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ABSTRACT 
 

THE GENDER WAGE GAP AMONG ITALIAN EMPLOYEES - EVIDENCES FROM THE ISFOL PLUS DATABASE 

In this paper, we measure the amount of gender discrimination in the Italian labour market, using 

the ISFOL PLUS database and covering the period between 2005 and 2010. We adopt a quantile 

regression decomposition methodology, in order to measure the gender wage gap across the entire 

distribution of earnings. Moreover, we test the robustness of our estimates by comparing the 

quantile regression decomposition results when more dependent variables are added to the model. 

Finally, by comparing the results obtained from a random effect regression to those obtained using 

the Hausman-Taylor regression model, we test whether the estimated level of discrimination changes 

when correlation of time varying characteristics to the unobservable individual heterogeneity is 

allowed. The results show that, other things being equal, female employees earn around 10% less 

than men employees. This percentage is increasing with wages, sometimes reaching levels higher 

than 20% toward the top of the earnings distribution. The gap in earnings is increasing with age. 

This trend can be attributed to several factors, such as to a positive relation between seniority and 

discrimination. However, this relation could also be driven in part by an improvement of market 

potential among the younger generation of women. Moreover, the pay gap was reducing between 

2006 and 2008, but it has increased since then. Finally, the results show that most of the gender 

wage differences are not attributable to individual characteristics, nor to segregation of women into 

less remunerated occupations. Therefore, most of the gender differences in income have to be 

attributed to differences in the wage structures. That is, men and women are rewarded differently 

for a given level of human capital. In order to better understand what could be driving this result, we 

will review some of the theories and evidences in the recent literature that have attempted to shed 

light on this phenomenon. 

KEYWORDS: Gender Wage Gap, Discrimination, Quantile Regression, Oaxaca Decomposition. 
   

LE DIFFERENZE SALARIALI DI GENERE TRA I DIPENDENTI ITALIANI - EVIDENZE DAI DATI ISFOL PLUS 

In quest’articolo si stima il livello di discriminazione di genere presente nel mercato del lavoro 

italiano, usando le annualità dal 2005 al 2010 del database ISFOL PLUS. Per questo proposito si 

utilizza una decomposizione basata sulla quantile regression, metodo che consente di stimare la 

diseguaglianza di genere lungo l’intera distribuzione dei salari. Inoltre, si conduce un’analisi sulla 

robustezza dei risultati, confrontando le stime ottenute aggiungendo un maggior numero di variabili 

dipendenti. Infine, si confrontano i livelli di discriminazione ottenuti da una regressione col metodo 

dei random effects, rispetto ai risultati ottenuti da una regressione col metodo Hausman-Taylor, 

metodo che è valido anche nel caso di correlazione tra abilità individuali non osservabili e 

caratteristiche osservabili che abbiano una sufficiente variabilità temporale. I risultati ottenuti 

mostrano che le donne, tenuto costante un determinato livello di capitale umano, guadagnano circa il 

10% in meno dei dipendenti maschi. Questa percentuale cresce all’aumentare dei salari, 

raggiungendo livelli talvolta superiori al 20% per i redditi più alti. Inoltre, le differenze salariali sono 
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maggiori al crescere dell’età. Questo fenomeno può essere attribuito a diversi fattori, tra cui la 

presenza di una relazione crescente tra discriminazione e anzianità, ma potrebbe anche essere 

determinato, almeno in parte, da un miglior livello di capitale umano tra le giovani donne, rispetto a 

quello degli uomini della stessa generazione. Dall’analisi dei dati emerge inoltre che le differenze di 

reddito si sono ridotte tra il 2006 e il 2008, ma sono diventate crescenti tra il 2008 e il 2010, in 

corrispondenza dei primi anni della recente fase di recessione economica. Infine, i risultati ottenuti 

mostrano che la maggior parte delle differenze salariali di genere non si può attribuire alle 

caratteristiche individuali dei lavoratori, e nemmeno alla segregazione femminile in occupazioni meno 

remunerative. Ne consegue che la gran parte delle differenze di genere è attribuibile a una diversa 

struttura dei salari. Ciò significa che uomini e donne sono retribuiti in maniera diversa per uno stesso 

livello di capitale umano. Per comprendere meglio l’origine di queste divergenze, cercheremo di 

fornire una panoramica quanto più completa delle teorie e delle evidenze emerse nella letteratura più 

recente riguardo a questo fenomeno. 

 

PAROLE CHIAVE: differenze salariali di genere; discriminazione; quantile regression; decomposizione di 

Oaxaca. 

 
PER CITARE IL PAPER: ISFOL, Fanfani B., The Gender Wage Gap Among Italian Employees - 
Evidences from the ISFOL PLUS Database, ISFOL, Roma, 2015 (Isfol Research Paper, 26) 
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1 INTRODUCTION 

Nowadays most of the Western Countries, and Italy in particular, are facing the strong challenges 

posed by demographic trends. Low fertility rates, as well as increased life expectancy rates, are putting 

pressure on the sustainability of welfare systems. In order to respond to increasing levels of economic 

dependency1, the most desirable paths are productivity improvements and a growth in labour force 

participation, since both solutions are needed to maintain the current level of welfare benefits. 

In this context, it is important to investigate whether discrimination against groups of the population is 

playing an important role in the labour market. Discrimination represents an inefficiency, and it reduces 

productivity by determining a sub-optimal allocation of resources. Moreover, discrimination reduces 

labour force participation, since it lowers the incentives to work for those who suffer from it. In 

particular, discrimination against women is very harmful, since it involves a large proportion of the 

labour force. 

In this paper, we are going to measure the amount of gender discrimination among Italian employees, 

using the 2005 to 2010 waves of the ISFOL PLUS database.2 For this purpose, we are going to employ 

a quantile regression based decomposition, which is a methodology that allows to measure differences 

in discrimination among higher and lower remunerated job positions. We will review and derive 

carefully the chosen estimator. Moreover, we are going to discuss in detail which is the definition of 

discrimination adopted, what are the assumptions needed, and whether the findings are robust when 

imposing less demanding assumptions. Finally, we will try to derive some conclusions on what is driving 

the gender wage gap in the Italian labour market. 

The estimated level of the gender pay gap in Italy amounts to around 10%, except at the upper tail of 

the wage distribution, where it increases substantially. Overall, our results are quite similar to the ones 

found by Christofides, L., A. Polycarpou, and K. Vrachimis (2010) and by Di Tommaso and Piazzalunga 

(2013). Both studies make use of the quantile regression based decomposition, analyse years that are 

covered by our data, and apply the Heckman (1979) procedure to take into account selection problems. 

Instead of the Heckman correction, here we will carry out several tests on the sensitivity and 

robustness of our results. Taking advantage of the longitudinal structure of the data, we will apply 

panel techniques, and in particular the Hausman and Taylor (1981) model, in order to take into account 

the problem of unobserved individual heterogeneity. However, one should be aware that correlation 

between time invariant characteristics and individual fixed effects is not allowed under the Hausman-

Taylor model. In particular, we won’t be able to obtain estimates of discrimination that are consistent 

under correlation of gender to unobservable abilities. However, we can rely on the fact that the rich set 

of information contained in the PLUS samples allows us to build a good model of wage prediction, and 

we will interpret our measures of discrimination as a composite residual effect. 

                                            
1
 Economic dependency is defined as the ratio between the working population, which is financing welfare systems, and the 

inactive population. 
2
 The database is available at http://www.isfol.it/open-data-delle-ricerche/isfol-microdati. 



