguments:

P (gg)(−θ| − θ′) = P (gg)(θ′|θ), P (gḡ)(−θ| − θ′) = P (gḡ)(θ′|θ) , (10.4)

P (gg)(θ|θ′) = S(gg)(θ, θ′)P (gg)(θ′|θ), P (gḡ)(θ|θ′) = S(gḡ)(θ, θ′)P (gḡ)(θ′|θ) , (10.5)

P (gg)(θ − iπ/2|θ′) = P (gḡ)(θ′|θ) , (10.6)

and we can solve them with input the leading order expansion of the gluon-gluon scattering matrix

(C.40, C.41). We obtain

αP (gg)(θ, θ′) = 1 +
i

2
√
2g

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[1 + cosh(θ − θ′)− i sinh(θ − θ′)] +O(1/g2) , (10.7)

αP (gḡ)(θ, θ′) = 1 +
i

2
√
2g

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[−1 + cosh(θ − θ′)− i sinh(θ − θ′)] +O(1/g2) , (10.8)

18Rapidity of scalars do not need to scale.
19We have to say that the expansion of the gluon-gluon P factors – formulæ (10.7,10.8) – previously appeared in

[37].
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and the symmetric channels P (ḡḡ)(θ, θ′) = P (gg)(θ, θ′), P (ḡg)(θ, θ′) = P (gḡ)(θ, θ′). The constant α

may equal ±1: its precise value is not fixed by the axioms, but by the comparison with data derived

from the Thermodynamic Bubble Ansatz (TBA) in [31]. As we wrote above, formulæ (10.7, 10.8)

with α = 1 have been already reported in [37].

For what concerns P factors of gluon bound states, we may conjecture, along the lines of

the previous equations (10.6) for the single gluons, the following functional relations as axioms:

P
(gg)
ml (θ, θ′) = P

(ḡḡ)
ml (θ, θ′), P

(gḡ)
ml (θ, θ′) = P

(ḡg)
lm (θ, θ′) and moreover

P
(gg)
lm (−θ,−θ′) = P

(gg)
ml (θ′, θ) , P

(gg)
lm (θ − iπ/2, θ′) = P

(gḡ)
ml (θ′, θ) ,

P
(gg)
lm (θ, θ′) = S

(gg)
lm (θ, θ′)P

(gg)
ml (θ′, θ) , P

(gḡ)
lm (θ, θ′) = S

(gḡ)
lm (θ, θ′)P

(ḡg)
ml (θ′, θ) . (10.9)

Moreover, we recall that the S-matrix factors are simply multiplicative at perturbative strong

coupling: S
(gg)
ml (θ, θ′) = [S(gg)(θ, θ′)]ml and S

(gḡ)
ml (θ, θ′) = [S(gḡ)(θ, θ′)]ml. Therefore, solutions to

(10.9) should enjoy the same property, which entails upon expansion for large g

αmlP
(gg)
ml (θ, θ′) = 1 +

iml

2
√
2g

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[1 + cosh(θ − θ′)− i sinh(θ − θ′)] +O(1/g2) , (10.10)

αmlP
(gḡ)
ml (θ, θ′) = 1− iml

2
√
2g

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[1− cosh(θ − θ′) + i sinh(θ − θ′)] +O(1/g2) , (10.11)

or in barred rapidities ū = tanh 2θ

αmlP
(gg)
ml (ū, ū′) = 1 +

iml

2
√
2g

1

ū− ū′

[

1 +

+
1

2
(1− i)

(

1 + ū

1− ū

)1/4(
1− ū′

1 + ū′

)1/4

+
1

2
(1 + i)

(

1 + ū′

1− ū′

)1/4(
1− ū

1 + ū

)1/4
]

(10.12)

αmlP
(gḡ)
ml (ū, ū′) = 1− iml

2
√
2g

1

ū− ū′

[

1−

−1

2
(1− i)

(

1 + ū

1− ū

)1/4(
1− ū′

1 + ū′

)1/4

− 1

2
(1 + i)

(

1 + ū′

1− ū′

)1/4(
1− ū

1 + ū

)1/4
]

(10.13)

Overall constants αml = αlm can be equal to ±1 and are constrained by the comparison with the

TBA of [31].

Let us now consider the meson and its bound states, and in particular recall that for all of

them the rapidity enjoys the perturbative parametrisation u =
√
2g coth 2θ. As we discussed

before, these are self-conjugate particles and this property allows us to postulate the following

set of functional relations (which now will be meaningful only in the perturbative strong coupling

regime, where the particle does exist) for the single meson P factor:

P (MM)(θ, θ′) = P (MM)(−θ′,−θ) ,
P (MM)(θ, θ′) = S(MM)(θ, θ′)P (MM)(θ′, θ) ,

P (MM)(θ − iπ/2, θ′) = P (MM)(θ′, θ) , (10.14)
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where S(MM) is given by (C.45). We write the solution of (10.14) as

βP (MM)(θ, θ′) = 1− 1√
2g

i sinh 2θ sinh 2θ′

sinh(2θ − 2θ′)

√
2 cosh

(

θ − θ′ − i
π

4

)

+O(1/g2) , (10.15)

where β = ±1. For mesons bound states, we have anew the multiplicativity of the scattering

factors in the perturbative regime, namely S
(MM)
ml (θ, θ′) = [S(MM)(θ, θ′)]ml. Which, in its turn,

imply the same property on P factors, i.e. upon expanding at large g

βmlP
(MM)
ml (θ, θ′) = 1− ml√

2g

i sinh 2θ sinh 2θ′

sinh(2θ − 2θ′)

√
2 cosh

(

θ − θ′ − i
π

4

)

+O(1/g2) , (10.16)

or in barred variables ū = coth 2θ

βmlP
(MM)
ml (ū, ū′) = 1 +

iml

2
√
2g

1

ū− ū′
·

·
[

(1− i)

(

ū+ 1

ū− 1

)1/4(
ū′ − 1

ū′ + 1

)1/4

+ (1 + i)

(

ū− 1

ū+ 1

)1/4(
ū′ + 1

ū′ − 1

)1/4
]

, (10.17)

where βml = βlm = ±1.

Eventually20, we consider the scattering between (bound states of) mesons and (bound states

of) gluons. We are now looking for functions P
(Mg)
ml , P

(Mḡ)
ml , P

(gM)
ml , P

(ḡM)
ml which may conjecturally

satisfy the functional properties (meaningful only at perturbative strong coupling)

P
(ab)
ml (−θ,−θ′) = P

(ba)
lm (θ′, θ) ,

P
(Mg)
ml (θ, θ′) = S

(Mg)
ml (θ, θ′)P

(gM)
lm (θ′, θ) , P

(Mḡ)
ml (θ, θ′) = S

(Mḡ)
ml (θ, θ′)P

(ḡM)
lm (θ′, θ) ,

P
(Mg)
ml

(

θ − iπ

2
, θ′
)

= P
(ḡM)
lm (θ′, θ) , P

(Mḡ)
ml

(

θ − iπ

2
, θ′
)

= P
(gM)
lm (θ′, θ) . (10.19)

We write solutions to these equations in the form γabmlP
(ab)
ml = 1 + ml 2π√

λ
K(ab) + O

(

1
λ

)

, where

γabml = ±1, γMg
ml = γgMlm = γMḡ

ml = γ ḡMlm and

K(Mg)(θ, θ′) = K(Mḡ)(θ, θ′) =
sinh 2θ cosh 2θ′√
2 cosh(2θ − 2θ′)

[sinh(θ − θ′) + i cosh(θ − θ′)] , (10.20)

K(gM)(θ′, θ) = K(ḡM)(θ′, θ) =
sinh 2θ cosh 2θ′√
2 cosh(2θ − 2θ′)

[sinh(θ − θ′)− i cosh(θ − θ′)] , (10.21)

20Even if contributions of small fermions to amplitudes is suppressed at strong coupling with respect to gluons

and mesons, we give also the strong coupling limit of their P factors. We refer to formulæ (38) of [39] and use

formulæ (C.42, C.49) for the (strong coupling) perturbative regime of the fermion-(anti)fermion scattering factor

and its mirror, respectively. We eventually obtain

[P (ff)(θ, θ′)]2 =
coth θ coth θ′ − 1

2g2(coth 2θ − coth 2θ′)2

[

1− i√
2g

sinh 2θ sinh 2θ′

sinh(2θ′ − 2θ)

(

1− cosh(θ − θ′ − iπ/4)√
2

)

]

[P (ff̄)(θ, θ′)]2 =
sinh θ sinh θ′

cosh(θ − θ′)

[

1 +
i

2g

sinh 2θ sinh 2θ′

sinh(2θ′ − 2θ)
cosh(θ − θ′ − iπ/4)

]

. (10.18)
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or alternatively in the barred variables

K(Mg)(ū, ū′) =
1

2
√
2

1

ū− ū′

[

(1 + i)

(

ū+ 1

ū− 1

)1/4(
1− ū′

1 + ū′

)1/4

− (1− i)

(

ū− 1

ū+ 1

)1/4(
1 + ū′

1− ū′

)1/4
]

(10.22)

K(gM)(ū′, ū) =
1

2
√
2

1

ū− ū′

[

(1− i)

(

ū+ 1

ū− 1

)1/4(
1− ū′

1 + ū′

)1/4

− (1 + i)

(

ū− 1

ū+ 1

)1/4(
1 + ū′

1− ū′

)1/4
]

.

(10.23)

11 Hexagon at strong coupling

11.1 Aim and assumptions

Following [37, 39, 39], we want to expand an hexagonal Wilson loop

Whex =

+∞
∑

N=0

1

N !

∑

a1

· · ·
∑

aN

∫ N
∏

i=1

[

dui
2π

µ(ui)e
−τE(ui)+iσp(ui)+imiφ

]

Pa1...aN (0|u1...uN)Pa1...aN (−uN ...−u1|0)

(11.1)

at strong coupling. As argued above, in this regime intermediate states which contribute are

gluons and their bound states, together with mesons (spinless mass two excitations) and their

bound states. All of them are singlets and then for their pentagonal amplitudes a simple product

and inversions hold when changing a rapidity from in to out:

Pa1...aN (0|u1...uN)Pa1...aN (−uN ....− u1|0) =
N
∏

i<j

1

Pai,aj (ui|uj)Paj ,ai(uj|ui)
. (11.2)

This formula entails an easy product to appear inside the hexagonal amplitude:

Whex =
+∞
∑

N=0

1

N !

