
23 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Safe object composition in the presence of subtyping

Publisher:

Published version:

DOI:10.1007/11560586_11

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/28906 since 2015-10-09T16:16:40Z

Safe object composition in the presence of subtyping?

Lorenzo Bettini1 Viviana Bono2 Silvia Likavec2

1 Dipartimento di Sistemi ed Informatica, Università di Firenze, Viale Morgagni 65,
50134 Firenze, Italy,bettini@dsi.unifi.it

2 Dipartimento di Informatica, Università di Torino, C.so Svizzera 185,
10149 Torino, Italy,{bono,likavec}@di.unito.it

Abstract. Object composition arises as a natural operation to combine objects in
an object-based setting. In our incomplete objects setting it has a strong meaning,
as it may combine objects with different internal states. In this paper we study
how to make object composition safe in the presence of width subtyping, we
propose two solutions, and discuss the alternative ones.

1 Introduction

Object composition is often advocated as an alternative to class inheritance, in that it is
defined at run-time and enables dynamic object code reuse by assembling the existing
components: “Ideally, you shouldn’t have to create new components to achieve reuse.
You should be able to get all the functionality you need just by assembling existing
components through object composition.” [9].

This paper is about combining safely object composition and width subtyping on
objects, as their co-existence introduces run-time conflicts between methods that might
have been hidden by subsumption, in situations where statically there would be no
conflict. Suppose we have two objectsO1 andO2 that we want to compose. ObjectO1

has a methodm1 that calls a methodm, which might be hidden by subsumption (i.e.,
its name does not appear in the type of the objectO1). ObjectO2 has a methodm2

that calls a methodm, also possibly hidden by subsumption. (Notice that it is enough
if the methodm is hidden in at least one of the objects.) When these two objects are
composed, there is no explicit name clash at the type level, but methodsm1 andm2

both call a method with the same namem and it is necessary: (i) to ensure that, after
object composition, methodsm1 andm2 continue calling the methodmthey were calling
originally, before the composition; (ii) to guarantee that if one of them’s is not hidden,
we expose the reference to the right one in the resulting object’s “public interface”. Note
that if bothm’s were hidden by subsumption, none of them would be available to the
external users anymore, and if none were hidden there would be atrue conflict, ruled
out statically.

This situation is an instance of the “width subtyping versus method addition” prob-
lem (well known in the object-based setting, see for instance [8]). This kind of name
clash (nameddynamic name clash, as opposed to the above mentioned true conflict)
should not be considered an error, but we must make sure that we solve all ambiguities,
in such a way that accidental overrides do not occur.

? This work has been partially supported by MIUR project EOS.

We tackle this problem in Bono et al.’s calculus of classes and objects [4] setting,
enriched withabstractclasses (i.e., classes that can declare some methods without pro-
viding their implementation) andincompleteobjects. In our calculus, abstract classes
can be seen asincomplete classes, and their instances areincomplete objectsthat can
be completed in an object-based fashion (by providing the bodies for the abstract meth-
ods). On the one hand, since our primary goal is to model object composition in the
presence of subtyping (on complete objects only), we decided not to model any form of
class-based inheritance, this being an orthogonal issue. On the other hand, we decided
to work on a hybrid calculus, instead of on a pure object-based calculus, because: (i)
abstract classes give rise to a natural notion of incomplete objects; (ii) this is a study we
would like to incorporate in the work presented in [1, 2], where we introduced a hybrid
mixin-based calculus, with the aim to integrate flexible inheritance mechanisms both at
the level of classes and of objects. The present calculus is simpler than the mixin-based
one, but the conflict composition-subtyping we introduce and solve is the same as in
the mixin-based one.

Incomplete objects can be completed in an object-based fashion viamethod addi-
tion and/orobject composition(that composes an incomplete object with a complete
one), thus providing a form of object-based inheritance. Our form of method addition
does not introduce any problems with respect to subtyping, as we can add one by one
only those methods that are required explicitly by the incomplete object, that is, we
have total type information about the methods to be added (coming directly from the
corresponding well-typed classes)beforethe actual addition takes place (see Sections
4 and 5). The conflict arises, instead, with object composition where the complete ob-
ject may have more methods than the ones required by the incomplete object, and these
methods may clash with some of the methods defined in the incomplete object. Notice
that this problem is exactly the same as the one introduced by the general object compo-
sition example described above. Our approach to solving this problem is based on the
idea of preserving the object generator together within each object. In order to avoid
undesired interactions between methods while allowing the expected rebinding, every
object carries the list of its methods and the list of the methods that it is still expecting.

One of the possible approaches to solving the problem seemed to be exploiting the
dictionariesof Riecke and Stone [11]. Unfortunately, their mapping “internal label-
external label” does not solve completely the ambiguities introduced by object compo-
sition in the presence of subtyping described above. In particular, there is still an am-
biguity when only one of them’s is hidden by subsumption. It has to be said, however,
that the original dictionaries setting is stateless, therefore method composition can be
simulated by successive method additions, and dictionaries would be sufficient to model
object composition. In our setting, instead, all objects (complete and incomplete) have a
state (i.e., an initialized field), and object composition cannot be linearized via any form
of repeated method additions. On a side note which will be useful later, we would like
to recall that the calculus of [11] is “late-binding”, i.e., the host object is substituted to
self (in order to solve the self autoreferences) at method-invocation time, whereas our
calculus is “early-binding”, i.e., the host object is bound to self at object-creation time.

