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Abstract. This work presents an object-oriented calculus based on higher-order
mixin construction via mixin composition, where some software engineering re-
quirements are modelled in a formal setting allowing to prove the absence of
message-not-understood run-time errors. Mixin composition is shown to be a
valuable language feature enabling a cleaner object-oriented design and develop-
ment. In what we believe being quite a general framework, we give directions for
designing a programming language equipped with higher-order mixins, although
our study is not based on any already existing object-oriented language.

1 Introduction

Recently, mixins are undergoing a renaissance (see, for example, [1,7,8]), due to their
flexible nature of “incomplete” classes prone to be completed according to the program-
mer’s needs. Mixins [14,19] are (sub)class definitions parameterized over a superclass
and were introduced as an alternative to some forms of multiple inheritance [13,22]. A
mixin could be seen as a function that, given one class as an argument, produces another
class, by adding or overriding certain sets of methods. The same mixin can be used to
produce a variety of classes with the same functionality and behavior, since they all have
the same sets of methods added and/or redefined. Also, the same mixin can sometimes
be applied to the same class more than once, thus enabling incremental changes in the
subclasses. The superclass definition is not needed at the time of writing the mixin defi-
nition. This minimizes the dependencies between superclass and its subclasses, as well
as between class implementors and end-users, thus improving modularity. The uniform
extension and modification of classes is instead absent from the classical class-based
languages. In this work we extend the core calculus of classes and mixins of [10] with
higher-order mixins. A mixin can: (i) be applied to a class to create a fully-fledged sub-
class; or (and this is the novelty with respect to [10]) (ii) be composed with another mixin
to obtain yet another mixin with more functionalities. In Section 2.1 we present some
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uses of mixin inheritance and, in particular, we show that mixin composition enables a
cleaner modular object-oriented design.

This paper presents a framework for the construction of composite mixins, and there-
fore of sophisticated class hierarchies, while keeping the good features of the original
core calculus of [10]. In particular, we retain structural subtyping. As in most popular
object-oriented languages, objects in our calculus can only be created by instantiating
a class. We use structural subtyping to remove the dependency of object users on class
implementation. Each object has an object type, which lists the names and types of meth-
ods and fields but does not include information about the class from which the object
was instantiated. Therefore, objects created from unrelated classes can be substituted
for each other if their types satisfy the subtyping relation. Structural subtyping was a
deliberate design decision already in [11,10,24], motivated by the desire to minimize
code dependencies between object users and class implementors. A different approach
would be to follow Java or C++, in which an object’s type is related to the class from
which it was instantiated, and subtyping relations apply only to objects instantiated from
the same class hierarchy (nominal subtyping). Subtyping is defined on object types only,
not on class and mixin types, to avoid the well-known inheritance-subtyping conflicts
(for an account on the subject, see for instance [15]). As a consequence of the absence
of subtyping on classes, a higher-order mixin is more than a function that consumes
and produces classes, since such a function cannot accept a class with extra methods
as an argument. Moreover, the type system would have to express that the result of the
“mixin-function” has at least the methods of the argument, and such general extensions
to the type system look unnecessarily complex for the model’s more specific purpose.

Our design decisions are strongly based on the choices that were made in [10]. Class
hierarchies in a well-designed object-oriented program must not be fragile: if a superclass
implementation changes but the specification remains intact, the implementors of the
subclasses should not have to rewrite subclass implementations. This is only possible
if object creation is modular. In particular, a subclass implementation should not be
responsible for initializing inherited fields when a new object is created, since some of
the inherited fields may be private and thus invisible to the subclass. Also, the definitions
of inherited fields may change when the class hierarchy changes, making the subclass
implementation invalid. Unlike many theoretical calculi for object-oriented languages,
our calculus directly supports modular object construction. The mixin implementor only
writes the local constructor for his own mixin. Mixin applications and compositions are
reduced to generator functions that call all constructors in the inheritance chain in the
correct order, producing a fully initialized object (see Section 3). Unlike some approaches
to encapsulation in object calculi such as existential types, the levels of encapsulation
describe visibility, and not merely accessibility. For example, even the names of private
items are invisible outside the class in which they are defined. This seems to be a better
approach since no information about data representation is revealed, not even the number
and names of fields. One of the benefits of using visibility-based encapsulation is that
no conflicts arise if both the superclass and the subclass declare a private field with the
same name. Among other advantages, this allows the same mixin to be applied twice
(see the example in Section 2.1). To ensure that mixin inheritance can be statically type
checked, the calculus employs constrained parameterization. From each mixin definition
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e : : = const | x | λx.e | e1 e2 | fix
| ref | ! | := | {xi = ei}i∈I | e.x
| H h.e | classval〈vg,M〉| new e
| mixin

method mj = vmj ;
(j∈New)

redefine mk = vmk ; (k∈Redef )

expect mi; (i∈Expect)

constructor vc;
end

| mixinval〈vm,New,Redef ,Expect〉
| e1 � e2 | e1 • e2

v : : = const | x | λx.e | fix | ref| !
| := | := v | {xi = vi}i∈I

| classval〈vg,M〉
| mixinval〈vm,New,Redef ,Expect〉

Fig. 1. Syntax of the core calculus: expressions and values.

the type system infers a constraint specifying to which classes the mixin can be applied
so that the resulting subclass is type-safe. The constraint includes both positive (which
methods the class must contain) and negative (which methods the class must not contain)
information. New and redefined methods are distinguished in the mixin implementation:
from the implementor’s viewpoint, a new method may have arbitrary behavior, while
the behavior of a redefined method must be “compatible” with that of the old method it
replaces. Having this distinction in the syntax of our calculus helps mixin implementors
avoid unintentional redefinitions of superclass methods and facilitates generation of the
constraint for mixin’s superclasses and for mixins that participate in mixin composition
(see Section 4). A marginal difference with respect to the original mixin calculus [10]
is that we do not treat protected methods, being an orthogonal issue to higher-order
mixins. Nevertheless, protected methods could be easily accounted for via (structural)
subtyping as in the original calculus.

