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Abstract

In dynamical systems saddle points partition the domain into basins of attractions
of the remaining locally stable equilibria. This problem is rather common especially in
population dynamics models, like prey-predator or competition systems. In this paper
we focus on squirrels population models with niche and we design algorithms for the
detection and the refinement of points lving on the separatrix curve in the 2D setting
and on the separatrix surface in 3D, thus partitioning the respective domains. Then, in
order to recoustruct the separatrix curve and surface, we apply the Partition of Unity
method, which makes use of Wendland’s functions as local approximants.
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1 Introduction

The competition of two or more species that live in the same environment can be modelled
mathematically by a differential system, whose unknowns are the populations as functions
of time and their interactions are described by a number of parameters (see [1, 6, 8]). To
obtain a particular solution of the system, we have to add the initial conditions of the
populations that establish their states, prior to any interaction. Then, given a model of this
type, we can observe that, under some conditions imposed on biological parameters and
according to the initial data, the trajectories, namely the model solutions, at the end of the
observation period stabilize at certain points, called the stable equilibria. Moreover, we may

©CMMSE Page 400 of 1797 ISBN: 978-84-616-2723-3



RECONSTRUCTION OF SEPARATRIX CURVES AND SURFACES

also note that, depending on the initial states, the trend of solution trajectories stabilizes at
different equilibria, each representing the prevalence of one or more species over the other
one(s). So we can imagine to divide the points of the domain (e.g., plane or space), seen as
initial conditions of the populations, in different regions depending on where the trajectory
originating in them will ultimately stabilize. Thus, the aim of this work is to construet an
approximation curve or an approximation surface, which divides the considered domain in
two or more regions, called the basins of attraction of each equilibrium.

In particular, in this article we discuss two specific population models with niche, which
investigate squirrels competition of two and three different populations (see also [4, 5]). The
former considers a 2D model with competition between red native and grey exotic squirrels,
while the latter involves a 3D model with competition among red native, red indigenous and
grey exotic squirrels. At first, we carry out an analytical study of the two models, aimed
at finding the location of equilibrium points and at establishing conditions to be imposed
on the parameters so that the behavior described above in fact occurs and the separatrix
curve and surface exist. Then, after choosing parameters which satisfy these assumptions
for feasibility and stability of the equilibria, we study their numerical versions, and then
we proceed to approximate the separatrix eurve and surface. For this purpose we have
implemented several MATLAB functions for the approximation of the points, obtained by a
bisection algorithm, and the graphical representation of the separating curve and surface.
Hence, after detecting the points lying on the separatrix curve and surface, first we proceed
by applying a refinement algorithm in order to reduce the number of points to interpolate,
and then we approximate the curve and surface using the Partition of Unity method with
local approximants given by compactly supported Wendland's functions (see, e.g., [3, 7]).
This method is an effective and efficient tool in approximation theory, since it allows us to
interpolate a large number of scattered data in an accurate and stable way. We point out
that a different refinement algorithm was already proposed by some of the authors for a 2D
model in [2].

The paper is organized as follows. In Sections 2 and 3 we consider the 2D and 3D
models respectively, carrving out an analytical study of each competition model. Section 4
is devoted to present the designed algorithms for the detection and the refinement of points
lving on the separatrix curve and surface. In Section 5 we describe the Partition of Unity
method used for approximating such curves and surfaces. Section 6 shows some numerical
results in both 2D and 3D cases. Finally, Section 7 deals with conclusions and future work.

2 The two populations model

Let us consider the following competition model, with N and E denoting the red native
and the grey exotic squirrels, respectively,
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, (1)
e _ r(l = ?)L — cN(1-b)E,

where p and r are the growth rates of N and E, respectively, a and ¢ are the relative
coefficients of competition, w and z are the relative carrving capacities of the two populations
and b denotes the fraction of red squirrels which hide in a niche. We remark that the model
{1} describes the interaction of the two different populations of squirrels within the same
environment.