  
THE GENDER WAGE GAP AMONG ITALIAN EMPLOYEES EVIDENCES FROM THE ISFOL PLUS DATABASE      

 
 

 

ISFOL RESEARCH PAPER N. 26/2015 7 7 7 

We will show that the amount of gender discrimination in the Italian labour market is substantial, and 

explains almost all of the gender differences in earnings. We will show some interesting patterns that 

may help understanding better where such gender differences originate. First, we will show that the 

gender wage gap is influenced by the business cycle, since it has not been constant across years. 

Second, we will show that it is increasing with age. Our model shows that this pattern is determined 

partly by a lower level of discrimination among younger workers, and in part by better market potential 

of younger women. However, the positive relation between seniority and discrimination could be driven 

by several dynamics, which we can’t fully take into account. Finally, we will show that most of the 

gender differences in pay are determined within occupations and within sectors. That is, most of the 

differences in the Italian labour market are not the result of segregation of women into less 

remunerative sectors or occupations, but rather they are determined by different payment structures 

for similar jobs. 
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2 THEORETICAL FRAMEWORK 

In economic literature, discrimination against sub-groups of the population had been an almost 

neglected topic until Becker seminal work, The Economics of Discrimination, published in 1957. 

According to his approach, discrimination in the marketplace can be modelled as an implicit transaction 

cost, by introducing a so-called taste for discrimination: 

 

Discrimination is commonly associated with disutility caused by contact with some individuals, and this 

interpretation is followed here. [...] To the employer [discrimination] represents a non-monetary cost of 

production, to the employee a non-monetary cost of employment, and to the consumer a non-monetary cost of 

consumption (Becker, 1973, p. 15). 

 

An empirical methodology to quantify the amount of discrimination in the marketplace has been 

introduced by Oaxaca (1973) and Blinder (1973). Since then, a growing number of publications have 

addressed this problem, and so called decomposition methodologies have been applied in many 

different contexts3. The Oaxaca-Blinder approach is based on the following definition of discrimination 

against sub-groups of the population 

 

𝐷 =
(w𝑚/w𝑓 )−(w̃𝑚/w̃𝑓 )𝑁𝐷

(w̃𝑚/w̃𝑓 )𝑁𝐷
      (1) 

 

where w𝑖 are wages observed for the (gender) group 𝑖 ∈ {𝑚, 𝑓}, and the superscript ND denotes the 

hypotetical and unkown wage ratio that would be observed in the absence discrimination. In a 

competitive equilibrium, due to the well known theory of cost minimization, the non-discriminatory ratio 

of wages (w̃𝑚/w̃𝑓 )𝑁𝐷 would equate the ratio of male and female marginal products. One way of 

approximating such marginal contributions is by estimating a mincerian wage equation, where labour 

income is considered a true measure of productivity, and it is predicted using a series of controls for 

human capital and other relevant individual attributes. Such wage equation usually takes the following 

semi-logarithmic functional form ln 𝑤𝑖 = 𝑥𝑖β𝑖 + ε𝑖, where 𝑥𝑖 is a 𝑛𝑖 × 𝑝-matrix containing a constant, 

while β𝑖 is a 𝑝-vector of coefficients. 

If there was no discrimination in the labour market, one would expect that individual characteristics 

were rewarded equally across gender groups. Stated differently, in a non-discriminatory market the 

wage structure faced by males would also apply to females4. Then, using the properties of OLS, it is 

straightforward to decompose differences in income as follows 

                                            
3
 Hereafter, when using the term wage structure, we will refer to the pay schedule faced by individuals, given their set of skills. As 

we will see in a moment, we are assuming no general equilibrium effects. 
4
 Hereafter, when using the term wage structure, we will refer to the pay schedule faced by individuals, given their set of skills. As 

we will discuss in more detail in a moment, we are assuming no general equilibrium effects. Broadly speaking, we are assuming that 
males are rewarded according to the competitive prices for skills, while women are discriminated. Instead, one could also construct 
the counterfactual distribution of wages where men skills are evaluated according to the female pay schedule, or according to a 
weighted combination of the two pays schedules. 
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ln 𝑤𝑚 − ln 𝑤𝑓 = 𝑥𝑚̅̅ ̅̅ β𝑚̂ − 𝑥𝑓̅̅̅β𝑚̂ + 𝑥𝑓̅̅̅β𝑚̂ − 𝑥𝑓̅̅̅β𝑓̂ = (𝑥𝑚̅̅ ̅̅ − 𝑥𝑓̅̅̅)β𝑚̂ + 𝑥𝑓̅̅̅(β𝑓̂ − β𝑚̂)  (2) 

 

where bars represent mean values, while parameters estimated by applying OLS separately in the male 

and in the female samples are denoted with a hat. 𝑥𝑓̅̅̅β𝑚̂ is a counterfactual wage, which measures the 

average wage that women would earn, had they been paid as men are. Equation (2) is the classical 

Oaxaca-Blinder decomposition. The term (𝑥𝑚̅̅ ̅̅ − 𝑥𝑓̅̅̅)β𝑚̂ is the so called characteristics effect, which is 

coherent with the wage prediction model, since it is driven by mean differences in individual skills 

among the two groups. Instead, the second addend of (2) is the coefficient (or wage structure) effect. 

It measures differences in the way gender groups are rewarded for the same characteristics. 

Using the decomposition (2), a logarithmic equivalent of the coefficient D in (1) can be defined as5 

 

ln(𝐷 + 1) = ln(w𝑚/w𝑓) − ln(w̃ m/w̃ f )𝑁𝐷 = (ln 𝑤𝑚 − ln 𝑤𝑓) − (𝑥𝑚̅̅ ̅̅ − 𝑥𝑓̅̅̅)β𝑚̂ = 𝑥𝑓̅̅̅(β𝑓̂ − β𝑚̂) 

 

It is important to discuss what are the relevant assumptions that have to be satisfied, in order to 

correctly identify this discrimination coefficient. In particular, there are three conditions that have to be 

imposed. 

 No general equilibrium effects We are assuming that the counterfactual (non-

discriminatory) wage structure β∗ will not be affected by the removal of discrimination from the 

labour market. In particular, in the context of the decomposition (2), we have assumed that the 

male pay schedule would prevail in a fair labour market, so that β∗ = β𝑚.6 

 Overlapping support Either we assume that the estimated regression coefficients can be 

extended to combinations of covariates not observable in the data, or we need to restrict 

attention to combination of characteristics observable among both men and women.7 

 Ignorability This is the most important assumption and, in its more general formulation, can 

be stated as follows. Let 𝐹(. ) represent the conditional distribution of the error term. Then 

 

𝐹(ε𝑚|𝑥𝑚) = 𝐹(ε𝑓|𝑥𝑓) = 𝐹(ε|x)     (3) 

 

Classical exogeneity is not required, as long as the conditional distribution of the error term is 

the same among men and women8. However, imposing exogeneity of the regressors in the 

                                            
5
 This definition of discrimination follows from the fact that 𝑥𝑓̅̅̅β𝑚̂ is choosen as the counterfactual wage. See footnote 4 and the 

description of the no general equilibrium effects assumption for a more detailed discussion of this point. 
6
 See Oaxaca and Ransom (1994) for a more detailed discussion of this assumption, and for possible alternatives. 

