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A numerical algorithm for multidimensional modelling

of scattered data points

Roberto Cavoretto

Abstract In this paper we propose an N -dimensional (Nd) algorithm for sur-
face modelling of multivariate scattered data points. This code is implemented
in MATLAB environment to numerically approximate (usually) large data point
sets in R

N , for any N ∈ N. Since we need to organize the points in a Nd space,
we build a kd-tree space-partitioning data structure, which is used to efficiently
apply a partition of unity interpolant. This global method is combined with local
radial basis function approximants and compactly supported weight functions. A
detailed design of the partition of unity algorithm and a complexity analysis of
the computational procedures are also considered. Finally, in several numerical
experiments we show the performances, i.e. accuracy, efficiency and stability, of
the Nd interpolation algorithm, considering various sets of Halton data points for
N ≤ 5.

Keywords Surface modelling · Multidimensional algorithms · Partition of unity
methods · Multivariate interpolation · Scattered data

Mathematics Subject Classification (2000) 65D05 · 65D15 · 65D17

1 Introduction

In this work we investigate the problem of constructing a numerical partition of
unity algorithm which can efficiently be used, at least theoretically, for scattered
data interpolation in R

N , for any N ∈ N. Though the aim is to deal with the
case of multidimensional approximation (in general, with N ≥ 3), we also analyze
univariate and bivariate interpolation in order to show that the obtained results
are aligned with the ones we find in higher dimensions. Obviously, above all in
one dimension we are aware of being in a setting where the use of (local) partition
of unity methods is not of great relevance because the number of data points
is usually (relatively) small. Moreover, there exist several numerical techniques
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2 R. Cavoretto

involving radial basis functions (RBFs), splines, etc. that under some particular
conditions can solve successfully (and sometimes better) an interpolation problem
of this type (see e.g. [14,17]).

Hence, researchers often devote their attention to approximate 2d or 3d surfaces
without arriving to design numerical algorithms and analyze their behavior in
higher dimensions, e.g. for N ≥ 3 (see [19,20,23]); here, we face this topic dealing
with the general case of the partition of unity interpolation in R

N , for any N .
In literature, although much work has recently been done in order to construct
fast algorithms using efficient searching procedures based on the partition of the
considered domain in strips [2,9], in spherical zones [7,8,10] or in square and cube
cells [11,12], these approaches can successfully be applied only for the 2d and 3d
interpolation. In fact, their extentions in highter dimensions turn out to be quite
a lot difficult to implement. For this reason, we have turned from that kind of
data structures and we have considered the kd-trees, which enable us to efficiently
organize the points in a N -dimensional (Nd) space. We remark that the kd-tree
is a space-partitioning data structure, whose origin goes back to Bentley [4]; see
also the references [3,5,16,18,22].

In this paper we propose an Nd algorithm for multivariate approximation of
(usually) large sets of scattered data points. This code is designed in MATLAB
environment to numerically approximate data points in R

N , for any N ∈ N. To
organize the points in a Nd space, we build a kd-tree data structure, which is used
to apply the partition of unity method [23]. This global scheme is combined with
local RBF approximants and compactly supported weight functions. A detailed
design of this Nd algorithm and a complexity analysis of the computational pro-
cedures are here considered in detail. Moreover, we observe that the implemented
code is completely automatic and any choice depending on the space dimension
has suitably been studied so that this algorithm can work for any N . Finally, nu-
merical results show the performances of the proposed algorithm on various sets
of Halton data points for N ≤ 5.

The paper is organized as follows. In Section 2 we recall the partition of unity
scheme which is here combined with local radial basis functions, also focusing on
the general problem of interpolation by RBFs. In Section 3, we describe in detail
the Nd algorithm for N -variate surface modelling of scattered data points, which
is based on a kd-tree space-partitioning data structure. Complexity and stability of
the interpolation algorithm are analyzed as well. In Section 4, in order to analyze
accuracy, efficiency and stability of the proposed Nd algorithm, we show several
numerical experiments, considering various sets of scattered data and different
space dimensions. Finally, Section 5 refers to conclusions and future work.

2 Partition of unity interpolation scheme

Let Xn = {xi, i = 1, 2, . . . , n} be a set of distinct data points, arbitrarily dis-
tributed in a domain Ω ⊆ R

N , N ≥ 1, with an associated set Fn = {fi, i =
1, 2, . . . , n} of data values or function values, which are obtained by sampling some
(unknown) function f : Ω → R at the data points, i.e., fi = f(xi), i = 1, 2, . . . , n.
Thus, we can now give a detailed description of the partition of unity method.

