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Summary 

The p63 transcription factor, homolog to the p53 tumor suppressor gene, plays a crucial role in 

epidermal and limb development, as its mutations are associated to human congenital syndromes 

characterized by skin, craniofacial and limb defects. While limb and skin-specific p63 

transcriptional targets are being discovered, little is known of the post-translation modifications 

controlling ∆Np63α functions. Here we show that the p300 acetyl-transferase physically interacts in 

vivo with ∆Np63α and catalyzes its acetylation on lysine 193 (K193) inducing ∆Np63α 

stabilization and activating specific transcriptional functions. Furthermore we show that FGF8, a 

morphogenetic signaling molecule essential for embryonic limb development, increases the binding 

of ∆Np63α to the tyrosine kinase c-Abl as well as the levels of ∆Np63α acetylation. Notably, the 

natural mutant ∆Np63α-K193E, associated to the Split-Hand/Foot Malformation-IV syndrome, 

cannot be acetylated by this pathway. This mutant ∆Np63α protein displays promoter-specific loss 

of DNA binding activity and consequent altered expression of development-associated ∆Np63α 

target genes.  

Our results link FGF8, c-Abl and p300 in a regulatory pathway that controls ∆Np63α protein 

stability and transcriptional activity. Hence, limb malformation-causing p63 mutations, such as the 

K193E mutation, are likely to result in aberrant limb development via the combined action of 

altered protein stability and altered promoter occupancy.  
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Introduction  

The p63 transcription factor, highly related to the p53 and p73 transcription factors, plays a central 

role during development of the embryonic ectoderm and derived structures. p63 is expressed in the 

embryonic ectoderm and in the proliferating stem cells of the adult epidermis, breast and oral 

epithelium (1, 2).  Accordingly, p63 null mice show lack of epidermis stratification which causes 

death at birth, absence of nails and hairs, sweat and mammary glands and severe defects in limb and 

craniofacial development (3, 4).  

The limb defects observed in p63
-/- 

mice are highly reminiscent of ectrodactily found in patients 

affected by the Ectrodactily-Ectodermal Dysplasia-Cleft palate syndrome (EEC) or in non-

syndromic Ectrodactily, also known as Split Hand Foot Malformation (SHFM) type-IV. 

Ectrodactily is characterized by the absence of the central rays of the limbs, resulting in a deep 

medial cleft, missing or hypoplastic central fingers and fusion of the remaining ones (5-8), and has 

been associated with developmental failure of the Apical Ectodermal Ridge (AER) a transitory 

pluri-stratified ectodermal region required for limb outgrowth, and for the expression of key 

signaling molecules (1, 2, 5-9). 

p63 is at the center of a complex molecular network. However, its regulation and tissue distribution 

remain issues not fully understood. The p63 gene encodes for at least ten protein isoforms, which 

differ in their amino and carboxy-terminal regions as a consequence of alternative transcription start 

site and alternative splicing, respectively (10, 11), with ∆Np63α being the most expressed isoform 

in the embryonic ectoderm. All p63 isoforms share with p53 and p73 homology in the DNA binding 

and the oligomerization domains (12-15), and indeed p53 and p63 regulate a number of common 

transcriptional targets, in particular those related to cell-cycle control. However, p63-specific target 

genes are known that justify its specific role in ectoderm development and epidermis stratification, 

and also explain the specific set of human diseases associated with p63 mutations (16-18).  

Interestingly, while some mutations of the p63 gene occurring in the DNA Binding Domain (DBD) 

coding sequence (such as the R279H mutation) are causative of the EEC syndrome, which 

comprises ectrodactyly and several other skin and craniofacial developmental defects, others (such 

as the K193E mutation) result in non-syndromic ectrodactyly (or SHFM-type IV), with little or no 

skin/craniofacial anomalies (7, 8). The logical question that arises is: why the EEC- and the SHFM-

associated mutations cause limb developmental malformations, while p63 mutations found in AEC 

patients (i.e. the L518F mutation), localized in the SAM domain of the ∆Np63α protein, do not 

affect limb development? One possibility is related to the ability of the pepdidyl-prolyl isomerase 

Pin1 to negatively regulate ∆Np63α stability, and to the activity of the key limb morphogen FGF8 

(19-22) to counter-act this function (23).  Mutant p63 proteins are differentially sensitive to Pin1-
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induced degradation (23). However, the correlation between specific p63 mutations, their stability, 

transcriptional activity and the onset of limb developmental anomalies remains not fully resolved.  

It is becoming increasingly evident that the distinct functions of wild-type and mutant p63 

protein(s) might reside not only in their specific DNA binding activity but also in their post-

translational modifications such as sumoylation, phosphorylation and ubiquitylation (24-27). These 

modifications modulate ∆Np63α half-life, the specificity and efficiency of protein-protein 

interactions and overall modulate the transcriptional activity of the protein. The elucidation of these 

“upstream” regulatory events is required for a full comprehension of the molecular network 

centered on p63, to explain the genotype-phenotype correlations observed in patients affected by 

syndromes associated to p63 mutations.  

p53 and/or p73 protein activity and stability are finely regulated by several post-translational 

modifications (28-30), among which acetylation seems to play a pivotal role in regulating their 

biological functions (29, 31-33). Acetylation is a reversible modification, catalyzed by histone 

acetyl-transferases, of lysine residues of a target protein and its function in transcriptional activation 

is well accepted (34). p73 is acetylated by p300 on lysines located in the DNA binding and 

oligomerization domains in response to DNA damage (35); acetylation enhances p73 ability to bind 

and activate proapototic target genes (36). Furthermore, p73-p300 interaction requires the activity 

of Pin1 that induces p73 conformational changes upon phosphorylation by the tyrosine kinase c-Abl 

(37). Acetylation of p53 is enhanced in response to DNA damage and well correlates with p53 

stabilization and activation: indeed, acetylation of p53 antagonizes the MDM2 ubiquitin-ligase 

activity that keeps p53 protein at low levels in normal conditions. Moreover, acetylation of p53 by 

p300 was found to promote its sequence specific DNA binding (31-33, 38).  