∑

a1

· · ·
∑

aN

∫ N
∏

k=1

[

duk
2π

µak(uk)e
−τEak

(uk)+iσpak (uk)+imkφ

] N
∏

i<j

1

Pai,aj (ui|uj)Paj ,ai(uj|ui)
,

(11.3)

where the indices ak label the species of different particles (including bound states): this is the

formula we want first to match with initially, and then to sum up.

For the gluon and the bound states of ℓ of them, rapidity may be parametrised as u =√
2g tanh 2θ. Their energy and momentum are

Eg
ℓ (u) =

√
2ℓ cosh θ = ℓEg

1(u) , pgℓ(u) =
√
2ℓ sinh θ = ℓpg1(u) . (11.4)

Gluonic measure appearing in (11.3) is given by

du

2π
µg
ℓ(u) =

i

lim
θ′→θ

(θ′ − θ)P
(gg)
ℓℓ (θ, θ′)

dθ

2π
, (11.5)
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with P
(gg)
ℓℓ given by (10.10). In order to have agreement with TBA it is enough to choose αℓℓ =

(−1)ℓ−1. Then, the gluon bound-state measures become easily related to the single gluon one

du

2π
µg
ℓ(u) =

√
λ

2π
(−1)ℓ

dθ

πℓ2 cosh2 2θ
=
du

2π

(−1)ℓ−1

ℓ2
µg(u) . (11.6)

On the other hand, let us remind that the meson and its bound-states enjoy the rapidity parametri-

sation u =
√
2g coth 2θ with their energy and momentum given by

EM
m (u) = 2m cosh θ = mEM

1 (u) , pMm (u) = 2m sinh θ = mpM1 (u) . (11.7)

The measure for bound states of m mesons is

du

2π
µM
m (u) =

i

lim
θ′→θ

(θ′ − θ)P
(MM)
mm (θ, θ′)

dθ

2π
, (11.8)

with P
(MM)
mm given by (10.16). We choose βmm = (−1)m in order to have agreement with TBA.

Then, similarly to gluons, we obtain for the meson bound-state measures

du

2π
µM
m (u) =

√
λ

2π
(−1)m

dθ

πm2 sinh2 2θ
=
du

2π

(−1)m−1

m2
µM(u) . (11.9)

11.2 One particle

Let us start from one particle contribution. With ’one particle contribution’ we mean that in (11.3)

we consider only one insertion, which can be a gluon, a meson or bound states of such excitations.

We get

W
(1)
hex =

+∞
∑

ℓ=1

∫

du

2π
µg
ℓ(u)e

−τEg
ℓ
(u)+iσpg

ℓ
(u)
(

eiℓφ + e−iℓφ
)

+
+∞
∑

m=1

∫

du

2π
µM
m (u)e−τEM

m (u)+iσpMm (u) (11.10)

which at strong coupling reads

W
(1)
hex = +

√
λ

2π

+∞
∑

ℓ=1

∫ +∞

−∞

dθ

πℓ2 cosh2 2θ
(−1)ℓe−

√
2τℓ cosh θ+i

√
2σℓ sinh θ

(

eiℓφ + e−iℓφ
)

−

−
√
λ

2π

+∞
∑

m=1

∫ +∞

−∞

dθ

πm2 sinh2 2θ
(−1)me−2τm cosh θ+2iσm sinh θ =

=

√
λ

2π

∫ ∞

−∞

dθ

π cosh2 2θ

[

Li2

(

−e−
√
2τ cosh θ+i

√
2σ sinh θ+iφ

)

+ Li2

(

−e−
√
2τ cosh θ+i

√
2σ sinh θ−iφ

)]

−

−
√
λ

2π

∫ +∞

−∞

dθ

π sinh2 2θ
Li2
(

−e−2τ cosh θ+2iσ sinh θ
)

≡W
(g)
hex +W

(M)
hex , (11.11)

where Li2(z) =
+∞
∑

m=1

zm

m2 .
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11.3 Two particles

Let us pass to two particle terms W
(2)
hex = W

(gg)
hex +W

(MM)
hex +W

(Mg)
hex , in which we distinguish three

contributions: gluon-gluon, meson-meson and gluon-meson.

Gluon-gluon

Let us start from gluon-gluon:

W
(gg)
hex =

1

2

+∞
∑

ℓ1=1

+∞
∑

ℓ2=1

∫

du1
2π

µg
ℓ1
(u1)

du2
2π

µg
ℓ2
(u2)e

−τEg

ℓ1
(u)+iσpg

ℓ1
(u)e−τEg

ℓ2
(u)+iσpg

ℓ2
(u) · (11.12)

·
{

ei(ℓ1+ℓ2)φ + e−i(ℓ1+ℓ2)φ

P
(gg)
ℓ1ℓ2

(u1|u2)P (gg)
ℓ2ℓ1

(u2|u1)
+

ei(ℓ1−ℓ2)φ + e−i(ℓ1−ℓ2)φ

P
(gḡ)
ℓ1ℓ2

(u1|u2)P (ḡg)
ℓ2ℓ1

(u2|u1)

}

.

At strong coupling the symmetric product of P factors (10.7, 10.8), entering (11.12), enjoys the

property

1

P
(gg)
ℓ1ℓ2

(u1|u2)P (gg)
ℓ2ℓ1

(u2|u1)
=

1

P
(gḡ)
ℓ1ℓ2

(u1|u2)P (ḡg)
ℓ2ℓ1

(u2|u1)
= 1− 2π√

λ
ℓ1ℓ2K

(gg)
sym(θ1, θ2) , (11.13)

where

K(gg)
sym(θ1, θ2) =

cosh 2θ1 cosh 2θ2
2 cosh(θ1 − θ2)

. (11.14)

We get

W
(gg)
hex =

(

−
√
λ

2π

)2
1

2

+∞
∑

ℓ1=1

+∞
∑

ℓ2=1

∫ +∞

−∞

dθ1

πℓ21 cosh
2 2θ1

dθ2

πℓ22 cosh
2 2θ2

(−1)ℓ1+ℓ2 ·

· 4 cos ℓ1φ cos ℓ2φ e
−
√
2τℓ1 cosh θ1+i

√
2σℓ1 sinh θ1e−

√
2τℓ2 cosh θ2+i

√
2σℓ2 sinh θ2 + (11.15)

+

(

−
√
λ

2π

)

1

2

+∞
∑

ℓ1=1

+∞
∑

ℓ2=1

∫ +∞

−∞

dθ1

πℓ1 cosh
2 2θ1

dθ2

πℓ2 cosh
2 2θ2

K(gg)
sym(θ1, θ2)(−1)ℓ1+ℓ2 ·

· 4 cos ℓ1φ cos ℓ2φ e
−
√
2τℓ1 cosh θ1+i

√
2σℓ1 sinh θ1e−

√
2τℓ2 cosh θ2+i

√
2σℓ2 sinh θ2 . (11.16)

We can now perform the sums over ℓ1, ℓ2 and get

W
(gg)
hex =

1

2

[

W
(g)
hex

]2

− 1

2

√
λ

2π

∫ +∞

−∞

dθ1

π cosh2 2θ1

dθ2

π cosh2 2θ2
K(gg)

sym(θ1, θ2)L
g(θ1)L

g(θ2) , (11.17)

where we used the short notation

Lg(θ) = ln
[(

1 + eiφ−
√
2τ cosh θ+i

√
2σ sinh θ

)(

1 + e−iφ−
√
2τ cosh θ+i

√
2σ sinh θ

)]

. (11.18)

Meson-meson
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The meson-meson contribution is written in a completely analogous way:

W
(MM)
hex =

1

2

+∞
∑

m1=1

+∞
∑

m2=1

∫

du1
2π

µM
m1

(u1)
du2
2π

µM
m2

(u2)
1

P
(MM)
m1m2 (u1|u2)P (MM)

m2m1 (u2|u1)
·

· e−τEM
m1

(u)+iσpMm1
(u)e−τEM

m2
(u)+iσpMm2

(u) (11.19)

Expression (10.16) for the strong coupling limit of mesonic P factor implies the property

1

P
(MM)
m1m2 (u1|u2)P (MM)

m2m1 (u2|u1)
= 1− 2π√

λ
m1m2K

(MM)
sym (θ1, θ2) , (11.20)

where

K(MM)
sym (θ1, θ2) = −sinh 2θ1 sinh 2θ2

cosh(θ1 − θ2)
. (11.21)

We get

W
(MM)
hex =

(√
λ

2π

)2
1

2

+∞
∑

m1=1

+∞
∑

m2=1

∫ +∞

−∞

dθ1

πm2
1 sinh

2 2θ1

dθ2

πm2
2 sinh

2 2θ2
(−1)m1+m2 ·

· e−2τm1 cosh θ1+2iσm1 sinh θ1e−2τm2 cosh θ2+2iσm2 sinh θ2 +

+

(

−
√
λ

2π

)

1

2

+∞
∑

m1=1

+∞
∑

m2=1

∫ +∞

−∞

dθ1

πm1 sinh
2 2θ1

dθ2

πm2 sinh
2 2θ2

(−1)m1+m2K(MM)
sym (θ1, θ2) ·

· e−2τm1 cosh θ1+2iσm1 sinh θ1e−2τm2 cosh θ2+2iσm2 sinh θ2 .

