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Recent years have witnesses a renewed interest in routes to hyperpolarization as a means of overcoming 

sensitivity issues associated with Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Imaging 

(MRI). In this context, most attention has been devoted to the application of the dissolution DNP (Dynamic 

Nuclear Polarization ) methodologies.1-3 Applications of DNP have led to very important results in the field of 

Metabolic Magnetic Resonance Imaging (MMRI). It has been shown that the administration of hyperpolarized 

13C-labelled substrates such as pyruvate,2,3 lactate,4,5 fumarate,6 acetate ,7,8 bicarbonate9,10  can report on their 

intracellular transformations,  providing outstanding information for early detection of pathologic states and 

for their response to therapy.11 A limitation to the widespread use of this approach relies on the fact that it 

requires access to complex and expensive instrumentation, available only in a limited number of laboratories. 

Moreover the DNP methodology requires relatively long times for the polarization step with consequent large 

consumption of cryogenic liquids. 

An alternative route to hyperpolarized molecules is represented by Parahydrogen Induced Polarization (PHIP) 

12,13 that has the advantage of being cheaper and easier to handle with respect to DNP. As far as bio-medical 

applications are concerned, few molecules have been hyperpolarized by means of this method. Among them , 

succinate14,15  and phospho-lactate16,17  are the only metabolites for which good  hyperpolarization level has 

been achieved until now. Alternative routes have been proposed to achieve PHIP on biologically relevant 

molecules by functionalizing the substrates of interest with moieties capable of hydrogenation.18,19,20 However 

the structural modifications introduced by the unsaturated group may significantly alter their biological 

behavior with respect to the native substrates.    

An attempt to tackle the major limitations of PHIP has been pursued with the recently introduced Signal 

Amplification By Reversible Exchange method.21-23 With this approach parahydrogen protons are not added to 

the substrate but the hyperpolarization transfer takes place on a transient adduct formed by the substrate, 

parahydrogen and the organometallic complex. This method has been successfully tested on several 
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biologically relevant molecules such as pyrimidines, purines, amino acids and drugs.24,25 However in vivo 

application still suffers from low polarization levels and the need for suitable organometallic complex to 

efficiently renew hyperpolarization.26 

As far as PHIP is concerned,  efficient polarization transfer from parahydrogen spin order to 13C longitudinal 

magnetization of carbonyl groups can be achieved,by the addition of the para-H2 molecule to a double or a 

triple bond adjacent to the carbonyl group.23 The amount of polarization transferred from parahydrogen 

protons (A and A’) to heteronuclear resonances (X) (i.e. 13C) depends on the coupling asymmetry of the two 

parahydrogen protons with the X nucleus (JAX -JA’X/ 2*JAA’).
28,29 Therefore heteronuclear polarization cannot be 

achieved if the target X nucleus is symmetrically coupled with the two protons.  Also, polarization is expected 

to be low if the difference between JAX and JA’X is small or when the moiety to be hydrogenated is far away from 

the heteroatom. Optimal polarization transfer has been observed when the added parahydrogen protons are 

two and three bonds away from the “target” heteronucleus (figure 1, structure a).  

Herein we report PHIP results showing that high polarization levels can also be achieved from the reaction of 

para-H2 with substrates having general formula b and c (figure 1). Moreover a successive hydrolysis step yields 

hyperpolarized carboxylic acids, such as acetate and pyruvate whose formation has been till now precluded by 

the lack of suitable de-hydrogenated precursors.   
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Figure 1. 

 

Results  

ParaHydrogen Induced Polarization of acetate 

The 13C-NMR spectrum acquired immediately after the parahydrogenation of vinyl acetate (1) (1.1 % C-13), 

carried out at earth’s magnetic field, according to the ALTADENA method,30 showed hyperpolarized signals for 

the aliphatic carbons (2) whereas no polarization was observed at the 13C carbonyl carbon (figure 2, the whole 

spectra is reported in Supplementary Fig. 2 ). Conversely, the application of low magnetic field cycling27,31 

immediately after the parahydrogenation reaction yielded an efficient polarization transfer to the 13C 

longitudinal magnetization of the carboxylate group (Figure 2). 
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Figure 2. 

