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ABSTRACT 

 

Proliferation and migration of vascular endothelial cells (ECs) are critical steps in 

angiogenesis and are strictly controlled by a number extracellular stimula. Proangiogenic 

peptides binding to tyrosine kinase receptors (i.e. VEGFs and FGFs) are released by 

several cell types, including ECs and tumor cells. Proangiogenic intracellular signalling 

cascades involve many messengers working in a sort of network. In particular, in this 

review we describe the properties and functions of the intracellular calcium signals (Cai), a 

universal, evolutionary conserved and highly versatile pathway involved in the regulation of 

EC proliferation and migration. 

Angiogenic factors generate Cai rises via two mechanisms: entry from extracellular 

medium, through the opening of calcium-permeable channels in the plasmamembrane, or 

release from intracellular Ca2+ stores. Calcium entry, the main topic of this review, can be 

dependent on previously InsP3-activated emptying of calcium stores (store-operated Ca2+ 
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entry - SOCE), or independent on it (non store-operated Ca2+ entry - NSOCE). The 

intracellular pathways underlying endothelial Ca2+ entry involve, among the other 

pathways, arachidonic acid (AA) and nitric oxide (NO) metabolism. Even if some Ca2+ 

entry blockers are under clinical trial with encouraging results, a better knowledge about 

the molecular nature of proangiogenic Ca2+ channels and their intracellular regulation in 

healthy and pathological processes could lead to new and more powerful strategies in the 

therapeutical approaches aimed to interfere with altered tissue vascularization. Here, we 

discuss the state of the art in the field of calcium signaling and angiogenesis, the related 

recent literature and patents. 

 

INTRODUCTION 

Role of Ca2+ in the control of EC proliferation and migration 

Intracellular calcium (Cai) signals are a highly conserved and ubiquitous mode for 

the control of cell survival, proliferation, motility, migration, apoptosis, and differentiation [1-

4]. They are involved at different critical phases in the regulation of angiogenesis, both in 

healthy and in altered conditions [5-9]. 

Endothelial cells (EC) are the major actors of new blood vessels formation, and 

particular attention has been focused on them. During angiogenesis, ECs leave the 

preexisting vessel moving through the matrix, proliferate and finally stop their mitogenic 

activity and reorganize in a new tube [10-23]. Both migration and proliferation are strictly 

controlled by Cai dynamics, specifically modulated by extracellular proangiogenic agents 

such as vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs) 

[5-9, 24, 25].  

Calcium entry from external medium is usually mediated by Ca2+-permeable 

cationic channels in the plasmamembrane, which show varying degrees of selectivity and 

can support longer lasting signals (up to tens of minutes). While voltage-operated Ca2+ 
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channels open following a simple, direct stimulus such as a depolarization step, the 

activation of voltage-independent channels, largely prevalent in endothelium, needs the 

involvement of metabolic pathways stimulated by receptor tyrosine kinases (RTKs) or G-

protein-coupled receptors (GPCRs), leading to the production of second messengers that 

modulate channel activity [26, 27]. 

We usually distinguish between two major types of calcium entry: store-operated 

Ca2+ entry - SOCE, secondary to- and dependent on a previously activated depletion of 

intracellular stores, and non store-operated Ca2+ entry - NSOCE, carried by channels 

sensitive to intracellular messengers released upon receptor activation [28-30]. SOCE and 

NSOCE often coexist in the same cell, in some cases depending on agonist concentration 

or on the level of expression of the same channel. In some cell types, SOCE and NSOCE 

could cross-regulate [31-34].  

SOCE has been extensively associated with Ca2+ influx related to cell proliferation 

and involves the association of the endoplasmic Ca2+ sensor STIM-1 with channel-forming 

proteins including members of TRP and Orai1 [28, 35-41].  