2 Syntax of the Calculus

The starting point for our calculus is the core calculus of classes and mixins of Bono
et al. [10] that, in turn, is based on Reference ML of Wright and Felleisen [25]. To
this imperative calculus of records and functions, we add constructs for manipulating
classes and mixins. The class and mixin related expressions are: classval, mixin, mixinval,
� (mixin application), • (mixin composition) and new. The novelties with respect to [10]
are mixinval and • (mixin composition) to deal with higher-order mixins.

Expressions and values are given in Figure 1. Most of them are standard, the only
constructs that might need some explanation are the following:

– ref, !, := are operators1 for defining a reference to a value, for de-referencing a
reference, and for assigning a new value to a reference, respectively.

– {xi = ei}i∈I is a record and e.x is the record selection operation (note that this
corresponds to method selection in our calculus).

– h is a set of pairs h : : = {〈x,v〉∗} where x is a variable and v is a value (first
components of the pairs are all distinct). We have a concept of a heap, represented

1 Introducing ref, !, := as operators rather than standard forms such as refe, !e, :=e1e2, simplifies
the definition of evaluation contexts and proofs of properties. As noted in [25], this is just a
syntactic convenience, as is the curried version of :=.
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by h in the expression Hh.e, used for evaluating imperative side effects. In the
expression H〈x1,v1〉 . . .〈xn,vn〉.e, H binds variables x1, . . .xn in v1, . . . ,vn and in
e.

– new e uses generator vg of the class value to which e evaluates to create a function
that returns a new object, as described in Section 3.

– classval〈vg,M〉 is a class value, and it is the result of mixin application. It is a pair,
containing the function vg , that is the generator for the class used to generate its
instance objects, and the set M of the indices of all the methods defined in the class.
In our calculus method names are of the shape mi, where i ranges over an index set,
and are univocally identified by their index, i.e., mi = mj if and only if i = j.

– mixin
method mj = vmj

; (j∈New)

redefine mk = vmk
; (k∈Redef )

expect mi; (i∈Expect)

constructor vc;
end
is a mixin expression, and it states the methods that are new, redefined, and expected
in the mixin (names of which have to be all distinct). More precisely, mj = vmj

are
definitions of the new methods, mk = vmk

are method redefinitions that will replace
the methods with the same name in the superclass, and mi are method (names) that
the superclass is expected to implement. Each method body vmj

(respectively, vmk
)

is a function of the private field and of self , which will be bound to the newly created
object at instantiation time. In method redefinitions, vmk

is also a function of next,
which will be bound to the corresponding old method from the superclass. The vc

value in the constructor clause is a function that returns a record of two components:
the fieldinit value is used to initialize the private field; the superinit value is passed
as an argument to the superclass constructor. When evaluating a mixin, vc is used
to build the generator as described in Section 3.

– mixinval〈vm,New,Redef ,Expect〉 is a mixin value, and it is the result of a mixin
evaluation. It is a tuple, containing one function and three sets of indices. The
function vm is the (partial) generator for the corresponding mixin. The sets New,
Redef , and Expect contain the names of all methods defined in the mixin (new,
redefined, and expected).

– e1 � e2 denotes the application of mixin value e1 to class value e2. Given the (su-
per)class value e2 as an “argument” to e1, it produces a new (sub)class value.

– e1 • e2 is a composition of two mixin values e1 and e2. It produces a new mixin
value taking components from both e1 and e2. The resulting mixin can be applied
to class values to produce new classes, as well as composed with other mixin values
to produce new composite mixins.

As in [10], we define the root of the class hierarchy, class Object, as a predefined

class value: Object
�
= classval〈 λ .λ .{}, [ ] 〉. The root class is necessary so that all

other classes can be treated uniformly and it is the only class value that is not obtained
as a result of mixin application. The calculus can then be simplified by assuming that
any user-defined class that does not need a superclass is obtained by applying a mixin
containing all of the class method definitions to Object. For the sake of clarity, in the
following examples we will avoid the explicit mixin application to Object.
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2.1 An Example of Mixin Inheritance

In this section, we present a simple example that shows how mixins can be implemented
and used in our calculus and explain some of the uses of mixin application and mixin
composition. For readability, the example uses functions with multiple arguments even
though they are not formalized explicitly in the calculus.

