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Abstract

In this paper we present a new local algorithm for spherical interpolation of large
scattered data sets. The method we implemented is a local Shepard’s scheme using
zonal basis functions as nodal functions. The algorithm is based on an optimized
nearest-neighbour searching procedure. Experimental results show efficiency and
accuracy of the algorithm.
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1 Introduction

Let S™1 = {z € R™ : ||z|| = 1} be the unit sphere in R™. We consider the problem
of interpolating a function f : ™! — R, (m > 1), defined on a finite set X, =
{z;}™, of distinct data points or nodes lying on S™~!. It consists of constructing a
multivariate function F, which interpolates the data values or function values f; at
the nodes z;, namely F(z;) = fi, i = 1,...,n. Possible applications include modeling
closed surfaces in CAGD and representing scalar functions which estimate temperature,
rainfall, pressure, ozone, gravitational forces, etc. at all points on the surface of the
earth based on a discrete sample of values taken at arbitrary locations.

Recently, in [1], an efficient algorithm was proposed for the interpolation of large
scattered data sets in bidimensional domains. It is based on a very fast strip method,
consisting in the use of particular data structures named strips in the nearest neighbour
searching procedure. It allows to obtain a very fast algorithm for bivariate interpolation.
In this paper we extend the algorithm to the spherical setting. We found good results
also in this case. At the moment investigations in the direction of comparison of this
algorithm with the one proposed in [3] are under consideration.

The paper is organized as follows. In section 2 the zonal basis function (ZBF)
method is briefly recalled. Section 3 is devoted to the local spherical interpolation
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method with ZBFs. In section 4 the spherical algorithm used is explained and in
section 5 numerical results are given.

2 ZBF Interpolation

Since we will propose a local interpolation scheme involving a zonal basis function (or
spherical radial basis function (SRBF)) interpolant, here we focus both on theoretical
and computational aspects of the ZBF method (see, e.g. [6, 4, 5]), recalling some basic
mathematical interpolation tools [8].

Definition 2.1. Given a set of distinct data points X, = {z;}1, arbitrarily distributed
on 8™ 1, and the associated function values F, = {f;}., of a function f : ™! - R,
a zonal basis function interpolant s : S™~1 — R has the form

s(z) =) _a;p(d(z,x;), zeS™, (1)

Jj=1

where d(z, x;) = arccos (szj) denotes the geodesic distance, which is the length of the
shorter part of the great circle arc joining x and z;, ¢ : [0,7] — R is called 20nal basis
Junction, and s satisfies the interpolation conditions s(z;) = f;, i=1,...,n.

Although, as far as we know, there is no a complete characterization of the class
of the functions 1, a sufficient condition for nonsingularity is that the corresponding
matrix

be positive definite (see [6]).

Definition 2.2. A continuous function ¢ : [0,7] — R is said positive definite of order
non ST if

i=1 j=1

for any set of distinct data points X, = {z;},, and any a = [as,...,a,]7 € R™. If the
inequality (3) holds strictly for any nontrivial a, 1 is called strictly positive definite of
order n. If ¢ is (strictly) positive definite for any n, then it is called (strictly) positive
definite.

Therefore, if 4 is (strictly) positive definite, the interpolant (1) is unique, since the
corresponding interpolation matrix (2) is positive definite and hence nonsingular.

Generally, one requires that an interpolant reproduces the low degree spherical
harmonics (as polynomials for RBFs in the multivariate setting), but this property is
not satisfied. Hence, it is often convenient to add to s a spherical harmonic, which can
be defined in the following way.
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Definition 2.3. Let Hy = Hy(S™ 1), d € Z, be the space of homogeneneous harmon-
ics of degree d restricted to S™"1. The linear space Hy is called the space of spherical
harmonics of exact degree d.

It is well known that the dimension of Hy is given by

. 1, lfd: 0,
Npg = dim(Hg) = { W(d“;’_’;%, ifd>1,

and N4 = O(d™?), for d — oo. Moreover, the spherical harmonics of different
degrees are orthogonal with respect to the Lo-inner product on §™!

(h9iem = [ F@)ale)dute),

where du(z) is the standard measure on the sphere.

Now, denoting by {Ygr:k=1,...,Npq} a (fixed) orthonormal basis of Hg, we
have that Hy = @?on 5, d € Z, is the space of spherical harmonics of degree at most
d. Moreover, it is also known that {Ygr : k=1,...,Nypq4 d =0,1,...} is a complete
orthonormal basis of Ly(S™~!). For more details, we refer to [8, 13].

