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Summary 

 Solid tumors require the formation of new blood vessels to support their growth,  invasiveness 
and metastatic potential. Tumor neovascularization is achieved by vasculogenesis from endothelial 
precursors and by sprouting angiogenesis from preexisting vessels. The complex sequence of events 
driving these processes, including endothelial activation, proliferation, migration and differentiation, is 
associated with fluxes of ions, water and other small molecules mediated by a great pool of ion channels 
and transporters (ICT). This ‘transportome’ is regulated by environmental factors as well as intracellular 
signaling molecules. In turn, ICT play a prominent role in the response to angiogenesis-related stimuli 
through canonical and 'unconventional' activities: indeed, there is an increasing recognition of the 
multifunctionality of several ion channels that could also be annotated as receptors, enzymes, 
scaffolding proteins, mechanical and chemical sensors. 
The investigation of ICT structure and function has been far from the experimental oncology for long 
time and these two domains converged only very recently. Furthermore, the systems biology viewpoint 
has not received much attention in the biology of cancer transportome. Modulating angiogenesis by 
interference with membrane transport has a great potential in cancer treatment and the application of 
an 'omics' logic will hopefully contribute to the overall advancement in the field.  

This review is an attempt to apply the systems biology approach to the analysis of ICT involved 
in tumor angiogenesis, with a particular focus on endothelial transportome diversity. 
   
 
 

 



	   4	  

Introduction 

Over the last thirty years, much insight has been gained into the central role of the endothelium 

in human health and disease (1). Endothelial cells (EC) represent a great evolutionary novelty in 

vertebrates (2–5): they line the blood vessel and act as a dynamic interface between blood and tissues 

providing a powerful control system for blood pressure and remodeling of vascular network (6). Since 

the endothelium can be a target or a causal factor of human disease, its assessment is a valuable tool in 

clinical investigation (1). The integrated evaluation of endothelial function and dysfunction 

incorporating, for example, coagulation, inflammatory, and vascular tone properties in normal 

homeostasis and diseases led some authors to propose the concept of 'endotheliome' (7). This term 

refers to endotheli-al form and function as a whole (-ome): a key requirement is to forge a synthesis of 

the array of endothelial vascular modifications in function of time and to understand how they are 

required for a given function or dysfunction to occur.  

 The formation of new blood vessels is required during tissue growth and remodeling in order to 

provide adequate nutrients and oxygen and overcome the basic surface/volume constraint in biological 

processes. Neovascularization can occur through different mechanisms such as vasculogenesis from 

endothelial precursors and sprouting angiogenesis (8). During this process endothelial homeostasis is 

regulated by pro- and anti-angiogenic factors: the response to these extracellular stimuli depends, 

among the other proteins, on the plasma-membrane transportome, the great and diversified tool of ion 

channels and transporters (ICT) expressed in the plasma membrane of EC (9). Neovascularization 

actually involves activation, proliferation, migration and differentiation of EC and endothelial cell 

precursors (EPC): all these events are associated with fluxes of ions, water and other small molecules 

mediated by a great variety of ICT (10,11). The growing interest on the contribution of ICT is clearly 

revealed by the huge number of very recent reports and reviews focused on this topic and published in a 

broad range of journals (10,12–17).  
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 The transportome is finely regulated by a large pool of intracellular and extracellular signals, 

respectively, including signaling/metabolic pathways and soluble pro- and anti-angiogenic peptides, 

hormones, as well as extracellular matrix components. In turn, they mediate the vascular responsiveness 

to vasoactive stimuli. Intriguingly, this role is not always played by their canonical activity: indeed, as 

discussed below, a number of ion channels exhibit non-conductive functions and could also be 

annotated as receptors, enzymes, scaffolding proteins, mechanical and chemical sensors (18–23). 
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ICT expression during normal and altered angiogenesis 

Globally, the main aims for a systems biology of ICT in altered angiogenesis should be 1) a clear 

definition of the endothelial transportome and 2) a deep knowledge of its integration with cell signaling 

and metabolome (the complete set of small molecule metabolites found within a cell compartment) 

involved in patho-physiological neovascularization: the latter issue is strictly related to protein 

interactomics (Figure 1). 

To address the first goal we need an exhaustive annotation of the entire pool of ICT expressed by EC 

and EPC, their topological distribution and a description of the great variability due to genetic and 

epigenetic factors, including tissue microenvironment. The readout of this approach would be 

particularly attractive for vascular biology due to the great diversity found in normal and tumor-

associated vessels and endothelial cells (24,25).  

Despite the importance and the increased utility of proteomic tools in medical research for 

extending basic understanding in vascular biology and for directing the delivery of therapeutic and 

imaging agents in vivo, endothelial proteomics is only at its beginning. In addition, global ontology 

analyses are required to move beyond a simple list of proteins and to understand better how they 

interact and function in a given environment, providing a validation of a proteome generated from 

large-scale mass spectrometry (MS) analysis. This would lead to a better knowledge of the relationship 

of proteins in a functional network, as well as to the detection of novel functions and pathways in the 

given tissue (26). 

Unfortunately, profiling the plasma membrane proteome (also named 'plasma membranome', 

e.g. the pool of proteins embedded in plasma membrane lipid bilayer) by the use of standard large-scale 

methods including MS-based strategies has been limited by problems associated with extraction, 

solubilization, and identification of intrinsic membrane proteins in cells and tissues. Moreover, ECs 

form a thin monolayer lining each blood vessel. They constitute a very small fraction of all the cells in 

the tissue, making it difficult to isolate pure EC plasma membrane fractions for proteomics analysis 
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using conventional sub-cellular fractionation techniques. Although relatively simple to isolate from 

tissue and grow in culture, EC require microenvironmental components to maintain their tissue-

specific qualities and thus undergo undesired phenotypic changes after isolation. Mass spectrometry 

(MS) measurements and the use of multiple analytical methods can greatly expand the 

comprehensiveness of endothelial proteomic profiling. However, the inherent biases and variations in 

such data limit the quality of a quantitative comparative analysis.  