We can now perform the sums over m1, m2 and get

W
(MM)
hex =

1

2

[

W
(M)
hex

]2

− 1

2

√
λ

2π

∫ +∞

−∞

dθ1

π sinh2 2θ1

dθ2

π sinh2 2θ2
K(MM)

sym (θ1, θ2)L
M(θ1)L

M (θ2) , (11.22)

where we used the short notation

LM(θ) = ln
(

1 + e−2τ cosh θ+2iσ sinh θ
)

. (11.23)

Meson-gluon

Next step is to consider the meson-gluon contribution

W
(Mg)
hex =

1

2

+∞
∑

m=1

+∞
∑

ℓ=1

∫

du1
2π

µM
m (u1)

du2
2π

µg
ℓ(u2)e

−τEM
m (u)+iσpMm (u)e−τEg

ℓ
(u)+iσpg

ℓ
(u) ·

· 2

[

eiℓφ

P
(gM)
ℓm (u2|u1)P (Mg)

mℓ (u1|u2)
+

e−iℓφ

P
(ḡM)
ℓm (u2|u1)P (Mḡ)

mℓ (u1|u2)

]

. (11.24)

Now, at strong coupling, with the redefinitions u1 =
√
2g coth 2θ1, u2 =

√
2g tanh 2θ2 expressions

(10.20, 10.21) imply the property

1

P
(gM)
ℓm (u2|u1)P (Mg)

mℓ (u1|u2)
=

1

P
(ḡM)
ℓm (u2|u1)P (Mḡ)

mℓ (u1|u2)
= 1− 2π√

λ
ℓmK(Mg)

sym (θ1, θ2) , (11.25)
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where

K(Mg)
sym (θ1, θ2) =

√
2
cosh 2θ2 sinh 2θ1 sinh(θ1 − θ2)

cosh(2θ2 − 2θ1)
. (11.26)

Remembering the measures (11.6, 11.9) and the forms of energies and momenta (11.4, 11.7) and

performing the sums, we arrive at the expression

W
(Mg)
hex =W

(g)
hexW

(M)
hex +

√
λ

2π

∫ +∞

−∞

dθ1

π sinh2 2θ1

dθ2

π cosh2 2θ2
K(Mg)

sym (θ1, θ2)L
M(θ1)L

g(θ2) (11.27)

11.4 Comparison and checks with TBA

We now compare our previous predictions at strong coupling with TBA outcome. We use (F.42-

F.46) of [31]: these expressions depend on the functions ǫ(θ− iϕ̂), ǫ̃(θ− iϕ̂), which satisfy integral

equations

ǫ(θ − iϕ̂) = E(θ)−
∫

dθ′

π cosh2 2θ′
K(gg)

sym(θ, θ
′)L(θ′) +

∫

dθ′

π sinh2 2θ′
K(Mg)

sym (θ′, θ)L̃(θ′)

(11.28)

ǫ̃(θ − iϕ̂) =
√
2E(θ)−

∫

dθ′

π cosh2 2θ′
K(Mg)

sym (θ, θ′)L(θ′) +

∫

dθ′

π sinh2 2θ′
K(MM)

sym (θ, θ′)L̃(θ′) ,

where the function E(θ) is given by (F.16) of [31]. We expand (11.28) at large E(θ) and plug such

expansions in (F.45, F.46) of [31], by using the formula (f ≪ 1)

Li2(−e−F−f) ≃ Li2(−e−F ) + f ln(1 + e−F ) + ... (11.29)

We obtain

(F.45) + (F.46) = −
∫

dθ

π cosh2 2θ

[

Li2
(

−µe−E(θ)
)

+ Li2
(

−µ−1e−E(θ)
)]

+

+

∫

dθ

π sinh2 2θ
Li2

(

−e−
√
2E(θ)

)

+

+

∫

dθ1

π sinh2 2θ1

∫

dθ2

π sinh2 2θ2
K(MM)

sym (θ1, θ2)L̃E(θ1)L̃E(θ2) +

+

∫

dθ1

π cosh2 2θ1

∫

dθ2

π cosh2 2θ2
K(gg)

sym(θ1, θ2)LE(θ1)LE(θ2)−

− 2

∫

dθ1

π sinh2 2θ1

∫

dθ2

π cosh2 2θ2
K(Mg)

sym (θ1, θ2)L̃E(θ1)LE(θ2) , (11.30)

where we used the notations

L̃E(θ) = ln
(

1 + e−
√
2E(θ)

)

, LE(θ) = ln
[(

1 + µe−E(θ)
) (

1 + µ−1e−E(θ)
)]

. (11.31)
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Summing this result with (F.42), (F.43), (F.44) we get

46
∑

k=42

(F.k) = −
∫

dθ

π cosh2 2θ

[

Li2
(

−µe−E(θ)
)

+ Li2
(

−µ−1e−E(θ)
)]

+

+

∫

dθ

π sinh2 2θ
Li2

(

−e−
√
2E(θ)

)

+

+
1

2

∫

dθ1

π sinh2 2θ1

∫

dθ2

π sinh2 2θ2
K(MM)

sym (θ1, θ2)L̃E(θ1)L̃E(θ2) +

+
1

2

∫

dθ1

π cosh2 2θ1

∫

dθ2

π cosh2 2θ2
K(gg)

sym(θ1, θ2)LE(θ1)LE(θ2)−

−
∫

dθ1

π sinh2 2θ1

∫

dθ2

π cosh2 2θ2
K(Mg)

sym (θ1, θ2)L̃E(θ1)LE(θ2) . (11.32)

Now, in order to compare with our results, we parametrise the cross-ratios u1, u2, u3 as in [37]

(caption of figure 2) and [38] (formula (157)), i.e.

1

u2
= 1 + e2τ ,

1

u3
= 1 + (e−τ + eσ+iφ)(e−τ + eσ−iφ) ,

u1
u2u3

= e2σ+2τ . (11.33)

Consequently, the relation

µ+ µ−1 =
1− u1 − u2 − u3√

u1u2u3
(11.34)

fixes µ = eiφ. In addition, the function E(θ) becomes equal to

E(θ) =
√
2τ cosh θ − i

√
2σ sinh θ . (11.35)

Plugging (11.34, 11.35) into (11.32), the following relation

Whex =W
(1)
hex+W

(2)
hex+.... = exp

(

−
√
λ

2π
[

46
∑

k=42

(F.k)]

)

∼= 1−
√
λ

2π
[

46
∑

k=42

(F.k)]+
1

2

(√
λ

2π

)2

[

46
∑

k=42

(F.k)]2+.....

(11.36)

is in agreement with expressions for W
(1)
hex,W

(2)
hex computed in last subsection.

11.5 Re-summation of the BSV series

The agreement displayed above between the series written in [37] for hexagonal Wilson loops and

the TBA for scattering amplitudes [32, 31, 33] can be made even tighter, since it is not restricted

to one and two particle contributions, but instead it does also extend to any number of particles.

Even better, the BSV series for the hexagon (11.3) can be fully re-summed by exploiting some

standard techniques: eventually we will reproduce (as for the strong coupling regime) the TBA

(in the form elaborated in) [31]. In the following we will produce the main steps, but leave some

further details and generalisations for an incoming publication [57].
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The expression to sum up is the simple manipulation of the initial formula, (11.3), which we

re-call here for practical reasons

Whex =
+∞
∑

N=0

1

N !

∑

a1

· · ·
∑

aN

∫ N
∏

k=1

[

duk
2π

µak(uk)e
−τEak

(uk)+iσpak (uk)+imkφ

] N
∏

i<j

1

Pai,aj (ui|uj)Paj ,ai(uj|ui)
,

(11.37)

where the indices ak label the species of different particles (including bound states). For simplicity’s

sake, we will initially include only gluons and their bound states, then we adapt our derivation

easily to meson and its bound states. Eventually, we will consider the general system (at strong

coupling only), composed of gluons, meson and bound states.

In general, not only at strong coupling, we may use a path integral trick of the type as in [59, 60],

but then we should integrate eventually the extra ρ-field(s) [57]. Thus, we better perform on the

above series (11.37) a similar trick without the ρ field(s), the Hubbard-Stratonovich transform [62].

The latter makes use of the well know identity of (infinite dimensional) gaussian integration in the

presence of a linear source term 21

N
∏

i<j

e
〈Xg

(ai)
(ui)X

g

(aj)
(uj)〉

= 〈eXg
a1

(u1) · · · eX
g

(aN )
(uN )〉 , (11.38)

for allowing the summation to act on the single exponential of the r.h.s.22. This means that we

need also to relate the pentagonal amplitudes Pa,b(u|v) to correlators (and then to the kinetic part)

of the gaussian field X(a) in this way

1

Pa,b(u|v)Pb,a(v|u)
= e〈X(a)(u)X(b)(v)〉 ; (11.39)

we associate gluons to operators Xg
(1)(u) = Xg(u), whereas we denote their bound states as Xg

(ℓ)(u),

where ℓ stands for the number of components. Thus, the ’linearisation’ of the exponent is complete,

namely we can recast the gluonic part of the hexagonal Wilson loop W
(g)
hex (the series (11.37)) into

a shape aiming at re-summing:

W
(g)
hex = 〈

+∞
∑

N=0

1

N !

N
∏

k=1

∑

ak

∫
[

duk
2π

µg
ak
(uk) e

−τEg
ak

(uk)+iσpgak (uk)+img
k
φ e

Xg

(ak)
(uk)

]

〉 . (11.40)

21The following formula is the infinite dimensional d → ∞ version of

〈eσ1s2eσ2s2 · · · eσdsd〉 = det(T )

∫

∏

i

dσi

2π
e−

1

2
σiTijσj eσisi = e

1

2
siGijsj ,

with propagator G = T−1, cf. [57] for details.
22We mention the talk held by B. Basso at IGST 2013 in Utrecht concerning only one gluon (without bound

states) and [61] for useful suggestions. We wish also to notice the possibility of interpreting the free boson c = 1

2D CFT (Coulomb gas) correlation function formulæ by means of this one.
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This series (11.40) can be in principle re-summed into a Kac-Feynman path integral for any value

of the coupling, nevertheless it is at strong coupling λ −→ ∞ that a tangible simplification occurs.

For, in this regime, the bound states enjoy a series of simple, useful proprieties: their energies and

momenta (11.4) are simply additive, as so is the relation Xg
(a) = aXg

(1) implied by the peculiar

limit form ℓ1ℓ2K
(gg)
sym(u, v) of the (bound state) gluonic kernels in (11.13) via (11.39) on the bound

state fields Xg
(a); and finally the measures µg

ℓ(u) (11.6) exhibit a peculiar square at denominator.

Altogether these properties turn out to be crucial to re-sum (11.40) in an handy shape, and they

bring up the dilogarithm function Li2(x) (tuned by the third property, cf. [57] for more details):

W
(g)
hex = 〈 exp

{

−
∫

du

2π
µg(u)

[

Li2(−e−τEg
1 (u)+iσpg1(u)+iφ eX

g(u)) + Li2(−e−τEg
1 (u)+iσpg1(u)−iφ eX

g(u))
]

}

〉 .
(11.41)

Now, we can make explicit the gaussian measure in (11.41) as a kinetic term so to read W
(g)
hex as a

quantum theory partition function for the field Xg(u)

W
(g)
hex = Z(g)[Xg] =

∫

DXg e−S(g)[Xg] , (11.42)

where the action S(g)[Xg], directly expressed in terms of the hyperbolic rapidity θ, has the form

S(g)[Xg] =
1

2

∫

dθ dθ′Xg(θ)T g(θ, θ′)Xg(θ′) +

+

∫

dθ′

2π
µg(θ′)

[

Li2(−e−E(θ′)+iφ eX
g(θ′)) + Li2(−e−E(θ′)−iφ eX

g(θ′))
]

, (11.43)

with E(θ) coinciding with the derived (11.35). Of course the kinetic kernel T g(θ′, θ′′) is the inverse
∫

dθGg(θ, θ′)T g(θ′, θ′′) = δ(θ − θ′′) (11.44)

of the Green function

Gg(θ, θ′) = 〈Xg(θ)Xg(θ′)〉 23. (11.45)

Remarkably, the action (11.43) is proportional to g, which is going to +∞, so making possibile

the applicability of the saddle point with classical equation of motion:

Xg(θ)−
∫

dθ′

2π
Gg(θ, θ′)µg(θ′) log

[

(1 + eX
g(θ′)e−E(θ′)+iφ)(1 + eX

g(θ′)e−E(θ′)−iφ)
]

= 0 , (11.46)

where the Green function, at strong coupling, can be easily related to (the symmetric part of the)

gluonic pentagonal amplitude

Gg(θ, θ′) = − 2π√
λ
K(gg)

sym(θ, θ
′) +O(1/λ) . (11.47)

23We could realise that directly Gg(θ, θ′) (instead of T g(θ′, θ′′)) appears in the action by means of an Hubbard-

Stratonovich transform which introduces some gaussian field ρg coupled to Xg: in this way we will end up with

the usual form of the Yang-Yang potential of Nekrasov-Shatasvili [58] as it would be following ab initio the path

integral trick contained in [59, 60], cf. [57].