7
 This problem has been addressed explicitly by Nopo (2008), who introduces a method based on a matching algorithm. He 

proposes a four-fold wage decomposition, where the additional components represent wage differences between matched and 
unmatched observations in each gender group. 
8
 Such assumption is satisfied in the context of exogenous policies, when the members of each group we want to compare are 

randomly selected. Whenever this is not the case, a possible strategy is to adopt some form of correction for self-selection bias, 
such as the procedure developed by Heckman (1979). See Buchinsky (1998) for an analogous procedure in the context of quantile 
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wage equation of both groups is a sufficient condition for the ignorability assumption to be 

satisfied. Chernozhukov, Fernàndez-Val, and Melly (2013) have shown that, under ignorability, 

the discrimination coefficient can have a causal interpretation, in the sense that it reflects solely 

gender differences attributable to the wage structures. 

 

It is important to recognize that many factors are likely to induce a violation of condition (3). On one 

hand, group-differences in unobservable individual heterogeneity could contribute substantially to the 

determination of the wage gap. To some extent, this bias can be limited through the use of panel 

techniques, like a within transformation of the data. However, these methods, which will be discussed 

and implemented in Section 6, have further limitations. Indeed, the more robust estimators often 

require the use of some instrument, which might be difficult to be found9. 

A second reason why condition (3) could be violated is due to the presence of firm-specific 

heterogeneity in wage compensation schemes. In their seminal work, Abowd, Kramarz, and Margolis 

(1999) have found evidence suggesting that the more profitable firms are those who tend to pay higher 

wages. In our context, a bias would arise if there were gender differences in the way workers sort into 

high-wage firms. 

Card, Cardoso, and Kline (2013), using a Portuguese matched employer-employee database, have 

found that, even after controlling for firm fixed effects, the relation between firm profits and wages is 

weaker for women. This suggests that women do not systematically work for less profitable firm, but 

rather that they gain less than men from firms’ profits. However, it is not clear whether this tendency 

could be found also in the Italian labour market, especially because female labour force participation is 

higher in Portugal. Using a similar matched employer-employee database for Italy, which covers the 

period 1996-2003, Matano and Naticchioni (2013) have found no evidence of under-representation of 

women in more profitable firms. Both of the evidences above suggest that the role played by firm 

fixed-effects in the determination of the gender earnings gap might be limited. 

Finally, a reason that could explain the gender pay gap, but that is not accounted for by our 

framework, is given by the possible presence of gender-specific differences in labor supply elasticity to 

the firm. Indeed, one driver of discrimination could arise in monopsonistic labour markets,10 if women 

had a rigid labour supply at the firm level. The monopsonistic employer could extract more rents from 

employees whit a rigid supply, and women could be disadvantaged for this reason. This type of 

                                                                                                                                                 

regression. See Di Tommaso and Piazzalunga (2013) for a recent estimation of the Italian gender wage gap using the the Heckman-
correction. 
9
 In particular, by using a simple a fixed effect regression, the coefficients of time invariant regressors, such as schooling, can’t be 

recovered. A possible solution is to estimate the regression model proposed by Hausman and Taylor (1981), and to control the 
endogeneity of time invariant regressors using some instruments. See Polachek and Kim (1994) for a review of panel techniques for 
the estimation of the gender earning gap. 
10 

A monopsony is a market with many sellers and only one buyer, who can extract a rent in a similar way to that of a monopolist. 

The monopsony could be a realistic framework for modelling labour markets, mainly due to the presence of frictions which reduce 
the mobility of workers and to the presence of excess labour supply. For a review of the recent literature on monopsony see 
Ashenfelter, Farber and Ransom (2010). 
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discrimination is usually referred to as robinsonian discrimination11, and is conceptually different from 

the kind of discrimination defined by Becker. Indeed, according to the monopsonistic framework, 

discrimination would be an equilibrium outcome, rather than the product of inefficient and 

discriminatory markets. Sulis (2011) calculates the wage elasticities to the recruitment and separation 

rates for Italy, analysing the period between 1985 and 1996. He finds that women labour supply to the 

firm is significantly more rigid than the one of men. This result seems to provide indirect evidence 

supporting the hypothesis of robinsonian discrimination, even if the link between wage elasticities to 

the firm and discrimination, to the best of our knowledge, has not yet been established in the 

literature. 

In general, given the nature of our data, which lack information about individual employers, we will not 

be able to test more elaborate hypothesis that could explain the presence of gender discrimination. 

Therefore, we should be aware that a decomposition of the wage structure effect into a component 

due to sorting of workers, a component due to labour market frictions, and a component attributable to 

pure bargaining effects, is not feasible. In general, the estimated discrimination coefficient should be 

interpreted more like a composite residual effect, rather than a simple employers’ disutility parameter. 

Therefore, policies designed to reduce the levels of wage discrimination should take into account the 

complexity of this problem. Gender differences in pay likely originate from a variety of labour market 

characteristics, all of which should be taken into account in order to design effective policies. 

 

  

                                            
11 

See Ransom and Oaxaca (2010) for a discussion and a more precise definition of the concept of robinsonian discrimination. 



  
THE GENDER WAGE GAP AMONG ITALIAN EMPLOYEES - EVIDENCES FROM THE ISFOL PLUS DATABASE 

 
 

 

ISFOL RESEARCH PAPER N. 26/2015 12 

3 ECONOMETRIC METHODOLOGY 

We are now going to illustrate the econometric methodology used to identify the discrimination 

coefficient described in the previous section. The chosen estimator, originally developed by Machado 

and Mata (2005) and Melly (2005), is usually called quantile regression decomposition. The main 

advantage of this technique, with respect to the traditional OLS decomposition, is that it allows us to 

study the wage gap along the distribution of income, and not only at the average level. 

Quantile regression, as developed by Koenker and Bassett (1978), is based on the notion of conditional 

quantiles of the dependent variable y (log wages), given the covariates x (individual characteristics)12. 

Such relation is described by the following function 

 

Qy(θ|x)  =  xβ(θ)      (4) 

where Qy is used to indicate θth conditional quantile of y. The parameter β is estimated as the solution 

to the following problem 

 

β̂(θ) = argmin
β∈R𝑝 ∑ ρ

θ
(y

𝑘  − x𝑘β)

𝑛

𝑘=1

 

 

where n represents the sample size, the parameter space is given by Rp, and the ρ
θ
 loss function takes 

the form 

 

ρθ(u) = u[θ − I(u < 0)]   θ ∈ [0, 1] 

 

where I(.) represents the indicator function, equal to one if the term inside the brackets is true and 

zero otherwise. In a finite sample, the number of distinct regression coefficients β̂(θ) that can be 

estimated is finite. Let Θ = {θ
0 = 0, θ

1
,...,θ

J = 1} be the set of points where the solution changes, and 

notice that β̂(θ𝑗) prevails from θj−1 to θj for j = 1,..., J. Moreover, let β̂ = [β̂(θ1), … , β̂(θ𝑗), … , β̂(θ𝐽)] 

be the vector of all different quantile regression coefficients. Using such solutions, we can build a 

model for the estimated conditional quantiles Q̂y, in order to recover a conditional distribution of 

income13. Then, following Melly (2005), we will be able to construct a non-discriminatory wage 

structure using a particular unconditional (marginal) distribution. Let F
Y 

represent the distribution 

function of the random variable y. The θth quantile of y is defined as yθ = F −1(θ). Therefore  