All considered, we set forth to examine ∆Np63α acetylation in the context of naturally occurring 

∆Np63α missense mutations associated to SHFM-IV: one such mutation causes lysine 193 

substitution with glutamic acid (K193E) (7, 8). We noted that lysine K164 in p53, acetylated by 

p300 (38), correspond to K193 in ∆Np63α. Thus we raised the hypothesis that wild-type ∆Np63α 

could be acetylated by p300 on K193, and that mutations of this residue could prevent this post-

translational modification with important developmental consequences.  

Our results are consistent with this hypothesis and, for the first time, we show that FGF8 signaling 

participates in a regulatory pathway promoting the physical interaction of ∆Np63α with c-Abl and 

p300, leading to stabilization and transcriptional activation of ∆Np63α. 
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RESULTS 

∆∆∆∆Np63αααα is acetylated and stabilized in cultured cells  

In order to assess whether p63 could be acetylated in human cells, we treated the human 

keratinocytes HaCaT cell line, expressing endogenous ∆Np63α, with Valproic-Acid (VPA), which 

selectively inhibits class I deacetylases, or with Trichostatin-A (TSA) which inhibits class I and II 

deacetylases. VPA and TSA treatments resulted in an increase in ∆Np63α abundance (Fig. 1A). 

Similar effects of ∆Np63α accumulation were also obtained when ∆Np63α was ectopically 

overexpressed in U2OS cells, a human osteosarcoma cell line devoid of endogenous p63 expression 

(Fig. S1). Then, we performed immunoprecipitation of endogenous ∆Np63α from total protein 

extracts of HaCaT cells treated with TSA. The level of ∆Np63α acetylation was detected using an 

antibody against acetylated lysines: we observed that ∆Np63α is found acetylated at a basal level, 

as previously reported (39), and that its acetylation increased upon TSA treatment (Fig. 1B). These 

results show that the ∆Np63α protein is acetylated in human cells and that the acetylation levels of 

∆Np63α correlate with its accumulation in human cells following deacetyl-transferases inhibition.  

 

The acetyltransferase domain of p300 is required to induce ∆∆∆∆Np63αααα protein stabilization 

Acetylation of p53 and p73 proteins is required for their stabilization and transcriptional activation 

in response to DNA damage (31-33, 35-38) and the p300 acetyl-transferase is known to be involved 

in this process (29, 35, 36, 38). To determine whether p300 could acetylate ∆Np63α, we silenced 

endogenous p300 in HaCaT cells by transfecting a p300-specific shRNA plasmid. Depletion of 

p300 was clearly detected and, concomitant with p300 reduction, a significant decrease of ∆Np63α 

was also observed (Fig. 2A). Conversely, when p300 protein levels were increased by transient 

overexpression in HaCaT or U2OS cells, ∆Np63α protein was stabilized in a dose dependent 

manner (Fig. 2B-C). In contrast, a construct expressing a mutated variant of p300, with a mutation 

affecting the Histone Acetyl Transferase domain (LY-RR) (36), failed to stabilize endogenous 

∆Np63α in HaCaT cells (Fig. 2B). These data clearly indicate that p300 and its acetyltransferase 

activity are required for ∆Np63α protein levels regulation. 

Accordingly, when we overexpressed ∆Np63α with p300 in U2OS cells and treated the cells with 

the protein synthesis inhibitor Cycloheximide (CHX), we observed an increase of ∆Np63α protein 

half-life (Fig.3D). We also determined the effect of p300 silencing on ∆Np63α protein half-life in 

HaCaT cells, by transfecting p300 specific shRNA plasmid and treated the cells with CHX. As 

shown in Fig. S2, the levels of ∆Np63α protein decreased upon p300 silencing with only a modest 

decrease of ∆Np63α half-life upon CHX addition.  
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p300 interacts with ∆∆∆∆Np63αααα in human cells and catalyzes in vitro acetylation of lysine K193  

To assess whether the observed stabilization of ∆Np63α by p300 was due to a direct interaction 

between the two proteins, we performed co-immunoprecipitation experiment in U2OS cells. As 

shown in Fig. 3A, ∆Np63α was found in p300 immuno-complexes, showing that the two proteins 

can associate in human cells. 

Lysine K164 of the p53 protein, conserved in p63 and p73, is acetylated by p300 (38). In the 

∆Np63α protein this residue corresponds to K193 (Fig. S3), mutated in patients affected by SHFM-

IV (i.e. K193E) (7, 8). We set forth to establish whether K193 was acetylated by p300, by carrying 

out in vitro acetylation assays using recombinant p300 protein and a set of synthetic p63 peptides 

centered on K193. A p53 synthetic peptide containing lysine K164 known to be acetylated by p300 

(38) was used as a positive control. The results show that the p63 peptide centered on K193 was 

acetylated in vitro and the levels of acetylation are similar to those obtained with the p53 peptide 

(Fig. 3B). 