A recent comparative analysis of EC plasma membranome employed four different MS-based 

strategies involving 2-D and 3-D separation (26). It combines protein pre-fractionation via SDS-PAGE 

with in-gel digestion to produce peptides separated by one- and two- dimensional nano-HPLC before 

seamless and continuous MS analysis. Each method used multiple replicate measurements to 

comprehensively identify proteins, achieving a clear statistical definition of completeness that allows 

meaningful comparisons. This approach greatly expanded the EC plasma membranome to 1,833 

proteins of which nearly 30% are membrane-embedded (26,27). A further unbiased systems analysis 

unraveled the related pathways and functions including cell surface signaling networks, cytoskeleton 

organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, 

and vesicle-mediated transport (28). 

 Only a few studies incorporate proteomic analysis of freshly isolated ECs from healthy and 

altered tissues or conditions that mimic key angiogenic variables, such as oxygen tension and shear stress 

(25).  

We should take into account that the endothelium lining blood vessels and surrounding stroma 

in tumors differs from normal one, but only recently these differences have begun to be characterized at 

the molecular level (29–31). Since angiogenesis is required for physiological processes, markers that 

distinguish normal and pathological vasculature are needed in order to selectively deliver antiangiogenic 

agents to diseased tissues minimizing the potential side effects. A proteomic method has been developed 

to discover cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker 
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opportunities (32). It is based on flow cytometric staining of vascular organs with known endothelial 

markers and their purification by cell sorting. Upon cell surface protein capture and tryptic digestion, 

the resulting proteolytic peptides are subjected to liquid chromatography – mass spectrometry (LC/MS) 

to identify the proteins. The comparative analysis revealed differences in the expression in different 

organs or conditions. Tumor-derived endothelium obtained from the kidney, lung and colon 

overexpresses more than one hundred of proteins when compared with normal surrounding tissues (32). 

Interestingly, ATP1B3 was among the more differentially expressed cell surface tumor-specific 

endothelial markers identified in this study. ATP1B3 belongs to the family of Na+/K+-ATPases, integral 

membrane proteins responsible for establishing and maintaining the electrochemical gradients of Na+ 

and K+ ions across the plasma membrane. This enzyme is composed of two subunits, a large catalytic α 

subunit and a smaller β glycoprotein (33). The β subunit regulates, through assembly of α/β 

heterodimers, the number of Na+/K+ ATPases transported to the plasma membrane. Recent studies 

indicate that the α- and β-subunits might independently be involved in cellular functions other than 

ion pumping (34). For example, the β-subunit could play a role in cell-cell adhesion. The amounts of 

the cell surface β-subunits increase when the cell density becomes higher, whereas the amount of the 

α−subunit does not change significantly (34). Further studies are needed to unveil the functional 

outcome of ATP1B3 over-expression on tumor vasculature (32).  

Another proteomic work was undertaken on human telomerase-immortalized dermal 

microvascular endothelial cells (TIME) in order to identify key regulatory events at the protein level 

during tubular morphogenesis in vitro (35). Curiously, one of the VEGF-A-regulated EC proteins was 

identified as chloride intracellular channel 4 (CLIC4). The CLIC proteins have the unusual ability to 

translocate from the cytoplasm to various cell membranes and their overexpression promotes plasma 

membrane localization where they act as functional anion channels. CLIC4 has also been shown to 

engage in complex formation with cytoskeleton components such as actin, tubulin, and dynamin I. The 
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ability of CLIC4 to modulate the activity of cell surface ICT in retinal pigment epithelium-

photoreceptor adhesion raises the possibility for a similar role in vascular endothelium (36). 

 Although many compounds have entered clinical trials as modulators of tumor angiogenesis, the 

conventional anti-angiogenic therapies based on well established molecular targets such as VEGF, 

integrins and angiopoietin, suppress neovascularization only transiently: they suffer from the so-called 

‘tumor escape phenomenon’, due to compensating pathways that circumvent the initial effect, as well as 

from ‘resistance’ to chemotherapy drugs (30,37–40). Intriguingly, the combination of anti-VEGF 

therapy with conventional chemotherapy has improved survival in cancer patients compared with 

chemotherapy alone. These seemingly paradoxical results have been explained by a 'normalization' of 

the abnormal tumor vasculature usually characterized by dilated, tortuous, and hyperpermeable vessels. 

Vascular normalization leads to an attenuation of hyperpermeability, increased vascular pericyte 

coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and 

interstitial fluid pressure (41–43). These in turn can lead to an improvement in the metabolic profile of 

the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the 

power of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells. An 

omics approach in models of EC normalization, taking into account also other stromal cells such as 

fibroblasts and immune cells, could shed more light on the mechanisms underlying this promising 

effect. The putative contribution of ICT in vascular normalization is unknown but the field is in need 

of alternative targets, related to the identification of novel and missing angiogenesis annotations and 

their association with vascularization by the use of statistical analysis and multiple gene expression 

datasets. GeneHits is a method that combines graph diffusion kernels from PPI and pairwise 

associations from protein domain occurrence to construct a global angiogenesis protein interaction 

network, called 'Angiome' (44,45). An initial network of 478 proteins was then extended to 1,233 

proteins. The angiome allows one to identify those genes and proteins in the databases that are 