                                            
12

 Here, y is a n×1 vector and x is a n×p matrix. 
13

 Using the entire set of solutions increases the risk of quantile-crossing. That is, Q̂y(θ|x) could be non-increasing in θ when 

evaluated at a given x. In general, the larger the number of solutions used to approximate the conditional distribution of y, and the 
smaller the number of observations available, the greater becomes the risk of quantile-crossing. Notice however that using the 
entire set of solutions is not necessary, since a sufficiently large set Ω ⊆ Θ of quantiles, which can be drown from a uniform on [0, 
1], will produce valid results. 
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𝐹𝑌(𝑦
θ
) = 𝑃(𝑦 ≤ 𝑦

θ
) = ∫ 𝑑𝐹𝑌(𝑧) = θ

𝑦θ

−∞

 

 

The above result can also be obtained by integrating θ over the interval [0, F
Y
(y

θ
)]14. Indeed, we have 

that 

∫ 𝑑θ = θ

𝐹𝑌(𝑦θ)

0

 

 

Consider now the following indicator function, defined as 

 

𝐼[𝐹𝑌
−1(θ) ≤ 𝑦θ] = {

1
0

    𝑖𝑓 θ ∈ {𝑧 ∈ (0, 1): 𝐹𝑌
−1(θ) ≤ 𝑦θ}

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Notice that integrating such function, with respect to θ, over the interval [0,1], is equivalent to 

integrate θ over the interval [0, FY(yθ)]. Given the above definitions, we can conclude that 

 

𝐹𝑌(𝑦
θ
) = θ ⟺ ∫ 𝐼[𝐹𝑌

−1(θ) ≤ 𝑦
θ
]𝑑θ = θ

1

0
    (5) 

 

The probability distribution function of conditional quantiles will be denoted with F̂Y|X. It is obtained by 

taking the integral in (5), and substituting FY
−1(θ) with the expression for the estimator of conditional 

quantiles Qy(θ), which were defined by equation (4) 

 

𝐹̂𝑌|𝑋 (𝑞
𝑦
|𝑋 = 𝑥) = ∫ I [𝑥β̂(θ) ≤ 𝑞

𝑦
] 𝑑θ

1

0
= ∑ (θ𝑗 − θ𝑗−1)I [𝑥β̂(θ) ≤ 𝑞

𝑦
]𝐽

𝑗=1   (6) 

 

The shift from integration to summation is possible in a finite sample, since, as we have noticed earlier, 

there is a finite number J of distinct conditional quantiles, which are characterized by the J-vector of 

distinct solutions β̂. For a given x, we can consider (6) to be the conditional distribution of income 

implied by quantile regression. It follows from their definition that conditional quantiles can be 

estimated from the distribution of y given x as 

 

Q̂y(θ|x) = inf {𝑞
𝑦

: ∑ (θ𝑗 − θ𝑗−1)I [𝑥β̂(θ) ≤ 𝑞
𝑦
]𝐽

𝑗=1 ≥ θ}   (7) 

 

Equation (7) is a convenient expression for conditional quantiles, since it is derived from their estimated 

conditional probability distribution. The next step is to obtain the marginal distribution of income, using 

                                            
14 

We have to change the variable of integration, so that the random element will become the length of interval over which we 

integrate. 
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some basic properties of probability. Denote the marginal density of the variable y by 𝑓
𝑌

(𝑧). Notice that 

such density can be written as a function of the conditional density 𝑓
𝑌|𝑋

(𝑧|𝑤), and of the covariates’ 

density 𝑓
𝑋

(𝑤) as follows 

 

𝑓
𝑌
(𝑧) = ∫ 𝑓(𝑧, 𝑤)𝑑𝑤

∞

−∞

= ∫ 𝑓
𝑌|𝑋

(𝑧|𝑤)𝑓
𝑋

(𝑤)𝑑𝑤

∞

−∞

 

 

where 𝑓(𝑧, 𝑤) is used to denote the joint probability. In our framework, the conditional density of 

income can be derived from (6). By integrating such function with respect to 𝐹𝑋, the result will be the 

unconditional distribution of y, denoted by 𝐹̂𝑌
15 

 

𝐹̂𝑌 = ∫ 𝐹̂𝑌|𝑋 (𝑞
𝑦
|𝑋) 𝑑𝐹𝑋 = ∫ (∫ I [𝑥β̂(θ) ≤ 𝑞

𝑦
] 𝑑θ

1

0
) 𝑑𝐹𝑋   (8) 

 

We now introduce some more notation. Let 𝑖 ∈ {𝑚, 𝑓} represent male and female observations, so that 

we have two samples {(𝑦
𝑘𝑖

, 𝑥𝑘𝑖): 𝑘 = 1, … , 𝑛𝑖} and the vector β̂ can be estimated separately for the two 

groups. Moreover, consider 𝑥𝑘𝑖 as the kth row of the 𝑛𝑖 × 𝑝 matrix 𝑥𝑖. The distribution 𝐹𝑋𝑖 of group i 

covariates can be approximated by the empirical distribution function as follows16 

 

𝐹̂𝑋𝑖
(𝑧) = 𝑛𝑖

−1 ∑ 𝐼(𝑥𝑘𝑖 ≤ 𝑧),                𝑖 ∈ {𝑚, 𝑓}

𝑛𝑖

𝑘=1

 

 

where z is a given p-vector. Using the above distribution to evaluate 𝐹𝑋𝑖
, we can estimate the 

unconditional distribution, expressing (8) as 

 

𝐹̂𝑌𝑖
= ∫ 𝐹̂𝑌𝑖|𝑋𝑖

(𝑞
𝑦𝑖

|𝑋𝑖) 𝑑𝐹𝑋𝑖
= 𝑛𝑖

−1 ∑ ∑ (θ𝑗 − θ𝑗−1)I [𝑥𝑘𝑖β̂𝑖
(θ) ≤ 𝑞

𝑦𝑖
]𝐽

𝑗=1
𝑛𝑖

𝑘=1   (9) 

 

                                            
15

 We are exploiting the definition of marginal (unconditional) distribution, which is given by 

 

𝐹𝑌 = ∫ (∫ 𝑓𝑌|𝑋
(𝑧|𝑤)𝑓𝑋

(𝑤)𝑑𝑤
∞

−∞
) 𝑑𝑧 =

∞

−∞
= ∫ (∫ 𝑓𝑌|𝑋

(𝑧|𝑤) 𝑑𝑧
∞

−∞
) 𝑓𝑋

(𝑤) 𝑑𝑤 = 𝐸𝑋 [∫ 𝑓𝑌|𝑋
(𝑧|𝑤) 𝑑𝑧

∞

−∞
]

∞

−∞
 

 
16 

Machado and Mata (2005) propose a random sampling method to approximate the covariates distribution. The two approaches 

are compared by Melly (2006), who shows that they become identical as the number of covariates’ drows in the Machado-Mata 
procedure tends to infinity. 
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In equation (9), each element of β̂
𝑖 is weighted by the length of the interval over which it prevails. 