In the same assay we also analyzed mutant p63 peptides carrying K193 and K194 substitutions into 

arginine, either one at a time or simultaneously, to determine which one (or both) could be target of 

the p300 acetyl transferase activity. As shown in Figure 3B, p300 acetylates lysine K193: indeed 

the levels of acetylation of the p63-K193R mutant were reduced. However we cannot exclude that 

also K194 could be acetylated by p300 since we observed a modest decrease in the level of 

acetylation of the p63-K194R mutant peptide compared to the wild-type peptide. Finally, p300 

overexpression in U2OS cells did not induce stabilization of the ∆Np63α-K193R and of the natural 

∆Np63α-K193E mutant, while the ∆Np63α protein was stabilized (Fig. 3C), indicating that the 

integrity of K193 is required to induce p300-dependent stabilization of ∆Np63α. Moreover, in 

contrast to what observed for the wild type ∆Np63α, the half-life of the ∆Np63αK193R mutant was 

not enhanced upon p300 overexpression in U2OS cells (Fig. 3D).  

 

FGF8 positively regulates ∆∆∆∆Np63αααα protein stability inducing its interaction with c-Abl and 

promoting ∆∆∆∆Np63αααα acetylation 

During embryonic development, Fibroblast Growth Factor-8 (FGF8) acts as a signaling peptide 

essential for growth, morphogenesis and patterning of the limb buds (9,19-22). We have recently 

shown that FGF8 exerts a stabilizing function on the ∆Np63α protein, by preventing its interaction 

with Pin1 that targets ∆Np63α protein for proteasomal degradation (23). We raised the hypothesis 
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that FGF8 may stabilize the ∆Np63α protein, via p300-mediated acetylation of ∆Np63α, and that 

the limb malformation-associated p63 K193E mutation may pose an obstacle to this regulation.  

First, we treated HaCaT cells with increasing amounts of soluble FGF8 that resulted in efficient 

∆Np63α protein stabilization as expected (Fig. 4A).  

One of the down-stream effector of FGFs is the tyrosine kinase c-Abl: indeed, c-Abl is activated by 

FGF2 treatment (40). c-Abl is also a key regulator of the p53 family members (29, 37, 41-45). To 

verify whether c-Abl was required to induce the observed FGF8 mediated stabilization of ∆Np63α, 

we stably silenced endogenous c-Abl expression in HaCaT cells and then treated these cells with 

either FGF8 or FGF2. c-Abl silencing abolished ∆Np63α stabilization induced by either FGF8 (Fig. 

4B) or FGF2 (data not shown), suggesting that FGFs stabilization of ∆Np63α requires the presence 

of the c-Abl protein. In order to verify whether the tyrosine kinase activity of c-Abl was required for 

the FGF8 mediated stabilization of ∆Np63α, we treated HaCaT cells with Imatinib, an inhibitor of 

c-Abl tyrosine kinase activity. As shown in Fig. 4C, FGF8 mediated stabilization of ∆Np63α was 

prevented by Imatinib pre-treatment. Furthermore, the ∆Np63α-3Y mutant protein, with the three 

tyrosines known to be phopshorylated by c-Abl mutated into phenylalanin (44, 45), was not 

stabilized by FGF8 treatment (Fig. S4).     

To verify whether c-Abl was promoting the interaction between ∆Np63α and p300, we performed 

co-immunoprecipitation experiments of p300 with wild-type ∆Np63α or with the ∆Np63α-3Y 

mutant. As shown in Fig. 4D, the ∆Np63α-3Y mutant displayed a drastically reduced interaction 

with p300 compared to wild-type ∆Np63α. Furthermore p300 overexpression did not modulate 

∆Np63α-3Y protein levels (Fig. S5). 

In order to verify whether FGF8, c-Abl and p300 were linked together in the same regulatory 

pathway, promoting ∆Np63α stabilization, we treated HaCaT cells with FGF8 and performed co-

immunoprecipitation of ∆Np63α; we observed a great increase in ∆Np63α-c-Abl interaction and in 

the levels of ∆Np63α acetylation upon FGF8 treatment (Fig. 4E). Interestingly, we found that the 

signaling cascade activated by FGF8 was not active on the SHFM-IV-causing ∆Np63α-K193E 

mutant protein. Indeed as shown in Fig. 4F, FGF8 treatment in U2OS cells did not induce ∆Np63α-

K193E stabilization, clearly resembling the results obtained by p300 overexpression on this mutant 

(Fig. 3C). All these results indicate that c-Abl and p300 are linked together in a cascade, activated 

by FGF8, regulating ∆Np63α protein stability.  

To verify if FGF8 and c-Abl are required to modulate not only ∆Np63α protein stability, but also its 

transcriptional activity, we performed luciferase assay in U2OS cells transiently transfected with the 

DLX5 promoter, a known ∆Np63α transcriptional target in the AER cells of developing limbs (46). 
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FGF8, Imatinib, and Imatinib followed by FGF8 treatment were used. Interestingly, when we 

inhibited c-Abl kinase activity, ∆Np63α was unable to transactivate the DLX5 promoter even in the 

presence of FGF8 treatment (Fig. S6). These data suggest that the c-Abl kinase activity was 

required to transduce the signal induced by FGF8 leading to ∆Np63α stabilization and 

transcriptional activation. Similar results were also obtained with the EGFR promoter (18, data not 

shown).  