To the best of our knowledge, it is not possible to remove all the ambiguities without
either carrying along the additional information on the methods hidden by subsumption,

e: : = const| x | λx.e | e1 e2 | fix
| ref | ! | := | {xi = ei}i∈I | e.x | H h.e
| class

method mj = vmj ;
(j∈M)

abstract mi ; (i∈A)

constructor vc

end
| classval〈Genc,M,A〉| new e
| obj〈vg,M,A〉
| obj〈vg,M,{mi = vmi}i∈M〉
| e1←+ mi = e2| e1←+ e2

v: : = const| x | λx.e | fix | ref| !
| := | := v | {xi = vi}i∈I

| classval〈Genc,M,A〉
| obj〈vg,M,A〉
| obj〈vg,M,{mi = vmi}i∈M〉

Table 1.Syntax of the core calculus: expressions and values.

or restricting the width subtyping. We discarded immediately the solution of re-labelling
method names at object composition time, as this is untidy from a semantical point
of view and impractical from an implementation one. (By re-labelling we mean the
actual physical renaming of method names, and therefore all method invocations within
method bodies.)

In this version of the calculus, we decided to allow width subtyping only oncom-
plete objects, and we present two solutions for the object composition problem. The
first one is an “early-binding” version of the dictionaries approach, where the notion of
“privacy-via-subsumption” of [11] is completely implemented (see Sections 4 and 5).
The second one solves the conflict “method composition versus width subtyping” by
relaxing the above mentioned notion (see Section 6). We argue that the first solution
is more elegant formally, while the second solution is less restrictive from the point of
view of the typing, and it might give better performances if implemented. In Section 7
we hint to other possible solutions of the conflict “method composition versus width
subtyping”.

2 Syntax

Starting from the imperative calculus of classes and objects of [4], we add the constructs
to work with incomplete objects. The lambda-calculus related forms in Table 1 are
standard. We describe below the other forms:

– ref, !, := are operators3 for defining a reference to a value, for dereferencing a
reference and for assigning a new value to a reference, respectively.

– {xi = ei}i∈I is a record ande.x is the record selection operation.
– h is a set of pairsh :: = {〈x,v〉∗}, wherex is a variable andv is a value (first com-

ponents of the pairs are all distinct). The set of pairsh is thestore, or heap, found
in the expression formHh.e, where it is used for evaluating imperative side effects.
In the expressionH〈x1,v1〉 . . .〈xn,vn〉.e, H binds variablesx1, . . .xn in v1, . . . ,vn and
in e.

3 Introducingref, !, := as operators rather than standard forms such asrefe, !e, :=e1e2, simpli-
fies the definition of evaluation contexts and proofs of properties. As noted in [12], this is just
a syntactic convenience, as it is the curried version of :=.

– class

method mj = vmj ;
(j∈M)

abstract mi ; (i∈A)

constructor vc

end
is a class written directly by the programmer. It contains two sorts of method dec-
larations: methodsmj are the methods implemented in the class and methodsmi

are the names of abstract methods introduced by the class. Each method bodyvmj

is a function of a private field,field , and ofself , which will be bound to the newly
created object at instantiation time. Notice that the field does not appear explicitly
in the syntax, as we model it as a lambda-abstracted variable in method bodies. For
the sake of simplicity, we consider only one (private) field for each class, but this
is not a restriction, as the field could be a tuple. Also, the calculus does not enforce
the field to be available to all the methods of the class, but this is easily obtained by
declaring it to be of typeref. If so, the field behaves like a proper instance variable
(it is non-accessible, not only non-visible). To understand fully how, we refer the
reader to [12]. The constructor valuevc is a function of one argument that returns
the initialization valuef for the private field (see Section 4 for its usage).

– classval〈Genc,M,A〉 is aclass value, the result of evaluating a class expression. The
functionGenc is thegeneratorused to generate its instances, the setM contains the
indices of the methods defined in the class, and the setA contains the indices of the
class’ abstract methods. In our calculus method names are of the shapemi , wherei
ranges over an index set. They are univocally identified by the index, i.e.,mi = mj

if and only if i = j. Therefore, method names are identified with their indices.
– new ecreates a function that returns a new incomplete object.
– obj〈vg,M,A〉 is an incomplete object, wherevg is a generator function,M contains

the indices of the methods defined in the class, and the setA contains the indices of
the class’s abstract methods. If the setA is empty the incomplete object becomes a
complete object.

– obj〈vg,M,{mi = vmi}i∈M〉 is a fully-fledged object that is obtained by completing
an incomplete object or by reducing an object obtained via instantiation of a class
that does not contain abstract methods. Its first component is a generator function
(kept also for complete objects, since they can be used to complete the incomplete
ones), the second componentM contains the indices of the methods of the object,
and the third component is the record of invocable methods.