Then, the drawback of the lacked reproduction of the low degree spherical har-
monics can be overcome, adding to the ZBF interpolant s, given by (1), a spherical
harmonic of degree d. It assumes the form

n 1%
s(z) =Y app(d(z, z;)) + D bYi(z), ze€S™7, (4)
j=1 k=1

where V = dimH4(S™1), and {Y3,...,Yy} is a basis for S™L.
The analytic solution (4) is obtained by requiring that s satisfies the interpolation
conditions '

stz)=fi, i=1,...,n,

and the additiohal conditions

n
Y aYi(zm)=0, fork=1,..,V. (5)
i=1

To compute the coefficients a = [a1,...,a,]T and b= [by,...,by|T in (4), it is required

to solve the system of n linear equations in n + V unknowns. Thus, supposing that
n > V', we have the linear system

A allE]=1e ) ®

where A = {¢(d(2,2;))}};=1 is an n X n matrix (as in (2)), Y = {Vi(z;)} isan n x V

matrix, and f denotes the column vector of the k-th coordinate of the function f;.

@CMMSE Page 260 of 1461 ISBN: 978-84-612-9727-6



SPHERICAL INTERPOLATION

Definition 2.4. A continuous function ¢ : [0,7] — R is said strictly conditionally
positive definite of order s € N on S™!, if the quadratic form (8) is positive for
any set of distinct data points X, = {z;}1; and any nonzero a = [ay,...,a,)7 € R"
satisfying (5).

Definition 2.5. Let s be a positive integer and let V = dimH,_1(S™1). A set of
distinct data points {z;}}_, is named Hs_1(S™!)-unisolvent if the only element of
Hs—1(S™1) to vanish at each z; is the zero spherical harmonic.

Any strictly conditionally positive function ¢ of degree s can be used to provide
an augmented ZBF interpolant (4) with d = s — 1. Nevertheless, in order to guaran-
tee the solution uniqueness, we require also that the interpolation points contain an
Hs—1(S™!)-unisolvent subset. Then, the interpolant (4) is unique [10] (see also [9]).

Theorem 2.1. Let ¢ be a strictly conditionally positive definite on S™ L. Let X, =
{z;}; denote a set of n distinct data points in ™! such thatn >V = dimH,_1(S™71),
and Xy, contains an Hs_1(S™1)-unisolvent subset. Then the matriz of the linear sys-
tem (6) is nonsingular.

3 Local Spherical Interpolation by ZBFs

In this section we describe a local method for the multivariate interpolation of large
scattered data sets lying on the sphere. The scheme is based on the local use of zonal
basis functions, i.e. ZBF interpolants as nodal functions, and represents a further
variant of the well-known modified Shepard’s method. Hence, this local interpolation
approach exploits the characteristic of accuracy of ZBFs, overcoming common disad-
vantages as the unstability due to the need of solving large linear systems (possibly, bad
conditioned) and the inefficiency of the ZBF global interpolation. method. A similar
technique was already introduced at first by Pottmann and Eck [11] (MQ), and then
by De Rossi [3] (ZBF).

As we present a local interpolation method, we need to define a ZBF interpolant
of the form

Z(z)=s),(x), z€DCA,

where D is the restriction of the data point set A;,.
Therefore we consider the following definition of the modified spherical Shepard’s
method.

Definition 3.1. Given a set of distinct data points X, = {z;}_, arbitrarily distributed
on the sphere S™1, with associated the corresponding set of real values F, = {fi},
of an unknown function f : S™! — R, the modified spherical Shepard’s interpolant
F:S™ 1 R takes the form

F(z) = Zj(«)Wj(a), (7)

J=1
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where the nodal functions Z;(x), j = 1,...,n, are local approzimants to f at z;, relative
to the subset D of the nz data points closest to z;, satisfying the interpolation conditions
Zj(z;) = f;, and Wy(z), j = 1,...,n, are the weight functions

- W;(z) ]p ,
W~m=[——3—-—-—-— , j=1,...,n, p > 0),

J( ) ZZ=1 Wk(ib) ( )
with

Wi(z) = 7(z, z;)/ alz, ;).
The localizing function T(x,z;), often called step function, is
N_ |1 ifzyeC(zss),

7(@:25) = { 0, otherwise,

TSCj).