The basic idea of the partition of unity method is to start with a partition of the
open and bounded domain Ω ⊆ R

N into d subdomains Ωj such that Ω ⊆ ⋃d
j=1 Ωj
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with some mild overlap among the subdomains. At first, we choose a partition of
unity, i.e. a family of compactly supported, non-negative, continuous functions Wj

with supp(Wj) ⊆ Ωj such that
∑d

j=1 Wj(x) = 1, for all x ∈ Ω. Then, we consider
the global approximant of the form

I(x) =
d∑

j=1

Rj(x)Wj(x), x ∈ Ω. (2.1)

The local approximant Rj : Ω → R defines a radial basis function (RBF) inter-
polant for each subdomain Ωj of the form

Rj(x) =

n∑

k=1

ckφ(d(x,xk)) +

m∑

l=1

dlpl(x), (2.2)

where d(x,xk) = ||x − xk||2 is the Euclidean distance, φ : [0,∞) → R is called

radial basis function, and p1, p2, . . . , pm form a basis for the m =
(

M−1+N
M−1

)

-

dimensional linear space ΠN
M−1 of polynomial of total degree less than or equal to

M − 1 in N variables. Moreover, Rj satisfies the interpolation conditions

Rj(xi) = fi, i = 1, 2, . . . , n. (2.3)

In particular, we observe that if the local approximants satisfy the interpolation
conditions at data point xi, i.e. Rj(xi) = f(xi), then the global approximant also
interpolates at this data point, i.e. I(xi) = f(xi), for i = 1, 2, . . . , n. Note that
in (2.2) and (2.3) we refer to n data points, even if in practice we should have a
smaller number of data points in Ωj , which we will denote by nj later.

Solving the j-th interpolation problem (2.3) leads to a system of linear equa-
tions of the form

[
Φ P

PT O

]

︸ ︷︷ ︸

A

[
c
d

]

︸︷︷︸

y

=

[
f
0

]

︸︷︷︸

b

, (2.4)

or simply

Ay = b,

where entries of the interpolation matrix A are

Φik = φ(d(xi,xk)), i, k = 1, 2, . . . , n,

Pil = Pl(xi), i = 1, 2, . . . , n, l = 1, 2, . . . ,m,

c = [c1, c2, . . . , cn]
T , d = [d1, d2, . . . , dm]T , f = [f1, f2, . . . , fn]

T , 0 is a zero vector
of length m, O is a m ×m zero matrix. Then, since we require the interpolation
problem is well-posed, i.e., a solution to the problem exists and is unique in the
interpolation space, we consider the following theorem (see, e.g., [14]).

Theorem 1 If the function φ in (2.2) is strictly conditionally positive definite
of order M on R

N and the set Xn = {xi, i = 1, 2, . . . , n} of data points form
an (M − 1)-unisolvent one, then the system of linear equation (2.4) is uniquely
solvable.
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We remark that if M = 0 we have strictly conditionally positive definite functions
of order zero, i.e. strictly positive definite functions.

Now, we give the following definition (see [23]).

Definition 1 Let Ω ⊆ R
N be a bounded set. Let {Ω}dj=1 be an open and bounded

covering of Ω. This means that all Ωj are open and bounded and that Ω is con-
tained in their union. Set δj = diam(Ωj) = supx,y∈Ωj

||x− y||2. We call a family

of nonnegative functions {Wj}dj=1 with Wj ∈ Ck(RN ) a k-stable partition of unity

with respect to the covering {Ωj}dj=1 if

1) supp(Wj) ⊆ Ωj ;
2)

∑d
j=1 Wj(x) ≡ 1 on Ω;

3) for every β ∈ N
N
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L
∞

(Ωj) ≤ Cβ/δ
|β|
j ,

for all 1 ≤ j ≤ d.

In order to have an idea of the data point distribution and to understand how
uniform are the data sets, we define two common indicators of data regularity: the
separation distance and the fill distance. The former is given by

qXn
=

1

2
min
i 6=k

d(xi,xk),

while the latter, which is a measure of the data distribution, is usually defined as

hXn,Ω = sup
x∈Ω

min
xk∈Xn

d(x,xk).

In accordance with the statements in [23] we require some additional regularity
assumptions on the covering {Ωj}dj=1.

Definition 2 Suppose that Ω ⊆ R
N is bounded and Xn = {xi, i = 1, 2, . . . , n} ⊆

Ω are given. An open and bounded covering {Ωj}dj=1 is called regular for (Ω,Xn)
if the following properties are satisfied:

(a) for each x ∈ Ω, the number of subdomains Ωj with x ∈ Ωj is bounded by a
global constant K;

(b) each subdomain Ωj satisfies an interior cone condition;
(c) the local fill distances hXnj

,Ωj
are uniformly bounded by the global fill distance

hXn,Ω , where Xnj
= Xn ∩Ωj .