In the following, we give the definitions of Encrypted mixin and Compress mixin
that implement encryption and compression functionality on top of any stream class,
respectively. Note that the class to which the mixin is applied may have more methods
than expected by the mixin. For example, Encrypted can be applied to Socket �
Object, even though Socket � Object has other methods besides read and write. The
mixin Random allows random access to any stream class, thus we can build a random
access file class with the mixin application Random � FileStream.

let FileStream = mixin
method write = . . .
method read = . . .

end in

let Socket = mixin
method write = . . .
method read = . . .
method IPaddress = . . .

end in

let Random = mixin
method lseek = . . .
expect write;
expect read;

end in
let Encrypted =
mixin
redefine write = λ key. λ self . λ next. λ data. next (encrypt(data, key));
redefine read = λ key. λ self . λ next. λ . decrypt(next (), key);
constructor λ (key, arg). {fieldinit=key, superinit=arg};

end in
let Compress =
mixin
redefine write = λ level. λ self . λ next. λ data. next (compress(data, level));
redefine read = λ level. λ self . λ next. λ . uncompress(next (), level);
constructor λ (level, arg). {fieldinit=level, superinit=arg};

end in . . .

From the definition of Encrypted, the type system infers the types of the methods that
the mixin wants to redefine. These are the constraints that must be satisfied by any class
to which Encrypted is applied. The class must contain write and read methods whose
types must be supertypes of those given to write and read, respectively, in the definition
of Encrypted. In Random such methods are declared as expected and they are used
within the method lseek. Once again the type system infers their types according to how
they are used in lseek.

To create an encrypted stream class, one must apply the Encrypted mixin to an
existing stream class. For example, Encrypted � FileStream is an encrypted file class.
The power of mixins can be seen when we apply Encrypted to a family of different
streams. For example, we can construct Encrypted � Socket, which is a class that
encrypts data communicated over a network. In addition to single inheritance, we can
express many uses of multiple inheritance by applying more than one mixin to a class.
For example, PGPSign � UUEncode � Encrypted � Compress � FileStream produces
a class of files that are compressed, then encrypted, then uuencoded, then signed. In
addition, mixins can be used for forms of inheritance that are not possible in most single
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and multiple inheritance-based systems. In the above example, the result of applying
Encrypted to a stream satisfies the constraint required by Encrypted itself, therefore,
we can apply Encryptedmore than once: Encrypted � Encrypted � FileStream is a
class of files that are encrypted twice. In our calculus, class private fields do not conflict
even if they have the same name, so each application of Encrypted can have its own
encryption key.

Mixin composition further enhances the (re)usability of classes and mixins and
enables better modular programming design, by exploiting software composition at
a higher level. For example, the programmer is able to build a customized library of
reusable mixins starting from existing mixins: one can create the new mixin 2Encrypt
= Encrypted • Encrypted, instead of always applying the mixin Encrypted twice
to every stream class in her program. This also enables consistency: if in the future the
definition of the mixin2Encryptmust be extended, e.g., by also exploiting UU encoding,
then by changing only the definition of 2Encrypt, with an additional mixin composition,
it is guaranteed that all the functions that used 2Encrypt will use the new version.
Moreover, construction of mixins can be delegated to different parts of the program
(thus exploiting modular programming), and the resulting mixins can then be assembled
in order to build a class. For instance, the following code delegates the construction of
mixins for encryption and compression to two functions, and then assembles the returned
mixins for later use:

let m1 = build compression() in let m2 = build encryption() in
let m = m1 •m2 in (new(m�FileStream)).write("foo")

The function build compression returns a specific mixin according to user’s requests:
it can return a simple Compress mixin, or a more elaborate UUEncode • Compress
mixin. Similarly, build encryption, instead of simply returning a mixin Encrypted,
returns the composition PGPSign • Encrypted. All these enhanced modular composi-
tion functionalities, supported by mixin composition, would not be directly provided by
simple mixin application.

Finally, let us observe that streams are implemented usually via the design pattern
decorator [21] (for instance, in Java), and this requires additional manual programming.
Instead, with mixins (and in particular with mixin composition), streams can be pro-
grammed directly exploiting language features. This is just one of the examples of the
additional expressiveness provided by mixin composition.

3 Operational Semantics

The operational semantics of the original calculus [10] is very close to an implementa-
tion, and we follow the same approach. Our operational semantics is a set of rewriting
rules including the standard rules for a lambda calculus with stores (in our case the
Reference ML [25]), and some rules that evaluate the object-oriented related forms to
records and functions, following the “objects-as-records” technique and Cook’s “class-
as-generator-of-objects” principle. This operational semantics can be seen also as some-
thing extremely close to a denotational description for objects, classes, and mixins, and
this “identification” of implementation and semantical denotation is, according to us, a
good by-product of our approach.
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const v → δ(const,v) (δ) refv → H〈x,v〉.x (ref)
if δ(const,v) is defined H〈x,v〉h.R[!x] → H〈x,v〉h.R[v] (deref)

(λx.e) v → [v/x] e (βv) H〈x,v〉h.R[:=xv′] → H〈x,v′〉h.R[v′] (assign)
fix (λx.e) → [fix(λx.e)/x]e (fix) R[H h.e] → H h.R[e], R �= [ ] (lift)

{. . . ,x = v, . . .}.x → v (select) H h.H h′.e → H h h′.e (merge)




mixin
method mj = vmj ;
redefine mk = vmk ;
expect mi;
constructor c;
end




j ∈ New
k ∈ Redef
i ∈ Expect

→ mixinval〈Genm,New,Redef ,Expect〉 (mixval)

Genm
�
= λx.

let t = c(x) in


gen = λself .{
mj = λy.vmj t.fieldinit self y j∈New

mk = λy.vmk t.fieldinit self y k∈Redef

}
,

superinit = t.superinit




mixinval〈Genm,New,Redef ,Expect〉 � classval〈g,M〉 → classval〈Gen,New ∪M〉 (mixapp)