associated with angiogenesis by comparing the disease- or condition-specific data to the angiome. 
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Examples may include identification of specific angiogenesis-associated genes that are up- or 

downregulated or mutated in disease conditions. Some of them may then be considered as putative 

targets for therapeutic approaches that, ultimately, will need to be experimentally validated. The human 

interactome was recently integrated with known angiogenesis-annotated proteins to identify a set of 202 

angiogenesis-associated proteins in different cell lines (46). The expression of several proteins turned 

out to be highly perturbed during angiogenesis. Upon exposure to VEGF-A, some proteins were 

upregulated, such as HIF-1α, APP, HIV-1 tat interactive protein 2, and MEF2C, whereas endoglin, 

liprin β1 and HIF-2α resulted downregulated. The analysis showed differential regulation of HIF-1α 

and HIF-2α (46). 'Angiome' database doesn't include yet information about ICT, whose 

implementation will hopefully cover this lack.  

Despite the fact that these high-throughput and large-scale approaches reveal very powerful and 

increasingly robust, they are still poorly employed in the field of membrane transport. Most of the 

available information on the differential expression pattern of transportome is actually obtained from 

small-scale hypothesis-driven works. Two well described examples involve some members of the 

Transient Receptor Potential (TRP) channels and Orai1 that form calcium-permeable channels. Among 

the 30 mammalian TRP channels, at least 19 are expressed in vascular ECs and are suggested to 

participate in a wide range of vascular functions, including control of vascular tone, permeability, 

mechanosensing, vascular remodeling and angiogenesis (47). However, in spite of the large body of data 

available, the functional role of many endothelial TRP channels in normal and neoplastic angiogenesis 

is still poorly understood. Transient receptor potential vanilloid 4 (TRPV4) is a calcium channel 

involved in EC migratory potential and is overexpressed in human breast-carcinoma derived EC 

(BTEC) compared to healthy EC (48). Canonical transient receptor potential channel 1 (TRPC1), as 

well as another calcium channel, Orai1, is upregulated in endothelial progenitor cells (EPC) isolated 

from renal carcinoma patients compared with EPC from healthy patients (14,49,50). Both these cases 

will be largely discussed in the following chapter (12,13,15–17). Growing evidence supports the 
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evidence that cancer cells may drive endothelial changes by exploiting their high flexibility. In particular, 

tumoral microenvironment has the ability to greatly influence the drug-resistance of ECs through 

molecular mechanisms still poorly understood. A recent paper postulated that microvessels (MV) 

derived from MCF-7 adriamycin-resistant cells (MCF-7/ADM) communicate with and influence the 

resistance of HMECs acting as a 'cargo' in cell-cell communication. MCF-7/ADM cell-derived MVs 

transfer TRPC5 to HMECs, inducing the expression of P-glycoprotein (P-gp) by activation of the 

transcription factor NFATc3 (nuclear factor of activated T cell isoform c3) (51). The TRPC5-

dependent upregulation of P-gp is suggested to be tighly associated with Ca2+ entry induced by 

functional TRPC5 ion channel, but only further investigations will provide more mechanistic details on 

this intriguing process: blocking TRPC5 could contribute to overcome drug-resistance in cancer. 

The altered expression panel of tumor-associated ICT does not involve only calcium channels, 

as suggested by the aberrant level of potassium channels encoded by the human ether-a-go-go related 

gene (Kv11.1, or hERG1) that regulate vascularization in some human cancers (52–54).  

Another very interesting issue is related to the membrane permeability for water. Among the 

membrane fluxes that play a universal and conserved role in cell physiopathology, water permeation is 

highly relevant being a direct regulator of intracellular osmoticity and volume. Aquaporins (AQPs) are 

the integral plasma membrane proteins involved in water transport in many fluid-transporting tissues. 

Cancer cells express AQPs and a positive correlation exists between histological tumor grade and the 

AQP expression (55,56). In particular, AQP-1 plays a crucial role in tumor angiogenesis and regulates 

EC migration (57–61). Deletion of AQP-1 in genetically modified mice reduces tumor angiogenesis 

(57). In AQP-1 knockout mice, implanted tumors grow slowly and are less vascularized than in wild-

type mice, indicating that cancer neovascularization and growth are promoted by endogenous AQP-1. 

On the other hand, the evidence that these mice develop normally with no detectable vascular defects 

strengthens the idea that normal and tumor angiogenesis are governed in different ways. Furthermore, 

microarray analysis has revealed that the AQP-1 gene is upregulated by estrogen and plays a crucial role 
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in estrogen-induced tubulogenesis of HUVEC possibly contributing to vascular permeability increase 

seen in response to the hormone mediated by the upregulation of VEGF and its receptors (60,62–64).  

 

Interactomics of vascular ICT 

Databases  

 A global map of protein-protein interactions (PPI) in cellular systems provides key insights into 

how an organism works as a whole. Indeed, human diseases are rarely the consequence of an isolated 

abnormality in a particular gene but are usually the outcome of complex perturbations of the 

underlying molecular network. This has led to systematic studies of interactome networks, whose 

structure is governed by key graph theoretical laws, where the probability of observing a protein with a 

small number of interactions is higher than the probability of observing a protein with many 

interactions (65).  

Several public databases allow interactive investigation of interactome, including String-db, Genehits, 

Uniprot, Biogrid, DIP, IntAct, Reactome, Pathwayscommons, Pathway Interaction Database, and 

Unihi (65). A repository of well-validated high-quality PPI can be used in both large- and small-scale 

studies to generate and validate a wide range of functional hypotheses. The pattern of binary 

interactions can be obtained by literature-curation (LC) and high-throughput experiments (HT) (66). 