72



The introduction of the ’pseudo-energy’ ǫ(θ) via the relation ǫ(θ− iϕ̂) = E(θ)−Xg(θ), leads us to

the special version of the TBA equations for gluons (11.28) of [31] in which we fully neglect ǫ̃(θ−iϕ̂),
i.e the meson contribution. In other words we have found an action (a Yang-Yang functional) whose

differentiation give rise to equations in TBA form [28, 29], without thermodynamics. In this respect

the generation of the Li2(x) function via summation on bound states is of fundamental importance.

As for the mesonic sector, the reasonings outlined above can be easily adapted by substituting

the gluon and bound states thereof with the meson and bound states thereof, respectively 24. In

first place, we associate the fields XM
(ℓ)(θ) to bound states of mesons, each represented by the single

meson XM
(1)(θ) = XM(θ) by means of the relation XM

(ℓ)(θ) = ℓXM
(1)(θ). From the identification

1

PM
a,b(u|v)PM

b,a(v|u)
= e〈X

M
(a)

(θ)XM
(b)

(θ′)〉 (11.48)

it follows that the meson-only hexagonal Wilson loop W
(M)
hex assumes a shape analogous to (11.40)

and can be re-summed at all coupling, even though a remarkable simplification occur at strong

coupling, owing to the properties of the mesonic kernel:

W
(M)
hex = 〈 exp

{
∫

du

2π
µM(u)Li2(−e−

√
2(τE1(u)+iσp1(u)) eX

M (u))

}

〉 (11.49)

Again, the meson hexagonal Wilson loop can be associated to a partition function, defined via the

action S(M)[XM ]

S(M)[XM ] =
1

2

∫

dθ′ dθ′′XM(θ′)TM(θ′, θ′′)XM(θ′′)−
∫

dθ′′

2π
µM(θ′′)Li2(−e−

√
2E(θ′′) eX

M (θ′′))

(11.50)

which, under minimisation, gives the equation of motion:

XM(θ) +

∫

dθ′

2π
GM(θ, θ′)µM(θ′) log

[

1 + eX
M (θ′)e−

√
2E(θ′)

]

= 0 (11.51)

where the mesonic Green function has been introduced

∫

dθ′GM(θ, θ′)TM(θ′, θ′′) = δ(θ − θ′′) . If

we define the function ǫ̃(θ−iϕ̂) =
√
2E(θ)−XM (θ), we get the mesonic TBA equation (11.28) [31].

Complete system

After the considerations outlined above for incomplete systems, made of a single type of particle

(and relative bound states) at one time, we can now cope with the complete system, including

gluons and mesons together, by arranging the gluonic and mesonic fields into a vector, and the

measures as well:

Xa(u) =

∣

∣

∣

∣

Xg(θ)

XM(θ)

∣

∣

∣

∣

µa(u) =

∣

∣

∣

∣

µ1(u)

µ2(u)

∣

∣

∣

∣

≡
∣

∣

∣

∣

µg(u)

−µM(u)

∣

∣

∣

∣

(11.52)

24As anticipated about the bound state analysis in section 9, a more mathematical understanding of the contri-

butions of the mesons, as small fermion-antifermion state, and their bound states should be given in future [57]

with a mechanism where the poles pinch the integration axis [58, 59, 60, 61, 39].
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(the label a takes the values a = 1, 2; the sum convention on repeated indices is assumed). The

complete hexagonal amplitude can thus be expressed as

Whex =

∫

DX1DX2 e
−S[X;µ] (11.53)

where the action reads

S[X ;µ] =
1

2

∫

dθ dθ′Xa(θ) Tab(θ, θ
′)Xb(θ′) + (11.54)

+

∫

dθ
[

µ1(θ) Li2(e
−E(θ)+iφ eX1(θ)) + µ1(θ) Li2(e

−E(θ)−iφ eX1(θ)) + µ2(θ) Li2(e
−
√
2E(θ) eX2(θ))

]

.

The matrix Ta,b, appearing in the first term of the action, can be reconnected to the kinetic terms

previously introduced according to the identifications

T11(θ, θ
′) = T g(θ, θ′) and T22(θ, θ

′) = TM(θ, θ′) .

The minimization of the action S[X ;µ] results in the equations of motion:

Xa(θ′)−
∫

dθ Gab(θ, θ′)µb(θ)L
b(θ) = 0 . (11.55)

where the definitions have been assumed L1(θ′) ≡ log
[

(1 + eX
1(θ′)e−E(θ′)+iφ)(1 + eX

1(θ′)e−E(θ′)−iφ)
]

and L2(θ′) ≡ log
[

1 + eX
2(θ′)e−

√
2E(θ′)

]

, while the Green function, now represented by a 2×2 matrix

and defined as
∫

dθ′Gab(θ, θ′) Tbc(θ
′, θ′′) = δac δ(θ − θ′′) (11.56)

can also be explicitly associated at strong coupling to the pentagonal amplitudes:

Gab(θ, θ′) = − 2π√
λ

∣

∣

∣

∣

∣

K
(gg)
sym(θ, θ′) K

(Mg)
sym (θ′, θ)

K
(Mg)
sym (θ, θ′) K

(MM)
sym (θ, θ′)

∣

∣

∣

∣

∣

. (11.57)

The equations of motions (11.55) match the TBA equations (11.28)[31], provided we identify the

pseudo-energies as ǫ(θ − iϕ̂) = E(θ) −X1(θ) and ǫ̃(θ − iϕ̂) =
√
2E(θ) − X2(θ), and in addiction

to that L(θ) = L1(θ), L̃(θ) = L2(θ). Since the action (11.54) goes like S[X ;µ] ∼ λ
2π

at strong

coupling, the hexagonal Wilson loop Whex (11.53) is dominated by the classical configuration,

achieved by imposing the equations of motion on the fields, and therefore with the aid of (11.55)

we can rewrite the kinetic term in the action (11.54) as

1

2

∫

dθ dθ′Xa(u) Tab(θ, θ
′)Xb(θ′) =

= −
√
λ

2π

∫

dθ dθ′

(2π)2
L1(θ)L1(θ′)

cosh 2θ cosh 2θ′ cosh(θ − θ′)
+

√
λ

2π

∫

dθ dθ′

2π2

L2(θ)L2(θ′)

sinh 2θ sinh 2θ′ cosh(θ − θ′)
+

+

√
λ

2π

√
2

∫

dθ dθ′

π2

L2(θ)L1(θ′)

sinh 2θ cosh 2θ′
sinh(θ − θ′)

cosh(2θ − 2θ′)
. (11.58)

Eventually, the sum of the kinetic term (11.58) and the potential part, given by the second line

of (11.54), amounts to the Yang-Yang (critical) functional
√
λ

2π
Y Ycr , which has been computed in

[31] by adding together the right hand sides of the formulae from (F.42) to (F.46).
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12 Conclusions in perspective

We have derived the complete set of Asymptotic Bethe Ansatz (ABA) equations referring to the

GKP vacuum instead that to the half-BPS state (Beisert-Staudacher equations [2]). These describe

the dynamics of all the elementary excitations over the GKP vacuum (gluons, fermions and scalars),

but they also admit solutions in the form of complexes of Bethe and/or auxiliary roots, the so-

called strings or stacks. The latter are the bound states, among whose the most important are the

bound states of the elementary particles (the other are bound states of the auxiliary or isotopic

roots, yet important for the spectrum TBA and so on). In this way, we have performed the ’fusion’

of the fundamental (elementary and isotopic) excitations, which is in its whole an alternative way

to perform the bootstrap of S-matrices (cf. for instance [65] for a review).

Moreover, we outlined this system of algebraic equations at all coupling values, also including

weak and strong (in different dynamical regimes) coupling. Above all, we have mainly focused on

the scattering phases between all kind of particles at any coupling, but also the new feature of two

defects has arisen in the form of new scattering phases for any flavour. Then, we have devoted a

meticulous care to the behaviour of the scattering factors in the three possible, – non-perturbative,

perturbative and giant hole –, regimes which allow different large g expansions: for all these three,

we obtained explicit expressions of all the scattering factors.

If the momentum of any particle enters the ABA equations, the energy/anomalous dimension

is the final object expressed via a solution of these equations. And we could confirm for these first

two conserved charges the achievements by [20], but also have been led to consider all the higher

integrals of motion (which do play a so important rôle in the costruction of the dressing factor in

the usual ABA on the BMN vacuum).

A deeper look at the form of these new ABA equations brought to our attention an interesting

property or identification for them: the su(4) residual R-symmetry constraint the elementary

particles to have as rapidities the inhomogeneities of a su(4) symmetric spin chain of S-matrices

which belong at any lattice site to the characteristic representation of the particle, i.e. 1, 4, 4̄, 6

(for gluons, fermions, anti-fermions, scalars, respectively). Thus, as anticipated in [23], the matrix

structure of the ABA equations could be inferred from the SU(4) symmetry, but the specific form

of the scalar factors and its g-dependence must be computed explicitly. For instance, in this

perspective, the two defects are simply two purely transmitting impurities which still respect the

SU(4) symmetry. Moreover, the particular g-dependence shows explicitly the decoupling of the

six scalars in the non-perturbative regime and their approach to the O(6) non-linear sigma model

S-matrix in [51], being, besides, the defects of no importance in this limit. More importantly, we

have seen from the fusion of a fermion and an anti-fermion the formation of a new particle in the

g → +∞ perturbative regime: a meson. Then we also identified bound states thereof.