The resolution of the svstem imposing that the derivates are equal to zero and the
analytical study of the model show that there are four equilibrium points associated with
the model, which are given by

Eq=(0,0); Ey=(0,2); Eo= (u.0)

L —ur{p + abz — az) —zp{r — cu + cub)
YT\ —pr + auez — 2aubcr + azub?c’ —pr + aucz — 2auber + azub’c )’

The study of stability points out that for some choices of the parameters, namely
p<az(l—0), r<ecu{l-b),

the origin Ey is an unstable equilibrium, £y and Es are stable equilibria, and F4y is an
unstable equilibrium, specifically a saddle point. This occurs, for example, for r=1,p =2,
=05, u=1,e=3, a=2, 2 =3 This suggests the existence of a separating curve that
divides the model domain into two subregions, called basins of attraction of each respective
equilibrium, each containing paths ending in Fy or Eq.
In Figure 1 we show trajectories starting from the initial conditions x; = (0.5,3),
oo = (2,2), 3 = (1,3), @3 = (2,1), x5 = (3,1), @ = (2,4), zr = (1.5,3) and x5 = (3,3),
and converging to the point E; of coordinates (0,3) and to the point Eo of coordinates
(1,0). Here the parameters have been chosen as above.

3 The three populations model

Let us now consider the 3D competition model, with &V, A and F denoting the red native,
the red indigenous and the grey exotic squirrels, respectively,
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Figure 1: Example of initial conditions and trajectories converging to equilibria for the
model problem (1).

aN p(1 - %)N — aE(1 - b)N,

dt
%;1— = (1(1 - %‘-)4 — GE(I — E)A, (2)
%’? = ”‘(1 - -‘?)E — IN(1-b)E — gA(1 - €)E,

where p, ¢ and r are the growth rates of N, A and E, respectively, a, ¢, f and ¢ are the
relative coefficients of competition, #, v and z are the relative carrying capacities of the three
populations, b and e denote the fraction of the populations N and A, respectively, which
hide in a niche. Also in this case, we remark that the model (2) describes the interaction
of the three different populations of squirrels within the same environment.

The resolution of the system imposing that the derivates are equal to zero, as in the
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2D case, and the analytical study of the model show that critical points are given by

Ey= (0,0,0); E; = (u,0,0); E2=(0,v,0); E3= (u,v,0); Eq=(0.0,2):
B = urlaz(l1 —b) — p 0 2p{fu(l —b) — 7] )
azuf(l1 -0 —pr’ azuf(l-b)7°—pr)’
Eoo (o.2rlei=c)=q zqvali=e)- ﬂ)
czvg(l — €)? — gr’ czug(1 — e} —gr

o ula — prq — zag(l — b)(vg(l — &) — 1)]
P o+ g —prg :
v[f —prqg —pez(l —e)(fu(l —by—r )]
a+p—prq
zpg[fu(l — b) +vg(1 — e)]
a4+ 3 —pryg )

where, for brevity, we indicated for E-,
a = pezvg(l—e)?, B = azufg(l —b)>.

The study of stability shows that under some conditions, for example with the choices
of the parameters r =9, ¢ =06, p=06.b=1/2, u=15,c=8 a=82=3, v =2,
e = 0.5, f =6, g = b, the points Eg and Ey are stable equilibria, £y and Es are unstable,
Ey and Eg are not admissible and E~ is a saddle point. This suggests the existence of a
separating surface that divides the model domain into two basins, each of them containing
one path ending in Ey or Ey.

In Figure 2 we show trajectories starting from the initial conditions @1 = (5,8,1)},
X0 = (6,6.5,2), x3 = (7.5,7.4), x4 = (4,8,3), @5 = (3,8,5), x6 = (2,4,4), &7 = (4,3,3)
and xg = (7,6,6), and converging to the point E5 of coordinates (1.5,2,0} and to the point
E4 of coordinates (0,0, 3).

4 Detection and refinement of separatrix points

At first, to determine the separatrix curve and surface for (1) and (2), respectively, we need
to consider a set of points as initial conditions in a square domain [0, ﬁg]? where v € Rt,
and in a cube domain [0,+]* (in the following we will fix v = 10). Then we take points in
pairs and we check if trajectories of the two points converge to different equilibria. If this
the case, then we proceed with a bisection algorithm to determine a separatrix point. When
each point of the set has been compared with all the other ones, we perform a refinement of
the set of separatrix points. In fact, in general we find a large number of separatrix points.
In the following we propose a refinement process which computes a smaller set of points.
The set of the refined points is then interpolated using a suitable method (see Section 5).
More precisely, we start considering, in the 2D ecase, n initial conditions equispaced in
the interval [0, 10] on the z-axis and n on the y-axis. Performing the bisection algorithm,
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Figure 2: Example of initial conditions and trajectories converging to equilibria for the
model problem (2).