The first property (a) is required to ensure that the sum in (2.1) is actually a
sum over at mostK summands. SinceK is independent of n, unlike d, which should
be proportional to n, this is essential to avoid losing convergence orders. Moreover,
it is crucial for an efficient evaluation of the global interpolant that only a constant
number of local approximants has to be evaluated. Then, it should be possible to
locate those K indices in constant time. The second and third properties (b) and
(c) are important for employing the estimates on RBF interpolants (see [24]).

Moreover, we are able to formulate the following theorem, which yields the
polynomial precision and controls the growth of error estimates (see, e.g., [24]).
Here, we denote by πN

s := πs(R
N ) the set of polynomials of degree s = M − 1.
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Theorem 2 Suppose that Ω ⊆ R
N is compact and satisfies an interior cone con-

dition with angle θ ∈ (0, π/2) and radius r > 0. Let s ∈ N be fixed and there
exist constants h0, C1, C2 > 0 depending only on N, θ, r such that hXn,Ω ≤ h0.
Then, for all Xn = {xi, i = 1, 2, . . . , n} ⊆ Ω and all x ∈ Ω, there exist functions
Rk : Ω → R, k = 1, 2, . . . , n, such that

(1)
∑n

k=1 Rk(x)p(xk) = p(x), for all p ∈ πs(R
N );

(2)
∑n

k=1 |Rk(x)| ≤ C1;
(3) Rk(x) = 0 provided that ||x− xk||2 > C2hXn,Ω.

After defining the space Ck
ν (R

N ) of all functions f ∈ Ck whose derivatives of
order |β| = k satisfy Dβf(x) = O(||x||ν2) for ||x||2 → 0, we consider the following
convergence result (see, e.g., [14,24]).

Theorem 3 Let Ω ⊆ R
N be open and bounded and suppose that Xn = {xi, i = 1,

2, . . . , n} ⊆ Ω. Let φ ∈ Ck
ν (R

N ) be a strictly conditionally positive definite function
of order M . Let {Ωj}dj=1 be a regular covering for (Ω,Xn) and let {Wj}dj=1 be k-

stable for {Ωj}dj=1. Then the error beetween f ∈ Nφ(Ω), where Nφ is the native
space of φ, and its partition of unity interpolant (2.1) with Rj ∈ span{φ(·) : x ∈
Xnj

}+ΠN
M−1 can be bounded by

|Dβf(x)−DβI(x)| ≤ Ch
(k+ν)/2−|β|
Xn,Ω

|f |Nφ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

Note that the partition of unity preserves the local approximation order for
the global fit. Hence, we can efficiently compute large RBF interpolants by solving
small RBF interpolation problems (in parallel as well) and then combine them
together with the global partition of unity {Wj}dj=1. This approach enables us
to decompose a large problem into many small problems, and at the same time
ensures that the accuracy obtained for the local fits is carried over to the global
one. In particular, the partition of unity method can be thought as a Shepard’s
method with higher-order data, since local approximations Rj instead of data
values fj are used.

3 Multidimensional algorithm

In this section we present a new N -variate algorithm for surface modelling of (usu-
ally) large sets of scattered data points, which lie in a domain Ω ⊂ R

N , for any
N ∈ N. For simplicity, we limit us to consider numerical interpolation on the unit
hypercubes Ω = [0, 1]N , but its extension to hyperrectangles or general domains
is obviously possible and straightforward. This Nd code, written in MATLAB en-
vironment, is based on a global partition of unity interpolant using local RBF
interpolants and compactly supported weight functions. Thus, since we need to
organize the points in a Nd space, we build an efficient space-partitioning data
structure as the kd-trees (see [3,5]). In fact, here we have to be able to answer
efficiently two queries, known as range search and containing query. The compu-
tational issues we are considering can briefly be described, as follows:

(i) Given a set of data points xi ∈ Xn and a subdomain Ωj , find all points situated
in that subdomain, i.e. xi ∈ Xnj

= Xn ∩Ωj .
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(ii) Given x ∈ Ω, return all subdomains Ωj such that xi ∈ Ωj .

These two items are essential in the design of the partition of unity algorithm,
since they require the construction of the kd-trees, which characterize the three
phases of the Nd algorithm, i.e. data partition, localization and evaluation stages.
Note that the subdomain Ωj is here a generic region, thus we should think the
index j is fixed.

3.1 Data structure: the kd-trees

A kd-tree, short for k-dimensional tree, is a space-partitioning data structure for
organizing points in a k-dimensional space. In this work, since we have a N -
dimensional space, we should refer to these trees as Nd-trees. However, in order
keep the commonly used notation, we will go on to call them kd-trees (see [14]).