At last, but not least we have been looking for confirmation and deep comparison of our careful

strong coupling outcomes with the scattering amplitude/WL TBA [32]-[33] via the OPE or flux

tube (BSV) series [31], [37]-[41]. In fact, the basic object of the latter, the so-called pentagon

amplitude, can be expressed via the aforementioned scattering factors as proposed for the gluons

in [37]. The bound states of the latter, the meson and its bound states appear to be the only other
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relevant particles at leading order (the minimal area of classical string). Therefore, we have checked

explicitly those features by re-summing the BSV series [37] in case of a null hexagonal Wilson loop:

we have used the saddle point method at large g to obtain the critical equations coinciding with

the TBA equations of [32, 31, 33]. Then, we have computed the action on them and obtained the

same (critical) Yang-Yang functional (or free energy) as in [32, 31, 33]. Interestingly, the same

set-up should be easily applicable to the computation of the heptagon WL. Nevertheless, it would

desirable to have a more direct understanding of the phase we dubbed confinement of the fermions,

which disappear as free particles, inside the mesons and their bound states.
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A Functions

This appendix is devoted to the introduction of the functions we used throughout the paper.

In the study of scalars we found convenient to use the following shorthand notations:

Φ(u) = Φ0(u) + ΦH(u) , φ(u, v) = φ0(u− v) + φH(u, v) , (A.1)

with

Φ0(u) = −i ln i+ 2u

i− 2u
, ΦH(u) = −i ln





1 + g2

2x−(u)2

1 + g2

2x+(u)2



 , (A.2)

φ0(u− v) = i ln
i+ u− v

i− u+ v
, φH(u, v) = −2i

[

ln

(

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

)

+ iθ(u, v)

]

, (A.3)

θ(u, v) being the dressing phase [10] and x(u) = u
2

[

1 +
√

1− 2g2

u2

]

, x±(u) = x(u ± i
2
). We used

also

ϕ(u, v) =
1

2π

d

dv
φ(u, v) . (A.4)

For what concerns gluon and their bound states, we used the function

χ(v, u|l) = χ0(v − u|l + 1) + χH

(

v, u− il

2

)

+ χH

(

v, u+
il

2

)

,
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where

χ0(u|l) = i ln
il + 2u

il − 2u
= 2 arctan

2u

l
, χH(v, u) = i ln

(

1− g2

2x−(v)x(u)

1− g2

2x+(v)x(u)

)

, (A.5)

which enjoys the expression

χ(v, u|l) = i ln

(

x+(v)− x
(

u− il
2

)

x
(

u+ il
2

)

− x−(v)

)

+ i ln





1− g2

2x−(v)x(u− il
2 )

1− g2

2x+(v)x(u+ il
2 )



 (A.6)

Scattering factors involving gluons and their bound states are expressed in terms of the function

χ(v, u|l) + Φ(v) = i ln

(

x+(v)− x
(

u− il
2

)

x
(

u+ il
2

)

− x−(v)

)

+ i ln





g2

2x(u− il
2 )

− x−(v)

x+(v)− g2

2x(u+ il
2 )



 . (A.7)

Finally, for large fermions we introduced the function

χF (u, v) = χ0(u− v|1) + χH(u, v) = i ln

(

x+(u)− x(v)

x(v)− x−(u)

)

. (A.8)

Scattering factors involving large fermions depend on the function

χF (u, v) + Φ(u) = i ln
x+(u)− x(v)

x(v)− x−(u)
+ i ln

(

−x
−(u)

x+(u)

)

. (A.9)

Scattering factors for small fermions are obtained from scattering factors for large fermions after

the substitution

χF (u, v) + Φ(u) → −χH(u, v) = i ln

(

1− g2

2x+(u)x(v)

1− g2

2x−(u)x(v)

)

= i ln





1− xf (v)

x+(u)

1− xf (v)

x−(u)



 , (A.10)

where

xf (v) =
g2

2x(v)
=
v

2

[

1−
√

1− 2g2

v2

]

. (A.11)

B Useful formulæ

B.1 Fourier transforms

We collect here some of the Fourier transforms

f̂(k) =

∫ +∞

−∞
due−ikuf(u) (B.1)

of functions f(u) we use in the main text.

77



For scalar we used

Φ0(u) = −i ln i+ 2u

i− 2u
⇒ Φ̂0(k) =

∫ +∞

−∞
due−ikuΦ0(u) = −2π

ik
e−

|k|
2 (B.2)

ΦH(u) = −i ln





1 + g2

2x−(u)2

1 + g2

2x+(u)2



 ⇒ Φ̂H(k) =
2π

ik
e−

|k|
2 [1− J0(

√
2gk)] (B.3)

and also

φ0(u− v) = i ln
i+ u− v

i− u+ v
⇒ φ̂0(k) =

2πe−|k|

ik
, (B.4)

ϕ0(u− v) =
1

2π

d

dv
φ0(u− v) = −1

π

1

1 + (u− v)2
⇒ ϕ̂0(k) = −e−|k| , (B.5)

φH(u, v) = −2i

[

ln

(

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

)

+ iθ(u, v)

]

φ̂H(k, t) =

∫ +∞

−∞
due−iku

∫ +∞

−∞
dve−itvφH(u, v) =

− 8iπ2 e
− |t|+|k|

2

k|t|
[

∞
∑

r=1

r(−1)r+1Jr(
√
2gk)Jr(

√
2gt)

1− sgn(kt)

2
+

+ sgn(t)

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)r+ν
(

Jr−1(
√
2gk)Jr+2ν(

√
2gt)− (B.6)

− Jr−1(
√
2gt)Jr+2ν(

√
2gk)

)]

We remark that in previous literature integral equations concerning the scalar sector are often

written by using the ’magic kernel’ K̂ [10], related to φ̂H by

φ̂H(k, t) + φ̂H(k,−t) = 8iπ2g2e−
t+k
2 K̂(

√
2gk,

√
2gt) , t, k > 0 . (B.7)

For what concerns gluon bound states, we introduced

χ0(u|l) = i ln
il + 2u

il − 2u
= 2 arctan

2u

l
⇒ χ̂0(k|l) =

∫ +∞

−∞
due−ikuχ0(u|l) =

2π

ik
e−|k| l

2 (B.8)

and for higher loops the function

χ(v, u|l) = χ0(v − u|l + 1) + χH

(

v, u− il

2

)

+ χH

(

v, u+
il

2

)

,

where

χH(v, u) = i ln

(

1− g2

2x−(v)x(u)

1− g2

2x+(v)x(u)

)

, (B.9)
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whose Fourier transform reads
∫ +∞

−∞
du

∫ +∞

−∞
dve−ikve−ituχ(v, u|l) = 2πδ(t+ k)

2π

ik
e−|k| l+1

2 +

+ i

+∞
∑

n=1

n(−1)n
2π

k

2π

|t| e
− |k|

2 e−
|t|l
2 Jn(

√
2gk)Jn(

√
2gt) . (B.10)

In getting (B.10) we used the Fourier transforms

∫ +∞

−∞
due−iku 1

x
(

u± i l
2

)n = ±n
(√

2

ig

)n

θ(±k)2π
k
e∓

l
2
kJn(

√
2gk) . (B.11)

It is useful to Fourier transform χ(v, u|l) and χH(v, u) with respect only to the variable v:
∫ +∞

−∞
dve−ikvχ(v, u|l) = e−iku2π

ik
e−|k| l+1

2 + (B.12)

+ i
+∞
∑

n=1

(

g√
2i x

(

u− il
2

)

)n
2π

k
e−

|k|
2 Jn(

√
2gk) + i

+∞
∑

n=1

(

g√
2i x

(

u+ il
2

)

)n
2π

k
e−

|k|
2 Jn(

√
2gk) ,

∫ +∞

−∞
dve−ikvχH(v, u) = i

2π

k
e−

|k|
2

+∞
∑

n=1

(

g√
2i x(u)

)n

Jn(
√
2gk) . (B.13)

Finally, for large fermions we introduced the function

χF (v, u) = χ0(v − u|1) + χH(v, u) = i ln

(

x+(v)− x(u)

x(u)− x−(v)

)

, (B.14)

whose Fourier transform with respect to v is easily extracted from (B.12, B.13):

∫ +∞

−∞
dve−ikvχF (v, u) = e−iku2π

ik
e−

|k|
2 + i

2π

k
e−

|k|
2

+∞
∑

n=1

(

g√
2i x(u)

)n

Jn(
√
2gk) . (B.15)

B.2 BES and BES-like integral equations

The BES integral equation for the density σ̂BES(k) in Fourier space reads as

σ̂BES(k) = − 2ik

1− e−|k|
φ̂H(k, 0)

π
+

ik

4(1− e−|k|)

∫

dt

π2
φ̂H(k, t)σ̂BES(t) . (B.16)

Owing to the parity properties σ̂BES(k) = σ̂BES(−k), we can restrict this equation in the region

k > 0. Introducing the kernel K̂

φ̂H(k, t) + φ̂H(k,−t) = 8iπ2g2e−
t+k
2 K̂(

√
2gk,

√
2gt) , t, k > 0 , (B.17)

we have

σ̂BES(k) =
4πg2k

sinh k
2

K̂(
√
2gk, 0)− g2k

sinh k
2

∫ +∞

0

dte−
t
2 K̂(

√
2gk,

√
2gt)σ̂BES(t) . (B.18)
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We can connect to quantities used in [20] by means of

σ̂BES(k) =
π

sinh k
2

[

γø+(
√
2gk) + γø−(

√
2gk)

]

, k > 0 (B.19)

and

γø+(
√
2gk) = 2

∑

n≥1

2nγø2nJ2n(
√
2gk) , γø−(

√
2gk) = 2

∑

n≥1

(2n− 1)γø2n−1J2n−1(
√
2gk) . (B.20)

The total density at order ln s is σ̂ln s(k) = −8πδ(k) + σ̂BES(k) which satisfy the equation

σ̂ln s(k) = −8πδ(k) +
ik

4(1− e−|k|)

∫

dt

π2
φ̂H(k, t)σ̂ln s(t) . (B.21)

The Fourier transform of the density associated to the first generalised scaling function [12] satisfies

the equation

σ̂(1)(k) =
π

sinh |k|
2

[e−
|k|
2 − J0(

√
2gk)] +

ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[

2π + σ̂(1)(t)
]

. (B.22)

Eventually, the density ’all internal holes’, which satisfies equation (3.8) of [21] with L = 3 is

solution of

σ̂(k; x) =
2πe−|k|

1− e−|k| (cos kx− 1) +
ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[

2π(cos tx− 1) + σ̂(t; x)
]