Gen
�
= λx.λself .
let mixinrec = Genm(x) in
let mixingen = mixinrec.gen in
let supergen = g(mixinrec.superinit) in


mj = λy.(mixingen self ).mj y j∈New

mk = λy.(mixingen self ).mk (supergen self ).mk y k∈Redef

mi = λy.(supergen self ).mi y i∈M−Redef




Fig. 2. Reduction rules

R : : = [ ] | R e | v R | R.x | new R | R � e | v � R | R•e | v •R

| {m1 = v1, . . . ,mi−1 = vi−1,mi = R,mi+1 = ei+1, . . . ,mn = en}1≤i≤n

Fig. 3. Reduction contexts

The operational semantics extends the one of the core calculus of classes and mixins,
[10], and therefore exploits the Reference ML of Wright and Felleisen treatment of side-
effects [25]. We give the reduction rules in Figures 2 and 4. To abstract from a precise set
of constants, we only assume the existence of a partial function δ :Const × ClosedVal ⇀
ClosedVal that interprets the application of functional constants to closed values and
yields closed values. In Figure 2, R are the reduction contexts [23,17,18]. Reduction
contexts are necessary to provide a minimal relative linear order among the creation,
dereferencing and updating of heap locations, since side effects need to be evaluated in
a deterministic order. Their definition can be found in Figure 3. We assume the reader
is familiar with the treatment of imperative side-effects via reduction contexts and we
refer to [25,10] for a description of the related rules.

(new) rule is responsible for instantiating new objects from class definitions. The
resulting function can be thought of as the composition of two functions: fix ◦ g. First,
the generator g is applied to an argument v, thus creating a function from self to a record
of methods. Afterwards, the fixed-point operator fix is applied to bind self in method
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bodies and create a recursive record (following [16]). The resulting record is a fully
formed object that could be returned to the user.

Rule (mixval) turns a mixin expression into a mixin value. A mixin value consists
of a mixin generator Genm and of the sets of mixin method names (new, redefined, and
expected; we recall that names are identified with their indices, as said in Section 2).
Genm is a sort of a compiled (equivalent) version of the mixin expression. Given the
parameter for the mixin constructor c, Genm returns a record containing a (partial) object
generator gen, and the argument superinit for the (future) superclass constructor. We
recall that c is a function of one argument which returns a record of two components: one
is the initialization expression for the method field (fieldinit), the other is the superclass
generator’s argument (superinit). The object generator gen binds the private field of
the methods defined (New) and redefined (Redef ) by the mixin to fieldinit (recall that
method bodies take parameters for field, for self , and, if the method is a redefinition, also
for next, which will be bound to the corresponding superclass method). The returned
object generator is partial because it comes from a mixin, i.e., the expected methods
and the next for each redefined method will be provided by a superclass or by other
mixins (in fact, note that next is not yet bound in mk’s bodies). Notice that all the other
mixin operations, i.e., mixin application and mixin composition, are performed on mixin
values. In the original calculus of [10], mixin values are created and “blended” directly at
mixin-application time with a (super)class value to obtain a (sub)class value. Here mixin
values are made explicit to deal smoothly with mixin composition. For all the methods,
the method bodies are wrapped inside λy. · · ·y to delay evaluation in our call-by-value
calculus.

Rule (mixapp) evaluates the application of a mixin value to a class value, performing
mixin-based inheritance. A mixin value mixinval〈Genm,New,Redef ,Expect〉 is applied
to a class value classval〈g,M〉 which plays the role of the superclass, where g is the
object generator of the superclass and M is the set of all method names defined in
the superclass. The resulting class value is classval〈Gen,New ∪M〉, where Gen is the
generator function for the subclass, and New ∪M lists all its method names. Using a
class generator delays full inheritance resolution until object instantiation time when
self becomes available. The generator Gen takes a single argument x, which is used
by the mixin generator, and returns a function from self to a record of methods. When
the fixed-point operator is applied to the function returned by the generator, it produces
a recursive record of methods representing a new object (see rule (new)). Gen first
calls Genm(x) to compute the mixin object generator mixingen, a function from self
to a record of mixin methods, and the parameter mixingen.superinit to be passed to the
superclass generator g, that, in turn, returns a function supergen from self to a record of
superclass methods. Gen results to be a function of self that returns a record containing
all the methods — from both the mixin and the superclass. All methods of the superclass
that are not redefined by the mixin, mi where i ∈ M − Redef , are inherited by the
subclass: they are taken intact from the superclass’s “object” (supergen self ). These
methods mi include all the methods that are expected by the mixin (this is ensured by
the type system, see Section 4). Methods mj defined by the mixin are taken intact from
the mixin’s “object” (mixingen self ). As for redefined methods mk, next is bound to
(supergen self ).mk in Gen. Notice that, at this stage, all methods have already received
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mixinval〈g1,New1,Redef 1,Expect1〉 •mixinval〈g2,New2,Redef 2,Expect2〉 →
mixinval〈Gen,New1 ∪New2,(Redef 1 ∪Redef 2)−New2,

(Expect1 − (New2 ∪Redef 2))∪ (Expect2 −Redef 1)〉
Gen

�
= λx.
let leftrec = g1(x) in
let rightrec = g2(leftrec.superinit) in
let leftgen = leftrec.gen in
let rightgen = rightrec.gen in



gen = λself .


mj1 = λy.(leftgen self ).mj1 y j1∈New1

mj2 = λy.(rightgen self ).mj2 y j2∈New2−Redef 1

mj3 = λy.(leftgen self ).mj3 (rightgen self ).mj3 y j3∈Redef 1∩New2

mk1 = λy.(leftgen self ).mk1 y k1∈Redef 1−(New2∪Redef 2)

mk2 = λnext.(leftgen self ).mk2 ((rightgen self ).mk2 next) k2∈Redef 1∩Redef 2

mk3 = λy.(rightgen self ).mk3 y k3∈Redef 2−Redef 1




,

superinit = rightrec.superinit




Fig. 4. Reduction rule (mixcomp) for mixin composition

a binding for the private field. The variable self is passed all along in all method forms,
in such a way that the host object will be bound appropriately at object creation time.