Moreover, each row of 𝑥𝑖 contributes to the cumulative probability only if the resulting conditional 

quantile is lower than 𝑞
𝑦𝑖

.17 Unconditional (marginal) quantiles can now be estimated as 

 

𝑦̂
𝑖
(θ) = 𝐹𝑌𝑖

−1(θ) = 𝑖𝑛𝑓 {𝑞
𝑦𝑖

: 𝑛𝑖
−1 ∑ ∑ (θ𝑗 − θ𝑗−1)I [𝑥𝑘𝑖β̂𝑖

(θ) ≤ 𝑞
𝑦𝑖

]𝐽
𝑗=1

𝑛𝑖

𝑘=1 ≥ θ}  (10) 

 

Using these results, we can turn to the problem of decomposing group-wage differences. Assume that 

in a non-discriminatory labour market, females would have the same income’s conditional distribution 

of males, that is, their characteristics would be rewarded as if they were males. The next step is to 

build the counterfactual quantile, in order to have a distributional measure of what would be female 

income, had the wage structure been the same as the male one. Such non-discriminatory quantile of 

income can be estimated by integrating 𝐹̂𝑌𝑚|𝑋𝑚
, that is, the male conditional income distribution, with 

respect to the female distribution of characteristics, 𝐹̂𝑋𝑓
. Using this procedure, we can estimate the 

following counterfactual income distribution, denoted by 𝐹̂𝐶 

 

𝐹̂𝐶(𝑞
𝑐
) = ∫ 𝐹̂𝑌𝑚|𝑋𝑚

(𝑞
𝑦𝑚

|𝑋𝑚) 𝑑𝐹𝑋𝑓
= 𝑛𝑓

−1 ∑ ∑ (θ𝑗 − θ𝑗−1)I[𝑥𝑘𝑓β̂
𝑚

(θ) ≤ 𝑞
𝐶
]𝐽

𝑗=1

𝑛𝑓

𝑘=1
 (11) 

 

Equation (11) represents the non-discriminatory distribution of female income, assuming that the pay 

schedule faced by males would prevail in a fair labour market. Using the analogous procedure of 

equation (10), from the counterfactual distribution (11) we can obtain an estimator of the θth marginal 

quantile as follows 

 

𝑦̂
𝐶
(θ) = 𝑖𝑛𝑓{𝑞

𝐶
: 𝑛𝑓

−1 ∑ ∑ (θ𝑗 − θ𝑗−1)I[𝑥𝑘𝑓β̂
𝑚

(θ) ≤ 𝑞
𝐶
]𝐽

𝑗=1

𝑛𝑓

𝑘=1
≥ θ}  (12) 

 

Using the estimators in equations (10) and (12), we can carry out a wage gap decomposition similar to 

the traditional Oaxaca-Blinder decomposition, which was defined in equation (2). However, using the 

quantile regression approach, wage differences can now be evaluated at any θth quantile of the income 

distribution. More precisely, the pay gap between males and females can be divided in two parts, one 

representing the effect of different characteristics between the two groups, the other representing 

differences unexplained by the quantile regression model. For a given θ we can estimate 

 

𝑦̂𝑚(θ) − 𝑦̂𝑓(θ) = [𝑦̂𝑚(θ) − 𝑦̂𝐶(θ)] + [𝑦̂𝐶(θ) − 𝑦̂𝑓(θ)]   (13) 

 

                                            
17

 Notice that the probability distribution (9) is not well defined if quantile-crossing occurs.  
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It is useful to remark that the first addend is the so-called characteristics effect, since it is the 

consequence of the different distribution of covariates for the two groups. On the other hand, the 

second addend in (13) represents the so-called coefficient effect, since it is obtained by evaluating 

female characteristics using two different conditional distributions. The asymptotic distribution of the 

counterfactual estimator has been studied by Chernozhukov, Fernández-Val, and Melly (2013), who 

have shown the validity of exchangeable bootstrap inference procedures to estimate the covariance 

matrix18. 

  

                                            
18

 Drowing n × r observations with replacement from the empirical distribution to compute r estimates, is an example of a valid 

exchangeable bootstrap inference procedure.  
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4 DATA 

To analyse the Italian gender wage gap, we will use the 2005, 2006, 2008 and 2010 waves of the 

ISFOL Population, Labour, Unemployment Survey (PLUS). These data are collected through telephone 

interviews, which are conducted during the first quarter of the year. Since the first PLUS survey of 

2005, each year includes a proportion of panel observations, some of which are present in all four 

waves19.  The target population is composed of individuals between 15 and 64 years old20, and the total 

sample size for each year is reported in the top part of Table 1. 

The questionnaire is composed of specific sections designed to collect information on the following sub-

groups of the population: young individuals between 15 and 29 years old; women between 20 and 49 

years old; elderly population between 50 and 64 years old; unemployed individuals; employed 

population. A rich set of information for each of these categories is included, ranging from family 

characteristics to individual skills and personal history. It is then possible, for properly specified subsets 

of the sample, to provide a detailed explanation of some individual decisions (such as the choices of 

working, having children, studying) and to investigate which social environment factors may have 

influenced them. 

Table 1:ISFOL PLUS Samples Size and Composition 

  Year 2005 2006 2008 2010 

Total ISFOL PLUS 

Males 16.292 16.825 15.277 17.817 

Females 24.094 20.688 18.653 20.858 

Total 40.386 37.513 33.930 38.675 

Employee Sample 

Criteria of 

selection: full-time 

(30-72 h/week), 

wage at least 2 

Euro/h, wage not 

imputed. 

Males 4.101 3.765 3.399 3.948 

  51,13% 64,89% 51,16% 39,97% 

Females 3.340 2.716 3.245 2.923 

  48,68% 66,27% 41,20% 39,51% 

Total 7.441 6.481 6.644 6.871 

  50,03% 65,47% 46,30% 39,78% 

Percentages refer to panel observations (i.e. employees whose wages are reported in more than one ISFOL PLUS wave). 
Fonte: Dati ISFOL PLUS 

The bottom part of Table 1 reports the composition of the sample that we will be studying. Despite the 

fact that also self-employed and those with project-linked job positions are present in the PLUS data 

sets, for our analysis we have considered only salaried employees, which form the largest category of 

workers. This choice is motivated by the fact that data on income is not harmonized among the above 

categories of job position. Moreover, in the context of gender wage gap estimation, we want to study a 

sample of workers that should be as homogeneous as possible. Indeed, the lack of overlapping 

support, an assumption discussed in Section 2, may become more relevant as we increase the 

                                            
19 

For a detailed illustration of the features of this survey and of the sampling design, see Mandrone (2012), chapter 9.  
20

 In 2005, there were 38, 827, 322 individuals aged 15-64 in Italy, while the same population was 39, 655, 921 in 2010. 
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categories of job position included. In order to gain further accuracy in our results, we have decided to 

include only full-time workers, and we have excluded all outliers and those who have chosen to not 

report their wages21. 

We have used log-hourly net income (adjusted to the 2010 level) as the dependent variable. In Figure 

1 we have graphed the Kernel density estimates of the wage distribution by year and by gender22. We 

can see that the modal observation is always lower for women, and that their income distribution tends 

to be shifted toward the left with respect to the male one. Both tendencies are a preliminary evidence 

of the presence of a gender pay gap. Such impression is confirmed when looking at Table 2, where we 

can see that the average level of log hourly net wages is always lower for women. Notice also that 

2008 seems to be the year with the lowest gender pay gap. 

Table 2 reports some descriptive statistics, by year and by gender, for the most important controls of 

our model. Notice that, in all years, women tend to be younger and better educated than men. 

Moreover, the proportion of long-term contracts is lower for the female group, while the proportion of 

public employees is lower in the male group. Notice also that mean log wages are always lower for 

female workers, while the dispersion of wages, as measured by the standard deviation, is similar for 

the two groups. Finally, there are no major differences in the sample composition across years, at least 

with respect to these variables. 