– e1←+ mi = e2 is the method addition operation: it adds the definition of method
mi with body e2 to the (incomplete) object to whiche1 evaluates. It associates to
the left.

– e1←+ e2 is the object composition operation: it composes the (incomplete) object
to whiche1 evaluates with the complete object to whiche2 evaluates. It associates
to the right.

Class values and object forms are not intended to be written directly, but are used to
define the semantics of programs.

3 Examples

In this section, we provide some examples to show how incomplete objects, and object
completion via method addition and object composition, can be used to design complex
systems.

For readability, we will use here a slightly simplified syntax with respect to the cal-
culus presented in Section 2: (i) the method parameters are listed in between “()”; (ii)
e1;e2 is interpreted aslet x = e1 in e2, x 6∈ FV(e2), coherently with a call-by-value se-
mantics; (iii) references are not made explicit, thuslet x= e in x.m() should be intended
aslet x= refe in (!x).m(); (iv) method bodies are only sketched. Finally,x←+ eshould
be intended asx:=(x←+ e).

In the first example, we present a scenario where it is useful to add some function-
alities to existing objects. Let us consider the development of an application that uses
widgets such as graphical buttons, menus, and keyboard shortcuts. These widgets are
usually associated to an event listener (e.g., a callback function), that is invoked when
the user sends an event to that specific widget (e.g., one clicks the button with the mouse
or chooses a menu item).

The design patterncommand[9] is useful for implementing these scenarios, since it
allows parameterization of widgets over the event handlers, and the same event handler
can be reused for similar widgets (e.g., the handler for the event “save file” can be
associated with a button, a menu item, or a keyboard shortcut). However, in such a
context, it is convenient to simply add a function without creating a new class just for
this aim. Indeed, the above mentioned pattern seems to provide a solution in pure class-
based languages that normally do not supply the object method addition operation.

Within our approach, this problem can be solved with the language constructs for
method addition and completion (in order to provide further functionalities needed by
the prototype). For instance, we could implement the solution as in Table 2. The incom-
plete objectbutton expects a methodonClick that is internally called when the user
clicks on the button (e.g., by the window where it is inserted, in our example the dialog
mydialog). The incomplete object is then completed with the event listenerClickHan-
dler (by using method addition). This listener is a function that has the parameterdoc
already bound to the application main document. At this point the object is completed
and we can call methods on it. Notice that the added method can rely on methods of the
host object (e.g.,setEnabled). The same listener can be installed (by using method
addition again) to other incomplete objects, e.g., the menu item"Save" and the key-
board shortcut for saving functionalities. Moreover, since we are able to act directly on
instances here, our proposal enables customization of objects at run-time.

Another way to implement the same functionalities is via object composition. For
instance, if saving the document requires further and complex operations, instead of
including all of these in a method, it can be more convenient to include them in an object
(with other methods than the one requested by the incomplete object). In particular, the
incomplete object only requires the methodonClick: the object used for completion
can have more methods (hidden by subsumption). Moreover, the additional methods
will be hidden in order to avoid name clashes.

For instance, we can define the class:

let Button =
class
method display = . . .
method setEnabled = . . .
abstract onClick;
. . .

end in

let MenuItem =
class
method show = . . .
method setEnabled = . . .
abstract onClick;
. . .

end in

let ShortCut =
class
method setEnabled = . . .
abstract onClick;
. . .

end in

let ClickHandler =
(λ doc.λ self doc.save() . . .self .setEnabled(false)) mydoc
in
let button =new Button("Save") in
let item =new MenuItem("Save") in
let short =new ShortCut("Ctrl+S") in
button←+ (OnClick = ClickHandler);
button.display();
button.setEnabled(true);
mydialog.addButton(button);// now it is complete
item←+ (OnClick = ClickHandler);
item.setEnabled(true);
mymenu.addItem(item);
short←+ (OnClick = ClickHandler);
short.setEnabled(true);
system.addShortCut(short);

Table 2.Widgets and event handler.

let SaveDocument =
class
method onClick =λdoc.λ self
method format =λdoc.λ self
method save =λdoc.λ self
method compress =λdoc.λ self
method display =λdoc.λ self
constructor λdoc.ref doc

end in

If we instantiate this class we obtain a complete object (since there are no abstract meth-
ods), that can be used to complete the incomplete objects in Table 2. In particular, the
methoddisplay in the complete object type will be hidden by subsumption, therefore
it will not interfere with the methoddisplay of the classButton (indeed, they perform
different operations). Notice that the constructor ofSaveDocument returns a reference
to the passed document instance; this is the private field that all the methods in the class
can use.