Finally, in order to assess if such mechanism could be relevant in vivo, e.g. the developing limb 

bud, we adopted an ex vivo method by culturing the embryonic limb buds obtained from wild-type 

mouse embryos at the age E10.5, and maintained whole-mount for 48 hrs (47). During the culture 

time, purified recombinant FGF8 was added to the medium at physiological doses, then the tissues 

were collected and analyzed by Western blot analyses for the abundance of ∆Np63α protein. 

Compared to untreated limbs, addition of FGF8 resulted in a clear accumulation of the ∆Np63α 

protein (Fig. 4G), indicating that FGF8 efficiently stabilizes, and most likely activates, ∆Np63α in 

the context of the limb embryonic tissue.  

 

The K193E mutation alters ∆∆∆∆Np63αααα transcriptional activity in a promoter-specific manner 

In order to verify whether p300 could act as a ∆Np63α co-activator we performed luciferase 

reporter assays with the DLX5 promoter. Interestingly, we observed that p300 co-transfection 

greatly enhanced the transcriptional activity of ∆Np63α, while the transcriptional activity of the 

∆Np63α-K193E mutant could not be enhanced by p300 overexpression (Fig. 5A).  

∆Np63α transcriptional activity was impaired by the K193E mutation also on other ∆Np63α target 

genes involved in development, EGFR and DLX6 (Fig. 5B) (18, 46). We then examined whether the 

K193E mutation could alter ∆Np63α transcriptional activity on genes not directly required for limb 

development; for this aim we used the p57KIP2 and ADA promoters, known to be involved in p63-

dependent cell-cycle regulation (48, 49). Interestingly, we found that the ∆Np63α-K193E mutant 

behaved as the wild-type ∆Np63α protein on both promoters (Fig. 5C), suggesting that the K193E 

mutation selectively alters ∆Np63α transcriptional activity.  

To further characterize the transcriptional activity of the ∆Np63α-K193E mutant, we performed 

real-time, quantitative qPCR analyses in U2OS cells stably transfected with either the wild type 

∆Np63α or the ∆Np63α-K193E expression vectors. Interestingly, we confirmed that the ∆Np63α-

K193E mutant over-expression results in altered expression of ∆Np63α target genes involved in 

development and apoptosis such as PERP, CASP10, EGFR (18, 50) while it behaves like the wild-
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type ∆Np63α on p53 (Fig. 6A). Taken together, these data clearly show that the K193E mutation 

alters the transcriptional activity of ∆Np63α in a gene specific manner.  

Next we tested whether the ∆Np63α-K193E mutant displayed altered DNA binding ability by 

Chromatin Immunoprecipitation (ChIP) assay of U2OS cells stably transfected with the wild-type 

∆Np63α or with the ∆Np63α-K193E expressing vectors; the proteins were correctly expressed 

(Fig. 6B). We observed that the ∆Np63α-K193E mutant was not efficiently recruited on the 

Responsive Elelments (RE) of genes relevant for developmental and apoptotic processes (PERP, 

CASP10 and EGFR) while it was normally recruited on RE of the p53 gene, involved in cell cycle 

regulation (Fig. 6C).  

In conclusion, the K193E mutation alters the ability of ∆Np63α to bind specific RE sequences 

resulting in altered transcriptional regulation of genes involved in the regulation of development 

and apoptotic processes. 
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Discussion   

The p63 transcription factor is emerging as a master regulator of development and differentiation of 

ectoderm derived cells and tissues. In the last few years much attention has been paid to the analysis 

and identification of p63 transcriptional targets, their tissue and process specificity, and how 

mutations in p63 affect its downstream transcriptional properties (16-18, 51-52).  Clearly, this is 

only part of the full story. Indeed, more recently several p63 post-translational modifications have 

been recognized, acting either during response to DNA damage, differentiation or embryonic 

development (24-27). The full spectrum of these modifications, likely able to regulate stability and 

activity of the ∆Np63α protein, are not fully understood. 

Here we report that FGF8, c-Abl, p300 and ∆Np63α are functionally linked in a molecular pathway 

modulating ∆Np63α activity and stability. Our data show that treatments with FGF8, a signalling 

molecule essential for limb outgrowth and patterning, result in increased ∆Np63α protein stability, 

both in cultured cells and in embryonic mouse limb buds ex vivo. Based on these data and previous 

findings from our team (23), we propose a model in which FGF8 promotes the interaction of c-Abl 

and ∆Np63α, and that this interaction is required for the consequent association of ∆Np63α with 

p300, leading to ∆Np63α acetylation (scheme in Fig. 7). When such acetylation is inefficient, due 

to reduced FGF8 expression or to mutation of the p300 target lysine K193 in ∆Np63α, limb 

developmental defects ensue.  

Based on our data, p300 appears to be an important regulator of ∆Np63α function during limb 

development, and in particular the results point to the possibility that p300 is required to selectively 

induce and activate with ∆Np63α a set of genes required to warrant correct limb development. No 

direct evidence of this is available, in fact the disruption of the p300 gene in the mouse model is 

embryonic lethal and p300
-/-

 mice arrest their development prior to the limb bud stage (53). 