Rule (mixcomp) (Fig. 4) composes two mixins to produce a new mixin. The two
mixins may partially complete each others’ definitions, providing (some of) the miss-
ing components. Let us denote the mixin composition by e1 • e2 and the resulting
mixin by e. When composing two mixins, it is necessary to determine which sets of
new/redefined/expected methods the new mixin e will have. Our design decision is as
follows: the mixin e2 acts as a “superclass” for e1 (mirroring mixin application order),
and, in particular, some of e1 methods may override some of e2 methods. Therefore, all
the new methods of the mixin e1 (New1) are inserted in the resulting mixin e, while only
the new methods of e2 that are not redefined by e1 (j2 ∈ New2 −Redef 1) become part of
the new mixin. Notice that the type rule for mixin composition (mixin comp) (Figure 6)
must check that no name clashes between new methods of e1 and any method of e2 take
place. This decision is in line with a good object-oriented design principle of not con-
fusing method redefinitions and name clashes. Therefore, an error is signaled at compile
time and not at runtime. As far as redefined methods are concerned, the situation is more
complex: the methods specified as redefining in e1 can override some new methods of
e2, some redefining methods of e2, and (even if only virtually) some of the expected
methods of e2.

– If a method mj3 in e1 redefines a method defined in e2 (j3 ∈ Redef 1 ∩New2), then
the overriding is completed and mj3 becomes a new method in the resulting mixin
e, after binding its next to e2’s implementation of mj3 ;

– If e1 redefines a method mk2 that, in turn, is redefined by e2 (k2 ∈ Redef 1 ∩Redef 2),
then this method is still a redefined method in e. Since e1 “overrides” e2, therefore
mk2 ’s implementation of e1 redefines that of e2, the next in the implementation of e1
is bound to the implementation of e2, and the next in the implementation of e2 is not
bound, since it will be bound during future mixin composition or mixin application.
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This means that the redefinition of a method mk2 by means of e2 is delayed (while
e1 has already performed its “internal” redefinition of mk2 over e2);

– If e1 redefines a method that is expected in e2, then this method will become a
redefined method in e, so it will not appear among the expected methods of e, but it
will be a method that e is willing to redefine.

Apart from the above examined methods, method redefinitions that are still present as
method redefinitions in the resulting mixin e are: (i) the redefining ones from e2 that are
not redefined by e1 (k3 ∈ Redef 2 − Redef 1); (ii) the ones from e1 that are not defined
in e2 and hence not “overriding” anything yet (k1 ∈ Redef 1 − (New2 ∪Redef 2)).

Finally, new and redefined methods from e2 can provide some of the definitions that
the mixin e1 expects; in that case, such methods expected by e1 do not appear anymore
in the expected method set of e.

The generator of the new mixin is a combination of the generators of e1 and e2.
Since e1 is considered to be the “subclass”, the parameter x is passed to g1, and g2
receives as a parameter the superinit returned by g1(x); the superinit field of the record
returned by the generator of the new mixin is set to g2(g1(x).superinit).superinit. This
strategy for building the new mixin generator corresponds to serializing the call of the
two constructors similarly to what happens in standard object-oriented languages. Notice
that this is consistent with the type mixin〈γb2 ,γd1 ,Σnew,Σred ,Σexp,Σold〉 assigned to
the new mixin by the type rule (mixin comp) (Figure 6).

4 Type System

In addition to functional, record, and reference types of Reference ML type system, our
type system has class-types and mixin-types.

The types in our system are the following:

τ : : = ι | τ1 → τ2 | τ ref | {mi : τmi
}i∈I | class〈τ,Σb〉 | mixin〈τ1, τ2,Σnew,Σred ,Σexp,Σold〉

where ι is a constant type, → is the functional type operator, τ ref is the type of locations
containing a value of type τ . The other type forms are described below.

Σ (possibly with a subscript) denotes a record type of the form {mi : τmi
}i∈I . The

set of indexes I (where I ⊆ N) is often omitted when it is not relevant. A record type
can be viewed as a set of pairs label:type where labels are pairwise disjoint (Σ1 and
Σ2 are considered equal, denoted by Σ1 = Σ2, if they differ only in the order of their
elements). Notations and operations on sets are easily extended to record types as in the
following definitions:

– if mi : τmi
∈ Σ we say that the subject mi occurs in Σ (with type τmi

). Subj(Σ)
denotes the set of all subjects occurring in Σ;

– Σ1 ∪Σ2 is the standard set union (used only on Σ1 and Σ2 such that Subj(Σ1)∩
Subj(Σ2) = ∅, in order to guarantee that Σ1 ∪Σ2 is a record type);

– Σ1 −Σ2 is the standard set difference;
– Σ1/Σ2 = {mi : τmi

| mi : τmi
∈ Σ1 ∧ mi occurs in Σ2}.