a certain number of points, in general large, is found on the separatrix curve. To obtain a
smaller set of nodes well distributed on the separatrix curve, we can proceed as follows. We
divide the interval [0, 10] in ! subintervals and we compute an average of the found points in
each subinterval. Given a vector of equispaced points x{k), k= 1,...,{+ 1, in the interval
[0,10], we define

mp =min{i: a1 € [2(k),z(k+1))}, k=1,....0
and
M =max{i:a;1 € [x(k),z(k+1))}, k=1,....L
Starting from the matrix A = (a;;), i = 1,...,N, 7 = 1,2, we define the matrix of the

*

refined points A= (a,q{’j)5 i=1,...,0+2 j=1,2, of entries:

" ;
Ay, = Q1,4 3= 1,2,

My,
" Zi=mk aiel

Q= =Mk B h=1,....1,

T M —m+17 !
My,

" Z.:= ;2

Qg =TT =1,

My —mp+1°

# i
al+2?j =aN,4, I = 1,2.
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An advantage of this technique is given by the fact that we can choose a small number
n of initial conditions, without taking into account of the number of points lying on the
separatrix curve. For example, Figure 3 (left) shows the points found using n = 4. Dividing
the interval [0,10] in { = 10 subintervals and considering the N = 27 points picked up on
the separatrix curve, the refinement process provides us the [ + 2 = 12 points reported in
Figure 3 (right}.
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Figure 3: Set of points detected by the bisection algorithm (left) and set of points found by
the refinement algorithm (right) in the 2D case.

For the 3D case, we use a similar technique. At first we construct a grid on the faces
of the cube and the bisection algorithm is applied with the following initial conditions

(‘r(‘))ay{])‘Q} and (:E(?},y(]), 10}-» i= 1:“-”.- .7: 1,...n,
(z(4),0,2(5)) and (=2(i),10,2(j)). i=1,...n, j=1...n,
(0,y(i),2(4)) and (10,y(?),2(4)), i=1,...n. j=1,...n

This choice permits us to find well distributed points on the separatrix surface. The N
points found by the bisection algorithm are organized in a matrix A = (ay;),i=1,..., N,
j=1,2,3, and then refined. We define

M, = max(a;1), i=1,...,N,
i

M, = max(a;2), i=1,...,N,
1

and we divide the interval [0, A{,] in L subintervals and [0, M,] in H and we make an average
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of the points in each subinterval. Given a vector of equispaced points (I}, {=1,...,.L+1,
in [0, M,], and a vector y(h), h=1.....H +1, in [0, M,]. let us define

Ipy={i:a;y €z(l),z(l+1)] and a;2 € [y(h),y(h +1)]},
with{=1,...,L, h=1,....H. Starting from the matrix A = (g, ;) we find the matrix
of the refined points 4" = (a;’j), whose entries are given by

o Eiehh i1

1= Card(Im)

o Diel, %2

a9 = Card(Iy,)’ I=1.....L, h=1,...,H,
S ier. @i

¢ Lt lyy .

: = - [21.....[4. iv:].Qa--nH.

Y3 = Card(In) e

and i = 1,..., K, where K is the number of subintervals containing at least a point.

As an example, in Figure 4 (left) we show the found points choosing n = 10. The
N = 182 points have been refined taking H = 10 and L = 10. In this way, as shown in
Figure 4 (right), we obtain K = L - H = 100 points.

-
=B o m D

L

Figure 4: Set of points detected by the bisection algorithm (left) and set of points found by
the refinement algorithm (right) in the 3D case.
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5 Reconstruction of separatrix curves and surfaces

In this section we present the interpolation method we use to connect the found points
applying the refinement algorithm.

Let us consider a set Q@ = {z;,i = 1,...,n} of distinct data points arbitrarily distributed
on  C R™, and an associated set F = {f;,i = 1,...,n} of data values.