. (B.23)

B.3 Integrals

In the one loop case we make use of the following integrals

−
∫ +∞

−∞

dv

2π
ln
ib+ v

ib− v

d

dv
ln

Γ(a+ iv − iu)

Γ(a− iv + iu)
= i ln

Γ(a + b+ iu)

Γ(a+ b− iu)
, a, b > 0 (B.24)

and
∫ +∞

−∞

dv

2π
ln
ib− v + w

ib+ v − w

d

dv
ln
ic− v + u

ic+ v − u
= i ln

i(c + b)− u+ w

i(c + b) + u− w
, b, c > 0 . (B.25)

In order to show that (bound states of) gluons do not couple to (type b) isotopic roots, we used

the following results

•
∫ +∞

−∞

dv

2π
ln
x+(v)− x

(

u− il
2

)

x
(

u+ il
2

)

− x−(v)

d

dv
ln

i
2
+ v − u′

i
2
− v + u′

= i ln
x
(

u+ il
2

)

− x(u′ − i)

x(u′ + i)− x
(

u− il
2

) , l ≥ 1 , (B.26)

•
∫ +∞

−∞

dv

2π
ln
x
(

u+ il
2

)

− x+(v)

x−(v)− x
(

u− il
2

)

d

dv
ln

i
2
+ v − u′

i
2
− v + u′

= i ln
x(u′ − i)− x

(

u− il
2

)

x
(

u+ il
2

)

− x(u′ + i)
+

i ln
u− u′ + il

2
− i

u− u′ + il
2

u− u′ − il
2

u− u′ − il
2
+ i

, l ≥ 2 (B.27)

•
∫ +∞

−∞

dv

2π
ln
x+(u)− x+(v)

x−(v)− x−(u)

d

dv
ln

i
2
+ v − u′

i
2
− v + u′

= i ln
x(u′ − i)− x−(u)

x+(u)− x(u′ + i)
+

i ln
i
2
− u+ u′

i
2
+ u− u′

. (B.28)
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In calculations for the strong coupling limit of scattering factors, we used the following integrals

•
∫ 1

−1

dk
1

u− k

(

1 + k

1− k

)
1
4

= −π
√
2

[

1−
(

u+ 1

u− 1

)
1
4

]

, |u| > 1 (B.29)

•
∫ 1

−1

dkP
1

u− k

(

1 + k

1− k

)
1
4

= −π
√
2 + π

(

1 + u

1− u

)
1
4

, |u| < 1 (B.30)

•
∫ 1

−1

dz
1

z − v̄

1√
1− z2

= − πsgn(v̄)√
v̄2 − 1

, |v̄| > 1, (B.31)

•
∫ 1

−1

dz PV
1

z − v̄

1√
1− z2

= 0 , |v̄| < 1, (B.32)

•
∫

|w̄|≥1

dw̄

2π

1

w̄ − ū
PV

1

w̄ − z̄

(

w̄ + 1

w̄ − 1

) 1
4

=

1
2

(

z̄+1
z̄−1

)
1
4 − 1√

2

(

1+ū
1−ū

)
1
4

z̄ − ū
, |ū| ≤ 1 , |z̄| ≥ 1 , (B.33)

•
∫

|z̄|≥1

dz̄

2π

1

z̄
√

1− 1
z̄2

1

x̄f(v̄)− x̄(z̄)

(

z̄ − 1

z̄ + 1

)
1
4 1

ū− z̄
= (B.34)

=

√

1−2x̄f (v̄)

1+2x̄f (v̄)
+ 1√

2

(

x̄f (v̄)− 1
2

)

[

(

1+ū
1−ū

)
1
4 +

(

1−ū
1+ū

)
1
4

]

+ 1√
2

(

x̄f (v̄) +
1
2

)

√

1−ū
1+ū

[

(

1−ū
1+ū

)
1
4 −

(

1+ū
1−ū

)
1
4

]

2x̄f (ū)(ū− v̄)

C Collection of scattering factors

C.1 One loop: explicit expressions

We list here the scattering factors at one loop:

• Scalar - Scalar

S
(ss)
0 (uh, uh′) = −Γ

(

1
2
− iuh

)

Γ
(

1
2
+ iuh′

)

Γ(1 + iuh − iuh′)

Γ
(

1
2
+ iuh

)

Γ
(

1
2
− iuh′

)

Γ(1− iuh + iuh′)
, (C.1)

Formula (C.1) does agree with result (3.8) of Basso-Belitsky [63], but seems to be the inverse of

(2.13) of Dorey-Zhao [53].

• Gluon - Gluon

S
(gg)
0 (u, v) = −Γ (1 + iu− iv))

Γ (1− iu+ iv))

Γ
(

3
2
− iu

)

Γ
(

3
2
+ iu

)

Γ
(

3
2
+ iv

)

Γ
(

3
2
− iv

) , (C.2)

In addition, we have

S
(gg)
0 (u, v) = S

(ḡḡ)
0 (u, v) = S

(gḡ)
0 (u, v)

u− v + i

u− v − i
, S

(ḡg)
0 (u, v) = [S

(gḡ)
0 (v, u)]−1 (C.3)

• (Large) Fermion - (Large) Fermion

S
(FF )
0 (u, v) =

Γ(1 + iu− iv)

Γ(1− iu+ iv)

Γ(1− iu)

Γ(1 + iu)

Γ(1 + iv)

Γ(1− iv)
(C.4)
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and when antifermions get involved

S
(FF )
0 (u, v) = S

(F F̄ )
0 (u, v) = S

(F̄ F )
0 (u, v) = S

(F̄ F̄ )
0 (u, v) . (C.5)

• Gluon - Scalar

S
(gs)
0 (u, uh) = [S

(sg)
0 (uh, u)]

−1 = S
(ḡs)
0 (u, uh) = [S

(sḡ)
0 (uh, u)]

−1 =

=
Γ (1 + iu− iuh)

Γ (1− iu+ iuh))

Γ
(

1
2
+ iuh

)

Γ
(

1
2
− iuh

)

Γ
(

3
2
− iu

)

Γ
(

3
2
+ iu

) (C.6)

• (Large) Fermion - Scalar

S
(Fs)
0 (u, uh) = S

(F̄ s)
0 (u, uh) = [S

(sF )
0 (uh, u)]

−1 = [S
(sF̄ )
0 (uh, u)]

−1 =

=
Γ(1

2
+ iu− iuh)

Γ(1
2
− iu+ iuh)

Γ(1− iu)

Γ(1 + iu)

Γ(1
2
+ iuh)

Γ(1
2
− iuh)

(C.7)

• Gluon - (Large) Fermion

S
(gF )
0 (u, v) = [S

(Fg)
0 (v, u)]−1 = S

(ḡF̄
0 (u, v) = [S

(F̄ ḡ)
0 (v, u)]−1 =

= −Γ
(

1
2
+ iu− iv

)

Γ
(

1
2
− iu+ iv

)

Γ
(

3
2
− iu

)

Γ
(

3
2
+ iu

)

Γ (1 + iv)

Γ (1− iv)
(C.8)

and

S
(ḡF )
0 (u, v) = [S

(F ḡ)
0 (v, u)]−1 = S

(gF̄ )
0 (u, v) = [S

(F̄ g)
0 (v, u)]−1 = S

(gF )
0 (u, v)

u− v − i/2

u− v + i/2
(C.9)
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C.2 All loops: expressions in terms of solutions of integral equations

We list here the factors found in [23]. We start from the ’direct’ S factors:

S(ss)(u, v) = −exp[−iΘ(u, v)] (C.10)

S(FF )(u, v) = exp
{

i

∫ +∞

−∞

dw

2π
[χF (w, u) + Φ(w)]

d

dw
[χF (w, v) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χF (w, u) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, v) + Φ(x)]

}

(C.11)

S(FF )(u, v) = S(F F̄ )(u, v) = S(F̄ F )(u, v) = S(F̄ F̄ )(u, v) (C.12)

S(gg)(u, v) = −exp
{

−iχ0(u− v|2) + i

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
[χ(w, v|1) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|1) + Φ(w)]

d2

dwdx
Θ(w, x)[χ(x, v|1) + Φ(x)]

}

= (C.13)

=
u− v + i

u− v − i
S
(gg)
red (u, v) ,

S
(gg)
red (u, v) = exp

{

i

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
[χ(w, v|1) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|1) + Φ(w)]

d2

dwdx
Θ(w, x)[χ(x, v|1) + Φ(x)]

}

(C.14)

Sgḡ(u, v) = [S ḡg(v, u)]−1 = S
(gg)
red (u, v) . (C.15)
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The ’mixed’ S factors are:

S(sF )(u, v) = [S(Fs)(v, u)]−1 = exp
{

−i[χF (u, v) + Φ(u)] +

+ i

∫

dw

2π

dΘ

dw
(u, w)[χF (w, v) + Φ(w)]

}

(C.16)

S(sF )(u, v) = S(sF̄ )(u, v) , S(Fs)(u, v) = S(F̄ s)(u, v) (C.17)

S(gs)(u, v) = [S(sg)(v, u)]−1 = S(ḡs)(u, v) = [S(sḡ)(v, u)]−1 =

= exp
{

i[χ(v, u|1) + Φ(v)]− i

∫

dw

2π

dΘ

dw
(v, w)[χ(w, u|1) + Φ(w)]

}

(C.18)

S(gF )(u, v) = [S(Fg)(v, u)]−1 = −exp
{

−iχ0(u− v|1) +

+ i

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
[χF (w, v) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|1) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, v) + Φ(x)]

}

(C.19)

S(gF )(u, v) = S(ḡF̄ )(u, v) (C.20)

S(ḡF )(u, v) = [S(F ḡ)(v, u)]−1 = exp
{

i

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
[χF (w, v) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|1) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, v) + Φ(x)]

}

(C.21)

S(gF̄ )(u, v) = [S(F̄ g)(v, u)]−1 = S(ḡF )(u, v) (C.22)

The S matrices involving small fermions are obtained from the corresponding ones for large fermions

by means of the replacement

χF (v, u) + Φ(v) −→ −χH(v, u) . (C.23)

All the scalar factors are expressed in terms of known functions listed in Appendix A and the

’dynamical’ function Θ(u, v) [23], which equals

Θ(u, v) = Θ′(u, v) + P̃ (v) , (C.24)

where Θ′(u, v) and P̃ (v) are found as solutions of the linear integral equations

Θ′(u, v) = φ(u, v) + Φ(u)−
∫ +∞

−∞
dwϕ(u, w)Θ′(w, v) , (C.25)