Conversely, the role of acetylation and deacetylation on ∆Np63α are better known, indeed mice 

double knock-out for Histone Deacetylase-1 and -2 (HDAC1/HDAC2) display developmental limb 

malformations similar to those observed in p63 null mice (54). HDAC1 and HDAC2 mediate the 

repressive function of ∆Np63α on some of its transcriptional targets (like 14-3-3σ, p16/Ink4a, 

p19/ARF) whose down-modulation is essential to ensure correct development (54). On the other 

hand, it’s possible to speculate that Histone acetyl-transferases, such as p300, are needed to activate 

p63 target gene expression in concert with ∆Np63α. Indeed, luciferase-reporter assays indicated 

that p300 acetylation on K193 of ∆Np63α is required to guarantee an efficient transcription of 

genes involved in limb development, such as human DLX5 and DLX6 (46, 55) (Fig. 7B).  

We show here that lysine K193 of ∆Np63α is acetylated by p300, in human cells and in vitro.  
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This has important implications in the pathogenesis of the SHFM-IV syndrome, since this residue is 

found mutated into glutamic acid (K193E) in patients affected by this syndrome (7, 8).  Indeed, we 

found that the K193E mutant ∆Np63α protein is unable to activate p63 target genes required for 

developmental (such as PERP, EGFR) or apoptotic processes (CASP10). Indeed, programmed cell 

death and cell differentiation are relevant to ensure correct shape of the limb (56). In particular, at 

early stages of limb development, the anterior an posterior necrotic zone are essential regions 

regulating the number of digits (57). On the other hand, the ∆Np63α-K193E mutant correctly 

induced the expression of genes connected to cell-cycle regulation (such as p53 and p57KIP2) 

efficiently as the wild type ∆Np63α protein. We found that, the altered transactivation activity of 

mutant ∆Np63αK193E on target genes involved in developmental or apoptotic processes, is 

possibly due to a significant decrease in the DNA binding activity on the RE of such promoters, 

while this natural mutant was found to bind normally to the promoter of the p53 gene. However, it 

is not clear how this mutation could alter the binding of ∆Np63α in a promoter specific manner. 

The role of FGF signaling in the SHFM malformation has been partly clarified. It is well 

established that FGF10 and FGF8 signaling are essential for AER induction and maintenance and 

that FGF8, expressed by the AER cells, is the key morphogen for limb bud outgrowth and 

patterning. Indeed FGF8 knock-out mice display severe defects in skeletal and limb development 

(19-22). The complete loss of p63, or the knock-in mouse model for the R279H mutation, 

associated to the EEC syndrome, leads to an evident downregulation of FGF8 expression in the 

AER cells (3, 4, 9, 46 and data not shown). Likewise, FGF8 is downregulated in the AER of 

embryos carrying the combined loss of Dlx5;Dlx6; two transcription factors causally implicated in 

SHFM type-I (55). Dlx5 and Dlx6 proteins co-localize with ∆Np63α in the AER cells and are direct 

∆Np63α targets (46). Hence, the emerging picture is that FGF8 serves a double function, a) a 

morphogen driving limb growth and patterning, via its actions on mesenchymal cells (paracrine) 

and AER cells (autocrine),  b) as stabilizer of ∆Np63α, to ensure the transitory stratification of the 

AER cells and the expression of limb-related p63 target genes. 

In summary, the work presented here sheds new light on an important regulatory loop activated by 

FGF8 essential for ∆Np63α activation and stabilization in cell cultures and in mice limb buds and 

on the molecular mechanism that could be at the bases of the SHFM-IV pathogenesis.  
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Experimental Procedures 

Plasmids 

All expression vectors encoding ∆Np63α wild-type and mutant proteins, p300 cDNAs, c-Abl and 

shAbl have been previously described (58, 36). The shRNA against p300 (shp300) and control 

shRNA (shLuc) were purchased from Origene. 

Cell culture and transfection 

U2OS and HaCaT cells were kept in DMEM supplemented with 10% FBS (Euroclone) at 37°C in a 

humified atmosphere of 5% (v/v) CO2 in air. 

For transient transfection, 50,000 cells were seeded into 24-multiwell plates and on the next day 

transfected with Lipofectamine 2000 (Invitrogen) or Lipofectamine LTX (Invitrogen) for HaCaT 

cell, under the conditions suggested by the manufacturer. Transfection efficiency was checked by 

transfection of β-gal or GFP expression vectors. The total amount of transfected DNA (500 ng for 

50,000 cells) was kept constant using empty vector as necessary. 

For stable transfection 300,000 HaCaT or U2OS cells were plated in 6 wells and on the next day, 

HaCaT cells were transfected with 3 µg of shAbl or 3 µg of shLuc using Lipofectamine LTX 

(Invitrogen). After 24 hours, cells were trypsinized and plated in a medium containing puromycin 

(0.8 µg/ml; Sigma). After 8 days of selection, clones were pooled and kept in puromycin. U2OS 

cells were transfected with 3 µg of ∆Np63α or ∆Np63α-K193E using Lipofectamine LTX 

(Invitrogen). After 24 hours, cells were trypsinized and plated in medium containing Neomicin (G-

418, 600 µg/ml). After 3 weeks of selection, clones were pooled and kept in Neomicinat 300 µg/ml. 