The basic idea of the Partition of Unity method is to start with a partition of the open
and bounded domain 2 C R™ into d cells (subdomains) €; such that @ C U;Ll Q; with
some mild overlap among the cells. At first, we choose a partition of unity, i.e. a family
of compactly supported, non-negative, continuous functions W; with supp(W;) C €; such
that Z;":l W;(z) = 1, for all z € Q. Then, for each cell {}; we consider a local approximant
R; and form the global approximant given by

d
I(z) = Rjle)Wj(z), TEQ. (3)
j=1

Note that if the local approximants satisfy the interpolation conditions at data point z;, i.e.
R;(z;) = f;, then the global approximant also interpolates at this node, i.e. I{z;) = f;, for
i=1,....n (see [3, 7] for further details).

As a local approximant we can take a radial basis function interpolant K; : Q — R,
which has the form

Rj(z) = Zajé(ﬂff —zjll2), TEQ, (4)

=1

where ¢ : [0,00) — R is called radial basis function, || - ||o is the Euclidean norm, and {o;}
are the coefficients to be determined by solving the linear system generated by radial basis
functions. Moreover, R; satisfies the interpolation conditions R;(z;) = f;, i =1,...,7n (see
(3]

Usnally, it can be highly advantageous to work with locally supported functions since
thev lead to sparse linear systems. Wendland found a class of radial basis functions which
are smooth, locally supported, and strictly positive definite on R (see, e.g, [7]). They consist
of a product of a truncated power function and a low degree polynomial. For example, here
we take the Wendland C2 function

o(r) = (1— Br)y (4Br +1),
where r = ||z — zj||2, 4 € R" is the shape parameter, and (-)4 denotes the truncated power

function. This means that the function ¢(r) is nonnegative: in fact, (1 — A7) is defined as
(1—pr)forref0,1/3], and O for » > 1/83.
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Note that the Partition of Unity method preserves the local approximation order for
the global fit. Hence, we can efficientlv compute large radial basis function interpolants
by solving small radial basis functions interpolation problems (in parallel as well) and then
combine them together with the global partition of unity {H’J}‘;] This approach enables
us to decompose a large prohlem into many small problems, and at the same time ensures
that the accuracy obtained for the local fits is carried over to the global fit. In particular,
the Partition of Unity method can be thought as a Shepard’s method with higher-order
data, since local approximations R; instead of data values f; are used. Moreover, the use
of Wendland’s functions guarantees a good compromise between accuracy and stability.

6 Numerical experiments

In this section we summarize the extensive experiments to test our detection and approx-
imation techniques. Here, we refer to the dynamical systems (1) and (2), taking » = 1,
p=2,b=05u=1,¢=3,a=2,z2=3, andr=9,¢=086,p=06,b=1/2, u= 15,
c=8a=82=3,v=2 e=05 f =6, ¢ =25, respectively, as values of hiological
parameters and integrating the models in the interval [0, 10].

As of accuracy of the Partition of Unity method a crucial task concerns the choice
of the shape parameter 8 of Wendland’s function. In fact, it can significantly affect the
approximation result and, therefore, the quality of the separatrix curves and surfaces. From
our study we found that good shape parameter values are given for 0.01 £ 5 < 0.05 (case
2D} and 0.001 < £ < 0.01 {case 3D). In Figure 5 (left to right) we show curves obtained
approximating the refined data set when we consider the value 5 = 0.1 and £ = 0.015,
respectively, as shape parameters for the Wendland C2 function and a number d = 2 of
partitions of 2. Figure 6 shows the case 3D: separating surfaces are reconstructed using
B = 0.02 (left) and 2 = 0.005 (right), respectively, and a number d = 4 of partitions of (2.

7 Conclusions and future work

In this paper we presented an approximation method for the detection of points lying on the
separatrix curve for the model (1) and the separatrix surface for the model (2), that are the
eurve and the surface which partition the respective domains into basins of attractions of the
locally stable equilibria. The problem is rather common for population dynamics systems.
An efficient algorithm based on the Partition of Unity method, which uses Wendland’s
functions as local approximants, was used for the reconstruction of separatrix curve and
surface. Work in progress considers finding an approximation scheme also for a dynamical
system of dimension three, which has three equilibrium points and basins of attractions.

©CMMSE Page 409 of 1797 ISBN: 978-84-616-2723-3




R. CAVORETTO ET AL.

o8
{57
ol
@
o

g
8 s
7
[ o
s 5 i
-
S 4 2 5 9
N

Figure 5: Approximation of separatrix curve: approximated curves using 5 = 0.1 (left) and

A = 0.015 (right).

Figure 6: Reconstruction of separatrix surfaces:

and 5 = 0.005 (right).
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