To control the localization of the ZBF's, a certain number ny of nodes close to z
must be considered.

where C(x; s) is a hypercube of centre at x and side s, whereas a(z, ;) = arccos (x

4 Spherical Interpolation Algorithm

In this section we propose an efficient algorithm for the interpolation on the sphere
S? ¢ R3. In practice, this is typically the most interesting case, since it represents
some physical phenomena in many areas, including e.g. geophysics and meteorology
where the sphere is taken as model of the earth.

Thus, we consider the problem of approximating a function f : D — R, defined
only on a finite set of distinct and scattered data points Ay, = {(zi,¥s, 2:) }l;, where
D =%2C[0,1] x[0,1] x [0,1] C R®, and F, = {f;}7, is the set of corresponding
values of the unknown function. We now describe a spherical interpolation algorithm,
which is based on a strip searching procedure and a standard sorting procedure as
quicksort routine. This requires on average a time complexity O(M log M), where M
is the number of points to be sorted.

Moreover, the employment of such a strip structure allows some advantages: it
optimizes the searching procedure of nodes making the interpolation algorithm efficient
and guarantees a high parallelism.

Here is the algorithm in detail:

STEP 1. Let data points AX,, data values F,, evaluation points G,, and localizing
parameters nz and nw be given.

STEP 2. Order the set A, with respect to a common direction (e.g. the z-axis), by
applying a quicksort, procedure.

STEP 3. Construct a local (circle) neighbourhood, for each node (x;,y;, 2;),i = 1,...,n.
The half-size of the neighbourhoods depends on the dimension n, the considered value
ngz, and the positive integer k1, i.e.

5Z=arccos(1—2\/k_1n72), ki =1,2... (8)
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STEP 4. Find the number of strips

-l

deriving directly by the length 7 of the shorter part of the great circle joining “north
pole” and “south pole”, and the neighbourhood half-size .

STEP 5. Construct a suitable family of ¢ strips of equal width 6, = § (with possible
exception of one of them) and parallel to zy-plane (either, equivalently, parallel to zz-
plane or yz-plane) on the domain D. The set X, of nodes is partitioned by the strip
structure into ¢ subsets Xy, , whose ny, elements are (Zr1, Yk1, 2k1)s - - - (Thng s Vg Zhng )s
k=1,...,q.

This lead to the following strip partitioning procedure:
Procedure 1.

count := 0;

zs = -1;

for (k from 1 to q)
{

nlk] := 0;

i := count + 1;

ulk] := kxdelta z;
vkl := zs - (1 + cos(ulkl));
while (z[i] < vIk] & i < n)

{

nfk] := nlk] + 1;

count := count + 1;

i::=1+1;

BS[k] := count - nl[k] + 1;

ES[k] := count;

OUTPUT(n[k] data of the k-th strip).

}
}
STEP 6. For each node of A, , k = 1,...,q, define the strips to be examined for
determining all data points belonging to a (local) neighbourhood centred at (x;, u;, %),
1= 1,...,n, applying the strip searching procedure described below. The number of

nodes of the neighbourhood is counted and stored in m;.

Procedure 2.
for (k from 1 to q)

{
B:=k - 1;
E:=k +1;
if (B < 1)
B := 1;
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if (E > q)
E := q;
for (h from BS[k] to ES[k])
{
m[h] := O;
for (i from B to E)
{

for (j from BS[il to ES[il])
{ ‘
if ((x[j1,y[jl,z[j]1) belongs to the h-th neighbourhood of centre
(x[h],y[h],z[h]) and spherical radius delta.z)
m[h] := m[h] + 1;
STORE[h] [m[h]] « (x[j1,y(j],z[j1,£[31);
}
}

OUTPUT (data set belonging to the h-th neighbourhood of centre
(x[h],y[h],z[h]) and spherical radius delta z).
}

t

STEP 7. Order, and then reduce to nz, all the nodes belonging to a circle neighbour-
hood centred at z;, i = 1,...,n, by applying a based-distance sorting process, that is
a quicksorty procedure.

STEP 8. For each node (z;,¥;, 2;), find a local interpolant Z;, j = 1,...,n, constructed
on the nz data points closest to it.

STEP 9. Order all the points of the set G, with respect to the z-axis, by applying a
quicksort, procedure.

SteEP 10. For each evaluation point (z,y,z) € D, construct a circle neighbourhood,
whose half-size depends on the dimension n, the parameter value ny, and the (positive
integer) number ks, that is,

6W=a,rccos(1-2 kgnTW), ko=1,2,... (9)

STEP 11. Determine the number of strips

~[&)

deriving directly by the length 7 of the shorter part of the great circle joining “north
pole” and “south pole”, and the neighbourhood half-size &y .