As mentioned in Section 2, to carry out the decomposition exercise, we need to build a valid model of 

wage prediction. For this purpose, we have selected a rich group of independent variables. Specifically, 

the controls of the model are: years of schooling; a quadratic term for market experience, as 

approximated by age; a dummy for tenure, denoting employees who have been in their current job 

position for less than two years23; type of contract (long- or short-term); family characteristics (marital 

status, presence of pre-schooling age children, education of the mother); sector (services/goods 

production and public/private sectors); four occupation dummies and a dummy for firms with more 

than 50 employees; geographic variables (denoting people living in urban areas, people living in the 

North, with an interaction for North-West, and those living in the South, with an interaction for insular 

regions). In Section 6 we will compare the results obtained with this model specification to the ones 

obtained by adding nine occupation dummies, nineteen sectoral dummies and the entire set of Italian 

Regions. 

  

                                            
21 

More precisely, we have kept only individuals who were working between 30 and 72 hours a week, and whose net hourly wage 

was at least 2 Euro. 
22

 All figures are placed in the Appendix. 
23

 The coefficients associated to dummies controlling for other levels of tenure were always not significant. Moreover, there were 

no substantial gender differences in the average levels of tenure. 
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Table 2: Mean and St. Dev. For Selected Variables 

Group Statistic 
Log Hourly 

Wage 
Age Schooling 

Long-Term 

Contract 
Public Sector 

2005 

Males Mean 2,108 41,532 12,473 0,894 0,367 

  St. Dev. 0,373 12,728 3,369 0,308 0,482 

Females Mean 1,968 38,628 13,336 0,854 0,43 

  St. Dev. 0,336 11,623 3,239 0,354 0,495 

Total Mean 2,045 40,228 12,86 0,876 0,396 

  St. Dev. 0,363 12,328 3,339 0,33 0,489 

2006 

Males Mean 2,096 40,991 12,578 0,881 0,355 

  St. Dev. 0,371 12,893 3,259 0,324 0,478 

Females Mean 1,959 37,52 13,413 0,811 0,399 

  St. Dev. 0,331 11,704 3,171 0,391 0,49 

Total Mean 2,038 39,536 12,928 0,852 0,373 

  St. Dev. 0,361 12,525 3,248 0,355 0,484 

2008 

Males Mean 2,062 41,409 12,766 0,852 0,326 

  St. Dev. 0,377 13,259 3,275 0,355 0,469 

Females Mean 2,013 39,953 13,442 0,828 0,389 

  St. Dev. 0,373 12,678 3,181 0,377 0,488 

Total Mean 2,038 40,698 13,096 0,84 0,356 

  St. Dev. 0,376 12,998 3,247 0,366 0,479 

2010 

Males Mean 2,079 41,872 12,751 0,848 0,315 

  St. Dev. 0,385 13,524 3,244 0,359 0,464 

Females Mean 1,964 38,688 13,638 0,805 0,384 

  St. Dev. 0,348 12,057 3,185 0,396 0,486 

Total Mean 2,03 40,517 13,129 0,83 0,344 

  St. Dev. 0,374 13,016 3,249 0,376 0,475 

Fonte: Dati ISFOL PLUS 
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5 RESULTS 

Our analysis of the gender wage gap is based on the method of equation (13). We have estimated the 

following decomposition 

 

𝑦̂
𝑚,𝑡

(θ) − 𝑦̂
𝑓,𝑡

(θ) = [𝑦̂
𝑚,𝑡

(θ) − 𝑦̂
𝐶,𝑡

(θ)] + [𝑦̂
𝐶,𝑡

(θ) − 𝑦̂
𝑓,𝑡

(θ)]    (14) 

 

for t = 2005, 2006, 2008, 2010. In order to approximate the various conditional distributions of income, 

we have estimated the quantile regression coefficients at 300 randomly drown percentiles.24 The wage 

gap has been computed at 19 distinct quantiles. More precisely, we have estimated the decomposition 

model every 5 percentiles, starting from the 5th quantile until the 95th quantile. Finally, standard errors 

have been computed using 200 bootstrap replications. 

The results of the decompositions of equation (14) are reported in Figures 2 and 3. For each year, the 

left graph represents the estimated total earning gap, as measured by the difference between the male 

and female conditional distributions of income. Instead, the graph on the right, is a decomposition of 

the total gender wage gap in a part attributable to individual characteristics, and a part attributable to 

differences in the estimated quantile regression coefficients (the wage structure or discrimination 

effect). 

Notice that the estimated difference between male and female earnings is always positive and 

significant. With the exception of 2008, its magnitude is around 10 percentage points almost 

everywhere. Moreover, it tends to increase toward the top of the wage distribution, an evidence that is 

usually described as a glass ceiling effect25. This tendency seems to be stronger in 2005 and 2006, 

since, in such years, the wage gap is above 20 percentage points for the highest percentiles of the 

earning distribution. Notice however that the shape of the gender earnings gap distribution is similar 

across years. This implies that women are discriminated more in jobs where the wages are higher.  

It is interesting to compare the magnitude of the estimates across years. Notice that the earning gap 

was reducing between 2006 and 2008, but it has been increasing between 2008 and 2010, after that 

an economic downturn phase had begun. For example, the median estimate of the gap was around 

10% in 2006, it dropped to less than 5% in 2008, and it increased again to more than 9% in 2010. 

These strong variations indicate that the wage gap is influenced by the economic cycle, and that while, 

before 2008, there was some progress during a phase of small growth, discrimination has increased 

again since the beginning of the economic crisis. 

                                            
24

 Using a subset of quantile regression solutions reduces the risks of quantile crossing. See footnote 10 on this point. 
25

 This terminology has been introduced by Albrecht, Bjorklund, and Vroman (2003). To test the hypothesis of a glass ceiling, we 

have performed several tests on the equality of the estimated coefficients of the total wage gap at different percentiles of the wage 

distribution. In doing so, we have used the fact that each estimator is normally distributed around zero. The test on the equality of 

the estimated total wage gap between the 90th and at the 50th quantiles, as well as the test on the equality between the 75th and 

the 50th quantiles, is rejected in all four years. 
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For what concerns the decomposition exercise, it is quite evident that the role played by individual 

characteristics is seldom significant. Indeed, the characteristics line of Figures 2 and 3 is always very 

close to zero. This evidence shows that, in Italy, there has been a substantial convergence in human 

capital accumulation between men and women, so that gender differences can’t be attributed to the 

levels of observable market potential. Moreover, the shape of the total wage gap resembles that one of 

the wage structure effect in all four years. This evidence suggests that the amount of discrimination is 

significant among Italian employees, and it is the main driver of the gender earnings differential. As we 

have noticed in Section 2, a significant wage structure effect can’t be interpreted simply as a pure 

employers’ disutility parameter, and it should be better described as a composite residual effect played 

by several unobservable market characteristics (which include discrimination as well). We can’t identify 

directly the sources of this discrimination effect. However, in this and in the next Section, we will rule 

out some explanations and highlight some interesting tendencies. 

To gain some more knowledge on what lies behind the wage gap, we have estimated the same 

decompositions of equation (14), dividing the sample between older employees, defined as those 

above age 35, and younger employees. The results of this exercise are plotted in Figure 4. It is quite 

evident that the gender earnings differential increases with age. Indeed, the estimated total wage gap 

almost doubles for older workers. Moreover, the glass ceiling effect is more pronounced for older 

workers, an evidence suggesting that women have difficulties in reaching those highly remunerated job 

positions which require more experience. Notice also that the pay gap was very close to zero for those 

with less than 35 years old in 2008, but it increased again in 2010. Also the level of discrimination is 

higher with age, as can be seen from the fact that the dotted line of Figure 4 (denoting discrimination 

among older workers) lies always above the dash-dotted line (which indicates discrimination among 

younger workers). Again, such findings suggest that women pay additional penalties as the level of 

market experience increases26. 