U2OS and HaCaT cells were treated with 0.5 or 1 mM Valproic Acid (VPA), 5ng/ml or 10 ng/ml 

Trichostatin (TSA), 0.5 or 1 ng/ml FGF8 or FGF2, 10 µM cycloheximide for the indicated times. 

For FGF2 or FGF8 treatments, cells were starved for 12 hours before treatments using DMEM 

supplemented with 0.5% of FBS.  HaCaT and U2OS cells were treated with 5 µM or 10µM 

Imatinib, (Sigma) for the indicated times. 

Western Blot and antibodies 

24 hours after transfection, cells were lysed in 100 µl of Loading Buffer 2X (2% sodium dodecyl 

sulfate, 30% glycerol, 144 mM β-mercaptoethanol, 100 mM Tris–HCl pH 6.8 and 0.1% Bromo-

Phenol Blue). Samples were incubated at 98°C for 10 minutes and resolved by SDS-PAGE. 

Proteins were transferred to a nitrocellulose membrane (Protran, Millipore). The blots were 

incubated with the following antibodies (p63 4A4 sc-8431, Santa Cruz Biotechnology), p300 (p300 

C-20 sc-585, Santa Cruz Biotechnology), c-Abl (A5844, Sigma), acetylated lysine (#9441, Cell-

Signalling) and actin (A2066, Sigma). We used the following secondary antibodies: α-mouse (sc-

2005, Santa Cruz Biotechnology), α-rabbit (sc-2030, Santa Cruz Biotechnology). Proteins were 
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visualized by an enhanced chemi-luminescence method (Genespin) according to manufacture’s 

instructions. 

Luciferase activity assay 

For reporter promoter assays, cells were transiently co-transfected with the DLX5, DLX6, ADA, 

EGFR and p57KIP2 luciferase reporter plasmids (23, 46-48) and expression plasmids encoding for 

∆Np63α, ∆Np63α-K193E and p300. Cells were seeded in 24-well plates and transfected using 

Lipofectamine 2000 (Invitrogen, Life Sciences). At 24 hours post-transfection, cell extracts were 

prepared with Luciferase lysis buffer (1% Triton X-100, 25 mM Gly-Gly pH 7.8, 15 mM MgSO4, 4 

mM EDTA), and the luciferase activity was measured using the Beetle Luciferin Kit (Promega Inc.) 

on a TD 20/20 luminometer (Turner design) 

The results are expressed as relative luciferase activity after normalization with the beta-

Galactosidase plasmid as internal control. Basal activity of the reporter was set to 1. Each histogram 

bar represents the mean of three independent transfection experiments performed in triplicate. 

Standard deviations are indicated. 

Co-Immunoprecipitation 

U2OS and HaCaT cells (1.25 x 10
6
/100 mm plate) were transfected with the indicated vectors. 24 

hours after transfection cells were harvested for whole-cell lysates preparation using RIPA buffer 

(10 mM Tris–HCl pH 8, 2 mM EDTA, 0.1% SDS, 0.1% sodium deoxycholate, 140 mM NaCl, 1X 

Triton X-100, supplemented with 1 mM phenylmethylsulfonylfluoride and cocktail protease 

inhibitors, Sigma). Cell lysates were incubated on ice for 20 minutes, vortexed, then centrifuged at 

6600 g for 20 minutes to remove cell debris. Protein concentration was determined with the 

Bradford Reagent (Sigma). 2 mg of cell lysates were incubated overnight at 4°C with 2 µg of anti-

p63 (H-129 sc-8344, Santa Cruz Biotechnology) and anti–p300 (p300 C-20 sc-585, Santa Cruz 

Biotechnology). The immuno-complexes were collected by incubating with a mix of Protein A 

Agarose and Protein G Sepharose (Sigma) overnight at 4°C. The beads were washed three times: 

the first wash with RIPA buffer and the others with PBS. The beads were then resuspended in 2X 

Loading buffer, heated at 98°C and loaded on a SDS polyacrylamide gel and subjected to western 

blotting with the indicated antibodies. 

RNA extraction and RealTime qPCR 

For quantitative Real-time qPCR total RNA was extracted from U2OS cells with the TRI Reagent 

(Sigma). 1 µg of total RNA was reverse-transcribed using SuperScriptIII cDNA Preparation Kit 

(Life-Technology). RealTime quantitative PCR (qPCR) was performed with SybrGreen supermix 

(BIORAD). Tubulin mRNA was used for normalization. For Real-Time qPCR reaction the 

sequence of the primer pairs are described in Table T1. 
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ChIP assay 

U2OS cells were used for ChIP assays performed as previously described (51). Briefly, after fixing 

in 1% formaldehyde, cells were lysed for 5 minutes in 50 mM Tris pH 8.0, 2 mM EDTA, 0.1% NP-

40, 10% glycerol and supplemented with protease inhibitors (all from Sigma). Nuclei were re-

suspended in 50 mM Tris pH8.0, 1% SDS, and 5 mM EDTA. Chromatin was sheared by sonication, 

centrifuged, and diluted 10-fold in 50mM Tris, pH 8.0, 0.5% NP-40, 0.2 M NaCl, and 0.5 mM 

EDTA. After pre-clearing with a 50% suspension of salmon sperm-saturated protein A, lysates were 

incubated at 4°C overnight with anti-p63 (H137 sc-8343, Santa-Cruz). Immune complexes were 

collected with sperm-saturated protein A, washed three times with high salt buffer (20mM Tris pH 

8.0, 0.1% SDS, 1% NP-40, 2mM EDTA, and 500mM NaCl), and three times with Tris/EDTA (TE). 