4 Operational semantics

Our approach is the one of giving the calculus a semantics as close as possible to an
implementation. This has the advantage of minimizing the gap between the formal se-
mantics and the actual implementation, thus reducing the risk of introducing errors

const v→ δ (const,v) (δ) refv→ H〈x,v〉.x (ref)
if δ (const,v) is defined H〈x,v〉h.R[!x] → H〈x,v〉h.R[v] (deref)

(λx.e) v→ [v/x] e (βv) H〈x,v〉h.R[:=xv′] → H〈x,v′〉h.R[v′] (assign)
fix (λx.e) → [fix(λx.e)/x]e (fix) R[H h.e] → H h.R[e], R 6= [] (lift)

{. . . ,x = v, . . .}.x→ v (select) H h.H h′.e→ H h h′.e (merge)
Table 3.Reduction rules for standard expressions and heap expressions

R: : = [] | R e| v R| R.x | new R | R � e | v � R| R←+ m= e | R←+ e | v←+ m= R | v←+ R
| {m1 = vm1, . . . ,mi−1 = vmi−1,mi = R,mi+1 = emi+1, . . . ,mn = emn}1≤i≤n

Table 4.Reduction contexts

caused by implementation issues. In fact, with this semantics, a direct implementation
of our calculus in a functional programming language is quite straightforward (we are
working on the implementation in OCaml).

The formal operational semantics is a set of rewriting rules including some standard
rules for a lambda calculus with store, and some rules that evaluate the object-oriented
related forms to records and functions, according to the object-as-record approach and
Cook’s class-as-generator-of-object principle. This operational semantics can be seen
as something close to a denotational description for objects and classes, and this “iden-
tification” of implementation and semantical denotation is, in our opinion, a good by-
product of our approach. The semantics is also intuitive since it is based on functions
and records.

The operational semantics extends the one of the core calculus of classes and objects
[4], therefore exploits theReference MLof Wright and Felleisen [12] treatment of side-
effects. To abstract from a precise set of constants, we only assume the existence of a
partial functionδ : Const× ClosedVal⇀ ClosedValthat interprets the application of
functional constants to closed values and yields closed values.

In Table 3,R’s are reduction contexts[5, 6, 10] and their definition can be found
in Table 4. Reduction contexts are necessary to provide a minimal relative linear order
among the creation, dereferencing and updating of heap locations, since side effects
need to be evaluated in a deterministic order. We assume the reader is familiar with the
treatment of imperative side-effects via reduction contexts and we refer to [3, 12] for a
description of the related rules.

The meaning of the class related rules in Table 5 is as follows. The rule (class)
turns a classexpressioninto a classvalue(notice that objects are created by instantiat-
ing class values). Given the parameterx for the constructorvc of the class expression,
the class generator returns a (partial) object generator that passes to the private field of
the method bodiesvmj the valuef (returned by the constructorvc). Recall that method
bodies take parametersfield andself . The record returned by the object generator has
“dummy” method bodies for abstract methods, in such a way the generator is thus
a function fromself to self . Also, for all the methods in all generator functions, the
method bodies are wrapped insideλy. · · ·y to delay evaluation in our call-by-value cal-
culus. The above generator is called “partial” since it returns an object that contains
abstract methods that cannot be invoked (present as “dummy” methods). The actual im-

class

method mj = vmj ;
(j∈M)

abstract mi ; (i∈A)

constructor vc

end

→ classval〈Genc,M,A〉 (class)

where

Genc
4
= λx.let f = vc(x) in λ self .

{
mj = λy.vmj f self y (j∈M)

mi = λy. self .mi y (i∈A)

}
new classval〈Genc,M,A〉 → λw.obj〈(Genc w),M,A〉 (new class)

Table 5.Reduction rules for class related forms

obj〈vg,M,{. . . ,mi = vmi , . . .}〉.mi → vmi (obj sel)

obj〈vg,M,A〉 ←+ (ml = vml)→

let incgen= λ self .

mj = λy. (vg self).mj y (j∈M)

ml = λy. vml self y
mi = λy. self .mi y (i∈A−{l})

 in

obj〈incgen,M∪{l},A−{l}〉 wherel ∈ A

(meth add)

obj〈vg,M,A〉 ←+ obj〈v′g,P,{mi = vmi}i∈P〉 →

let incgen= let gen1 = λs1.λs2.

{
ml = λy. (v′g s2).ml y (l∈P−A)

mr = λy. s1.mr y (r∈P∩A)

}
in

λ self .

{
mj = λy. (vg self).mj y (j∈M)

mi = λy. (v′g fix(gen1 self)).mi y (i∈A)

}
in

obj〈incgen,M∪A,fix(incgen)〉

(obj comp)

obj〈vg,M, /0〉 → obj〈vg,M,fix(vg)〉 (completed)
Table 6.Reduction rules for object manipulation

plementation of these methods can be provided by (meth add), and/or (obj comp) given
in Table 6.

The rule (new class) creates incomplete objects from class values. First, it applies
the class generatorGenc to an argumentw, thus initializing the private field in the
methods defined in the class and providing access to the object generator, that is a
function from self to a record of methods. The application of the fixpoint operator
to the object generator will create a recursive record of invokable methods (when the
object is complete, see rule (completed) in Table 6).

The rules in Table 6 are the basic rules for manipulating objects. The rule (obj sel)
performs method invocation on a complete object. The rules used on incomplete objects
enable completing them with the method definitions they need. The rule (meth add)
adds to an incomplete object a methodml not yet present in the object (but required).
The newly created generator function incgen (incremental generator) mapsself to a
record of methods, where concrete method definitions are taken from the object gen-

eratorvg, the abstract methods (excludingml) remain “dummy”, and the methodml is
added. The incgen function is part of the reduct because it must be carried along in the
evaluation process, in order to enable future method additions and/or object composi-
tions. The only requirement forml is that the bodyvml must be a function ofself .