Support for the view that the polarization level attained for the 13C-carboxilate group of ethyl acetate is good 

was obtained by acquiring the 13C-NMR spectrum of parahydrogenated hydroxyethyl propionate (3, HEP). The 

PHIP effect on the 13C carboxilate signal of HEP had been previously estimated to yield polarization level as high 

as 20%. 31 As shown in figure 3, the polarization level observed for the 13C-carboxylate resonances of ethyl 

acetate and HEP are quite similar. 
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Figure 3. 

After the polarization transfer step, the ethyl group was removed by hydrolysis, while the hyperpolarization is 

kept  on the 13C carbonyl signal of acetate. Hydrolysis was carried out by adding sodium hydroxide (1M 

solution) to the reaction mixture (parahydrogenation in water) and hyperpolarized 13C-acetate (4) is 

instantaneously formed (figure 4).  

Since the synthesis of the vinyl esters is not straightforward due to keto-enol tautomerism of ethenol and 

ethanal species, propargylic ester was considered . Acetic acid prop-2-ynyl ester (5) was synthesized, reacted 

with para-H2 and the obtained acetic acid allyl ester (6) was subjected to the field cycling procedure. The 

hyperpolarization level obtained on the 13C-carboxylate signal of 5, was similar to that observed for the 

corresponding vinyl ester. Again, hydrolysis yielded the free acid by maintaining a good polarization level of the 

parent ester (figure 4). When the deuterated propargylic alcohol was used (2-d2 propargylic alcohol) 19 

polarization transfer to 13C carboxylic signal was not obtained (spectrum in Supplementary Fig. 4).  
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Figure 4. 

ParaHydrogen Induced Polarization of Pyruvate  

On the basis of the results obtained on propargylic ester of acetate, propargyl alcohol was used to prepare the 

unsaturated ester of pyruvic acid 2-propynyl-2-oxopropanoate (7) 32 (naturally  abundance [1-13C] pyruvate). 

According to the reported phase transfer procedure33 , hydrogenation of the ester was carried out in a 

chloroform (90%) methanol (10%) mixture and was followed by the addition of an aqueous basic solution 

(NaOD 1M). Two phases quickly separated out, the catalyst being retained in the organic phase while the 

hyperpolarized sodium salt was extracted in the aqueous phase. This method results in an improved  

hydrogenation efficiency with respect to hydrogenation in water and yielded an aqueous solution of the 

polarized metabolite free from the organometallic catalyst. 

As shown in figure 5, a good level of polarization was observed for the C-13 carbonyl signals of the allyl ester of 

pyruvate (8) upon the application of the magnetic field cycling (thermal equilibrium 13C and 1H NMR spectra of 

the natural abundance C-13 carbonyl and acetal tautomer are reported in Supplementary Fig. 6 and 7).  

Next, hydrolysis and phase separation were quickly carried out by adding NaOD (1M) and the pH of the 

solution was finally set to about 5 by the addition of an equimolar amount of DCl. Overall, this procedure took 
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about 10 seconds. The 13C spectrum of the aqueous phase (figure 5) shows that a good polarization level is 

maintained on pyruvate (9) after hydrolysis and pH equilibration. The relaxation times (T1) of the 13C carbonyl 

signals of allyl-pyruvate and pyruvate were measured, at 14.1T, to be T1=33.5±5” and T1=40±6” respectively. 

The occurrence of such a long T1s ensured that polarization loss during the experimental work-up is limited. 

 

Figure 5. 