The basic idea of the kd-trees is to hierarchically decompose a data point set
Xn ⊆ R

N in order to obtain a relatively small number of subsets such that each
subset contains roughly the same number of data points. In particular, the kd-tree
data structure is based on a recursive space subdivision into disjoint rectangular
regions, called boxes. Moreover, it is characterized by two additional parameters,
i.e. the bucket size and a splitting rule.

Thus, as long as the number of data points associated with an arbitrary node is
greater than the bucket size, the box is split into two boxes by an axis-orthogonal
hyperplane intersecting this box. In fact, each node in the tree is defined by a
splitting hyperplane which turns out to be perpendicular to one of the coordi-
nate axes. Therefore the splitting hyperplanes partition at the median the set of
data points into “left” and “right” (or “top”and “bottom”) subsets, while the two
resulting boxes are the cells associated with the two children of the considered
node. This partitioning process is further repeated to the two children using hy-
perplanes through a different dimension and stops after log n levels. It follows that
each node of the tree is associated with a box and with a subset of data points
that are contained in this box, whereas the root node of the tree is associated
with the bounding box containing all the set Xn of data points. If the number of
points related to the current box is less than or equal to the bucket size, then the
resulting node is a leaf, and these points are stored with the node. We remark that
when a point lies on the hyperplane itself it may belong to either child according
to the considered splitting rule.

Moreover, we observe that the tree itself is a binary tree with two different
types of nodes, i.e. splitting nodes and leaves. The root node is in principle a split-
ting node (unless the number of points is less than the bucket size), which contains
additional and useful information such as the number of data points, the space
dimension, and the bucket size. A splitting node stores the integer splitting dimen-
sion indicating the coordinate axis orthogonal to the cutting hyperplane. It also
stores the splitting value where the hyperplane intersects the axis of the splitting
dimension. Moreover, it contains two pointers, one for each child corresponding
to the left and right sides of the cutting plane. A leaf node stores the number of
points that are associated with this node and an array of the indices of the data
points lying in the associated box [24].

Though there are several types of kd-tree splitting rules, here we consider the
one whose splitting dimension is given by the dimension of the maximum spread
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of the current subset Y of data points in the current box B. Note that for the
root node Y ≡ Xn and B is the bounding box of Xn. The splitting value is the
median of the coordinates of Y along this dimension. Therefore, assuming to have
the bounding box of Xn and the bucket size b, Algorithm 1 describes the procedure
of building a kd-tree.

Algorithm 1 Build kd-tree

Input: Xn = {xi, i = 1, 2, . . . , n}, set of data points; B, box
Output: ν, root of a kd-tree
1: if (# points of Xn) ≤ b then

2: return a leaf storing the indices of these points
3: else

4: Find splitting dimension and value
5: Split the current bounding box B into two subboxes B1 and B2
6: and its points into two subsets of points Y1 and Y2
7: Apply this algorithm to Y1 and B1, resulting in a pointer ν1
8: Apply this algorithm to Y2 and B2, resulting in a pointer ν2
9: Create a splitting node ν storing the splitting dimension, the splitting value,
10: the left child ν1 and the right child ν2
11: return ν

12: end if

In Algorithm 1 the most expensive step in each recursive call is to find the
splitting value. The median can be obtained in linear time, but it requires to
implement rather complicated algorithms. For this reason, we first presort the data
set on each coordinate in a preprocessing step, which can be done in O(Nn log n)
time and needs additional O(Nn) space at least temporarily to keep the sorted
lists. Then we find the median in linear time. Furthermore, we can also construct
the two sorted lists for the recursive calls from the given list in linear time. Hence,
the resulting time needed to build the tree is O(n log n). As a kd-tree is a binary
tree with O(n) leaves and each (internal) node makes use of O(1) space, the total
amount of space is O(n). Therefore, in order to build the kd-tree for n points in
R

N , Algorithm 1 needs O(Nn log n) time and O(Nn) space. As a consequence of
this result we have that the kd-tree built in this case has O(log n) depth (see [24]).

Let us now consider the range query problem. In Algorithm 2 we describe the
pseudocode used in our procedure and suitably adapted to our notation, that is,
taking the subdomain Ωj as a generic region where the index j is fixed. However,
the main test in this algorithm is done to check whether Ωj intersects the box B(ν)
associated with a node ν. Note that it is not necessary to compute the associated
cell B(ν) each time. The current cell is maintained through the recursive calls using
only the information on the splitting value and the splitting dimension. Therefore,
once the kd-tree is build, the range query in Algorithm 2 can be performed in
O(log n).

Finally, let us analyze the containment query problem. Since kd-trees can be
used to build an overlapping domain decomposition, we can efficiently answer
the containment query. This can simply be done considering two (instead of one)
cutting hyperplanes and assigning all data points on the left of the right cutting
plane to the left child and all data points on the right of the left cutting plane to
the right child.