Several other examples are related to proliferation dependent on NSOCE; for 

others, finally, the mechanism is not specified. Among the second messengers proposed 

to play a role in NSOCE activation, arachidonic acid (AA) and other lipidic molecules are 

the most relevant (see below). In particular, in bovine and human ECs from normal and 

tumoral tissues, AA opens calcium-permeable channels independently from store 

depletion and promotes Ca2+-entry-dependent cell proliferation and migration [42-52]. A 

store-independent Ca2+ channel, activated by low concentrations of AA, has been 

observed in HEK293 cells: this channel, responsible for IARC (arachidonate-regulated Ca2+ 

current), is not associated with cell migration and proliferation and its biophysical 

properties are significantly different from endothelial AA-activated calcium entry [31-34, 53, 

54]. 
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It is now well accepted that members of transient receptor potential (TRP) superfamily of 

channels contribute to agonist-activated Ca2+ entry in all tissues in a great number of 

physiological and pathological events [27, 55-63]. TRPs are cationic channels, some of 

which are directly activated by intracellular messengers, including diacylglicerol and AA 

[42, 50, 64].  

Endothelial TRP channels (19 different TRP members) regulate angiogenesis, 

vascular tone and permeability, EC proliferation, motility and differentiation. Moreover they 

are involved in the progression of a number of human cardiovascular diseases [24, 41, 56, 

58, 60, 61, 63, 65-82]. 

Beside TRPs, other channels play a role in proangiogenic signalling. Orai1 and 

Stim1, the components of the so-called calcium release activated currents (CRAC) 

channels, have been proposed to mediate VEGF-mediated SOCE in HUVECs and in vivo 

[39, 83]. In addition to their activity on mature ECs, Both TRPs and Orai1 are components 

of SOCE in endothelial progenitor cells (EPCs) that concur to neovascularization in tumors 

[83, 84].  
 

 
 
 

 
CALCIUM CHANNELS BLOCKERS 

 

Several Ca2+ channel blockers are available, with different chemical structure and 

variable selectivity and specificity [5, 6, 24, 25, 41, 72-82, 85-87]. Both voltage-dependent 

and independent Ca2+ channels are competitively blocked by inorganic ions, such as 

divalent transition ions (Ni2+, Cd2+, Co2+) and lanthanides (La3+, Gd3+). The use of this ions 

in clinical protocols is severely limited by their toxicity, and, at least in some cases, by their 

aspecificity.  
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A number of organic compounds are known to interfere with endothelial Ca2+ 

channels and angiogenic process [88] (figure 1). 

CAI. Carboxyamidotriazole (CAI, L651582, NSC 609974) is a synthetic Ca2+ influx blocker, 

extensively associated with inhibitory effects on cell proliferation [89-98]. The 

antiproliferative effects of CAI have been ascribed to its ability to inhibit intracellular 

pathways involving phospholipase-Cγ, InsP3 and arachidonic acid release, as well as to 

block Ca2+ channels. CAI inhibits proliferation and invasive properties of several tumor cell 

lines in vitro, including prostate, glioblastoma, hepatoma, small cell lung and breast-

derived cell lines. It also significantly reduces proliferation of several types of ECs 

(HUVECs, HAECs, BAECs) and affects angiogenesis induced in vitro by VEGF. The effect 

on angiogenesis is mediated by the block of calcium-mediated nitric oxide synthase-

vascular endothelial growth factor pathway. In HUVECs, a reduction of NO release was 

observed, while no significant effect on VEGFR, PLCγ, ERK1/2, NFAT activities was 

detected, supporting the high specificity of the drug. In BAECs, CAI partially inhibits 

calcium entry activated by AA, critically involved in the control of proliferation. Thus, the 

use of calcium channel inhibitors, at least in some cell types including endothelial and 

smooth muscle cells, suggests a role for NO and AA in the control of cell proliferation and 

secondarily of physiopathological processes (see below): however, the insurgence of 

complex feedbacks of AA and NO on calcium homeostasis renders the experimental data 

difficult to be clearly interpreted. 

On ECs, CAI-sensitive Ca2+ influx has been correlated to cell adhesion, spreading, 

proteolysis and migration, all processes involved in tumor invasion. Endothelial cell 

spreading on type IV collagen, but not on type I, is specifically regulated by CAI-sensitive 

Ca2+ influx, and the expression of metalloproteinase-2 is modulated by Ca2+ influx and 

down regulated by CAI. Inhibition of angiogenesis and metastasis has been detected in in 

vivo studies on several types of solid tumors. Administration of CAI, also in combination 
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with other drugs, in preclinical and clinical investigations stabilized solid tumors including 

carcinomas and melanomas. 