STEP 12. Construct a second (suitable) family of r strips of equal width ds, = éw
(with possible exception of one of them), again parallel to zy-plane on the domain
D. The set Gs = {(4,%i, %) }i—; of evaluation points is partitioned into r subsets G,,,
whose py evaluation points are (Tx1,Yk1, 2k1)s - - (Thpy Ykppo 2hpi)s K= 1,...,7.
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The strip structure is similar to that presented in Procedure 1; in particular, we
have that q ct r, n[k] ct p[k], n ct s, and delta_z ct delta_w, where “ct” means
“change to”.

STEP 13. For each evaluation point of Gy, , k = 1,...,r, search all data points belonging
to a (local) neighbourhood of centre (z;,y;, 2;) and geodesic radius oy, by applying a
procedure based on strips. The number of nodes of the neighbourhood is counted and
stored in s;,i=1,...,s.

As regard to Procedure 2, the following changes are required: q ct r, m[h] ct s[h],
and delta_z ct delta w.

STEP_14. Order, and then reduce to ny, the nodes of each neighbourhood by applying
a quicksorty procedure.

STeEP 15. Find a local weight function W}(m,y,z), Jj=1,...,n, considering only the
nw points closest to the evaluation point (z,y,z), where (z,¥,2) denotes the generic
evaluation point.

STEP 16. Apply the modified spherical Shepard’s formula (7), and evaluate the surface
at each evaluation point (z,y,2) € D.

Note that to localize the nodes closest to each strip point, we establish the minimal
number of strips to be examined, which here is three, i.e. the strip on which the
considered data point lies, the previous and the next strips. The reason of such a value
follows from the choice of setting d,, = §z and d5, = dw. Indeed, a node belonging to a
strip can be closer to data points that lie in nearby strips than those in the same strip.
Therefore, the searching of nodes belonging to local neighbourhood must be extended
to all the strips in which there is, at least, a possible candidate (point). Obviously, for
all nodes of the “first” and “last” strip, we reduce the strips to be examined to two
(see Procedure 2 in STEP 6, and STEP 13).

The size of circle neighbourhoods is carried out so that, supposing a uniform distri-
bution of points on all the domain D, each local neighbourhood has a prefixed number
of nodes. The condition is satisfied, taking into account the dimension n, the parameter
nz (or nw), and the positive integer k) (or k2). In particular, the rule (8) in STEP 3 (or
(9) in STEP 10) estimates for k; = 1 (or ky = 1), at least, nz (or ny) points for each
neighbourhood. However, the approch we propose is completely automatic, for which
the procedure locates the minimal positive integer k; (or ks) satisfying the request to
having a sufficient number of data points on each neighbourhood. This means that the
method works successfully also when the distribution of data points is not uniform.

5 Numerical Results

In this section we show the accuracy and efficiency of the proposed algorithm, which
has been implemented in C language. All the numerical results we present are obtained
on a Pentium IV computer (2.40 GHz). In particular, we are also interested to stress
the effectiveness of the considered strip searching procedure which allow to reduce the
execution CPU times. For this reason, we propose a comparison between the spherical
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interpolation algorithm implemented by using the strip structure on the sphere (SA),
and the classical algorithm (CA), where the sphere S? is not partitioned in strips (see
Table 1).

In the tests we consider a few data sets of n = 2¢-500, i = 0,1,...,7, Halton points
on the sphere [14] as scattered points to be interpolated, and a set of 600 spiral points
as evaluation points which are generated by using the method of Saff and Kuijlaars
[12]. Data values are taken by the restriction on S? of the following four (trivariate)
test functions [11, 7]:

fl(x,y,z) _— 1+2.’E "%3@"‘*‘42,

923 — 222y + 3xy? — 4y +22° — 2
folay,z) = UL SN W+ 27— s

T y-+z
f3(x7y7 Z) = _6__-1:1_266_,

fa(z,y,2) = sinz sinysin 2.

CPU Time

n SA CA

500 0.400 0.511
1000 0.441 0.671
2000 0.901 2.103
4000 2.303 9.484
8000 5.969 34.139
16000 | 15.001 192.037
32000 || 38.565 | 807.241
64000 || 175.753 | 3717.986

Table 1: CPU times (in seconds) obtained by SA and CA using 15 for f;.