The rule (obj comp) combines two objects in such a way that the objecto2 (which
must be already complete) completes the incomplete objecto1 and makes it fully func-
tional. After completion, it will be possible to invoke all the methods that were in the
interface of theincompleteobject, i.e., those inM∪A. The record of methods in incgen
is built by taking the concrete methods from the incomplete objecto1 and by taking
the concrete version of the abstract methods from the complete objecto2. During this
operation we must make sure that:

(i) methods from the complete objecto2 that are requested by the incomplete object
o1 get theirself rebound to the new resulting composed object (this is the reason
why we need to keep the generator also for complete object values).

(ii) methods ofo2 that are not requested byo1 (we call these methodsadditional) are
not subject to accidental overrides.

The second point, in particular, is crucial in our context, whereadditional methodsin
the complete object, “hidden” because of subsumption, may clash with methods already
present in the incomplete object (i.e., those inM). The above two goals are achieved
altogether using the generator component gen1 inside incgen. This generator compo-
nent builds a record where theadditional methods (i.e., the ones belonging toP−A)
are correctly bound, once and for all, to their implementation in the complete object
(throughs2 that will be propagated with the auto-binding of self via fixpoint). The other
methods (those requested by the incomplete object, i.e., belonging toP∩A) rely on the
reboundself , which, in turns, usess1 as a “handle” to hook onto the complete object
method implementations. This gen1 is therefore exploited to supply tov′g (the generator
of the complete objecto2) the “self” record, obtained by passing the newself to gen1
and then applying the fixpoint. This realizes the main idea that the method bodies of the
complete object will use as implementations of theadditionalmethods the ones from
the complete object and not possibly accidental homonyms from the incomplete object.

The rule (completed) transforms an incomplete object, for which all the missing
methods are provided, or which is created by instantiating the class without abstract
methods, into a corresponding complete one. Since at this stage the object is complete
(i.e., it does not contain any abstract methods) we can apply the fixpoint operator to
obtain the recursive record of methods invokable on that object. Notice that also in the
complete object value the generator is still present since it can be used in further object
compositions.

It might be tempting to argue that object composition is just syntactic sugar, i.e.,
it can be derived via an appropriate sequence of method additions, but this is not true.
In fact, when adding a method, the method does not have a state, while a complete
object used in an object composition has its own internal state (i.e., it has a private field,
properly initialized when the object was created via “new” from the class). Being able
to choose to complete an object via composition or via a sequence of method additions
(of the same methods appearing in the complete object used in the composition) gives
our calculus an extra bit of flexibility.

4.1 An example of reduction

Let us show how the object completion works through an example. Suppose we have
the following objects (for simplicity we leave out the parameter of the methods, the
private field,λy. . . .y, and dummy methods):

o1 = obj〈v1
g,M = {1},A = {2}〉

o2 = obj〈v2
g,M = {1,2},{m1 = λ self . (self .m1),m2 = λ self . (self .m1)}〉

o = o1←+ o2

wherem1 in o2 is “hidden” (i.e., the type foro2 will not contain the type of the method
m1 because of subsumption, see Section 5 for types). The objecto1 hasm2 as abstract,
and it usesm2 insidem1 (with definition m1 = λ self . (self .m2), visible in v1

g below).
The programo loops infinitely, by first callingm1 of o1 (we recall that only methods
belonging to the incomplete object interface are made accessible once completion has
been performed). From rules(new class) and(class) we obtain the following generator
for o1 (we recall thatm2 is abstract ino1):

v1
g = λ self .

{
m1 = (λ self . (self .m2)) self
m2 = self .m2

}
By applying rule (obj comp), o has the shapeobj〈incgen,{1,2},fix(incgen)〉, where

incgen is as follows:

let incgen=
let gen1 = λs1.λs2.

{
m1 = (v2

g s2).m1
m2 = s1.m2

}
in λ self .

{
m1 = (v1

g self).m1

m2 = (v2
g fix(gen1 self)).m2

}
In the following we use the notationoi ::mj to refer to the (fully qualified) implementa-
tion of mj in object (or incomplete object)oi . If we invokem1 ono we want thato1::m1

is executed, theno2::m2, theno2::m1 (i.e., no accidental override take place), which will
then loop on itself. We make explicit the reduction steps performed upon the invocation
of the methodm1 on objecto. (we denote gen1fix(incgen) by gg):

o.m1→ fix(incgen).m1→ (v1
g fix(incgen)).m1→ (λ self . (self .m2))fix(incgen) o1::m1: OK

→ fix(incgen).m2→ (v2
g fix(gen1 fix(incgen))).m2→ (v2

g fix(gg)).m2→
(λ self . (self .m1))fix(gg) o2::m2: OK
→ fix(gg).m1→ (v2

g fix(gg)).m1→ (λ self . (self .m1))fix(gg) o2::m1: OK
→ fix(gg).m1→ (v2

g fix(gg)).m1→ (λ self . (self .m1))fix(gg) o2::m1: OK
. . .