Discussion 

The results reported herein show that parahydrogen induced polarization can be obtained on molecules, such 

as acetate and pyruvate (and, in principle, can be extended to other carboxylic acids), by using precursors 

containing a side-arm capable of hydrogenation that can hydrolyzed to yield the hyperpolarized target 

products. The reported method, named PHIP-SAH (PHIP by means of Side Arm Hydrogenation) relies on the 

following steps: i) functionalization of the target acidic molecule with an unsaturated alcoholic group 

(vinyl/propargyl alcohol); ii) parahydrogenation of the unsaturated ester; iii) polarization transfer to the 

carboxylic C-13 signal by applying magnetic field cycling; iv) release of the alcohol moiety by hydrolysis to 

obtain the polarized 13C-carboxylate containing product. 
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Parahydrogenation of vinyl acetate and hydrolysis have been previously reported 34 for obtaining 

hyperpolarized ethanol. Here it is shown that polarization transfer to the 13C carbonyl signal is possible by 

means of magnetic field cycling. It was reported31 that magnetic field cycling yields about 20% polarization on 

HEP and it is shown in this work that the same polarization level is obtained in parahydrogenated ethyl acetate, 

in spite of less favorable J coupling pattern.  

Polarization transfer from the two parahydrogen protons (indicated with A and A’) to the  13C carbonyl signal 

(X) of ethyl acetate may be accounted for on the basis of spin state populations.  Spin states are expressed as 

product of ortho (=T+, (+)=T0, =T-)-para (()=S) states for the protons and  and  states for 

13C.28  

When the parahydrogen molecule is added to the 13C-containing substrate, at the earth’s magnetic field, the 

singlet (S) and the triplet (T0) states are mixed thanks to asymmetric coupling of the protons with the 

heteroatom.  The states  S’ -T0’ (for 13C in the  state) and S’ -T0’ (for 13C in the  state) are formed, where 

the prime indicates that these states are a linear combination of S and T0 states with a dominating singlet (S’) 

or triplet (T0’) character (figure 2 , lower part, a).28 Singlet-triplet mixing allows transitions between levels S’-

T0’ (polarized absorption) and S’-T0’ (polarized emission) and the transition probability can be calculated 

from the relevant J coupling values. For ethyl acetate (JAX= 3.2 Hz, JA’X= 1.7 Hz and JAA’ = 7.5Hz) the resulting 

transition probability is   𝑆′𝛼 𝐼+
𝑋 𝑇′0𝛽  2 = 0.02 while for hydroxyl ethyl propiolate (JAX=7.2 Hz and JA’X= -5.6 Hz 

JAA’ = 7.5 Hz) the transition probability is 0.37   (detailed calculations are reported in Supplementary Methods). 

Since polarization intensity is also related to the population difference between levels, which is 0.51 for HEP 

and 0.98 for ethyl acetate, it can be derived that polarization on the 13C carbonyl signal of parahydrogenated 

ethyl acetate is expected to be only about 10% of that on HEP, in agreement with what was anticipated from 

the J coupling ratio (JAX -JA’X/ 2*JAA’). 
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When magnetic field cycling is applied, isotropic mixing between heteronuclei takes place at nearly zero field 

and all  the states with the same total spin T+-T0-S(I=-1/2)  and T--T0-S (I=+1/2) are mixed. Due to non-

adiabatic passage from earth’s field to low field, the most stable state (state T+ at earth’s field) becomes the 

most populated state (figure 1 2, a b). If J couplings of ethyl acetate are considered, almost all the singlet state 

population is transferred to the state T+ while, on HEP the singlet state population is shared between the 

three states (Supplementary Information). Then, when the sample is adiabatically transferred back to high 

field, the spin states populations are maintained and the hyperpolarized 13C transitions take place between the 

states T+ – T+ and S’ – S’ (figure 1 2, c). Note that, in this case, the transition probability is 

  𝑇+𝛼 𝐼+
𝑋 𝑇+𝛽  2 = 1 and polarization intensity is only due to population differences The intensity of 

hyperpolarized longitudinal magnetization of the 13C carbonyl signal of ethyl acetate is expected to be even 

higher than that for HEP (for more detail, see the Supplementary Information, methods). Therefore it may be 

expected that high polarization levels can be obtained on 13C carbonyl signals of the esters precursors using a 

finely controlled field cycling procedure.31 

When propargyl esters are used, polarization transferred to the 13C-carbonyl signal is the same as that obtained 

for the vinyl ester albeit the parahydrogen protons are further from the 13C carbonyl  atom. We surmise that, in 

this case, parahydrogen spin order is transferred to the methylenic protons and, from these protons, to the 13C 

carbonyl atom.  The lack of polarization on the 13C-carbonyl signal obtained when the deuterated compound is 

used supports this hypothesis.  