LC refers to systematically collecting interaction data from small-scale studies while HT experiments 

produce large-scale interaction maps. Because most LC data are generated by hypothesis-driven 

experiments, it is much easier to infer biological function from those studies as compared to HT 

experiments (66). 

Despite the quality of this approach being widely questioned, the reproducibility of large-scale protein 

interaction results has much improved. Moreover, common data standards and coordinated curation 

practices between the databases that collect the interactions have made these valuable results available to 

a wide community of researchers (65). Nonetheless, it is not easy to reconcile information from 
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different independent and not-coordinated sources. For this reason, a number of them joined in 

International Molecular Exchange consortium (IMEx) to provide a unique standard curation practice 

and data presentation (67). 

 Interaction databases may lead to different predictions whose accuracy can be improved by 

incorporating datasets on organ- and cell type-specific gene expression, and by obtaining additional 

independent experimental evidence (68). A recent survey evaluated the characteristics of six interaction 

databases, incorporated tissue-specific gene expression information and then investigated if the most 

popular proteins of scientific literature are involved in good quality interactions (68). The databases 

result comparable in terms of node connectivity (i.e. proteins with few interaction partners also have 

few interaction partners in other databases), but may differ in the identity of interaction partners. 

Moreover, the incorporation of tissue-specific expression information significantly alters the interaction 

landscape and many of the most intensively studied proteins are engaged in interactions associated with 

low confidence scores.  

 An advanced systems biology of vascular ICT in angiogenesis aims at investigating the network 

of physical and biochemical PPI at two levels: the multimeric ICT assembly and, more broadly, PPI 

occurring between membrane transportome and proteins canonically associated with other functions 

such as cell signaling and metabolism. This second level would help to explain how channels and 

transporters integrate and coordinate intracellular pathways as well as how ICT are regulated by 

signaling proteins, lipids, and gasotransmitters (69–75). Accordingly, defective interactions of protein 

partners with ICT represent alternative mechanisms of membrane channelopathies (76). Molecular 

interactions actually create local microenvironments that can modify the functional properties of ICT. 

The assemblies built around a transporter or channel, called 'transportsomes' and 'channelosomes', can 

be considered as functional units even if they are difficult to purify and reconstitute, posing a significant 

challenge in the investigation of their functional role (77,78). A special issue on 'Channels' provides an 

overview of the nature and function of transportsomes and channelosomes (77). Successful studies 
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focusing on PPI could potentially lead to new drug discovery strategies targeting ion channel complexes 

(79).  

 As already mentioned, the interactome dynamics is strictly related to the physiological or altered 

cellular targeting of ICT. Indeed, the actual functions and biological effects of ion-transport-related 

proteins critically depend upon their intracellular distribution and, consequently, their interaction with 

a specific pattern of other proteins (specific interactome). The term 'interaction' refers to direct physical 

protein-protein (first-order) binding detectable by yeast-two-hybrid and protein complementation 

assays, as well as to indirect interaction through the mediation of other components, including 

scaffolding proteins, detectable by affinity purification followed by mass spectrometry (65). In some 

cases PPI are associated with post-translational modifications that drive cell signaling, such as 

phosphorylation, nitrosylation, sulphydration, redox reactions, and palmitylation.  

 According to this well-established knowledge, a more integrative view of ICT is now required, 

that should be investigated as components of the global vascular proteome involved in angiogenesis. 

The application of such a systems biology approach, that is experiencing its initial stage in this 

particular field, will hopefully open new exciting directions in both basic and biomedical biology.  
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Angiogenesis-related channelosomes 

Among the channels that play remarkable roles in tumor vascularization, the aforementioned 

Transient Receptor Potential (TRP) proteins are the best known and their functions are regulated 

through interaction with many cellular proteins (70,80,81). The TRIP (Transient receptor potential 

channel-Interacting Protein) manually curated database has been recently developed, that aims to offer 

comprehensive information in the field (78,82,83). According to the broad considerations discussed in 

the previous chapter on interactome databases, great attention should be devoted in order to extract 

suitable unbiased information. Indeed, not all TRPs and their interactors are simultaneously expressed 

in a cell; PPI may occur only in a specific biological microenvironment; a TRP-binding protein 

concurrently interacts with multiple TRPs in a given cell at a specific condition; moreover, TRP-

interacting proteins may competitively bind to the same region of a TRP channel. Given that 

interactions can dynamically modify the activities and subcellular locations of TRP, cell type- or cell 

context-specific PPI data are required to reveal the physiological relevance of TRP interactome in a 

more integrated viewpoint. Such data can be harvested by omics experimental approach under cell type- 

or cell context-specific conditions or computational integration of TRP channel PPI data with gene 

expression profile data.  

TRP channels assemble into homomeric or heteromeric tetramers (84). The latter complexes are 

formed among the isotypes within or across subfamilies, suggesting a high-order complexity of TRP 

channel regulation in a physiologic context. Though not fully characterized, some evidence shows that 

new biophysical properties are created by heteromerization between TRP channel isotypes, including 

TRPC1-TRPC3, TRPC1-TRPC4, TRPC4-TRPC5, TRPC1-TRPC5, TRPC1-TRPP1, TRPC1-

TRPV4, TRPV4-TRPP1, TRPV5-TRPV6, TRPML1-TRPML2, and TRPML1-TRPML3 (84,85). 

TRPC1 interacts physically with TRPV4 to form a complex that mediates flow-induced and store-

operated calcium entry (SOCE) in primary mouse aortic and human HUVEC (86,87). Endothelial 
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SOCE involves signalplexes embodying Orai1, Stim1 and TRPC1 and regulates critical vascular 

processes, remodeling and angiogenesis (85,88).  