We can see that each time the right implementation of the method was invoked and
no accidental override took place, due to the usage of the additional generator gen1.

5 Type system

Besides functional, record, and reference types, our type system has class types and
object types (both for complete and incomplete objects):

τ : : = ι | τ1→ τ2 | τ ref | {mi : τmi}i∈I | class〈τ,ΣM,ΣA〉 | obj〈Σ〉 | obj〈ΣM,ΣA〉

typeof(const) = τ

Γ ` const: τ

(const)
Γ ,x : τ ` x : τ

(proj)
Γ ,x : τ ` e: σ

Γ ` λx.e: τ → σ

(λ)

Γ ` e1 : τ → σ Γ ` e2 : τ

Γ ` e1 e2 : σ

(app)
Γ ` fix : (σ → σ)→ σ

(fix)
Γ ` e: τ Γ ` τ <:σ

Γ ` e: σ

(sub)

Γ ` ei : τi

Γ ` {xi = ei}i∈I :{xi : τi}
(record)

Γ ` e:{x : σ}

Γ ` e.x : σ

(lookup)

Γ ` ref : τ → τ ref
(ref)

Γ ` ! : τ ref→ τ

(!)
Γ ` := : τ ref→ τ → τ

(assign)

Γ ′ = Γ ,x1 : τ1 ref, . . . ,xn : τn ref Γ ′ ` vi : τi Γ ′ ` e: τ

Γ ` H〈x1,v1〉 . . .〈xn,vn〉.e: τ

(heap)

Table 7.Typing rules for expressions

whereι is a constant type,→ is the functional type operator,τ ref is the type of locations
containing a value of typeτ. Σ (possibly with a subscript) denotes a record type of the
form {mi : τmi}i∈I , I ⊆ N. If mi : τmi ∈ Σ we say that thelabel mi occursin Σ (with type
τmi). Labels(Σ) denotes the set of all the labels occurring inΣ .

Typing environmentsare defined asΓ : : = ε | Γ ,x : τ | Γ , ι1<: ι2 wherex∈ Var,
τ is a well-formed type,ι1, ι2 are constant types, andx, ι1 6∈ dom(Γ). Typing judgments
are the following:Γ ` τ1<:τ2 (τ1 is a subtype ofτ2), Γ ` e: τ (ehas typeτ).

Typing rules for lambda expressions, rules for expressions dealing with imperative
side-effects via stores and rules for typing records are given in Table 7. We do not need
any form of recursive types because we do not use a polymorphicMyTypeto typeself
(see, for instance, [7]). This prevents typing binary methods, but it still allows to type
methods that modifyself , which can be modelled as “void” methods.

Typing rules for class related forms are given in Table 8. In rule (T class val),
class〈γ,{mj : τmj} j∈M,{mi : τmi}i∈A〉 is the class type whereγ is the type of the gener-
ator’s argument. The two record types represent types of defined methods and abstract
methods respectively. Thus,{mi : τmi}i∈M∪A is a record type representing the interface
of the objects instantiated from the class. Rules (T class val) and (T class) assign the
same type to their respective expressions, although deduced in a different way.

Table 9 shows the typing rules for manipulating objects. Incomplete objects are
typed with the record type of defined methods and the record type of abstract methods
(rule (T inc obj)). Notice that the type assigned to an incomplete object is similar to
the one of the class the object is the instance of, but it does not contain information
about the constructor. This is consistent with the fact that the constructor has already
been called when an incomplete object has been created. We recall now the “dummy”
methods introduced in Section 4, to justify their existence according to the typing rules:
when typing an incomplete object value, “dummy” methods allow us to assign the type
Σ → Σ to the generatorvg (the generator being a function fromself to self). In fact, we
recall that the body of “dummy” methods is a simple call to the homonym method on

For j ∈M: Γ ` vmj : η →{mi : τmi}i∈M∪A→ τmj Γ ` vc : γ → η

Γ `

class

method mj = vmj ;
(j∈M)

abstract mi ; (i∈A)

constructor vc

end

: class〈γ,{mj : τmj } j∈M,{mi : τmi}i∈A〉

(T class)

(T class val) (T class inst)
Γ ` Genc : γ →{mi : τmi}i∈M∪A→{mi : τmi}i∈M∪A

Γ ` classval〈Genc,M,A〉 : class〈γ,{mj : τmj } j∈M,{mi : τmi}i∈A〉

Γ ` e: class〈γ,ΣM,ΣA〉

Γ ` new e: γ → obj〈ΣM,ΣA〉
Table 8.Typing rules for class related forms

Γ ` vg :{mi : τmi}i∈M∪A→{mi : τmi}i∈M∪A

Γ ` obj〈vg,M,A〉 :obj〈{mj : τmj } j∈M,{mi : τmi}i∈A〉
(T inc obj)

Γ ` {mi = vmi}i∈M :{mi : τmi}i∈M
Γ ` vg :{mi : τmi}i∈M→{mi : τmi}i∈M

Γ ` obj〈vg,M,{mi = vmi}i∈M〉 :obj〈{mi : τmi}i∈M〉
(T obj)