Imidazole derivatives. Imidazole derivatives, such as clotrimazole, econazole, 

miconazole, ketoconazole, are antimycotic drugs widely used for the treatment of yeast 

infections [5, 99]. Imidazole antimycotics are potent inhibitors of many mammalian 

cytochrome P450-dependent reactions. Secondary to their effects on cytochrome P450 

activity, they have also been extensively used as non-specific blockers of Ca2+ influx. 

Moreover, other effects on Ca2+ homeostasis have been described: miconazole, 

clotrimazole and econazole, in the µM range, promote Ca2+ entry in canine kidney cells; 

clotrimazole inhibits the activity of the sarcoplasmic reticulum Ca2+ pump in rabbit 

cardiomyocytes. Notably, some imidazole derivatives have been shown to affect the 

activity of kinases strongly involved in mitogen-induced intracellular signalling. The 

compound SK&F 96365 is widely used, and it is commonly suggested to act on TRPC 

channels [100]. However, it has been in turn classified as a specific blocker of SOCs, 

NSOCs, or as a non-specific blocker, acting also on VOCs. Moreover, other aspecific 

effects have been reported, both of activation and block of other types of channels. The 

isoquinoline derivative LOE-908 is an inhibitor of SOCE and NSOCE that interferes with 

endothelial permeability. It has been used as TRPC inhibitor [88, 100]. 

Calcium Trifluoroacetate. A recent report described the effects of Calcium 

Trifluoroacetate, Ca(TFA)2, a complex, poorly dissociated salt with low toxicity [101]. 

Ca(TFA)2 inhibits VEGF-induced ECs proliferation in vitro and angiogenesis in vivo. 

Interestingly, it triggers [Ca]i signals in HMECs preventing [Ca]i signaling induced by 

VEGF [102]. The detailed mechanism of through which Ca(TFA)2 reduces the efficiency of 

signal transduction triggered by the growth factor has not been investigated. It could be 

able to activate calcium-permeable channels, as well as to regulate calcium extrusion 

systems and potassium channels.  



 7 

CALCIUM SIGNALS RELATED TO ANGIOGENESIS 

 

Proangiogenic factors. Most angiogenic factors (FGFs, EGF, PDGF, VEGFs, IGF-I), 

exert their effect by the interaction with intrinsic tyrosine kinase receptors (RTKs); 

cytokines (such as interleukins, ILs) bind to receptors associated with cytosolic TKs, while 

other growth factors (such as bradikinin, ATP, oxytocin, colecystokinin, many 

neuropeptides) act via G-protein-coupled receptors (GPCRs) [6, 10, 103-111]. While each 

of these classes has its peculiarities, and involves specific cascades of intracellular events, 

the distinction is actually not so sharp, since in many instances crosstalks between 

different pathways have been described and may represent a general and physiological 

process. Moreover, a high degree of  convergence on the same effector (a channel or an 

enzyme) is quite usual, suggesting that some signalling modules (among them calcium 

signals) are well conserved and are employed by different agonists in different contexts; 

this finding prompts another question, i.e. how such an interwoven web of signals can be 

reconciled with the evidence that different factors can exert specific and unique effects on 

the same cells (figure 2).  

 Calcium rises activated upon membrane receptor recruitment have been 

detected in virtually every type of normal and tumor-derived cell lines. Cai signals are very 

early events, starting typically after a delay of seconds from the agonist exposure. On the 

basis of the time course, we can distinguish four types of Cai increases: a single spike 

usually due to release from intracellular stores; a slower and more persistent Ca2+  signal 

dependent on Ca2+  entry from the extracellular medium; a biphasic Cai elevation resulting 

from the combination of the two mechanisms; finally, Cai oscillations. 