Functional SOCE is also present in human circulating endothelial progenitor cells (EPCs), a 

sub-population of mononuclear cells that is recruited from either bone marrow or arterial wall to 

replace damaged/senescent EC and recapitulate the vascular network of lesioned organs. They act by 

either stimulating local angiogenesis via paracrine signaling or by physically engrafting within neovessels. 

SOCE controls proliferation and in vitro tubulogenesis in EPCs isolated from both peripheral and 

umbilical cord blood of healthy donors (N-EPC). Notably, SOCE is upregulated, mitogenic and 

protubulogenic for EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma 

(RCC-EPC) (14,49,50,89). The enhanced SOCE in these cells is associated with the over-expression of 

Stim1, Orai1, and TRPC1 (49,50,89). N-EPCs possess TRPV4, which plays a master signaling role in 

mature healthy and tumor-derived endothelium, by controlling both vascular remodeling and arterial 

pressure (90). TRPV4 mediates cell migration of BTEC (but not HMEC) via arachidonic acid-

activated actin remodeling (91). The role of TRPV4 in EPC is unknown, but it is not involved in the 

control of cell proliferation (90). Surprisingly, both N-EPC and RCC-EPC lack TRPC3, TRPC5 and 

TRPC6 that play critical functions in mature endothelium (11,12,16,17). Endothelial colony forming 

cells isolated from patients with primary myelofibrosis (PMF-ECFCs) undergo a distinctive remodeling 

of the Ca2+ machinery: Stim1, TRPC1, TRPC4, Orai3 and, perhaps, Orai2 proteins are up-regulated 

and, unlike N- and RCC-ECFC, the InsP3-dependent SOCE does not drive PMF-ECFC proliferation 

(92).  

 An overview of the current state and future directions of TRP channel network biology is 

reported in (78).  
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Interactions between ICT and cytoskeleton 

Some ion channels and transporters bind to members of the large family of proteins that 

constitute the cytoskeleton (21,93). This sub-network underlies the endothelial mechanosensitivity and 

transduction during sprouting angiogenesis (21,94,95). 

TRP channels. TRP channels selectively associate with the cytoskeleton (96). Many of them 

include ankyrin repeat domains, 33-residue motifs consisting of pairs of antiparallel α-helices connected 

by β-hairpin motifs, that link proteins, such as InsP3R or NHE, to the cytoskeleton. The occurrence of 

such domains is differently pronounced within the TRP family but their function is still poorly 

understood (70). The relationship between TRP proteins and cytoskeleton is bidirectional, with a role 

of ion fluxes in the rearrangement of the cytoskeleton structures and, in turn, the activity of the 

cytoskeleton and associated proteins in supporting the appropriate TRP targeting, PPI and channel 

gating (96).  

Furthermore, TRP channels are part of macromolecular complexes including different signal 

transduction proteins involved in a variety of cell functions (77). A relevant example is the role of the 

scaffolding proteins belonging to the families of Homer and INAD that regulate TRPC channel gating 

(96). Intriguingly, TRP themselves can act as scaffolding proteins. Recent analysis of the function of 

TRPC4 in vascular EC of divergent phenotype revealed a novel aspect of TRPC signaling, extending 

the current concept of TRPC regulation by a phenotype-dependent switch between Ca2+ transport and 

a potential intracellular scaffold function of the TRPC protein (97). TRPC4 contains six 

transmembrane domains and its cytosolic C terminus includes several binding domains that tether 

TRPC4 to the membrane skeleton. A functional mammalian INAD homologous protein was identified 

by the characterization of peptide sequences of NHE Regulatory Factor (NHERF) and the subsequent 

identification of TRPC4 and TRPC5 as potential interaction partners (98). NHERF was originally 

isolated as a factor required for inhibition of NHE type 3 (NHE3) mediated by PKA (99). The protein 

has two PDZ domains, the first one recognizing peptides carrying T-R-L at the C-terminus. The 



	   18	  

sequences of the mammalian TRPC4 and TRPC5 also end with the T-R-L motif. The activation mode 

of the TRPC4/5 complex is still an issue of controversy. Some groups proposed a store-depletion 

mechanism, while other laboratories reported the activation of TRPC4/5 to be dependent on 

receptor/G-protein/PLC activation, but independent of store depletion (100). PDZ1 of NHERF1 

binds to TRPC4 and TRPC5 heterologously expressed proteins (98). The interaction of two partners 

with the same PDZ domain suggests a model in which NHERF forms a homodimer via PDZ2 and 

PDZ1 domains, bringing TRP channels (TRPC4, TRPC5) in proximity of PLC (98). Like INAD, 

which controls function, stability, and plasma membrane expression of Drosophila TRP, NHERF 

regulates TRPC4 targeting.  

A model of TRPC4 embedded in its signaling scaffold has been proposed in pulmonary artery 

EC (PAEC) (101): TRPC4 interacts directly with protein 4.1 through its protein 4.1 binding domain, 

as well as with NHERF, linked to actin through ezrin-radixin-moesin (ERM) proteins. NHERF is a key 

scaffolding protein in that it can also bind directly to PLC and G-protein–coupled receptors through its 

PDZ domains. The signaling assembly is localized in cholesterol-rich caveolae containing caveolin-1, a 

binding partner for different ion channels (see below) (101). In the same cells TRPC4/Orai1 coupling 

controls TRPC1/4 activation and channel permeability, including Ca2+ selectivity, and the ensuing 

endothelial cell barrier function (102,103). It is worth noting that, although Orai1 expression is usually 

associated with its canonical function as a Ca2+ channel, growing evidence suggests that Orai1 and 