Immune complexes were extracted in TE containing 1% SDS, and protein–DNA cross-links were 

reverted by heating at 65°C overnight. DNA was extracted by phenol–chloroform, and the 

immunoprecipitated DNA was used in PCR reaction. PCR reactions were performed for 25–35 

cycles of denaturation at 95 °C for 45 seconds, annealing at 55–57 °C for 45 seconds and extension 

at 72 °C for 45 seconds. Primer sequences are reported in Table T2. 

In vitro acetylation assay 

In vitro acetylation assay was performed following instructions provided by Fluorescent HAT 

Assay Kit (Active Motif, 56100). The purified recombinant p300 catalitic domain was incubated 

with acetyl-CoA and specific synthetic substrate peptides. All peptides were provided by 

GeneScript. Sequences are reported in Fig. 3B. For fluorescence reading, a BF10000 Fluorocount 

was used. 

Statistical analysis 

Statistical analyses were performed with one-way ANOVA followed by Dunnett’s Multiple 

Comparison post-test, when needed, using GraphPad PRISM version 5.0 (GraphPad, San Diego, 

CA). In the graphs, * and ** mark statistically significant data with a p value <0.05 and <0.01, 

respectively. Statistically highly significant data, with a p value <0.001, are marked by ***. 
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Figure legends 

Figure 1. The ∆∆∆∆Np63αααα protein is acetylated in human keratynocytes 

A. Western Blot (WB) analysis of whole HaCaT cell extracts treated with increasing amounts of 

TSA (5 ng/ml and 10 ng/ml) for 5 hours or Valproic acid (VPA) (0,5 mM and 1 mM) for 3 hours. 

B. Whole cell extracts from HaCaT cells treated with 5ng/ml of Trichostatin (TSA) for 5 hours 

were analyzed by immunoprecipitation of endogenous ∆Np63α with an anti p63 antibody followed 

by WB analysis with an anti-acetylated lysines. U2OS cells, not expressing p63, were used as 

negative control.  

 

Figure 2. The acetyltransferase domain of p300 is required to induce ∆∆∆∆Np63αααα protein 

stabilization 

A. WB analysis of whole HaCaT cell extracts transiently transfected with increasing amounts (20ng 

and 40 ng) of shp300 or shLuc expression vectors B. WB analysis of HaCaT whole cell extracts 

transiently co-transfected with equal amount of ∆Np63α expression vectors (30 ng) and increasing 

amounts of p300 encoding plasmids (p300 (WT) or p300-LY-RR, mutated in the HAT domain (10 

and 20 ng). C. WB analysis of U2OS whole cell extracts transiently co-transfected with equal 

amount of ∆Np63α expression vectors (30 ng) and increasing amounts of p300 expression vectors 

(10 and 20 ng).  

 

Figure 3. p300 interacts with ∆∆∆∆Np63αααα in human cells and catalizes in vitro acetylation of lysine 

K193  

A.  U2OS whole cell extracts transiently co-transfected with ∆Np63α and p300 were analyzed by 

immuno-precipitation with an anti p300 antibody followed by WB analysis with an anti-p63 

antibody. U2OS cells, not transfected with p63 encoding plasmid were used as negative control.  B. 

In vitro acetylation assay performed according to the HAT assay kit protocol (Active Motif) with an 

H4 peptide and p53 peptides as positive controls, H4 plus anacardic acid 15 µM (an inhibitor of 

acetyltransferase activity used as a negative control) and p63 peptides (peptide sequences are 

indicated). C. WB analysis of U2OS whole cell extracts transiently co-transfected with ∆Np63α, 

∆Np63α-K193E, ∆Np63α-K193R expression vectors (30 ng) and increasing amounts of p300 

encoding plasmid (10 and 20 ng). D. WB analysis of U2OS whole cell extracts transiently co-

transfected with ∆Np63α, ∆Np63αK193R and p300 expression vectors (30 ng and 5 ng 

respectively). 24 hours after transfection protein half-life was measured by treating cells with 10 

µg/ml of Cycloheximide (CHX). 
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Figure 4. FGF8 positively regulates ∆∆∆∆Np63αααα protein stability inducing its interaction with c-

Abl and promoting ∆∆∆∆Np63αααα acetylation 

A. WB analysis of HaCaT whole cell extracts treated with increasing amounts of FGF8 (0,5 ng/ml 

and 1 ng/ml) for 3 hours. B. WB analysis of HaCaT whole cell extracts stably transfected with an 

shRNA against c-Abl or shLuc plasmids, treated with increasing amounts of FGF8 (0.5 ng/ml and 1 

ng/ml) for 3 hours. C. WB analysis of HaCaT cells treated with increasing amounts of FGF8 (0.5 

ng/ml and 1 ng/ml) or pre-treated for 30minutes with Imatinib (10 µM) followed by FGF8 treatment 

for 3 hours. D. U2OS whole cell extracts transiently co-transfected with either ∆Np63α or ∆Np63α-

3Y (10 µg) and p300 (5 µg), and then analyzed by immunoprecipitation with an anti p300 antibody 

followed by WB analysis with an anti p63- antibody. E. HaCaT whole cell extracts treated with 

FGF8 (0.5 ng/ml) or DMSO for 3 hours were analyzed by immunoprecipitation with anti p63-

antybodies followed by WB analyses with the indicated antibodies. U2OS cells, not expressing p63 

were used as negative control. F. WB analysis of U2OS whole cell extracts transiently transfected 

with ∆Np63α or ∆Np63α-K193E encoding plasmids (30 ng). 24 hours after transfection U2OS 

cells were treated with increasing amounts of FGF8 for 2 hours (0.5 ng/ml and 1 ng/ml). G. WB 

analysis of total proteins extracts from forelimbs isolated from wild-type mouse embryos at E11.5, 

cultured whole-mount for 48 hrs in the absence or presence of recombinant FGF8 (0.5 µg/ml and 

1µg/ml).  