With the possible exception of 2008, the distance between the wage structure effects and the total gap 

(represented by the solid and by the dashed lines) is higher among younger workers. This result is 

driven by the fact that, in our sample, younger female employees have better characteristics than older 

female workers, when compared with male employees of the same age. Therefore, there seems to be a 

higher level of human capital accumulation among young women, which could partly explain why the 

wage gap is smaller at earlier stages of the career. However, we should notice also that the 

discrimination effect continues to play an important role for younger women, an evidence that can’t be 

fully explained by our data. 

From the results presented here, it is quite evident that the wage structure effect is explaining most of 

the pay gap. In Section 6 we are going to test some hypothesis and provide further evidences on the 

existence of a gender pay gap. In particular, we will show that the earnings gap is mostly driven by 

                                            
26 

In a recent article, Goldin (2014) explains the increasing relation between seniority and the gender pay gap by looking at the cost 

of flexibility. When women are older, their responsibilities in the informal labour market increase, and they become less willing to 

supply many hours of work. According to the author, this demand for flexibility in hours worked is costly for the employer. From 

our data, we could see that women supply less hours then man on average, but we could not find evidence of a positive relation 

between hours worked and hourly wages, even if measurement error might be negatively biasing our estimates. 
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within occupation and within sector differences in compensations. Indeed, we will construct several 

models with more covariates, and we will show that the estimated discrimination levels do not change 

much. Finally, we will deal with the problem of correlation between unobservable individual 

heterogeneity and time-varying covariates, showing that this issue is not affecting our results. 

However, we should be aware that the exogeneity of gender with respect to unobservable abilities 

remains an untestable assumption. 

  



  
THE GENDER WAGE GAP AMONG ITALIAN EMPLOYEES EVIDENCES FROM THE ISFOL PLUS DATABASE      

 
 

 

ISFOL RESEARCH PAPER N. 26/2015 23 23 23 

6 ROBUSTNESS CHECKS 

In Section 2 we have stated that, in order to have a meaningful decomposition of the gender pay gap, 

the ignorability assumption should be satisfied. Unfortunately, such assumption can’t be tested directly. 

For this reason, we have stressed the fact that our measure of discrimination is best interpreted as a 

composite residual effect, which can’t be fully explained by our data. Nevertheless, we have performed 

some robustness checks, in order to gain some knowledge on the quality of the wage prediction model 

estimated in the previous Section. Moreover, we have tested whether our estimates of discrimination 

are affected when correlation between time-varying dependent variables and individual fixed effects is 

taken into account, by looking at the direction and size of eventual biases27. 

As a first robustness test, we have repeated the estimations carried out in Section 5, this time adding 

more explanatory variables to our model. In addition to the usual set of independent variables (which 

amounts to 26 covariates), we have included 9 dummies for occupational position, around 20 dummies 

for each Italian administrative Region, 17 dummies for different categories of economic sectors, and 

some more variables on the family background (education of the father). The results associated to this 

model, which contains a total of around 65 covariates, are represented by the dashed lines in Figures 5 

and 6. The most important feature of this specification is that it allows to measure linearly any wage 

difference between a very detailed set of occupations and sectors. Therefore, our estimates become 

more suitable to take into account the effect segregation of women into less remunerative job 

positions. Finally, we have estimated the quantile regression decomposition over a model where each 

of the 9 occupational dummies, and each of the 17 dummies denoting sectors were interacted. This 

model contains a total of around 220 covariates, and is represented by the dotted lines in Figures 5 and 

6. This last specification allows us to capture also any non-linearity in the way occupational positions 

are rewarded across sectors. 

In Figure 5, we have plotted the estimated gender wage differences that are attributable to differences 

in observable characteristics across groups. Each line represents a different model specification. In 

general, adding more covariates increases the amount of discrimination that is explained by 

characteristics. However, the difference between the 26-covariates and the other models are quite 

modest in magnitudes. The greatest difference is observable in 2005, where, for higher quantiles of the 

wage distribution, it reaches 5 percentage points. We should also stress the fact that this part of the 

income distribution is associated with the highest levels of estimated discrimination, and that this peak 

now seems to be in part driven by the composition of the sample in terms of occupational positions. 

For all other years, the differences in estimations across models seldomly exceed 2 percentage points. 

In Figure 6, we have reported the estimated level of discrimination across model specifications. As can 

be noticed, the differences between the 26-covariates and the other models are smaller than in the 

previous case. In general, the wage structure effect is reduced when more covariates are added to the 

model. However, such characteristics effect lies always around or above 10%, with the only exception 

                                            
27

 This exercise is prone to type two errors. That is, whenever the more robust estimator (the Hausman-Taylor model in our case) is 

biased, no knowledge can be gained on the error associated to the less consistent estimator (the random effect model). 
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of 2008. Thus, we can conclude that most of the gender differences in pay originate within sectors and 

within occupations. With the partial exception of 2005, only a small percentage of the gender pay gap 

can be attributed to segregation effects, while discrimination continues to determine most of the 

differences in wages. In summary, the results presented in the previous section are quite robust when 

more detailed wage prediction models are considered. 

As a final test on the validity of our model, we have exploited the longitudinal structure of the ISFOL 

PLUS data. We have tried to take into account individual characteristics, which are not observable in 

our data, but which may be correlated both with our explanatory variables and with wages. Indeed, a 

reason why the estimates of discrimination could be biased comes from the fact that some variables, 

such as schooling, experience or tenure, could be correlated with individual abilities not observable to 

the researcher. For example, using the ISFOL PLUS database, Borgna and Struffolino (2015) have 

shown that there are persistent gender differences in the dropout rates from secondary schooling. Thus 

there’s the possibility that, due to the presence of unobservable dynamics that we fail to take into 

account, the same education level determines systematically different wage potential between women 

and men. Moreover, experience is approximated by age in our model, while actual experience could be 

influenced by time spent out of the working force. Alternatively, less productive workers could self-

select into the category of workers with less years of tenure. All the above situations would lead to 

biased estimates of the coefficients associated to these variables, and could in turn undermine our 

decomposition exercise. 

In general, correlation between individual fixed effects and time varying covariates is a quite common 

outcome28, and is confirmed in our data when performing a cluster robust Hausman test, which leads 

to a rejection of the null hypothesis. Unfortunately, the fixed effect model is not suitable for the 

estimation of the gender wage gap. Indeed, this model can’t estimate the effect of time invariant 

characteristics on wages. In our context, the only feasible alternative is the Hausman-Taylor (HT) 

regression (Hausman and Taylor, 1981). This model allows for arbitrary correlation between time 

varying regressors and individual unobservable effects. For example, in this model returns to 

experience are measured as the average marginal effect on income of one more year of seniority, with 

respect to individual-specific wage means. However, the HT model also relies on a more demanding 

exogeneity assumption of the time invariant characteristics, which can’t be tested in any way. 

Therefore, the effect of characteristics with limited, or no time variability at all, such as schooling and 

gender, are not consistently measured when individual fixed effects are correlated with them. 