Orai3 proteins may be more important than Ca2+ influx to control proliferation of different cell lines 

(104). Intriguingly, thrombin-mediated decrease of transendothelial electric resistance (TER), a marker 

of endothelial barrier disruption, requires Stim1 independently of Orai1 and Ca2+ entry across the 

plasma membrane in HUVECs and HMVECs. The regulation of endothelial barrier function may not 

be due to Stim1-mediated interaction with TRPC channels. Rather, Stim1 seems to be required for 

RhoA activation, MLC phosphorylation, and formation of actin stress fibers (105). Other TRPC4 

interactors are the large molecular weight immunophilins FKBP51 and FKBP52 that respectively 
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inhibit and enhance TRPC4-related SOCE in PAECs (106). As discussed below, TRPC4 is critically 

involved in the regulation of EC permeability by Thrombin (107). In HMEC TRPC4 is regulated by 

cell-cell contact formation and interacts with β-catenin, and the related Ca2+ entry acts in a specific 

endothelial state during the transition from a proliferating to a quiescent phenotype. Hence TRPC4 

may adopt divergent functions in endothelial Ca2+ homeostasis and emerges as a potential key player in 

endothelial phenotype switching and tuning of cellular growth factor signaling (108). 

Cyclic mechanical strain produced by pulsatile blood flow regulates the orientation of EC lining 

blood vessels and contributes to the control of angiogenesis. It has been reported that flow-induced 

stretching activates mechanosensitive TRPV4 that, in turn, stimulates PI3K-dependent activation and 

binding of additional integrin receptors, which promotes cytoskeleton remodeling and cell reorientation. 

Inhibition of integrin activation using blocking antibodies and knockdown of TRPV4 channels with 

specific siRNA suppress strain-induced capillary cell reorientation (109). A direct interaction between 

TRPV4, α2 integrin and the Src tyrosine kinase Lyn has been reported in sensory neurons (110), 

raising the possibility that TRPV4 could reside in a common mechanosignaling complex with 

extracellular matrix (ECM) receptors also in endothelium.  

Other interactors of integrins are potassium channels. In particular, hERG1 are frequently 

found aberrantly expressed in tumors (see above) and control different aspects of the neoplastic cell 

physiology: they trigger and modulate intracellular signaling cascades through the assembly of 

multiprotein membrane complexes which also recruit integrin subunits and receptors for growth factors 

or chemokines (52,53,111). Therefore, hERG1 may be a key component of the ‘functional hubs’ that 

control angiogenesis in cancer. The microenvironment, through the functional interplay between 

integrins and hERG1, regulates angiogenesis and tumor progression possibly contributing to VEGF 

resistance (13,52,111,112). A signaling pathway that sustains angiogenesis and progression in colorectal 

cancer cell lines has been proposed in which β1 integrins and hERG1 channels form a functional 

plasma membrane complex able to recruit and activate PI3K and Akt. This event in turn increases the 



	   20	  

Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumor progression 

genes. Similarly, VEGFR-1 (FLT-1), β1 integrin, and hERG form a macromolecular signaling complex 

in acute myeloid leukemia (113). 

Aquaporins. As mentioned before, water fluxes mediated by Aquaporins are involved in tumor 

angiogenesis. Presumably AQP1, which is specifically and strongly expressed in most EC of the 

microvasculature outside the brain (114), seems to act not only as a water channel but it contributes to 

cell migration (57,115). In two different cell lines expressing AQP1, the human melanoma cell line 

WM115 and the human microvascular cell line HMEC, the knock down of AQP1 promotes a re-

organization of F-actin and affects the cell shape (115). In non-silenced cells F-actin is preferentially 

polarized at the leading edge of the plasma membrane and the cells produce tubules in vitro (115). In 

contrast, AQP1-silenced cells loose significantly their tubulogenic potential and decrease their ability to 

migrate (115). Actually, the polarization at the leading edge of migrating cells has been demonstrated 

for several transporters involved in migration, including Na+/H+ and Cl-/HCO3- exchangers and the 

Na+/HCO3- co-transporter, and cell migration involves the transient formation of lamellipodia and 

plasma membrane ruffles at the leading edge of the cell, suggesting that a rapid local changes in ion 

fluxes and cell volume are accompanied by rapid transmembrane water movement (116). Thereby, the 

actin cleavage and ion uptake at the tip of lamellipodium might create local osmotic gradients that drive 

the influx of water across the plasma membrane. Saadoun et al. postulated that water entry increases 

local hydrostatic pressure causing the polarization of AQP1 (57). The intracellular mechanisms 

triggered by AQP1 are not well known, but it has been recently shown that Lin-7 co-

immunoprecipitates with AQP1 and interacts with β-catenin through Lin-7, affecting the organization 

of cytoskeleton (115). Intriguingly, the lack of AQP1 leads the Lin-7/ β-catenin complex to proteolytic 

degradation (115). Altogether, these data suggest that the physiological role of AQP1 goes beyond its 

water transport function. This protein rather emerges as a critical scaffold for a plasma membrane 
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associated multi-protein complex critical for endothelial cytoskeleton build-up, adhesion and motility 

(115).  

Other TRP interactors. 

 A number of interacting proteins bind to different TRP members, such as of caveolin 1, 

calmodulin, Src, and IP3 receptor 3 (IP3R3). This sub-network offers the potential functional link to 

human diseases. For example, the oncogene Src interacts with nine TRP members, including TRPV1, 

TRPC6 and TRPV6: all of them are associated with cancer progression and the first two with tumor 

angiogenesis (12,16,17,78).  