Γ ` e:obj〈Σ〉 mi : τmi ∈ Σ

Γ ` e.mi : τmi

(T sel)

Γ ` e:obj〈ΣM,ΣA〉 ml : τml ∈ ΣA Γ ` vml : Σ1→ τml Γ ` (ΣM∪ΣA)<:Σ1

Γ ` e←+ (ml = vml) :obj〈ΣM∪{ml : τml },ΣA−{ml : τml }〉
(T meth add)

Γ ` e1 :obj〈ΣM,ΣA〉 Γ ` e2 :obj〈ΣP〉 Γ ` ΣP <:ΣA Labels(ΣP)∩Labels(ΣM) = /0

Γ ` e1←+ e2 :obj〈ΣM∪ΣA〉
(T obj comp)

Table 9.Typing rules for object-related forms

self , so the type inferred for abstract methods is consistent with the types of “dummy”
method bodies. Dummy methods appear only in the run-time semantics and are invisible
to the programmer, thus they cannot be invoked.

Rule (T obj) says that the type of a complete object is the record of its method
types. Notice that complete objects do not have a simple record typeΣ , but an object
typeobj〈Σ〉. This is useful for distinguishing standard complete objects, which can be
used for completing incomplete objects, from their internal auto-referenceself , that has
type Σ (in particular, this is to avoidself-inflictedobject completions, unsound in our
calculus). Note also that in the object expression, the first componentvg is a function
from self to self (therefore typed withΣ→ Σ), because it works on the third component
of the object, which is the record of object’s methods. The only operation allowed on
complete objects is method selection and it is typed as a record component selection
(rule (T sel)).

Γ , ι1<: ι2 ` ι1<: ι2

(<: proj)
Γ ` τ <:τ

(<: refl)

Γ ` τ1<:τ2 Γ ` τ2<:τ3

Γ ` τ1<:τ3

(<: trans)
Γ ` τ ′<:τ Γ ` σ <:σ ′

Γ ` τ → σ <:τ ′→ σ ′
(<: arrow)

J⊆ I

Γ ` {mi : σi}i∈I <:{mj : σ j} j∈J
(<: record)

Γ ` Σ <:Σ ′

Γ ` obj〈Σ〉<:obj〈Σ ′〉
(<: cobj)

Table 10.Subtyping for objects

A methodml can be added to an incomplete object (rule (T meth add)), only if this
method is expected by the incomplete object (abstract method). Method addition in this
case presents a sort of symmetry: the added method completes the functionalities of
some already present methods, and may invoke some of them as well. Therefore,ml ’s
self type Σ1 imposes some constraints on the type of the incomplete object thatml is
supposed to complete. Hence, the incomplete object must provide all the methods listed
in Σ1, on which the added method is parameterized.Σ1 is inferred fromml ’s body.

In the rule (T obj comp), ΣP contains the type signatures of all the methods sup-
ported by the complete object (which may have more methods than those that are
abstract in the incomplete object). The conditionΣP <:ΣA ensures that the complete
object contains at least all the methods needed to complete the incomplete object, and
Labels(ΣP)∩Labels(ΣM) = /0 guarantees statically that there is no explicit name clash,
i.e., there is notrue conflict, as described in the Introduction. The type system does
not rule out hidden conflicts introduced by subsumption, as these are not considered
errors as long as they are taken care of dynamically, which is the goal of our run-time
semantics. The resulting complete object contains the signatures of all the methods of
the incomplete object.

The subtyping relation for record and object types is given in Table 10. For uni-
formity with respect to object types, we define only width subtyping on record types
as well. However, modifying the subtyping rules in order to allow depth subtyping on
record types only would be just a technicality and an orthogonal issue with respect to
the subject of the paper, therefore we leave this modification out for the sake of clarity.

6 A more flexible solution

In the solution presented so far, the interface of an object resulting from an object com-
position is dictated by the incomplete object only, in the sense that, in the resulting
composed object, only the methods of the incomplete object are invocable by an ex-
ternal user. Such a restriction on object composition was not present in the previous
versions of the incomplete objects [1, 2] and it is not necessary to solve the problems
of dynamic name clashes, although it actually simplifies its treatment, and it allows to
implement an “early-binding” version of the “privacy-via-subsumption” notion of [11].

In this section, we present an alternative solution that removes this restriction and
is thus more flexible (in the sense that the interface of the composed object will contain

Γ ` e1 :obj〈ΣM,ΣA〉 Γ ` e2 :obj〈ΣP〉 Γ ` ΣP <:ΣA Labels(ΣP)∩Labels(ΣM) = /0

Γ ` e1←+ e2 :obj〈ΣM∪ΣP〉
(T obj comp)

obj〈vg,M,A〉 ←+ obj〈v′g,P,{mi = vmi}i∈P〉 →
let incgen=

let gen1 = λs1.λs2.

{
ml = λy. (v′g s2).ml y (l∈P∩M)

mr = λy. s1.mr y (r∈P−M)

}
in

λ self .