In summary, these findings open a very interesting perspective for the use of parahydrogen-based procedures 

for the generation of hyperpolarized, biologically relevant, molecules. The possibility of using propargyl alcohol  

as a removable synthon to generate parahydrogen induced polarization on 13C resonances markedly widens the 

applicability of the PHIP approach.  
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The access to hyperpolarized molecules by means of the easy-to implement PHIP-SAH procedure is expected to 

promote renewed interests in the field of MRS-MRI hyperpolarization that have been precluded by the high 

cost and complexity of the DNP methodology. 

 

Methods  

Chemicals 

Vinyl acetate (1), hydroxyl ethyl propiolate (2) and the catalyst 

[Rh(diphenylphosphinobutane)(cyclooctadiene)][BF4] were purchased from Sigma-Aldrich and used without 

purification. 

Propargyl esters of acetic acid and pyruvic acid (3 and 4) were synthesized as reported in reference 36  33 and 

used without further purification.  

The water soluble catalyst [Rh(norbonadiene)1,4-bis-[(phenyl-3-propane sulfonate) phosphine][BF4] (3mM) 

was prepared according to the method described by Hövener et al. 32 

Parahydrogenation experiments 

Parahydrogenation of HEP, vinyl acetate and propargyl acetate were carried out in acetone-d6 using the 

commercial catalyst [Rh(diphenylphosphinobutane)(cyclooctadiene)][BF4]. 5mm NMR tubes equipped with 

Young valve were charged with the catalyst (4*10-3 mmol), 400 l of acetone-d6 and the catalyst was activated 

by hydrogenation of the coordinated diene. The substrate was added (35*10-3 mmol) and the tube pressurized 

with 2 bar of parahydrogen while keeping it in liquid Nitrogen in order to achieve an higher parahydrogen 

pressure in the NMR tube and to freeze the hydrogenation reaction. The NMR tube was then thawed to room 

temperature and vigorously shaken for about 10 “. Immediately after shaking, the sample was a) placed in the 

NMR spectrometer (Bruker Avance 600 MHz 1H-NMR) and a single scan 13C spectrum was acquired or, 
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alternatively, b) quickly dropped in the -metal shield, slowly taken out of it (about 5”) and immediately placed 

in the NMR spectrometer for 13C acquisition (1 scan). 

For the parahydrogenation in aqueous medium, 400 l of the catalyst [Rh(norbonadiene)1,4-bis-[(phenyl-3-

propane sulfonate) phosphine][BF4] (3mM) prepared according to the reported procedure 35 were placed into 

the 5mm NMR tube equipped with Young valve, the substrate was added (35*10-3  mmol) and the tube 

pressurized with 2 bar of parahydrogen while keeping it in liquid Nitrogen. After thawing, the NMR tube was 

warmed up using a water bath (90°C) for 5”. Then the parahydrogenation reaction was initiated by shaking the 

tube and field cycle was applied as described for the reaction in organic medium. 

For phase extraction experiments, 10 mm NMR tubes equipped with Young valve were used. The catalyst  

[RhCOD(dppb)][BF4] (4*10-3 mmol) was activated in 50 l of methanol-d4, 500 l of CDCl3 and the substrate 2-

propynyl-2-oxopropanoate (50*10-3 mmol) were added. The NMR tube was pressurized with 2 bar of 

parahydrogen while keeping it in liquid Nitrogen, then it was thawed and warmed up by means of a water bath 

(90°C). Parahydrogenation and field cycle were applied as described above, then the NMR tube was opened 

and 300 l of NaOD solution (1M) were added to the organic solvent followed few seconds later by the 

addition of 300 l of DCl (1M). The aqueous phase is then transferred into a 5 mm NMR tube and placed into 

the NMR spectrometer (Bruker Avance 600 MHz) for the acquisition of the 13C spectrum (1 scan). 

Field cycling. Two concentric -metal cylinders (200 mm height, 30 and 50 mm diameter)  (Meca-Magnetic, 

Amilly, France) were used to carry out field cycling experiments. NMR tubes were dropped into the centre of 

the shield and then slowly pulled up out of the cylinders in about 5”s.  