Caveolin-1 is a particular plasma membrane binding partner for a number of ion channels. A work 

conducted on HMEC and endothelium from CAV-1-/- mice reported that Cav-1 scaffold domain 

interacts with TRPC1 and IP3R3 to regulate SOCE (117,118). TRPC1 is embedded in a protein 

complex that can include IP3R, homer, calmodulin, caveolin-1, FKBP25, I-mfa, MxA, GluR1α, 

bFGFR-1, Gq/11 protein, phospholipase C-β/γ, protein kinase C-α and RhoA (119).  

An integrated functional example is given by the role of TRPC1 in the regulation of thrombin-

mediated endothelial permeability. Thrombin binds to the endothelial surface protease-activated 

receptor-1 (PAR-1) triggering a signaling cascade that results in the development of inter-endothelial 

junctional gaps that finally lead to an increase in endothelial permeability, the hallmark of tissue 

inflammation (120,121). The formation of these gaps is the result of cell-cell contact alteration: in 

particular, Ca2+ signaling is critical for PKCα activation in mediating disassembly of VE- cadherin 

junctions (122,123). Endothelial permeability is also decreased through a cell shape change induced by 

actinomyosin-mediated endothelial contraction: this endothelial 'rounding up' is mediated by Ca2+ 

entry via TRPC1 mediated by the monomeric GTP-binding protein RhoA (124). In summary, Rho 

activation signals interaction of IP3R with TRPC1 at the EC plasma membrane, and triggers Ca2+ 

entry following IP3-dependent store depletion (SOCE) and the resultant increase in endothelial 

permeability (124). It has been reported a similar causal link between the Gq-mediated increase in 
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cytosolic Ca2+ via TRPC6 and activation of RhoA, finally leading to the increase in endothelial 

permeability in response to Thrombin (125). This is an intriguing example involving an unusual 

scaffolding protein, Phosphatase and tensin homologue (PTEN). PTEN is a dual lipid-protein 

phosphatase that catalyzes the conversion of PIP3 to PIP2 and inhibits PI3K-Akt-dependent cell 

proliferation, migration, and tumor vascularization. Nonetheless, PTEN may play a role beyond 

suppressing PI3K signaling: in HPAEC it serves as a scaffold for TRPC6 through residues 394–403, 

enabling cell surface expression of the channel (126).  

TRPC4-dependent Ca2+ entry is another critical determinant of this process: indeed, both Ca2+ entry 

and lung microvascular permeability in response to Thrombin are drastically reduced in TRPC4-/- mice 

(127). In addition to TRPC1, TRPC6 and TRPC4, also the melastatin-family transient receptor 

potential 2 (TRPM2) channel regulates vascular permeability. TRPM2 is an oxidant-sensitive Ca2+ 

permeable channel that mediates H2O2-induced Ca2+ entry and endothelial hyperpermeability (128). 

Oxidants generated by activated EC are also known to induce apoptosis, a pathogenic feature of 

vascular injury and inflammation from multiple pathogeneses. The proapoptotic signaling mechanism 

involves reactive oxygen species–induced protein kinase C-α activation resulting in phosphorylation of 

the short splice variant TRPM2 (TRPM2-S) that allows enhanced TRPM2-mediated gating of Ca2+ 

and triggers the apoptosis program. Strategies aimed at preventing the uncoupling of TRPM2-S from 

TRPM2 and subsequent Ca2+ gating during oxidative stress may mitigate endothelial apoptosis and its 

consequences in mediating vascular injury and inflammation (129). Oxidative stress also increases the 

expression of TRPM7. This protein has the peculiar dual ability to act as a magnesium/calcium 

permeable channel and as a kinase through its functional α-kinase domain at the carboxyl terminus. For 

this reason it has been called, together with TRPM2, ‘chanzyme’ (130). TRPM7 permeability for Mg2+ 

is intriguing: in particular, an inhibitory effect of hypomagnesaemia on tumor growth and 

neoangiogenesis is under investigation (131). TRPM7 channels are expressed and functional in human 

EC. In HMEC low Mg2+ inhibits proliferation and migration without affecting metalloprotease 
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production and tridimensional organization: this effect is mediated, at least in part, by the decrease of 

TRPM7, since its silencing mimics the effects of Mg deficiency, thus suggesting TRPM7 as a possible 

contributor to the regulation of angiogenesis (132). The opposite effect has been observed in HUVEC: 

two independent reports have shown that siRNAs transiently silencing TRPM7 stimulate cell 

proliferation, a behavior which is unique to HUVEC, because in other cell types the same manipulation 

induces cell cycle arrest. In addition to the significant elevation of TRPM7 in the vasculature of MgL 

mice (a model of inherited hypomagnesemia), the increase of TRPM7 transcript in HUVEC exposed to 

shear stress has been described (133). TRPM7 silencing promotes endothelial growth/proliferation and 

nitric oxide production via the ERK pathway (134). The enzymatic kinase activity of TRPM7 might 

influence the ERK pathway although it is still not clear whether inhibition of TRPM7 channel also 

affects its kinase activity.   