The definitions of typing environments Γ and of typing judgments are standard. Our type
system supports structural subtyping (<: relation) along with a subsumption rule (sub).
The subtyping rules are shown in Appendix A. Since subtyping on references is unsound
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and we wish to keep subtyping and inheritance completely separate, we have only the
basic subtyping rules for function and record types. Subtyping only exists at the object
level, and is not supported for class or mixin types (as explained in the introduction).

In the class type class〈γ,Σb〉, γ is the type of the generator’s argument and Σb =
{mi : τmi

} is a record type representing self .
In the mixin type mixin〈γb,γd,Σnew,Σred ,Σexp,Σold〉

– γb is the expected argument type of the superclass generator,
– γd is the exact argument type of the mixin generator,
– Σnew = {mj :τ↓

mj } are the exact types of the new methods introduced by the mixin,
– Σred = {mk : τ↓

mk} are the exact types of the methods redefined by the mixin,
– Σexp = {mi :τ

↑
mi} are the types of the methods that are neither defined nor redefined

by the mixin, but expected to be supported by a superclass which the mixin will be
applied to, or by another mixin which the mixin will be composed with,

– Σold = {mk :τ↑
mk} are the types assumed for the old bodies of the methods redefined

by the mixin.

We report in Figure 5 the typing rules regarding classes and mixins (the rest of the
typing rules are given in Appendix A). Some of them are syntactic variations of those
presented in [10] and we refer the reader to that paper for comments about such rules. We
only comment upon the rules related to mixin forms. The rules (mixin) and (mixin val)
assign the same type to their respective expressions, although deduced in a different way.
In the rule (mixin) the side condition Subj(Σnew)∩Subj(Σred)∩Subj(Σexp) = ∅ ensures
that the names of new, redefined, and expected methods are all distinct. In the rule (mixin
app), Σb contains the type signatures of all methods supported by the superclass to which
the mixin is applied, and Σb/Σred are the superclass methods redefined by the mixin
(the superclass may have more methods than those required by the mixin constraints).
The premises of the rule (mixin app) are the following:

i) Σb <: (Σexp ∪Σold) requires the actual types of the superclass methods to be subtypes
of those expected by the mixin.

ii) Σred <:Σb/Σred requires that the types of the actual implementations of methods in
the superclass (which may belong to a subtype of the Σold , from the above constraint)
are supertypes of the ones redefined in the mixin. Thus, the types of the methods
redefined by the mixin (Σred) will be subtypes of the superclass methods with the
same name.

iii) Subj(Σb)∩ Subj(Σnew) = ∅ guarantees that no name clash will take place during
the mixin application.

Intuitively, the above constraints insure that all the actual method bodies of the newly cre-
ated subclass are at least as “good” as expected. The resulting class, of type class〈γd,Σd〉,
contains the signatures of all the methods forming the new class, created as the re-
sult of mixin application. Σred and Σnew are methods defined by the mixin, whereas
Σb − (Σb/Σred) are the methods inherited directly from the superclass. Let us observe
that, for any well typed mixin, Subj(Σred) = Subj(Σold), therefore for any record type
Σ, Σ/Σred = Σ/Σold .

Now we concentrate on the main topic of the paper, the rule for mixin composition
(mixin comp) given in Figure 6. Since e2 acts as the “superclass” of e1, e1 will pass the
argument of type γb1 to the constructor of the superclass e2, that expects an argument of
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Γ � g : γ → {mi : τmi}i∈M → {mi : τmi}i∈M

Γ � classval〈g,M 〉 :class〈γ,{mi : τmi}i∈M 〉
(class val)

Γ � e :class〈γ,{mi : τmi}〉
Γ � new e : γ → {mi : τmi}

(instantiate)

(New) For j ∈ New: Γ � vm j : η → Σ → τ↓
m j

(Redef) For k ∈ Redef : Γ � vmk : η → Σ → τ↑
mk → τ↓

mk

(Constr) Γ � c : γd → {fieldinit : η,superinit : γb}
Subj(Σnew)∩Subj(Σred)∩Subj(Σexp) = /0

Γ �




mixin
method m j = vm j ;
redefine mk = vmk ;
expect mi;
constructor c;
end




j ∈ New
k ∈ Redef
i ∈ Expect

:mixin〈γb,γd ,Σnew,Σred,Σexp,Σold〉

(mixin)

Γ � g : γd → {gen : Σ → {m j : τ↓
m j ,mk : τ↑

mk → τ↓
mk } j∈New,k∈Redef ,superinit : γb}

Γ � mixinval〈g,New,Redef ,Expect〉 :mixin〈γb,γd,Σnew,Σred,Σexp,Σold〉
(mixin val)

where
Σ = Σnew ∪Σred ∪Σexp
Σnew = {m j : τ↓

m j }, Σred = {mk : τ↓
mk}, Σexp = {mi : τ↑

mi}, Σold = {mk : τ↑
mk}

τ↑
mi and τ↑

mk are inferred from method bodies and i ∈ Expect

Γ � e1 :mixin〈γb,γd ,Σnew,Σred,Σexp,Σold〉
Γ � e2 :class〈γc,Σb〉
Γ � γb <:γc
Γ � Σb <:(Σexp ∪Σold)
Γ � Σred <:Σb/Σred
Subj(Σb)∩Subj(Σnew) = /0