P̃ (v) = −Φ(v)−
∫ +∞

−∞

dw

2
[ϕ(v, w)− ϕ(v,−w)]P̃ (w) . (C.26)

Scattering factors involving bound states of gluons

If bound states of gluons are present, the factors involving the gauge field should be generalised

as follows.
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The scattering factor between a bound state of gluons with length m and center u and a scalar

is

S(gs)
m (u, v) = [S(sg)

m (v, u)]−1 = S(ḡs)
m (u, v) = [S(sḡ)

m (v, u)]−1 =

= exp
{

i[χ(v, u|m) + Φ(v)]− i

∫

dw

2π

dΘ

dw
(v, w)[χ(w, u|m) + Φ(w)]

}

(C.27)

The scattering factor between a bound state of gluons with length m and center u and large

fermions is

S(gF )
m (u, v) = [S(Fg)

m (v, u)]−1 = −exp
{

−iχ0(u− v|m) +

+ i

∫ +∞

−∞

dw

2π
[χ(w, u|m) + Φ(w)]

d

dw
[χF (w, v) + Φ(w)]− (C.28)

− i

∫

dw

2π

dx

2π
[χ(w, u|m) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, v) + Φ(x)]

}

S(gF )
m (u, v) = S(ḡF̄ )

m (u, v) (C.29)

S(ḡF )
m (u, v) = [S(F ḡ)

m (v, u)]−1 = exp
{

i

∫ +∞

−∞

dw

2π
[χ(w, u|m) + Φ(w)]

d

dw
[χF (w, v) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|m) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, v) + Φ(x)]

}

(C.30)

S(gF̄ )
m (u, v) = [S(F̄ g)

m (v, u)]−1 = S(ḡF )
m (u, v) (C.31)

The replacement χF (w, v) + Φ(w) → −χH(w, v) gives the corresponding quantities for small

fermions.

The scattering factors between a bound state of gluons with length m and center u and a bound

state of gluons with length l and center v are

S
(gg)
ml (u, v) = exp

{

−iχ̃(u, v|m, l) + i

∫ +∞

−∞

dw

2π
[χ(w, u|m) + Φ(w)]

d

dw
[χ(w, v|l) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|m) + Φ(w)]

d2

dwdx
Θ(w, x)[χ(x, v|l) + Φ(x)]

}

(C.32)

S
(gḡ)
ml (u, v) = exp

{

i

∫ +∞

−∞

dw

2π
[χ(w, u|m) + Φ(w)]

d

dw
[χ(w, v|l) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χ(w, u|m) + Φ(w)]

d2

dwdx
Θ(w, x)[χ(x, v|l) + Φ(x)]

}

, (C.33)

where

χ̃(u, v|m, l) = χ0(u− v|m+ l)− χ0(u− v|m− l) + 2

m−1
∑

γ=1

χ0(u− v|m+ l − 2γ) . (C.34)

In the particular case m = l = 1, since eiχ0(u−v|0) = −1, one recovers from (C.32) the gluon-gluon

scattering factor (C.13).
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Remark The following relations hold, for u real and u2 < 2g2,

χ(v, u|m) + Φ(v) =

m−1
2
∑

l=−m−1
2

[χ(v, u+ il|1) + Φ(v)] , m ≥ 1 , (C.35)

where χ(v, u+ il|1) has to be understood as analytical continuation of χ(v, u|1).
To prove this statement, we refer to (A.7) and remember the following properties

lim
ǫ→0+

x(u− iǫ) = lim
ǫ→0+

g2

2x(u+ iǫ)
, (C.36)

which are valid for u real and u2 < 2g2. Therefore, when the complex variable u crosses the real

axis in the region −
√
2g < Reu <

√
2g, the function x(u) is analytically continued in g2/2x(u).

With the help of this property, relation (C.35) is easily shown.

C.3 Strong coupling and mirror in hyperbolic rapidities

In the strong coupling perturbative regime, the scattering matrices for gluons, fermions and mesons

can be suitably recast in term of hyperbolic rapidities, according to the following identities (written

up to O(1/g2) corrections):

gluons:

ug =
√
2gūg , ūg = tanh(2θ) (C.37)

fermions:

uf =
√
2gūf , ūf = coth(2θ) or else 2x̄f = tanh θ (C.38)

mesons:

uM =
√
2gūM , ūM = coth(2θ) (C.39)

so that we obtain

S(gg)(θ, θ′) = exp

{

i√
2g

[

1

tanh 2θ − tanh 2θ′
+

cosh 2θ cosh 2θ′

2 sinh(θ − θ′)

]

+O

(

1

g2

)}

(C.40)

S(gḡ)(θ, θ′) =

(

1− 1√
2g

2i

tanh 2θ − tanh 2θ′
+O

(

1

g2

))

S(gg)(θ, θ′) (C.41)

S(ff)(θ, θ′) = exp

{

− i

2
√
2g

sinh 2θ sinh 2θ′

sinh(2θ − 2θ′)
(cosh(θ − θ′)− 1) +O

(

1

g2

)}

(C.42)

S(gf)(θ, θf ) = exp

{

i

4g

2 cosh(θf − θ) +
√
2

tanh 2θ − coth 2θf
+O

(

1

g2

)

}

(C.43)

S(ḡf)(θ, θf ) = exp

{

i

4g

2 cosh(θf − θ)−
√
2

tanh 2θ − coth 2θf
+O

(

1

g2

)

}

(C.44)
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S(MM)(θ, θ′) = exp

[

− i√
2g

sinh 2θ sinh 2θ′

sinh(θ − θ′)

]

. (C.45)

S(Mg)(θ, θ′) = S(Mḡ)(θ, θ′) = exp

[

− i

g

cosh(θ − θ′)

tanh 2θ′ − coth 2θ

]

. (C.46)

Mirror transformations:

The mirror rotation should be implemented in different ways on the scattering phases, depending

on the kind of particle the transformation is acting on. For instance, in the scalar case it is achieved

by means of a shift u −→ uγ = u + i. For gluons, the mirror transform is performed via a closed

path across the complex rapidity plane (uγ = u), passing through a cut, so that actually the

initial and final points do not lie on the same sheet. Defining a procedure for the mirror rotation

on fermions is more involved, and for this purpose we refer to [39]. Nevertheless, as long as the

perturbative strong coupling regime is concerned, the mirror rotation amounts to an imaginary

shift in the hyperbolic rapidities θ −→ θγ + iπ
2
, regardless of the type of particle we are dealing

with. For instance, we get:

S(gg)(θγ, θ′) = S(gg)(θ + i
π

2
, θ′) = exp

{

i√
2g

[

1

tanh 2θ − tanh 2θ′
− cosh 2θ cosh 2θ′

2i cosh(θ − θ′)

]

+O

(

1

g2

)}

(C.47)

S(gḡ)(θγ , θ′) = S(gḡ)(θ + i
π

2
, θ′) =

(

1− 1√
2g

2i

tanh 2θ − tanh 2θ′
+O

(

1

g2

))

×

× exp

{

i√
2g

[

1

tanh 2θ − tanh 2θ′
− cosh 2θ cosh 2θ′

2i cosh(θ − θ′)

]

+O

(

1

g2

)}

(C.48)

S(ff)(θγ , θ′) = S(ff)(θ + i
π

2
, θ′) = exp

{

− i

2
√
2g

sinh 2θ sinh 2θ′

sinh(2θ − 2θ′)
(i sinh(θ − θ′)− 1) +O

(

1

g2

)}

(C.49)

S(gf)(θγ, θf ) = exp

{

− i

4g

2i sinh(θf − θ)−
√
2

tanh 2θ − coth 2θf
+O

(

1

g2

)

}

= S(fḡ)(θγ, θ) (C.50)

S(fg)(θγf , θ) = exp

{

− i

4g

2i sinh(θf − θ) +
√
2

tanh 2θ − coth 2θf
+O

(

1

g2

)

}

= S(ḡf)(θγ , θf) (C.51)

S(MM)(θγ , θ′) = exp

[

1√
2g

sinh 2θ sinh 2θ′

cosh(θ − θ′)

]

. (C.52)

S(Mg)(θγ, θ′) = exp

[

1

g

sinh(θ − θ′)

tanh 2θ′ − coth 2θ

]

. (C.53)

These results agree with findings of [64].
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C.4 On the factor Θ

Since the scalar-scalar factor Θ is the building block for all the scattering factors, we give here

some alternative constructions for it. Following what was done in [23], we define the function

M(u, v) =
Θ(u, v) + Θ(u,−v)

2
, (C.54)

which stores all the information on Θ, since (see (2.23) of [23])

Θ(u, v) =M(u, v)−M(v, u) . (C.55)

Then, we use (2.21) of [23] to express M(u, v) in terms of densities σ(1)(u) and σ(u; v). Formulæ

(3.7, 3.8) and Neumann expansions (3.9) allow to arrive at

M(u, v) =
i

2
ln

Γ(1 + iu+ iv)Γ(1 + iu− iv)

Γ(1− iu+ iv)Γ(1− iu− iv)
+ i ln

Γ
(

1
2
− iu

)

Γ
(

1
2
+ iu

) + (C.56)

+
∞
∑

n=0

∞
∑

p=1

1

ip

(

ig√
2

)p

[S(1)
p + S ′

p(v)]

[(

1

x
(

u+ i
2
(1 + 2n)

)

)p

−
(

− 1

x
(

u− i
2
(1 + 2n)

)

)p]

.

The first line of (C.56) is the one loop contribution; the second line is the higher than one loop

correction. We can manipulate (C.56) in order to get alternative expressions for M(u, v): for

instance,

M(u, v) =
i

2
ln

Γ(1 + iu+ iv)Γ(1 + iu− iv)

Γ(1− iu+ iv)Γ(1− iu− iv)
+ i ln

Γ
(

1
2
− iu

)

Γ
(

1
2
+ iu

) + (C.57)

+

∞
∑

p=1

[S(1)
p + S ′

p(v)]

∫ +π

−π

dθ

2πi
e−ipθ ln

Γ
(

1
2
− i

√
2g sin θ − iu

)

Γ
(

1
2
− i

√
2g sin θ + iu

)

and

M(u, v) =
i

2
ln

Γ(1 + iu+ iv)Γ(1 + iu− iv)

Γ(1− iu+ iv)Γ(1− iu− iv)
+ i ln

Γ
(

1
2
− iu

)

Γ
(

1
2
+ iu

) + (C.58)

+
∞
∑

n=0

∞
∑

p=1

(−1)n+p

in!(n + p)!