In order to see how much the estimated amount of discrimination is influenced by correlation of the 

time varying dependent variables with individual unobservable heterogeneity, we have compared the 

results of the HT model to the ones obtained from the inconsistent GLS estimator. The GLS estimator 

(also called random effects) is comparable to the OLS regression, but it is more efficient when dealing 

with a panel sample. This estimator relies on the assumption of exogeneity of all variables with respect 

to individual unobservable heterogeneity, an assumption that is not met in our data. Then, to obtain a 

                                            
28 

See Polachek and Kim (1994) for a detailed discussion of the problem of unobservable individual heterogeneity in the context of 

the gender wage gap estimation. 
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consistent estimator for the coefficients associated to time varying variables, we have estimated the HT 

model. That is, we have first applied fixed effects regression, which is a consistent estimator in this 

context. Then, we have regressed the time invariant variables using the residuals of the first-stage 

fixed effects regression, employing the efficient GLS estimator.  

In performing the longitudinal estimations described above, we have used our 26-covariates model, 

and we have pooled all four available years, in order to construct a panel sample. Finally, we have 

included a dummy equal to one for male observations. The coefficient associated to this variable 

represents the marginal effect of gender on income, keeping all else constant. Therefore, it can be 

interpreted as a measure of discrimination similar to the wage structure effect. Table 3 compares the 

estimated gender effect, together with a few selected covariates. As can be noticed by looking at the 

estimated effect of age on wages, the difference between the coefficients associated to time-varying 

regressors is quite significant across the two models. This result is confirmed by the Hausman test, 

which we have conducted over all such time-varying regressors. Instead, notice that the difference in 

the estimated gender effect is negligible. This result suggests that correlation between time varying 

dependent variable and individual fixed effect is not biasing our estimations of gender discrimination. 

However, we must also interpret this result with caution. The possibility that also the HT model is 

providing biased estimates can’t be neither tested nor excluded. Moreover, as we have already stressed 

at the beginning of this Section, unfortunately the validity of our ignorability assumption can’t be 

tested. Nevertheless, gender discrimination seems to be an evidence very robust and persistent across 

models. 

Table 3: Panel Estimates of Coefficients for Selected Variables 

Model (1) (2) 

Variable coeff./st. err. coeff./st. err. 

Male 0.1195*** 0.1200*** 

  (0.0043) (0.0042) 

Schooling 0.0201*** 0.0265*** 

  (0.0007) (0.0007) 

Age 0.0183*** 0.0267*** 

  (0.0015) (0.0042) 

Age Squared -0.0001*** -0.0002*** 

  (0.0000) (0.0000) 

Observations 27,429 27,429 

Legend of the models: 
(1): GLS regression model, evaluated over the entire panel sample. Not consistent. 
(2): Hausman-Taylor regression, consistent to correlation between time-varying covariates and individual unobservable 
heterogeneity. 
Fonte: Dati ISFOL PLUS 
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7 CONCLUSIONS 

In this paper we have measured the gender wage gap using four waves of the ISFOL PLUS sample. 

This database is interesting for several reasons. First, it contains detailed information on workers’ 

history, and it has a panel structure, which allows us take into account unobserved individual 

heterogeneity. Moreover, the chosen waves, which range from 2005 to 2010, cover a period that is 

interesting to study, due to the economic downturn which begun during 2008. 

For our analysis, we have considered full-time private and public employees. We have adopted a 

quantile regression based methodology, which has allowed us to show that the wage gap is stronger in 

higher remunerated job positions. By dividing the sample between younger and older employees, we 

have shown that this earning gap is also increasing with age, a fact that can be in part attributed to an 

improvement of the level of human capital among younger women, while in part is the result of 

discrimination levels that are increasing with seniority. 

In general, we have shown that women earn around 10% less than men, despite having similar market 

potential. This percentage is increasing with wages, and it reaches the level of 20% at higher quantiles 

of the income distribution. This glass ceiling effect is also stronger among older workers, a fact 

suggesting that women struggle to reach especially those well-remunerated positions that become 

available as experience increases. Moreover, we have shown that the level of discrimination is 

influenced by the economic cycle. Indeed, the gender wage gap was reducing in 2008, but, in 2010, it 

has reached again levels similar to the 2005 ones. This suggests that the economic recession, which 

was particularly severe in Italy during 2009, has had a negative impact on discrimination, worsening 

the position of women in the labour market, in terms of wages earned, more than that of men29. 

To further test our results, we have carried out some robustness checks. We have shown that 

increasing the information on workers’ occupation, sector and location has only a small effect on the 

wage gap estimates. When including a model with a full set of sector-occupation interactions, the 

estimated effect of individual characteristics on the gender wage gap changed by no more than 5%, 

with this percentage being almost everywhere around 1-2%. Moreover, the impact of additional 

dependent variables on the estimated wage structure effect was even smaller. Therefore, pay 

differences seems to be more relevant within similar job positions and sectors. Moreover, we have used 

the Hausman-Taylor regression model to control for endogeneity problems that could arise with time-

varying dependent variables. Our results show that this kind of endogeneity problem does not seem to 

be affecting the estimated gender wage gap. However, we were not able to test directly the 

assumptions required by the Hausman-Taylor estimator, and endogeneity problems could still be quite 

relevant even under this model. 

We can conclude that women earn less than men, even when their characteristics are similar. The fact 

that gender differences in pay could not be attributable to the observable characteristics of our sample 

                                            
29

 On this issue, Di Tommaso and Piazzalunga (2013), which analyse Italian data until 2011, suggest that the interruption of wage 

increases in the public sector, which has been implemented since 2010, could have had further negative effects on women’s wages 
relative to the men’s ones, given that women are traditionally over-represented in the public sector. 
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leaves the question on the source of this wage structure gap open. Based on previous literature30, 

several answers can be suggested, even if they can’t be fully tested from our data. In general, there 

could be a sorting mechanism, which makes men more likely to work for firms who pay higher wages31. 

Moreover, there could be differences in the way men and women are promoted, so that similar workers 

are paid differently due to internal compensation schemes. Women could be less willing to bargain and 

less competitive than men. They could prefer more flexible working hours, which could represent a cost 

for several firms. Finally, employers could be discriminating against women because of some form of 

disutility in hiring them, or because they could be in a monopsonistic position allowing them to pay 

lower wages and extract higher rents from female workers. 

 

  

                                            
30

 See for example Goldin (2014), Buser, Niederle, and Oosterbeek (2014), Booth, Francesconi, and Frank (2003), Sulis (2011). 
31

 As noted in Section 2, the literature on this topic, even if not vast, has not yet found evidences supporting this hypothesis. 
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APPENDIX: FIGURES 

Figure 1: Kernel Density Estimates of Hourly Wages by Year and Gender 

 

 

Fonte: Dati ISFOL PLUS 
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Figure 2: Quantile Regression Decomposition of the Gender Wage Gap by Year (1) 

 

 

 

 

Fonte: Dati ISFOL PLUS 
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Figure 3: Quantile Regression Decomposition of the Gender Wage Gap by Year (2) 

 

 

 

Fonte: Dati ISFOL PLUS 
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Figure 4: Quantile Regression Decomposition of the Gender Pay Gap by Age Group (Above and Below 35 

Years Old) 

 

 

 

Fonte: Dati ISFOL PLUS 
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Figure 5: Characteristics effect obtained applying the counterfactual decomposition by year. Each line 

reports results computed using a different model specification 

 

 

Fonte: Dati ISFOL PLUS. 

 

Fonte: Dati ISFOL PLUS 
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Figure 6: Wage structure effects obtained applying the counterfactual decomposition by year. Each line 

reports results computed using a different model specification 

 

 

 

Fonte: Dati ISFOL PLUS 
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