8 R. Cavoretto

Algorithm 2 Range query

Input: Ωj ⊆ Ω, query subdomain; ν, root of kd-tree
Output: Xnj

, set of points contained in Ωj

1: if (ν is a leaf) then

2: return points of Ωj stored at ν

3: else

4: ν1: the left child of ν ← box B1
5: ν2: the right child of ν ← box B2
6: for i = 1, 2 do

7: if (Bi ⊂ Ωj) then

8: return points in the tree rooted at νi
9: else

10: if Ωj ∩ Bi then

11: Apply this algorithm to Ωj and νi
12: end if

13: end if

14: end for

15: end if

3.2 Nd algorithm

Let us now consider in detail the Nd interpolation algorithm.

INPUT: N , space dimension; n, number of data; Xn = {xi, i = 1, 2, . . . , n}, set of
data points; Fn = {fi, i = 1, 2, . . . , n}, set of data values.

OUTPUT: As = {I(x̃i), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set Xn of data points and the set Fn of data values are loaded.

Stage 2. After computing the number dPU of subdomain points along one direc-
tion of Ω by using the rule

dPU =

⌈
1

2

(n

2

)1/N
⌉

, (3.1)

and setting

d = dNPU ,

we construct the set Cd = {x̄j , j = 1, 2, . . . , d} of subdomain points, that is a grid of
equally spaced centres of partition of unity subdomains in the unit hypercube. The
value in (3.1) depends on both the data point number n and the space dimension
N , but it is suitably chosen assuming that the ratio n/d ≈ 2N+1.

Stage 3. The number sPU of evaluation points along one direction is computed
by applying the formula in (3.1), taking sPU = dPU and creating another grid of s
equally spaced evaluation points, whose set is denoted by Es = {x̃i, i = 1, 2, . . . , s}.
Stage 4. For each subdomain point x̄j , j = 1, 2, . . . , d, a local spherical subdomain
is constructed, whose radius depends on the parameter dPU , i.e.

δsubdom =

√
2

dPU
. (3.2)

Stage 5. The kd-tree data stuctures are built for the set Xn of data points and
the set En of evaluation points, applying Algorithm 1.
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Stage 6. For each subdomain Ωj , j = 1, 2, . . . , d, the range query problem is
considered as outlined in Algorithm 2, adopting the related searching procedure
which consists of the following two steps:

i) Find all data points (i.e. the set Xnj
) belonging to the subdomain Ωj and

construct a local interpolation RBF matrix by Xnj
, where nj denotes the point

number of Xnj
.

ii) Determine all evaluation points (i.e. the set Esj
) belonging to the subdomain

Ωj and build a local evaluation RBF matrix by Esj
, where sj is the point

number of Esj
.

Stage 7. A local RBF interpolant Rj and a weight function Wj , j = 1, 2, . . . , d,
is computed for each evaluation point.

Stage 8. The global fit (2.1) is applied, accumulating all the Rj and Wj .

In the Nd algorithm the local interpolants are computed by using either glob-
ally supported RBFs such as Gaussian and Matérn functions, which are compactly
supported on the local subdomain Ωj , or compactly supported RBFs as the Wend-
land functions. However, this approach is completely automatic and turns out to
be very flexible, since different choices of local approximants (either globally or
compactly supported) are allowable.

3.3 Computational cost

The Nd algorithm is based on the construction of kd-tree data structures, which
allow us to efficiently find the data points belonging to each subdomain Ωj ,
j = 1, 2, . . . , d, so that we can compute local RBF interpolants to be used in
the partition of unity scheme. Thus, supposing that the set Xn of data points
is quasi-uniform and the covering {Ωj}dj=1 is regular and local, that is the size
of each subdomain is proportional to hXn,Ω , we analyze the complexity of this
interpolation algorithm.

At first, from Stage 1 to 4 we have a sort of preprocessing phase where we
automatically load all data sets and define the parameters concerning data, sub-
domain and evaluation points. In particular, we refer to the rule (3.1) which is
obtained under the requirement that the subdomain number d is proportional to
the data point number n, taking n/d ≈ 2N+1. This condition, along with the value
of the subdomain radius (3.2), enables the algorithm to efficiently work for any
space dimension N .