In particular, a striking feature of proangiogenic Cai signalling is its heterogeneity. Both 

amplitude and time course of the response is highly variable from cell to cell. This 

observation can be ascribed to the differential expression of the receptors, the Ca2+ 
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channels, or the intracellular machinery leading to the response. Vascular endothelium is a 

heterogeneous tissue: macro- and microvascular EC lines, as well as ECs obtained from 

different tissues, display biochemical and functional differences (see also concluding 

remarks). 

Angiogenic inhibitors: Angiostatin and Endostatin. A number of endogenous 

inhibitors of angiogenesis are associated with tumors: the best known are angiostatin and 

endostatin [112-114]. Angiostatins are constituted by the first three, four, or five kringle 

domains of the plasminogen molecule: they are released by matrix metalloproteases 

secreted by tumor-infiltrating macrophages . Endostatin is a 20 kDa C-terminal fragment of 

collagen XVIII, probably generated by proteases and elastates activity [113, 115-117]. 

Endostatin and angiostatin inhibit EC migration and proliferation, and both induce EC 

apoptosis. Interestingly the antiproliferative effects of angiostatin seem specific for ECs 

while other cell types are not affected. Even if some studies have been performed by the 

analysis of acute intracellular effects of these peptides, several aspects of their 

mechanisms of action (including the putative membrane receptors) are unknown [112, 

114, 115]. Cai signalling related to angiostatin and endostatin stimulation has been 

described in BAECs, HMECs, and CPAECs [117]. The response is dependent on INSP3 

release following PLC activation and is composed by an initial release from intracellular 

stores followed by a prolonged Ca2+ entry. Another interesting observation is that 

prolonged exposure to endostatin attenuates acute calcium signalling in response to 

subsequent treatment with VEGF and FGF. Kringle domains of urokinase, another 

antiangiogenic endogenous factor, are also able to promote calcium increases in HUVECs 

but not in other cell types. 

 
ARACHIDONIC ACID, NITRIC OXIDE AND Ca2+  
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Arachidonic acid metabolism and Ca2+ 

In resting cells, AA is stored within the cell membrane, esterified to glycerol in 

phospholipids. Three enzymes (the phospholipases A2, C and D), with different sites of 

attack on the phospholipid backbone, mediate the deacylation reaction that releases the 

fatty acid  [5, 51, 99]. While PLA2 releases arachidonate in a single-step reaction, PLC 

and phospholipase D (PLD) do not produce AA directly; rather, they generate lipid 

products containing arachidonate, respectively DAG and phosphatidic acid; the latter can 

be metabolized to DAG by phosphatidic acid phosphatase (PA-PH). From DAG, AA can 

be subsequently released by diacylglycerol lipase (DAG lipase) .  

In mammalian cells, PLA2 is present in several isoforms, classified in 11 groups differing in 

structure, intracellular localization, regulation, calcium dependence and pharmacological 

inhibition [118-124]. One of them is the secretory PLA2 (sPLA2), a low molecular weight 

enzyme (14 kDa), whose activity is dependent on high calcium concentration (in the 

millimolar range); the cytosolic PLA2 (cPLA2, 85 kDa) is the form that has been 

investigated more extensively and is the enzyme stimulated mainly by growth factors 

through a MAPK-dependent phosphorylation on Ser-505. Its activation requires also a 

translocation to the membrane, in order to interact with its substrate, in a calcium-

dependent fashion, at the physiological Ca2+ levels reached after agonist stimulation. 

Another form of PLA2 (iPLA2) is Ca2+-independent and its functional roles are not well 

characterized; recently, in a colon carcinoma cell line (Caco-2 cells), evidence has been 

provided for its involvement in serum-induced AA release and cell proliferation. 