 

Figure 5. The K193E mutation alters ∆∆∆∆Np63αααα transcriptional activity in a promoter-specific 

manner 

A.  Luciferase assay performed on U2OS cells transiently co-transfected with the -1200 bp DLX5 

promoter (200 ng) in the presence of ∆Np63α or ∆Np63α-K193E (50 ng) with increasing amounts 

of p300 (5, 10 and 20 ng) expression vectors. Each histogram bar represents the mean of three 

indipendent transfection duplicates. Standard deviation are indicated. B. Luciferase assay performed 

in U2OS cells transiently co-transfected with the DLX6, and EGFR reporter promoters (200 ng) in 

the presence of increasing amounts of ∆Np63α or ∆Np63α-K193E (50 ng) plasmids. C. Luciferase 

assay performed on U2OS cells transiently co-transfected with the p57kip2, and ADA reporter 

promoters (200 ng) in the presence of increasing amounts of ∆Np63α or ∆Np63α-K193E (50 ng) 

plasmids. For A, B, and C cells were lysed 24 hours after transfection and luciferase activity was 

determined. The basal activity of the reporter plasmid was set to 1. Data are presented as fold 

activation/repression relative to the sample without effector. Each histogram bar represents the 

mean of three independent transfection duplicates. Standard deviations are indicated. 

 

Page 22 of 31Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 6. The ∆∆∆∆Np63αααα K193E mutant displays an altered DNA binding activity and 

transcriptional activity on developmental related genes 

A.  Expression of CASP10, EGFR, PERP and p53 was analyzed by Real-Time qPCR in U2OS cells 

stably transfected with pCDNA3 (empty vector), ∆Np63α or ∆Np63α-K193E cDNAs. B. ∆Np63α 

and ∆Np63α-K193E proteins expression was confirmed by WB analysis. C. Cells used in A and B 

were subjected to ChIP analysis, and the recovered chromatin was amplified with PERP, EGFR, 

p53 and CASP10 -specific primers.  

 

Figure 7. FGF8 positively regulates ∆∆∆∆Np63αααα protein stability in mice embryonic limb buds 

FGF8, c-Abl and p300 are component of a regulatory pathway that leads to ∆Np63α stabilization 

and transcriptional activation in embryonic limb buds. Exposure of AER cells to FGF8 induces a 

signaling intracellular cascade that activates c-Abl causing ∆Np63α phosphorylation on tyrosine 

residues. This phosphorylation event is indispensable for the interaction of ∆Np63α with the p300 

acetyl-transferases; acetylation of ∆Np63α result in its stabilization and transcriptional activation. 

In the absence of FGF8, or in the presence of p63 mutations, like the SHFM associated K193E 

mutation, this signaling pathway in not active leading to improper expression of genes involved in 

limb development. This pathway could be relevant for correct AER stratification  (in the scheme 

marked in yellow) ensuring correct limb outgrowth. 

 

Figure S1. WB analysis of U2OS cell extracts transfected with ∆Np63α expression vector (30 ng) 

and then treated with increasing amounts of Trichostatin (TSA) (5 ng/ml and 10 ng/ml) for 5 hours 

or Valproic acid (VPA) (0,5 mM and 1 mM) for 3 hours. 

 

Figure S2. WB analysis of HaCaT whole cell extracts transiently co-transfected with shp300 and 

shLuc expression vectors (80 ng). 48 hours after transfection protein half-life was measured by 

treating cells with 10 µg/ml of Cycloheximide (CHX). 

 

Figure S3. Alignment of the human and mouse p53 protein region flanking K164 with human p63 

and p73 sequences. The conserved lysine is marked in bold (h: human; m: mouse) 

 

Figure S4. WB analysis of U2OS whole cell extracts transiently transfected with ∆Np63α or 

∆Np63α-3Y expression vectors (30 ng) and treated with FGF8 (0.5 ng/ml) for 2 hours. 
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Figure S5. WB analysis of U2OS whole cell extracts transiently co-transfected with ∆Np63α or 

∆Np63α-3Y expression vectors (30 ng) and increasing amount of p300 (10 and 20 ng) encoding 

plasmids. 

 

Figure S6.  Luciferase assay performed on U2OS cells transiently co-transfected with the -1200 bp 

DLX5 promoter (200 ng) and ∆Np63α. 24 hours after transfection U2OS cells were treated with 

FGF8 (0,5 ng/ml) for 2 hours, or Imatinib (5 µM) alone for 2 hours and 30 minutes, or pretreated 

with Imatinib for 30 minutes then followed by FGF8 treatment for 2 hours. Standard deviations are 

indicated. 
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