Another ion channel interactor is the superfamily of G-proteins that are particularly relevant as a 

physical link to cell signaling (135). An interesting example is provided by the metabotropic glutamate 

receptor-1 (mGluR1) that may play a key role in regulating EC phenotype during tumor-induced 

angiogenesis. A loss of mGluR1 expression and activity is associated with an anti-angiogenic phenotype 

and tumor suppression (136). Despite the lack of information on PPI between mGluR1 and 

endothelial transportome this interaction seems likely since in Purkinje cells mGluR1 is physically 

associated and activates TRPC1 (137). 
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Interactions between channels and transporters 

The functional/physical coupling of ion channels with transporters seems to contribute to the 

neovascularization of healthy and tumoral tissues. Some examples involve Na/Ca (NCX) and Na/H 

(NHE) exchangers, two broadly expressed carriers that regulate intracellular calcium and proton 

homeostasis respectively (138–140). In transfected HEK cells Na+ entry mediated by TRPC3 enables 

local Na+ accumulation that drives Ca2+ entry via reverse mode NCX. This functional interaction is 

probably mediated by a tight physical interaction between TRPC3 and NCX1, suggesting a close 

spatial proximity between these ion transport systems (141,142). In EC from excised rat aorta the 

reverse mode NCX mediates, in cooperation with ATP-sensitive potassium channels, KATP, calcium 

signals activated by hydrogen sulfide, a gaseous bioactive messenger that has been implicated in tumor 

angiogenesis (74,141,142). Intriguingly, reverse mode NCX could also be triggered by voltage-

dependent sodium channels in endothelium. Voltage-gated Na+ channels (NaV) have long been 

considered as being characteristic of excitable cells: however, different NaV isoforms have been found in 

non-excitable cancer cells and their function enhances cancer cell invasiveness (145,146). Nav 1.5 

isoform is expressed and functional in HUVEC and mediates multiple angiogenic functions. In 

particular, it adjusts membrane potential and potentiates VEGF-induced ERK1/2 activation through 

the PKCα-B-RAF signaling (74,143,144). Accordingly, Ca2+ influx through reverse mode NCX is also 

required for the activation and targeting of PKCα to the plasma membrane, an essential step for 

VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis (147). 

Whether the voltage-gated sodium channel contribution to agonist-induced ERK1/2 activation is 

specific to VEGF and ECs remains to be elucidated. 

In addition to NCX, voltage-gated sodium channels can also interact with the Na+/H+ 

exchanger NHE1. In highly invasive breast cancer cells and high-grade breast cancer biopsies, the 

overexpression of the NaV1.5 isoform has been associated with extracellular matrix remodeling and the 

increased probability of developing metastases (145,146,148). The proteolytic activity of invadopodia is 
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highly dependent on the acidification of the peri-invadopodial extracellular compartment through the 

localized activity of NHE1 (140,149,150). NHE1 is known to have a substantial role in extracellular 

acidification and in the invasiveness of cancer cells. In highly invasive breast cancer cells MDA-MB-231, 

NaV1.5 interacts with and allosterically increases NHE1 activity in a pHi range between 6.4 and 7.0: 

this interaction is localized in focal ECM degradation sites corresponding to caveolin-1-containing 

invadopodia (148). In addition, NaV1.5 activity controls Src kinase activity, cortactin phosphorylation 

and actin cytoskeleton dynamics (148). NHE1 may be directly involved in angiogenesis. HIF-1 

overexpression upregulates VEGF, NHE1 and calpains in HUVEC and thus enhances endothelial 

proliferation, migration, and tube formation (151). Furthermore, suppression of NHE1 reduces 

calpain-2 expression and activity, finally leading to inhibition of HIF-1-induced angiogenesis. In 

addition to its canonical function, NHE1 can act as an anchor for actin filaments to control the 

integrity of the cortical cytoskeleton (152). This occurs through a structural link between NHE1 and 

the actin-binding proteins ERM. NHE1 and ERM proteins associate directly and colocalize in 

lamellipodia. Notably, fibroblasts expressing NHE1 with mutations that disrupt ERM binding, but not 

ion translocation, have impaired organization of focal adhesions and an irregular cell shape. It could be 

interesting to investigate non-canonical NHE activities in angiogenesis.  

 Finally, although no data are available so far concerning the potential interaction between ICT 

and ion pumps as a component of angiogenic signaling, in other tissues some examples have been 

reported. In the brain and kidney TRPC6 and the Na+/K+ ATPase are part of a functional complex 

that may be involved in ion transport and homeostasis (153). 

 



	   26	  

Conclusions 

The post-genomic era is witnessing an explosive accumulation of biological data. At the same time, 

several public databases offer the opportunity to access such a wide range of biologically relevant 

literature on biomolecules and their expression, structure, location and interaction with other biological 

components. These novelties have attracted research focus towards data analysis and mining, in which 

the extraction of robust and suitable information from sparse and non-homogeneous sources is 

currently the main challenge. We often look at data- and hypothesis-driven methods as dichotomic 

strategies because they are hard to be integrated. Data-driven methods afford the view of the molecular 

makeup of biological systems and insight into biological phenomena but they are difficult to be 

combined to perform controlled experiments for testing hypotheses and, thus, to solve specific 

questions in biology. Therefore, the protein-protein network approach is a promising alternative that 

allows us to formulate testable hypotheses and to design validating experimental settings. In addition, 

since physiological and altered functions are regulated across many orders of magnitude in space and 

time, quantitative computational multi-scale modeling is increasingly adopted by researchers as a 

valuable descriptive and predictive tool in systems biology (154–158). 

Unfortunately, the systems biology viewpoint is still poorly employed in the biology of 

transportome in cancer. A simple explanation of the delay is that the research focused on membrane 

transport has been far from the field of experimental oncology for long time. Only very recently these 

two domains converged and an increasing amount of experimental data is currently available on 

canonical and non-canonical roles of ion channels in tumor vascularization. Thus, ICT are still under-

represented in interactomic databases when compared to other protein families with a longer tradition 

in oncology (receptors, kinases, phospholipase, transcription factors and others). Consequently, very 

few human proteins involved in membrane transportare annotated as components of cancer- and 

angiogenesis-associated signaling pathways, with the partial exception of TRP channels.  
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More theoretical and experimental effort will be needed to acquire a network perspective of 

transportome hopefully leading to a significant advancement in basic biology and oncology. 
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