In vascular ECs, bFGF receptor activation leads to the recruitment of several 

adapter proteins (FRS2, Grb2) followed by the indirect activation of ras and the mitogen 

activated protein kinase (MAPK) cascade. MAPK triggers a series of downstream events, 

including the activation of phospholipase A2 (PLA2): this enzyme in turn catalyzes the 

hydrolysis of phospholipids at the sn-2 position, where arachidonic acid (AA) is acetylated.  
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AA metabolites and angiogenesis 

Once released, free AA has different potential fates: direct regulation of several 

target proteins (ion channels, enzymes), diffusion outside the cell, reincorporation into 

phospholipids and metabolism [122, 125]. Metabolism of AA is carried out by three 

enzyme families: cyclooxygenases (COX), which generate prostaglandins, prostacyclins 

and thromboxanes, lipoxygenases (LOX), that produce leukotrienes, and cytocrome P450 

monooxygenases, yielding a variety of epoxyeicosatrienoic and 

hydroperoxyeicosatetraenoic acids.  All these compounds are collectively called 

eicosanoids, and act as autocrine or paracrine regulators of a variety of functions, 

particularly in inflammatory processes. Notably, several lines of evidence suggest their 

involvement in the control of EC proliferation and angiogenesis progression. In ECs from 

bovine adrenal cortex capillaries, AA release and the LOX pathway play a critical role in 

vascular cell proliferation induced by bFGF, PDGF and serum. In ECs isolated from bovine 

aorta, cPLA2 is activated by bFGF through p42 MAPK-dependent phosphorylation, 

triggering the release of AA. Moreover, in the same cell type, bFGF is a potent stimulator 

of proliferation through the LOX pathway of AA metabolism. Therefore, in general, LOX 

metabolites display mitogenic activity on ECs, while eicosanoids produced by the 

cyclooxygenase pathway are considered to be predominantly involved in the stimulation of 

migration. Some of the pathways cited above lead to other well known regulators of 

calcium-permeable channels, such as diacylglicerol (DAG) and InsP3. 

AA and Ca2+ 

AA itself and some of its metabolites are able to induce Cai increases in ECs. The 

direct effect of AA, independent on its metabolites, has been revealed via two major 

strategies: the pharmacological inhibition of COX, LOX and P450 MO (using indomethacin, 

NDGA, econazole derivatives and other compounds, some of which highly aspecific) or 

the use of ETYA, an AA analogue not metabolized by the enzymes cited above, able to 
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mimic at least partially AA-dependent Ca2+ entry. In bovine aortic ECs (BAECs), human 

microvascular ECs, and tumor-derived human ECs (TECs, see below), AA induces a 

sustained NSOCE. Calcium entry is due to different Ca2+ channels, including TRPs, and 

regulates EC proliferation and migration. In the same cells, NSOCE is also activated by 

angiogenic factors (bFGF and VEGF) [42, 44, 45, 47-49, 51, 52, 126-128].  

 

Nitric oxide metabolism and calcium 

NO and angiogenesis 

Several lines of evidence point to a relationship between NO release and 

angiogenesis progression [129, 130]. However, the selective role of NO in the different 

steps of endothelial biochemical modifications during angiogenesis is debated. Many 

angiogenic factors increase the expression of endothelial NO synthase (eNOS) and 

stimulate the release of endothelium-derived NO. VEGF augments the endothelial 

expression of NOS, and stimulates the biosynthesis of NO from cultured human umbilical 

venous ECs and vascular segments of rabbit thoracic aorta. Similarly, transforming growth 

factor beta (TGFß) or bFGF trigger NO release in ECs. 

A number of different approaches show the global involvement of NO on angiogenesis 

[129-136]. Stimulation of human umbilical venous ECs in a three-dimensional gel with 

bFGF or VEGF triggers NO production and let them to form capillary-like structures. This 

process is abolished by the NOS antagonist Nw-nitro-l-arginine methylester (l-NAME). The 

same effect of L-NAME is observed in the rabbit cornea, another model of angiogenesis. 