(

g√
2

)2n+p

[S(1)
p + S ′

p(v)]

[

ψ(2n+p−1)

(

1

2
− iu

)

− ψ(2n+p−1)

(

1

2
+ iu

)]

.

D Some calculations on how to get scattering factors

D.1 Scalars vs others

The ’fermionic’ contribution to Z4(v)− P reads

Z4(v)− P |F = F F (v, uF,j) +

∫

dw

2π

d

dw
Φ(w)F F (w, uF,j) . (D.1)
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Inserting the integral equation (2.62) for F F , we arrive at

Z4(v)− P |F = χF (v, uF,j) + Φ(v) +

∫

dw

2π

d

dw
[φ(w, v) + Φ(w)]F F (w, uF,j) . (D.2)

Remembering the integral equation (2.61) for Θ′ and then, after an integration by parts, the

equation (2.62) for F F , we get

Z4(v)− P |F = χF (v, uF,j) + Φ(v) +

∫

dw

2π

d

dw
Θ′(w, v)[χF (w, uF,j) + Φ(w)] (D.3)

= χF (v, uF,j) + Φ(v)−
∫

dw

2π

d

dw
Θ(v, w)[χF (w, uF,j) + Φ(w)] = i lnS(sf)(v, uF,j) .

The same calculation can be done for large antifermions. For gluons we can repeat the same

reasonings after the substitution χF (v, u) → χ(v, u|1). For small (anti)fermions we perform the

substitution χF (v, u) + Φ(v) → −χH(v, u).

For scalar-scalar factor we have to consider

Z4(v)− P |s = Θ′(v, uh)− Φ(uh) +

∫

dw

2π

d

dw
Φ(w)Θ′(w, uh) . (D.4)

Now, we remember the integral equation (2.61) for Θ′, which allows to write the identity

∫

dw

2π

d

dw
Φ(w)Θ′(w, uh) = −

∫

dw

2π

ϕ(uh, w)− ϕ(uh,−w)
2

P̃ (w) . (D.5)

Therefore, using the integral equation (2.66) for P̃ we get

Z4(v)− P |s = Θ′(v, uh) + P̃ (uh) = Θ(v, uh) = i ln[−S(ss)(v, uh)] . (D.6)

D.2 Non scalars vs others

Taking as a prototypical example the case of fermions, after multiplication by eiP we have to cope

with

exp

[

i

∫

dv

2π
[χF (v, uF,k) + Φ(v)]

d

dv
Z4(v)

]

, (D.7)

which is the master relation from which the various scattering factors originate.

For instance, the fermion-fermion factor is

exp

[

i

∫

dv

2π
[χF (v, uF,k) + Φ(v)]

d

dv
F F (v, uF,j)

]

. (D.8)

Mixing equations (2.61) and (2.62), we get

F F (v, u) = χF (v, u) + Φ(v)−
∫

dw

2π

d

dw
Θ′(v, w)[χF (w, u) + Φ(w)] , (D.9)
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which, inserted in (D.8) gives the fermion-fermion factor as reported in Appendix C:

exp
{

i

∫ +∞

−∞

dw

2π
[χF (w, uF,k) + Φ(w)]

d

dw
[χF (w, uF,j) + Φ(w)]−

− i

∫

dw

2π

dx

2π
[χF (w, uF,k) + Φ(w)]

d2

dwdx
Θ(w, x)[χF (x, uF,j) + Φ(x)]

}

. (D.10)

For what concerns the fermion-scalar factor, it receives contribution from

exp

[

i

∫

dv

2π
[χF (v, uF,k) + Φ(v)]

d

dv
Θ′(v, uh)

]

= exp

[

i

∫

dv

2π
[χF (v, uF,k) + Φ(v)]

d

dv
Θ(v, uh)

]

(D.11)

Expression (D.11) has to be multiplied to the factor

xF,k − x−h
x+h − xF,k

= eiχF (uh,uF,k) (D.12)

present in equation (2.79) and to the factor eiΦ(uh) present in eiP to get the full fermion-scalar

factor.

E Bethe equations

We list the complete set of Bethe Ansatz equations we found in this paper.

• Scalars

1 = eiRP (s)(uh)+iD(s)(uh)

Kb
∏

j=1

uh − ub,j +
i
2

uh − ub,j − i
2

H
∏

h′=1
h′ 6=h

S(ss)(uh, uh′)

Ng
∏

j=1

S(sg)(uh, u
g
j)

Nḡ
∏

j=1

S(sḡ)(uh, u
ḡ
j ) ·

·
NF
∏

j=1

S(sF )(uh, uF,j)

NF̄
∏

j=1

S(sF̄ )(uh, uF̄ ,j)

Nf
∏

j=1

S(sf)(uh, uf,j)

Nf̄
∏

j=1

S(sf̄)(uh, uf̄ ,j) , (E.1)

• Large fermions

1 = eiRP (F )(uF,k)+iD(F )(uF,k)

Ka
∏

j=1

uF,k − ua,j + i/2

uF,k − ua,j − i/2

H
∏

h=1

S(Fs)(uF,k, uh) ·

·
NF
∏

j=1

S(FF )(uF,k, uF,j)

NF̄
∏

j=1

S(F F̄ )(uF,k, uF̄ ,j)

Nf
∏

j=1

S(Ff)(uF,k, uf,j)

Nf̄
∏

j=1

S(F f̄)(uF,k, uf̄ ,j) ·

·
Ng
∏

j=1

S(Fg)(uF,k, u
g
j )

Nḡ
∏

j=1

S(F ḡ)(uF,k, u
ḡ
j) , (E.2)
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• Large antifermions

1 = eiRP (F )(uF̄ ,k)+iD(F )(uF̄ ,k)
Kc
∏

j=1

uF̄ ,k − uc,j + i/2

uF̄ ,k − uc,j − i/2

H
∏

h=1

S(F̄ s)(uF̄ ,k, uh) ·

·
NF
∏

j=1

S(F̄ F )(uF̄ ,k, uF,j)

NF̄
∏

j=1

S(F̄ F̄ )(uF̄ ,k, uF̄ ,j)

Nf
∏

j=1

S(F̄ f)(uF̄ ,k, uf,j)

Nf̄
∏

j=1

S(F̄ f̄)(uF̄ ,k, uf̄ ,j)

·
Ng
∏

j=1

S(F̄ g)(uF̄ ,k, u
g
j )

Nḡ
∏

j=1

S(F̄ ḡ)(uF̄ ,k, u
ḡ
j) (E.3)

• Small fermions

1 = eiRP (f)(uf,k)+iD(f)(uf,k)
Ka
∏

j=1

uf,k − ua,j + i/2

uf,k − ua,j − i/2

H
∏

h=1

S(fs)(uf,k, uh) ·

·
NF
∏

j=1

S(fF )(uf,k, uF,j)

NF̄
∏

j=1

S(fF̄ )(uf,k, uF̄ ,j)

Nf
∏

j=1

S(ff)(uf,k, uf,j)

Nf̄
∏

j=1

S(ff̄)(uf,k, uf̄ ,j)

·
Ng
∏

j=1

S(fg)(uf,k, u
g
j)

Nḡ
∏

j=1

S(fḡ)(uf,k, u
ḡ
j) , (E.4)

• Small antifermions

1 = eiRP (f)(uf̄ ,k)+iD(f)(uf̄ ,k)
Kc
∏

j=1

uf̄ ,k − uc,j + i/2

uf̄ ,k − uc,j − i/2

H
∏

h=1

S(f̄s)(uf̄ ,k, uh) ·

·
NF
∏

j=1

S(f̄F )(uf̄ ,k, uF,j)

NF̄
∏

j=1

S(f̄ F̄ )(uf̄ ,k, uF̄ ,j)

Nf
∏

j=1

S(f̄f)(uf̄ ,k, uf,j)

Nf̄
∏

j=1

S(f̄ f̄)(uf̄ ,k, uf̄ ,j)

·
Ng
∏

j=1

S(f̄g)(uf̄ ,k, u
g
j)

Nḡ
∏

j=1

S(f̄ ḡ)(uf̄ ,k, u
ḡ
j) (E.5)

• Gluons

1 = eiRP (g)(ug
k
)+iD(g)(ug

k
)

Ng
∏

j=1,j 6=k

S(gg)(ugk, u
g
j )

Nḡ
∏

j=1

S(gḡ)(ugk, u
ḡ
j)

H
∏

h=1

S(gs)(ugk, uh) ·

·
NF
∏

j=1

S(gF )(ugk, uF,j)

NF̄
∏

j=1

S(gF̄ )(ugk, uF̄ ,j)

Nf
∏

j=1

S(gf)(ugk, uf,j)

Nf̄
∏

j=1

S(gf̄)(ugk, uf̄ ,j) (E.6)

• Barred gluons

1 = eiRP (g)(uḡ
k
)+iD(g)(uḡ

k
)

Ng
∏

j=1

S(ḡg)(uḡk, u
g
j)

Nḡ
∏

j=1,j 6=k

S(ḡḡ)(uḡk, u
ḡ
j)

H
∏

h=1

S(ḡs)(uḡk, uh) ·

·
NF
∏

j=1

S(ḡF )(uḡk, uF,j)

NF̄
∏

j=1

S(ḡF̄ )(uḡk, uF̄ ,j)

Nf
∏

j=1

S(ḡf)(uḡk, uf,j)

Nf̄
∏

j=1

S(ḡf̄)(uḡk, uf̄ ,j) (E.7)
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• Isotopic roots

NF
∏

j=1

ua,k − uF,j + i/2

ua,k − uF,j − i/2

Nf
∏

j=1

ua,k − uf,j + i/2

ua,k − uf,j − i/2
=

Ka
∏

j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb
∏

j=1

ua,k − ub,j − i/2

ua,k − ub,j + i/2
(E.8)

H
∏

h=1

ub,k − uh + i/2

ub,k − uh − i/2
=

Ka
∏

j=1

ub,k − ua,j − i/2

ub,k − ua,j + i/2

Kc
∏

j=1

ub,k − uc,j − i/2

ub,k − uc,j + i/2

Kb
∏

j=1

j 6=k

ub,k − ub,j + i

ub,k − ub,j − i
(E.9)

NF̄
∏

j=1

uc,k − uF̄ ,j + i/2

uc,k − uF̄ ,j − i/2

Nf̄
∏

j=1

uc,k − uf̄ ,j + i/2

uc,k − uf̄ ,j − i/2
=

Kc
∏

j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb
∏

j=1

uc,k − ub,j − i/2

uc,k − ub,j + i/2
(E.10)
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