{
mj = λy. (vg self).mj y (j∈M)

mi = λy. (v′g fix(gen1 self)).mi y (i∈P−M)

}
in

obj〈incgen,M∪A,fix(incgen)〉

(obj comp)

Table 11.The typing and reduction rule to change

more methods). From the point of view of typing, all we have to do is to change the
typing rule for object composition in order to include all these object methods, see rule
(T obj comp) in Table 11 (which mirrors the original rule of [2]). Now, the semantic
rule for object composition must be changed, since we do not hide all theadditional
methods: those that do not clash with methods defined by the incomplete object must
be visible in the resulting object (while those that clash are obviously hidden). All we
have to do is to modify slightly the rule (obj comp), obtaining the one given in Table 11.
Notice that all of the above is enough to obtain a fully-fledged second solution.

7 Conclusions

In this paper we presented two possible solutions to solve the “method composition
versus width subtyping” conflict. We remark that the high-level ideas underpinning our
solutions are general. In particular, the idea of having self basically “split” into two
parts when composing two objects, one taking care of the statically bound methods,
the other one dealing with the dynamically bound ones, can be applied within any set-
ting presenting the same problem. We would also like to stress the flexibility of our
approach, i.e., giving the incomplete object-calculus an ML-like based operational se-
mantics: working directly with class-as-generator-functions and objects-as-records (and
their respective types) allows us to alternate between one version of the calculus and
another with minimal changes, both in the typing rules and in the semantics. In partic-
ular, since the operational semantics is a set of rewriting rules into functions, we can
manipulate functions to achieve our goals, instead of using ad-hoc changes to the se-
mantics. Moreover, with respect to the dictionaries of [11] in the late-binding setting
(where the host object is substituted for self in order to solve the self autoreferences at
method-invocation time), our early-binding setting (where the host object is bound to
self at object-creation time) allows a corresponding solution that is more oriented to an
implementation and, in particular, would not suffer from overheads due to dictionary
management and lookups, as the original calculus does, as pointed out in [11] itself.
This is true also for the alternative solution.

The approach we chose here was to allow width subtyping on complete objects
only. It is possible to have width subtyping on incomplete objects as well, if hidden

method names are carried along: (i) in the type of the object; (ii) in the object itself.
Solution (i) would imply a more restrictive typing rule for object composition, to also
check the possible conflicts among non-hidden and hidden methods, and rule out such
conflicts completely. We think, though, that such a solution is too restrictive, as we
think this kind of name clash is not an error. Hidden method name information in the
object (solution (ii)) would solve all possible ambiguities at run-time, but it would be
less standard, as the subsumption rule would act on the object expression, not only on
its type. Nevertheless, we think this solution has the advantage of being quite general,
even though it might be considered not elegant, and it will be presented as future work.

As a future work plan, we are also considering the integration of a form of object-
based override with a form of depth subtyping on object types, and we will study solu-
tions to deal with the conflicts arising. In particular, an incomplete object could redefine
a method that is provided through method addition or object composition. This opera-
tion is the concept of method redefinition/overriding of class-based inheritance adapted
to an object-based setting. This kind of method override will enhance dynamic com-
positionality and flexibility and will allow the programmer to implement rather easily
a chain of method invocation established at run-time (see, e.g.,decoratorandchain of
responsibilitiespatterns [9]). Furthermore, we will study a composition operation be-
tween two complete objects (e.g., no abstract methods).

Acknowledgements.The authors would like to thank the anonymous referees.

References
1. L. Bettini, V. Bono, and S. Likavec. A core calculus of mixin-based incomplete objects. In

Proc. FOOL 11, pages 29–41, 2004.
2. L. Bettini, V. Bono, and S. Likavec. Safe and Flexible Objects. InProc. SAC ’05, OOPS

track, pages 1258–1263. ACM Press, 2005.
3. V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. InProc. ECOOP

’99, pages 43–66. LNCS 1628, Springer-Verlag, 1999.
4. V. Bono, A. Patel, V. Shmatikov, and J. C. Mitchell. A core calculus of classes and objects.

In Proc. MFPS ’99, volume 220, 1999.
5. E. Crank and M. Felleisen. Parameter-passing and the lambda calculus. InProc. POPL ’91,

pages 233–244, 1991.
6. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control

and state.Theoretical Computer Science, 103(2):235–271, 1992.
7. K. Fisher, F. Honsell, and J. C. Mitchell. A lambda-calculus of objects and method special-

ization. Nordic J. of Computing, 1(1):3–37, 1994.
8. K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyping. InProc.

10th International Conference on Fundamentals of Computation Theory (FCT ’95), pages
42–61. LNCS 965, Springer-Verlag, 1995.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

10. I. Mason and C. Talcott. Programming, transforming, and proving with function abstractions
and memories. InProc. ICALP ’89, pages 574–588. LNCS 372, Springer-Verlag, 1989.

11. J. G. Riecke and C. A. Stone. Privacy via subsumption.Information and Computation,
172(1):2–28, 2002. A preliminary version appeared in FOOL5.

12. A. Wright and M. Felleisen. A syntactic approach to type soundness.Information and
Computation, 115(1):38–94, 1994.