NO appears to affect more than one step of angiogenesis process, acting as a freely 

diffusible pleiotropic factor on different cell types: in particular, this ability is clearly exerted 

on endothelial and smooth muscle cells. NO is an endothelial survival factor, inhibiting 

apoptosis. It increases proliferation on some EC types and reduces it in others. NO also 

promotes endothelial migration, possibly via the activation of podokinesis. In addition, NO 
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enhances matrix–endothelial cell interaction by inducing the expression of αvβ3 and by 

increasing disruption of the extracellular matrix via the bFGF-induced up regulation of 

urokinase-type plasminogen activator. Intriguing evidences point to the well known ability 

of NO to act as vasodilator: increased flow in the skeletal microcirculation has been 

observed to trigger endothelial cell proliferation and it is therefore possible that in addition 

to its direct effects on endothelial cell proliferation, NO may influence endothelial growth 

indirectly by increasing blood flow locally. Detailed mechanisms underlying this process 

are not known, but the effect of NO on endothelial mechanically gated calcium-permeable 

channels activated by shear stress could be a critical route. Finally, it should be noted that 

NO can induce the synthesis and release of VEGF from vascular cells, giving rise to a 

positive feedback mechanism. 

NO and Ca2+ 

NO release is controlled by calcium elevation, due to eNOS calcium-sensitivity 

Accordingly to its plasmamembrane association, eNOS has been proposed to be 

preferentially recruited by calcium entry more than by calcium release from intracellular 

stores in bovine aortic ECs. Moreover, prolonged capacitative calcium entry strongly 

activates eNOS. On the other hand, eNOS can be activated by calcium-independent 

additional mechanisms, such as PI3K-Akt signalling. 

Nitric oxide affects endothelial calcium homeostasis in different ways [48, 49, 132]. 

Flow induced calcium entry, mediated by mechanically-gated calcium-permeable 

channels, is sensitive to a protein kinase G-activated conductance in rat aortic ECs. In 

porcine pulmonary artery ECs (PAECs) NO upregulates the expression of cyclic nucleotide 

gated channels and activate a cGMP-independent calcium entry. Moreover, in calf 

pulmonary artery ECs (CPAECs), NO inhibits CCE and enhances endoplasmic reticulum 

uptake of calcium. In these reports, NO is not explicitly associated with cell proliferation: 

nevertheless, due to the ability of several mitogens to release this messenger, it could play 
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a critical role in the control of calcium signals related to proliferative processes. 

Interestingly, NO has been recently suggested as a mediator of AA-induced calcium entry 

in smooth muscle cells and isolated mouse parotid cells. 

Notably the pathways leading to proangiogenic Cai increase are Ca2+-dependent: some 

members of the phospholipase A2 (PLA2) (that release AA), PLC (releasing DAG and 

InsP3), NOS and TK families are calcium-regulated. This may establish a non-linear 

positive loop contributing to the complexity of the signal. 

 

SPECIFICITY OF CALCIUM SIGNALLING 

 

Spatial dynamics of calcium signals: from elementary to global events 

Technical improvements during the last decades revealed the existence of localized 

Cai signals (microdomains called blips, puffs, quarks) in different cell types, including ECs 

[48, 137-146]. When diffusional and regenerative mechanisms are triggered, these 

elementary events evolve to global Cai waves involving all the cell volume, including the 

nucleus. Calcium microdomains have been detected in several regions: near the 

plasmamembrane Ca2+ channels and close to ER releasing sites. Such signals can remain 

localized and activate and/or recruit effectors in the vicinity. In bovine vascular ECs, focal 

ATP stimulation results in spatially restricted Ca2+ release and SOCE. Mitochondria have 

been shown to play a critical role in the local regulation of capacitative Ca2+ entry and 

store refilling in HUVECs. Caveolae, special membrane microdomains, may play a 

relevant role in controlling the spatial and temporal pattern of Cai signalling. Endothelial 

caveolae include several components of intracellular signalling such as Ca2+ pumps, InsP3 

receptor-like proteins, eNOS, PLC, PKC, and both GPCR and RTKs. 

Temporal dynamics of calcium signals and gene expression   
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Intracellular calcium signals trigger arrays of both rapid and sustained events, 

respectively ranging in seconds/minutes and hours/days. These responses are highly 

variable from a cell type to another. Moreover, single cell analysis points to the existence 

of a variability also in the same cell population, depending on quali-quantitative differential 

expression of receptors, signalling molecules, Ca2+ channels and other elements of 

intracellular signalling. 