Then, in Stage 5 we build the kd-trees applying Algorithm 1, which needs
O(Nn log n) time and O(Nn) space for n data points and O(Ns log s) time and
O(Ns) space for s evaluation points, whereas in Stage 6 we make use of the range
search process described in Algorithm 2 for each subdomain Ωj , j = 1, 2, . . . , d,
whose running times are O(log n) and O(log s), respectively. Thus, since the num-
ber of centres in each subdomain Ωj is bounded by a constant (see Definition 2),
we need O(1) space and time for each subdomain to solve the local RBF interpo-
lation problems. In fact, in order to obtain the local RBF interpolants, we have
to solve d linear systems of (relatively) small sizes, i.e. (nj + m) × (nj + m),
with {nj ,m} << n, thus requiring a (constant) running time O((nj + m)3),
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j = 1, 2, . . . , d, for each subdomain. Besides reporting the points in each sub-
domain in O(1), as the number d of subdomains Ωj is bounded by O(n), this
leads to O(n) space and time for solving all of them.

Finally, in Stage 7 and 8 we have to add up a constant number of local RBF
interpolants to get the value of the global fit (2.1). This can simply be done in
O(1) time.

3.4 Stability

As to stability, the condition number of the interpolation matrices generated by
RBFs depends on both the order of the considered basis functions and the density
of the data points. Moreover, the conditioning grows primarily due to the decrease
of the separation distance qXn

, and not only necessarily to the increase of the
data point number n. Thus, since for most of the subdomains the local separation
distance qXnj

is of the same size (or smallness) as the global separation distance
qXn

, the partition of unity method seems to be stable as the global one.

On the other hand, if one keeps fixed the number of data points or, at least,
the separation distance, considering instead flatter basis functions with a suitable
choice of the shape parameter, then the condition number of the interpolation
matrix in (2.4) suffers in almost the same manner. Obviously, a more peaked basis
function can be used to improve the condition number in (2.4), but the accuracy
of the fit gets worse. In fact, according to the trade-off principle we remark that
the order of the basis functions should be chosen with great care, because using
standard bases one cannot have high accuracy and stability at the same time [15].
This order should be enough low when the data density is quite high, because any
excessive order has negative effects on stability. For this reason, for low density
interpolation data points one can use high-order (e.g., infinitely smooth) basis
functions, whereas for high density interpolation data points, to avoid numerical
problems, one can use low-order basis functions.

4 Numerical results

In this section we report a few numerical and graphical results coming from ex-
periments obtained by computational procedures developed in MATLAB environ-
ment. All the tests have been carried out on a Intel Core 2 Duo Computer (2.1
GHz). In our tests we analize accuracy, efficiency and stability of the Nd algorithm
considering some sets of scattered data points, which are contained in the unit hy-
percube Ω = [0, 1]N , for N = 1, 2, . . . , 5. They are uniformly random Halton data
points generated by using the program haltonseq.m, which has been written by
D. Dougherty and can be downloaded from the MATLAB Central File Exchange
(see [14]). Note that the implemented algorithm is a unique code and, at least
theoretically, works well for any N .

Thus, in order to point out accuracy of the Nd algorithm, we compute on each
of the considered test functions the Root Mean Square Errors (RMSEs), whose
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formula is given by

RMSE =

√
√
√
√

1

s

s∑

i=1

|f(x̃i)− I(x̃i)|2, (4.1)

whereas we analyze stability of the considered approach by using the cond function
of MATLAB, so that one can have a measure of the conditioning of the interpo-
lation matrices generated by RBFs. More precisely, since the local approximation
scheme is characterized by the solution of d linear systems of (relatively) small
sizes, in order to obtain a good conditioning estimate, we make an average among
the conditioning numbers of the d matrices, i.e.

Average Cond =
1

d

d∑

j=1

cond(Aj), (4.2)

where Aj denotes the j-th matrix associated with the subdomain Ωj .

Moreover, as we will show the results obtained by using different local RBFs,
in Table 1 we report a list of some strictly positive definite RBFs with their
smoothness degrees. We remark that α, ǫ, δ ∈ R

+ are the shape parameters, r =
|| · ||2 is the Euclidean distance, and (·)+ denotes the truncated power function. We
remark that Gaussian C∞ and Matérn C4 are globally supported basis functions
and strictly positive definite in R

N for any N , whereas Wendland C4 and C2 are
compactly supported ones (whose support is [0, 1/δ]) and strictly positive definite
in R

N for N ≤ 3 (see [24]). Note that the Wendland C2 function is here just
mentioned because it is used as a localizing function of Shepard’s weight Wj in
the global fit (2.1); conversely, all other RBFs are considered for using them as
local interpolants in the partition of unity scheme.

RBF φ(r)

Gaussian C∞ (G) e−α2r2 , α > 0

Matérn C4 (M4) e−ǫr(ǫ2r2 + 3ǫr + 3), ǫ > 0

Wendland C4 (W4) (1− δr)6+
(

35δ2r2 + 18δr + 3
)

, δ > 0

Wendland C2 (W2) (1− δr)4+ (4δr + 1) , δ > 0

Table 1: Strictly positive definite radial basis functions.