The choice of the appropriate numbers nyz and nw is a non trivial problem, since
it determines the accuracy of the local ZBF scheme. Numerical investigations pointed
out that “good” values for these parameters are nz = 15 and nw = 10. Moreover,
among several tested ZBFs, we take the spherical inverse multiquadric (IMQ) [4] and
the logarithmic spline [7]:

1
T
wm=#%ﬁ+w

spherical IMQ,

25
+82—28c+1-f

where 8,7 € (0,1), ¢ = cos(t), and t is the geodesic distance on the sphere, namely

) , logarithmic spline,
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I £ 2 i

500 9.4916E —3 | 9.1391E -3 | 6.1264E — 3 | 3.7898E — 3
1.6234E — 3 | 1.6347TE — 3 | 9.6098E — 4 | 5.5405E — 4
1000 2.5101E -3 | 8.7769E — 3 | 2.0022E — 3 | 2.0022E - 3
5.0926E — 4 | 5.1455E — 4 | 3.3969E — 4 | 3.3969E — 4
2000 1.2924E — 3 | 1.0688E — 3 | 8.5904E — 4 | 5.8007E — 4
2.0323E —4 | 1.7905E — 4 | 1.4012E — 4 | 7.3540E — 5
4000 2.4042E -4 | 3.117T7TE -4 | 1.9583E — 4 | 1.3363E — 4
4.7891E -5 | 4.9201E — 5 | 3.3424E — 5 | 1.6935E - 5
8000 7.4362E — 5 | 6.4579E — 5 | 4.0073E — 5 | 2.4360E — 5
1.2049E — 5 | 1.0369E — &5 | 7.8723E — 6 | 4.0642E — 6
16000 || 4.5552E —5 | 2.2178E ~5 | 1.8007E — 5 | 4.9581E — 6
3.3560E — 6 | 2.8248E — 6 | 1.9938E — 6 | 9.0486E — 7
32000 || 6.4436E — 6 | 5.1260E -6 | 6.0991E — 6 | 2.1046E — 6
7.2957TE—7 | 6.8387TE — 7 | 4.8144E —7 | 2.3501E — 7
64000 || 1.6482E —6 | 1.1047TE -6 | 7.1330E — 7 | 4.5072E — 7
1.5209E — 7 | 1.4685E — 7 | 9.3410E — 8 | 4.7949E — 8

Table 2: MAEs and RMSEs by using 1.

L [ n h £ I

500 4.1540E —3 | 5.2372E -8 | 2.1841E—3 | 2.6918E -3
7.4688E —4 | 8.7653E —4 | 3.7548E — 4 | 3.3230E — 4
1000 1.2445E —3 | 1.9831E —3 | 4.9512E — 4 | 4.8661E — 4
2.0671E—4 | 24179E—4 | 1.0690E —4 | 1.0567E — 4
2000 3.0853E —4 | 5.0038E —4 | 2.5460E — 4 | 2.6100E — 4
7.1861E — 5 | 7.8670E — 5 | 4.2001E —5 | 3.7240E - 5
4000 9.7610E —5 | 1.3159E — 4 | 5.8100E — 5 | 5.3480E — 5
1.7739E - 5 | 2.1183E —5 | 9.8421E—6 | 8.1228E —~ 6
8000 2.7372E -5 | 2.7909E — 5 | 1.4293E — 5 | 1.1469E - 5
44705E —~ 6 | 4.3736E —6 | 2.3327TE —6 | 2.0051E — 6
16000 || 1.8184E —~5 | 8.0451E ~6 | 6.9378E ~ 6 | 2.9160E — 6
1.2099E — 6 | 1.1528E — 6 | 6.3696E — 7 | 4.4485E — 7
32000 || 1.4535E —6 | 2.2620E -6 | 1.0116E —~6 | 9.7478E — 7
2.4965E —7 | 2.875TE — 7 | 1.2674E — 7 | 1.0951E — 7
64000 || 4.957T3E—7 | 1.07T10E—6 | 3.0403E—7 | 1L.77T42E -7
6.0061E — 8 | 7.9300E — 8 | 3.1628E — 8 | 2.3408E — 8

Table 3: MAEs and RMSEs by using 1)s.

t € [0,7]. These two functions are both (strictly) positive definite on S2, and their
values of the shape parameters are chosen to be v = 8 = 0.7. This is a good trade-off
between accuracy and stability by varying the dimension n, taking into account that in
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a local approach the number of points to be interpolated is small; hence, the condition
numbers of the interpolation matrices are relatively small. Regarding the value of p in
the weight functions, we took p = 1.

Finally, in Tables 2 and 3 we show the maximum absolute errors (MAEs) and the
root mean square errors (RMSEs) achieved by using ; and )9, respectively.
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