The detailed mechanisms underlying the complex relationship between Ca2+ signals 

with different time courses and gene activation are only partially known [147]. In T and B 

lymphocytes maturation and activation, the induction of a small transient spike due to Ca2+ 

release from internal stores is sufficient to activate a specific pattern of signalling 

molecules and transcription factors such as NF-kB and JNK [148-153]. However this brief 

calcium event fails to activate other transcription factors, notably NFAT. In resting cells the 

phosphorylated form of this protein is located in the cytosol: after stimulation, it is 

dephosphorylated by the Ca2+-dependent phosphatase calcineurin and translocates in the 

nucleus. As a result, only a long lasting Cai increase, mediated by Ca2+ entry, is able to 

sustain NFAT activation. DNA microarray analysis on T lymphocytes confirms these 

evidence providing further informations: Ca2+-dependent signalling mediates both gene 

induction and gene repression by integration of inputs from calcium store depletion, Ca2+ 

entry, calcineurin activation and other downstream pathways. Some authors suggest an 

opposite role of CREB and NFAT transcription factors in the control of cell growth and 

proliferation. Even if these observations have been provided on a particular and highly 

specialized cell type, they may be useful as a working hypothesis on ECs. A relevant goal 

could be to identify the role of Cai signals in the switch between the different events 

involving ECs during angiogenesis: proliferation, migration and reorganization in a new 

vessel.
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CURRENT AND FUTURE DEVELOPMENTS 

 

Several independent lines of evidences suggest that endothelial calcium signals 

play a role in physiological and pathological vascularization. In particular, Ca2+ entry 

mediated by proangiogenic Ca2+-permeable channels regulates endothelial migration and 

proliferation. For these reasons, this event could be a target for the development of anti-

cancer approaches aimed to inhibit tumor vascularization. However, despite the discovery 

of several natural or synthetic Ca2+  channels blockers, some relevant concerns limit their 

therapeutical applications. Firstly, a great amount of Ca2+ channel types are involved, 

activated or modulated by proangiogenic factors. In addition, while the same intracellular 

messenger can modulate different Ca2+ channels, some proangiogenic Ca2+ channels (i.e. 

TRPs) are co-regulated by a variety of intracellular pathways. Finally, the pattern of 

endothelial Ca2+ channels and their functional roles are strictly dependent on the tissue-

specific microenvironment. This great variability has been well established for normal 

tissues, and particularly evident between macro- and microvasculature. More recently, this 

observation was extended to ECs obtained from human tumoral tissues. 

 Tumor neovascularization can be achieved by the recruitment of cell types other than 

ECs, including tumor cells, inflammatory cells and endothelial precursors, giving rise to 

very peculiar blood vessels [11, 104]. Tumor-derived human ECs (TECs) differ from 

normal ones for their functional behaviour and intracellular signalling [154, 155]. In 

particular, breast carcinoma- derived human ECs are more responsive to proangiogenic 

stimula in terms of calcium signals. The expression and functional role of some TRPs is 

altered [6, 42, 44, 45, 47, 128, 156-162].  

A broad proteomic approach, combined to high-throughput functional screening 

assays, would be required to provide a more detailed information on the expression and 

regulation of Ca2+ channels involved in vascularization in health and disease. 
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Figure Legends 
 
Figure 1 
Structure of some widely used blockers of proangiogenic Ca2+ entry. 
Carboxyamidotriazole (CAI), Calciumtrifluoroacetate (Ca(TFA)2), SKF (SK&F 96365). 
 
Figure 2 
Interplay among AA, NO and Ca2+ in endothelial cells. 
Tyrosine kinase receptors (RTKs), phospholipase D (PLD), phospholipase C (PLC), 
phospholipase A2 (PLA2), phosphatidic acid phosphatase (PA-PH), diacylglycerol lipase 
(DAG lipase), mitogen activated protein kinase (MAPK), cyclooxygenases (COX), 
lipoxygenases (LOX), cytocrome P450 monooxygenases (P450-MO), Guanylyl Cyclase 
(GC), endothelial Nitric Oxide Synthase (eNOS), proteine kinase A (PKA), cytosolic free 
calcium concentration ((Ca)i). 
Dashed lines show the feedback effects of Ca2+ on intracellular signalling. 
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