4.1 Test case 1

In this subsection we summarize the extensive and detailed investigation we per-
formed to test and verify efficiency, accuracy and stability of the Nd algorithm,
showing the numerical results obtained by considering three scattered data sets,
which respectively contain n = 20N , 40N , 60N , N = 1, 2, 3, Halton points.
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In the various experiments we analyze the performance of the interpolation al-
gorithm taking the data values by three test functions, known as Franke’s functions
(see, e.g., [2,21]), whose analytic expressions are:

f1(x1) =
3

4
e−

(9x1−2)2

4
+ 25

16 +
3

4
e−

(9x1+1)2

49
− 11

20

+
1

2
e−

(9x1−7)2

4
+ 9

16 − 1

5
e−(9x1−4)2− 25

4 ,

f2(x1, x2) =
3

4
e−

(9x1−2)2+(9x2−2)2

4 +
3

4
e−

(9x1+1)2

49
−

9x2+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2 ,

f3(x1, x2, x3) =
3

4
e−

(9x1−2)2+(9x2−2)2+(9x3−2)2

4 +
3

4
e−

(9x1+1)2

49
−

9x2+1

10
−

9x3+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2+(9x3−5)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2−(9x3−5)2 .

Note that the bivariate and trivariate functions f2 and f3 are commonly used in
approximation processes to test the behavior of numerical methods and algorithms,
whereas the univariate function f1 has been obtained by f2 setting x2 = 1/2.

Now, since we are interested in poiting out the efficiency of the proposed in-
terpolation algorithm, in Table 2 we show CPU times (in seconds) obtained by
running the Nd algorithm for N = 1, 2, 3 as described in Section 3. This table
emphasizes the algorithm efficiency characterized by the use of a kd-tree data
structure to partition a N -dimensional space. This approach gives a considerable
saving of time also when the number of interpolated data points and the space di-
mension N increase. Furthermore, we remark that the Nd algorithm (with N = 3)
has also been compared with the trivariate algorithm in [12], turning out in gen-
eral more efficient than the trivariate one. However, once more we observe that
the algorithm in [12] is an “ad hoc” procedure for 3d interpolation, whereas the
Nd algorithm works well for any N .

N n CPU time

20 0.08
1 40 0.09

60 0.09

400 0.18
2 1600 0.34

3600 0.62

8000 2.15
3 64000 24.33

216000 95.93

Table 2: CPU times (in seconds) obtained by running the Nd algorithm.

Then, in order to investigate accuracy and stability, in Figures 1–2 we analyze
the behavior of RMSEs and average conditioning computed with the formulas in
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(4.1) and (4.2) by varying the shape parameters α ∈ [1, 10] and δ ∈ [0.1, 4] for
each of the considered RBFs, i.e. the Gaussian (G) and the Wendland C4 (W4).
We note that in those graphs (left to right) we report the results obtained for the
1d, 2d and 3d interpolation, respectively. Furthermore, from this analysis we can
observe that the W4-RBF has a greater stability than the G-RBF, but the latter
gives us a level of slightly greater accuracy although its interpolation matrices turn
out to be subject to ill-conditioning, mainly for small values of α. This behavior
is what we expect from theoretical standpoint (see Subsection 3.4), but here it is
validated by numerical tests. However, in general, when the G-RBF suffers from
ill-conditioning due either to too small values of α or too much data points, the
use of the (stable) W4-RBF is strongly preferable and advised. This is further
confirmed by making a comparison between the corresponding graphs reported in
Figures 1–2. Finally, these graphs allow us to find the optimal values of α and δ,
i.e. those values for which we obtain the smallest RMSEs (see Tables 3–5). Note
that the average conditioning numbers reported in those tables refer to the optimal
values associated with the lowest RMSE.
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Fig. 1: RMSEs (top) and average conditioning (bottom) obtained by varying the
shape parameters for G.

4.2 Test case 2

In order to test the performances of the Nd algorithm and understand better its
behavior, in these experiments we analyze the results obtained by taking some
other data sets Xn ⊆ Ω of Halton data points. More precisely, here we consider a
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Fig. 2: RMSEs (top) and average conditioning (bottom) obtained by varying the
shape parameters for W4.

G W4

n αopt RMSE # cond δopt RMSE # cond

20 4.00 7.74E− 4 8.75E + 11 1.12 1.82E− 3 5.03E + 05

40 3.45 1.04E− 5 2.05E + 18 1.16 2.10E− 4 1.64E + 07

60 3.27 7.79E− 7 3.69E + 17 1.05 1.22E− 4 1.03E + 08

Table 3: RMSEs and average conditioning (# cond) obtained by using optimal
values of α and δ for f1.