Γ � e1 �e2 :class〈γd ,Σd〉
(mixin app)

where Σd = Σnew ∪Σred ∪ (Σb −Σb/Σred)

Fig. 5. Typing rules for class and mixin-related forms

type γd2 for its constructor. Therefore, we require that γb1 <:γd2 (condition (c1)). The
mixin e1 is allowed to redefine methods: defined by e2, expected by e2, or redefined by
e2. In all cases we must check that the redefinition (and the expectation about the old
method in the superclass) is type safe (conditions (c2), (c3) and (c4)). If e1 redefines
a method mk that is in turn redefined by e2, then we will put the redefined type of
mk from e1 in Σred and the old one from e2 in Σold . This is consistent with the view
that the new mixin will contain mk with the body from e1 (with its next bound to e2’s
implementation, while in mk’s body from e2 next remains still unbound, as the method
mk can be further redefined, see Section 3). If e1 redefines, instead, an expected method
of e2, that method will not appear in Σexp, but the redefined type and the old type, as
inferred from e1, will appear in Σred and Σold , respectively. Conditions (c5) and (c6)
check whether e2 can provide methods (either defined or redefined) that are expected
by e1. If such a method is provided, then it will not appear in Σexp. In case both e1
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Γ � e1 :mixin〈γb1 ,γd1 ,Σ
1
new,Σ1

red,Σ1
exp,Σ1

old〉
Γ � e2 :mixin〈γb2 ,γd2 ,Σ

2
new,Σ2

red,Σ2
exp,Σ2

old〉
(c1) Γ � γb1 <:γd2

(c2) Γ � τ↓
mk1

<:τ′↓m j2
<:τ↑

mk1
if k1 = j2

(c3) Γ � τ↓
mk1

<:τ′↓mk2
<:τ↑

mk1
if k1 = k2

(c4) Γ � τ↓
mk1

<:τ′↑mi2
<:τ↑

mk1
if k1 = i2

(c5) Γ � τ′↓m j2
<:τ↑

mi1
if i1 = j2

(c6) Γ � τ′↓mk2
<:τ↑

mi1
if i1 = k2

(c7) Γ � τ′↑mi2
<:τ↑

mi1
∨Γ � τ↑

mi1
<:τ′↑mi2

if i1 = i2
(c8) Subj(Σ1

new)∩ (Subj(Σ2
new)∪Subj(Σ2

red)∪Subj(Σ2
exp)) = /0

Γ � e1 •e2 :mixin〈γb2 ,γd1 ,Σnew,Σred,Σexp,Σold〉
(mixin comp)

where
Σ1

new = {m j1 : τ↓
m j1

},Σ2
new = {m j2 : τ′↓m j2

},Σ1
red = {mk1 : τ↓

mk1
},Σ2

red = {mk2 : τ′↓mk2
}

Σ1
exp = {mi1 : τ↑

mi1
},Σ2

exp = {mi2 : τ′↑mi2
},Σ1

old = {mk1 : τ↑
mk1

},Σ2
old = {mk2 : τ′↑mk2

}
Σnew = Σ1

new ∪ (Σ2
new −Σ2

new/Σ1
red)∪Σ1

red/Σ2
new

Σred = (Σ1
red −Σ1

red/Σ2
new)∪ (Σ2

red −Σ2
red/Σ1

red)
Σold = (Σ1

old − (Σ1
old/Σ2

new ∪Σ1
old/Σ2

old))∪Σ2
old

Σexp = (Σ1
exp − (Σ1

exp/Σ2
new ∪Σ1

exp/Σ2
red ∪Σ1

exp/Σ2
exp))∪ (Σ2

exp − (Σ2
exp/Σ1

red ∪Σ2
exp/Σ1

exp))∪Σmin

Σmin = {mi : min{τ↑
mi ,τ

′↑
mi } | mi : τ↑

mi ∈ Σ1
exp,mi : τ′↑mi ∈ Σ2

exp}

Fig. 6. Typing rule for mixin composition

and e2 expect the same method, the types with which such method is expected must
be comparable (condition (c7)); the method will then appear in Σexp with the smaller
type. Finally, condition (c8) checks that no name clash occurs among methods defined
by e1 and those defined/redefined/expected by e2. This decision is in line with a good
object-oriented design principle of not confusing method redefinitions and name clashes.

Our system is proved sound, in the sense that “every well-typed program cannot
go wrong”, which implies the absence of message-not-understood runtime errors. We
consider programs, which are closed terms, and we introduce faulty programs, which are
a way to approximate the concept of reaching a “stuck state” during the evaluation; for
example, a program “reaches a stuck state” if a method call is attempted on an expression
that does not evaluate to an object. We prove that if the evaluation for a program p does
not diverge, then either p returns a value, or p reduces to a faulty program. We then show
that faulty programs are not typable, and, via a subject reduction property, we establish
that if a program is typable, then it evaluates to a value, under the condition that the
program does not diverge.

Lemma 1 (Subject Reduction). If Γ � e : τ and e evaluates to e′, then Γ � e′ : τ .

Theorem 1 (Soundness). Let p be a program: if ε � p : τ then either the evaluation
for p diverges, or p evaluates to a value v and ε � v : τ (ε stands for the empty typing
environment).

The metatheory for the present system, and in particular the subject reduction prop-
erty, are extensions of the ones in [9] (Chapter 9). The formal definitions and properties
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were analyzed in detail, and can be found at:
http://www.dsi.unifi.it/˜bettini/high-proofs.pdf.