Parahydrogen. Hydrogen gas was enriched to 92% parahydrogen by catalytic conversion at low temperature 

(36K) and collected directly into the NMR tubes for parahydrogenation reactions. 
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Figure 1 Unsaturated substrates and hydrogenation reactions. In the generic formula (upper part of the 

figura) it is evidenced that compounds a, b and c differ for the number of bonds between the 13C-carbonyl 

moiety and the site of para-H2 addition. Most of PHIP experiments have been till now reported for type-a 

compounds as they show the most favorable J –coupling pattern. The specific reactions are listed in the lower 

part of the figure, the numbers are those reported in the text. 

Figure 2: Field cycling yield high polarization on 13C carbonyl of ethyl acetate. Upper part of the figure: 

magnetic field profile during the field cycle. The magnetic field is cycled between earth magnetic field, where 

the parahydrogenation reaction is carried out, and nearly zero field by using concentric cylinders made of -

metal. The first passage from earth to zero field is fast (non-adiabatic) ( 1), the second passage is slow 

(adiabatic) and takes about 5 seconds ( 2).  Central part of the figure:  13C spectrum (one scan, carbonyl region 

only) of ethyl acetate obtained from parahydrogenation of vinyl acetate (85 mM), acquired at 14.1 T and 298K, 

before the application of field cycle (i)  and after application of field cycling (ii). In i) the 13C carbonyl signal is 

hardly detectable from the spectral noise, in ii) the same carbonyl resonance shows high polarization. Lower 
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part of the figure: spin states of the AA’X system and their populations immediately after parahydrogen 

addition (a), after non-adiabatic transport to low field (b) and successive adiabatic transport to earth field (c).  

Figure 3: C-13 carbonyl hyperpolarization on type A, B, and C molecules. Similar level of hyperpolarization is 

obtained upon field cycle application, irrespective of the position where parahydrogens are added, i.e. a) at the 

adjacent position to the carbonyl (Hydroxy ethyl propiolate, 3 ), b) at three-four (ethyl acetate, 2) , c) or at four-

five (acetic acid allyl ester 6) bonds far away from the carbonyl 13C atom. d) Thermal equilibrium spectrum of 

acetic acid allyl ester, 10100 scans (30° pulse, 15h acquisition time). The concentration of the three precursors 

was the same, i.e. 85 mM. The  parahydrogenation reaction was carried out in acetone-d6. 

Figure 4: Formation of 13C-hyperpolarized acetate. Free 13C-hyperpolarized acetate (13C natural abundance) is 

obtained from hydrolysis of parahydrogenated ethyl (2) and allyl (5) esters (reactions carried out in aqueous 

medium). Addition of Sodium hydroxide (1M) to the aqueous solutions of ethyl acetate and acetic acid allyl 

ester allows efficient hydrolysis with the release of the alcoholic moiety whereas polarization is fully 

maintained on the carbonyl moiety (A’ and B’). C)13C spectrum of the acetate product at thermal equilibrium, 

1000 scans (90° pulse) , acquisition time 56h.     

Figure 5: Formation of 13C-hyperpolarized pyruvate. Organic phase: parahydrogenation of 2-propynyl-2-

oxopropanoate (7) carried out in Chloroform/Methanol (10:1) and field cycling allow hyperpolarization of the 

13C carbonyl of the allyl ester of pyruvate (a: 13C spectrum, one scan). The presence of  methanol in the reaction 

mixture causes an equilibrium between carbonylic (8) and emi-acetalic (8’) forms. All the carbonyl signals (1, 2 

and 3) are hyperpolarized. Hydrolysis was carried out by means of the addition of NaOD (1M) then DCl (1M 

solution) was added to reach pH 5. The aqueous phase was collected in a NMR tube, the 13C-NMR single scan 

spectrum (b) showed polarized signals of Sodium pyruvate (9) (about 50mM). The (c) spectrum is the 

corresponding thermal equilibrium spectrum acquired with 10100 scans (30° pulse, Ernst angle, acquisition 

time 15h 20’). 
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