G W4

n αopt RMSE # cond δopt RMSE # cond

400 2.73 2.00E− 3 7.20E + 13 0.45 5.91E− 3 4.93E + 08

1600 3.27 1.68E− 5 4.66E + 18 0.77 2.24E− 5 1.52E + 09

3600 3.09 3.88E− 6 3.53E + 19 0.18 4.64E− 6 2.50E + 13

Table 4: RMSEs and average conditioning (# cond) obtained by using optimal
values of α and δ for f2.

few sets of Halton points whose size n depends on the dimension N , i.e. we take
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G W4

n αopt RMSE # cond δopt RMSE # cond

8000 2.82 7.66E− 5 7.01E + 15 0.69 8.42E− 5 5.87E + 08

64000 4.09 3.09E− 6 2.35E + 19 0.77 7.60E− 6 1.01E + 10

216000 4.09 2.67E− 6 1.24E + 20 0.77 1.48E− 6 1.11E + 11

Table 5: RMSEs and average conditioning (# cond) obtained by using optimal
values of α and δ for f3.

n = 10N , 1 ≤ N ≤ 5, focusing on the following N -variate test function [14]

gN (x) = 4N
N∏

h=1

xh(1− xh), x = (x1, x2, . . . , xN ) ∈ Ω.

However, to have a more complete view, we have tested other test functions whose
results we here omit for shortness, since accuracy and stability have shown similar
behaviors.

Thus, the purpose of these experiments is firstly to establish how the proposed
algorithm works in higher dimensions, i.e. for N > 3, but also aiming at further
investigating the behavior of RMSEs and average conditioning for lower dimension
of space. Therefore, after showing in Table 6 the CPU times (in seconds) computed
by running the Nd algorithm for N ≤ 5, we summarize our numerical study
in Figure 3, reporting RMSEs and average conditioning by varying the shape
parameters α and ǫ for the Gaussian (G) and the Matérn C4 (M4), respectively.
We remark that in these tests we take the M4 as function of smoothness C4

instead of the W4, because the latter is only strictly positive definite in R
N for

N ≤ 3, whereas the M4 function is a strictly positive definite function for any N .
However, for shortness, obtaining uniform results in the different space dimensions,
we omit the graphs for 1d and 2d interpolation, only reporting the best values of
errors and conditioning numbers (see Table 7). In conclusion, we observe that
these experiments confirm the results shown in Subsection 4.1; in fact, though
accuracy (errors) can appear worse and stability (conditioning) turns out to be
better (above all for the Gaussian case), this depends essentially on the reduction
of the number n of data points.

N n CPU time

1 10 0.08

2 100 0.14

3 1000 0.28

4 10000 4.48

5 100000 158.99

Table 6: CPU times (in seconds) obtained by running the Nd algorithm.
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Fig. 3: RMSEs (top) and average conditioning (bottom) obtained by varying the
shape parameters for g3, g4 and g5.

G M4

N n αopt RMSE # cond ǫopt RMSE # cond

1 10 1.00 1.09E− 2 3.01E + 16 1.00 2.15E− 2 9.06E + 07

2 100 1.00 9.27E− 3 1.37E + 16 6.90 2.70E− 2 4.02E + 04

3 1000 1.64 5.34E− 3 1.20E + 14 2.09 1.19E− 2 9.85E + 07

4 10000 1.36 4.29E− 3 9.12E + 13 6.27 5.14E− 3 5.50E + 05

5 100000 1.73 2.22E− 3 1.65E + 13 9.45 2.98E− 3 8.43E + 04

Table 7: RMSEs and average conditioning (# cond) obtained by using optimal
values of α and ǫ for gN .

5 Conclusions and future work

In this paper we present a new partition of unity algorithm for surface approxi-
mation of scattered data sets in R

N , for any N . This Nd algorithm is based on
the combination of local RBF interpolants with compactly supported Shepard’s
weight functions. In particular, the optimized implementation of this code and
the use of kd-tree data structures allow us to efficiently organize the points in
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any Nd space. In fact, this algorithm, which is completely automatic and at least
theoretically works well for any N , is designed in such a way that one can model
multidimensional surfaces as it is often required in applications. Complexity anal-
ysis and numerical experiments show good performances of the Nd algorithm,
which is tested on some sets of Halton data points for N ≤ 5.

As future work we are going to propose an adaptive Nd algorithm based on
partition of unity interpolants. This approach should allow us to suitably create
subdomains of variable size so that one can efficiently interpolate irregularly dis-
tributed data points. This means that we can locally increase (or decrease) the
radius of subdomains according to the data distribution, whatever it is. Finally, we
could also think to generalize this algorithm for modelling discontinuous surfaces
as in [1] or consider different approaches as shown in [6,13].
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