5 Conclusions

This paper presents a calculus supporting class hierarchies creation via mixin application
(already present in [10]) and mixin composition. Our goal was to design a clean and
general form of mixin composition without committing ourselves to an already existing
language. We chose to extend the calculus [10] because: (i) it is an easy-to-extend
framework; (ii) its operational semantics is close both to an implementation and to a
denotational model. Therefore, being able to produce something towards a denotational
model for mixins is, in our opinion, a good by-product; (iii) it allowed us to choose
structural subtyping (as opposed to nominal subtyping of C++ and Java), since, according
to Bracha et al., [5], “When subtyping is structural, mixins do not introduce any new
issues with respect to subtyping.” Moreover, structural subtyping has the advantage of
being independent from the class hierarchy.

In the literature, there are many proposals that deal with mixins. We mention here
some of them, the most interesting with respect to our calculus. Bracha and Cook extend
Modula-3 with mixins in [14] (this is one of the seminal papers on mixins). The novelty
is in seeing object types as mixins, which either explicitly state the modifications to the
superclass, or are obtained as a result of mixin composition. The left-hand mixin has a
“priority” and the composition is not explicitly written in order to ensure upward compat-
ibility with the existing language. Instead, we think that making the composition explicit
(as it is in our calculus) makes the programmer aware of how software components are
composed, thus providing more control over the behavior of the program.

Flatt et al. [20] extend a subset of sequential Java called ClassicJava with mixins
and call it MixedJava. Mixins use their inheritance interface to specify how the inher-
ited methods are extended and/or overridden. Existing mixins can be combined in order
to produce new composite mixins. As in our calculus, the left-hand mixin has the “prece-
dence” over the right-hand mixin. Composition is well-defined only if the right-hand
mixin implements the left-hand mixin inheritance interface (i.e., the right-hand mixin is
required to provide all the methods expected by the left-hand one). In this respect, our
approach is more oriented to code composition, in that the new composite mixin is still
allowed to have expected methods not yet resolved. The duplication of method names
in MixedJava is resolved at run-time with the run-time context information provided
by the current view of the object (represented as a chain of mixins).

Ancona and Zucca [2,3,4] give a formal model for mixin modules. A mixin is a func-
tion from input to output components, and they characterize axiomatically the operators
for composing mixins in order to obtain higher-order mixins. They also present a variety
of method renaming forms, to deal with different typologies of name collisions. In [1]
they present Jam, an extension of Java supporting mixins, but not mixin composition,
where name collision is treated essentially as “accidental override”.

Our approach is different from the ones of MixedJava and Jam in some respects.
Besides not being a Java-like calculus, which allows us to use structural subtyping, our
calculus has a more modular class constructor. Moreover, method names collisions are
resolved statically by the type system. If this approach may look more restrictive than
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the ones of MixedJava and Jam, we preferred it because it forces the programmer to be
aware of collisions and to resolve them, while automatic handling of such ambiguities
may lead to unexpected behavior at run-time.

Boudol [12] extends Reference ML [25] with records and let rec operator. This
enriched ML leads to a theoretically solid treatment of mixins, which are seen as class
transformers. The principal difference between the two calculi seems to be in the way
references to fields are created. In our calculus these are created at class creation time,
when mixin application is evaluated, whereas in the calculus of Boudol they are created
at class instantiation time, i.e., when an object is created.

A future research direction is an extension of this calculus where not only classes
can be instantiated but also mixins, obtaining a form of incomplete objects, to be
completed in an object-based fashion. A first version of the incomplete objects is given
in [6]. Moreover, higher-order mixins seem to be a natural feature to be added to MoMi
[7], a coordination language where object-oriented mobile code is exchanged among
the nodes of a network.

Acknowledgment. We would like to thank the anonymous referees for their comments
and suggestions, which helped us in giving a better focus to the paper and in improving
the overall presentation.
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A Subtyping Rules and Other Typing Rules

Γ,ι1 <: ι2 � ι1 <: ι2
(<: proj)

Γ � τ <:τ
(refl)

Γ � τ1 <:τ2 Γ � τ2 <:τ3

Γ � τ1 <:τ3
(trans)

Γ � τ ′ <:τ Γ � σ<:σ′

Γ � τ → σ<:τ ′ → σ′
(arrow)

Γ � τi <:σi i ∈ I I ⊆ J

Γ � {mi : τi}i∈I <:{mj :σj}j∈J
(<: record)

typeof (const) = τ

Γ � const : τ
(const)

Γ,x : τ � x : τ
(proj)

Γ,x : τ � e : σ

Γ � λx.e : τ → σ
(λ)

Γ � ! : τ ref → τ
(!)

Γ � e1 : τ → σ Γ � e2 : τ

Γ � e1 e2 : σ
(app)

Γ � f ix : (σ → σ) → σ
(fix)

Γ � e :{x : σ}
Γ � e.x : σ

(lookup)

Γ � e : τ Γ � τ<:σ

Γ � e : σ
(sub)

Γ � ei : τi

Γ � {xi = ei}i∈I :{xi : τi}
(record)

Γ � ref : τ → τ ref
(ref )

Γ � := : τ ref → τ → τ
(:=)

Γ′ = Γ,x1 : τ1 ref, . . . ,xn : τn ref Γ′ � vi : τi Γ′ � e : τ

Γ � H〈x1,v1〉 . . . 〈xn,vn〉.e : τ
(heap)
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