
11 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Core Calculus of Classes and Mixins

Publisher:

Published version:

DOI:10.1007/3-540-48743-3_3

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer-Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/110852 since 2015-10-12T09:03:29Z

A Core Calculus of Classes and Mixins

Viviana Bono�� Amit Patel�� and Vitaly Shmatikov�

� Dipartimento di Informatica dell�Universit�a di Torino� C�so Svizzera ����
�	�
� Torino� Italy� bono�di�unito�it

�currently at the School of Computer Science� The University of Birmingham�
Birmingham B�� TT� United Kingdom� v�bono�cs�bham�ac�uk�

� Computer Science Department� Stanford University�
Stanford� CA �
�	���	
�� U�S�A�� famitp�shmatg�cs�stanford�edu

Abstract� We develop an imperative calculus that provides a formal
model for both single and mixin inheritance� By introducing classes and
mixins as the basic object�oriented constructs in a ��calculus with records
and references� we obtain a system with an intuitive operational seman�
tics� New classes are produced by applying mixins to superclasses� Ob�
jects are represented by records and produced by instantiating classes�
The type system for objects uses only functional� record� and reference
types� and there is a clean separation between subtyping and inheritance�

Keywords� object�oriented language� mixin� class� inheritance�
calculus� operational semantics� type system�

� Introduction

Mixins �classes parameterized over superclasses� have become a focus of active
research both in the software engineering ���� ��� 	
� and programming lan�
guage design ���� �	� �� �
� �� communities� Mixin inheritance has been shown
to be an expressive alternative to multiple inheritance and a powerful tool for
implementing reusable class hierarchies� However� there has been a dearth of
formal calculi to provide a theoretical foundation for mixin inheritance and� in
particular� few attempts have been made to use mixins as the basic inheritance
construct in the core calculus� Although mixin inheritance is easy to formalize
in an untyped setting� static type checking of mixins at the time of declaration
�as opposed to the time of mixin use� is more di�cult� In addition� many ap�
proaches to mixins do not address the modular construction of objects� including
initialization of �elds�

While popular object�oriented languages such as C�� ��	� and Java ��� are
overwhelmingly class�based� most previous core calculi for object�oriented lan�
guages were based on objects� In our framework� classes and mixins are basic con�
structs� The decision to directly include classes in a core calculus re�ects many
years of struggle with object�based calculi� In simple terms� there is a fundamen�
tal con�ict between inheritance and subtyping of object types �	� ��� �� 	��� Our

calculus resolves this con�ict by supporting class inheritance without class sub�
typing and object subtyping without object extension� The separation between
inheritance �an operation associated with classes� and run�time manipulation of
objects allows us to represent objects by records and keep the type system for ob�
jects simple� involving only functional� record� and reference types� In particular�
we do not need polymorphic object types or recursive MyType�

An important advantage of our type system is that it gives types to mixin
declarations and mixin applications separately� The actual class to which the
mixin is applied may have a �richer� type than that expected by the mixin� For
example� it may have more methods� or the types of its methods may be subtypes
of those assumed when typing the mixin� This facilitates modular development
of class hierarchies� promotes reuse of mixins� and enables the programmer to
use a single mixin to add the same functionality to a wide variety of classes�
Name clashes between mixins and classes to which they are applied are detected
and resolved at the time of mixin application�

We discuss design motivations and tradeo�s� and give a brief overview of the
core calculus in section 	� We then present the syntax of the calculus �section ���
its operational semantics �section ��� and the type system �section
�� Finally� we
compare our calculus with other object�oriented calculi and indicate directions
for future research�

A simpler version of the calculus described in this paper was presented at
MFPS ��� ���� The calculus of ��� supports conventional single inheritance instead
of mixins�

� Design of the Core Calculus

In this section� we present our design motivations� discuss tradeo�s involved
to designing calculi for object�oriented languages� give a short overview of our
calculus� and present an example illustrating mixin usage�

��� Design Motivations

Our goal is to design a simple class�based calculus that correctly models the ba�
sic features of popular class�based languages and re�ects modular programming
techniques commonly employed by working programmers� Modular program de�
velopment in a class�based language involves minimizing code dependencies such
as those between a superclass and its subclasses� and between a class implementa�
tion and object users� Our calculus minimizes dependencies by directly support�
ing data encapsulation� mixin inheritance� structural subtyping� and modular
object creation�

Data encapsulation� We use the C�� terminology �private� protected� and public�
for levels of encapsulation� Unlike C�� and some approaches to encapsulation
in object calculi such as existential types� our levels of encapsulation describe
visibility� and not merely accessibility� For example� in our calculus even the
names of private items are invisible outside the class in which they are de�ned�

We believe that this is a better approach since no information about data rep�
resentation is revealed � not even the number and names of �elds� One of the
bene�ts of using visibility�based encapsulation is that no con�icts arise if both
the superclass and the subclass declare a private �eld of the same name� Among
other advantages� this allows the same mixin to be applied twice �see the example
in section 	����

Mixin inheritance� Amixin is a class de�nition parameterized over the superclass�
The decomposition of ordinary inheritance into mixins plus mixin application is
similar to the decomposition of let binding into functions plus function applica�
tion� A mixin can be viewed as a function that takes a class and derives a new
subclass from it� The same mixin can be applied to many classes� obtaining a
family of subclasses with the same set of methods added and�or replaced� By
providing an abstraction mechanism for inheritance� mixins remove the depen�
dency of the subclass on the superclass� enabling modular development of class
hierarchies � e�g�� a subclass can be implemented before its superclass has been
implemented� Mixin inheritance can be used to model single inheritance and
many common forms of multiple inheritance ���� ���

Mixins were �rst introduced in the Flavors system ���� and CLOS ����� al�
though as a programming idiom rather than a formal language construct� Our
calculus is an attempt to formalize mixins as the basic mechanism underlying
all inheritance� To ensure that mixin inheritance can be statically type checked�
our calculus employs constrained parameterization� From each mixin de�nition
the type system infers a constraint specifying to which classes the mixin may be
applied so that the resulting subclass is type�safe� The constraint includes both
positive �which methods the class must contain� and negative �which methods
the class may not contain� information� The actual class to which the mixin is
applied does not have to match the constraint exactly� It may have more meth�
ods than required by the positive part of the constraint� and the types of the
required methods may be di�erent from those speci�ed by the constraint as long
as the resulting subclass is type�safe�

We believe that new and rede�ned methods should be distinguished in the
mixin implementation� From the implementor�s viewpoint� a new method may
have arbitrary behavior� while the behavior of a rede�ned method must be �com�
patible� with that of the old method it replaces� Having this distinction in the
syntax of our calculus helps mixin implementors avoid unintentional rede�ni�
tions of superclass methods and facilitates generation of the mixin�s superclass
constraint �see section ��� It also helps resolve name clashes when the mixin is
applied� Suppose the mixin and the class to which it is applied both de�ne a
method with the same name� If the mixin method is marked as rede�ned� then it
is put in the resulting subclass �subject to type compatibility with the replaced
method�� If the mixin method is marked as new� the type system signals an
error�

Structural subtyping� As in most popular object�oriented languages� objects in
our calculus can only be created by instantiating a class� In contrast to C���
where an object�s type is related to the class from which it was instantiated

and subtyping relations apply only to object instantiated from the same class
hierarchy� we made a deliberate design decision to use structural subtyping in
order to remove the dependency of object users on class implementation� Objects
created from unrelated classes can be substituted for each other if their types
satisfy the subtyping relation�

Modular object construction� Class hierarchies in a well�designed object�oriented
program must not be fragile� if a superclass implementation changes but the
speci�cation remains intact� the implementors of subclasses should not have
to rewrite subclass implementations� This is only possible if object creation is
modular� In particular� a subclass implementation should not be responsible for
initializing inherited �elds when a new object is created� since some of the inher�
ited �elds may be private and thus invisible to the subclass� Also� the de�nitions
of inherited �elds may change when the class hierarchy changes� making the
subclass implementation invalid� Instead� the object construction system should
call a class constructor to provide initial values only for that class�s �elds� call
the superclass constructor to provide initial values for the superclass �elds� and
so on for each ancestor class� This approach is used in many object�oriented
programming languages� including C�� and Java�

Unlike many theoretical calculi for object�oriented languages� our calculus di�
rectly supports modular object construction� The mixin implementor only writes
the local constructor for his own mixin� Mixin applications are reduced to gen�
erator functions which call all constructors in the inheritance chain in correct
order� producing a fully initialized object �see section ���

��� Design Tradeo�s

In this section� we explain the design decisions and tradeo�s chosen in our calcu�
lus� Our goal was to sacri�ce as little expressive power as possible while keeping
the type system simple and free of complicated types such as polymorphic object
types and recursive MyType�

Classes� Even in purely object�based calculi� the con�ict between inheritance
and subtyping usually requires that two sorts of objects be distinguished �	���
�Prototype objects� do not support full subtyping but can be extended with
new methods and �elds and�or have their methods rede�ned� �Proper objects�
support both depth and width subtyping but are not extensible� Without this
distinction� special types with extra information are required to avoid adding
a method to an object in which a method with the same name is hidden as a
consequence of subtyping �e�g�� labeled types of ����� In our calculus� the class
construct plays the role of a �prototype� �extensible but not subtypable�� while
objects � represented by records of methods � are subtypable but not exten�
sible�

Objects� Records are an intuitive way to model objects since both are collec�
tions of name�value pairs� The records�as�objects approach was in fact developed
in the pioneering work on object�oriented calculi ����� in which inheritance was
modeled by record subtyping� Unlike records� however� object methods should

be able to modify �elds and invoke sibling methods �	��� To be capable of up�
dating the object�s internal state� methods must be functions of the host object
�self �� Therefore� objects must be recursive records� Moreover� self must be ap�
propriately updated when a method is inherited� since new methods and �elds
may have been added and�or old ones rede�ned in the new host object� In our
calculus� reduction rules produce class generators that are carefully designed so
that methods are given a �recursive� reference to self only after inheritance has
been resolved and all methods and �elds contained in the host object are known�

Object updates� If all object updates are imperative� self can be bound to the
host object when the object is instantiated from the class� We refer to this
approach as early self binding� Self then always refers to the same record� which
is modi�ed imperatively in place by the object�s methods� The main advantage of
early binding is that the �xed�point operator �which gives the object�s methods
reference to self � has to be applied only once� at the time of object instantiation�

If functional updates must be supported � which is� obviously� the case for
purely functional object calculi � early binding does not work �see� for example�
���� where early binding is called recursive semantics�� With functional updates�
each change in the object�s state creates a new object� If self in methods is bound
just once� at the time of object instantiation� it will refer to the old� incorrect
object and not to the new� updated one� Therefore� self has to be bound each
time a method is invoked� We refer to this approach as late self binding�

Object extension� Object extension in an object�based calculus is typically mod�
eled by an operation that extends objects by adding new methods to them�
There are two constraints on such an operation� �i� the type system must pre�
vent addition of a method to an object which already contains a method with
the same name� and �ii� since an object may be extended again after method
addition� the actual host object may be larger than the object to which the
method was originally added� The method body must behave correctly in any
extension of the original host object� therefore� it must have a polymorphic type
with respect to self � The ful�llment of the two constraints can be achieved� for
instance� via polymorphic types built on row schemes �
� that use kinds to keep
track of methods� presence�

Even more complicated is the case when object extension must be supported
in a functional calculus� In the functional case� all methods modifying an object
have self as their return type� Whenever an object is extended or has its meth�
ods rede�ned �overriden�� the type given to self in all inherited methods must
be updated to take into account new and�or rede�ned methods� Therefore� the
type system should include the notion of MyType �a�k�a� SelfType� so that the
inherited methods can be specialized properly� Support for MyType generally
leads to more complicated type systems� in which forms of recursive types are
required� This can be accomplished by using row variables combined with recur�
sive types �	�� 	�� 	��� match�bound type variables ���� ��� or by means of special
forms of second�order quanti�ers such as the Self quanti�er of ����

Tradeo�s� Our goal is to achieve a reasonable tradeo� between expressivity
and simplicity� We do not support functional updates because we believe that
imperative updates combined with early self binding provide such a tradeo��
Without functional updates� we can use early binding of self � Early binding
eliminates the main need for recursive object types� There is also no need for
polymorphic object types in our calculus since inheritance is modeled entirely at
the class level and there are no object extension operations� This choice allows us
to have a simple type system and a straightforward form of structural subtyping�
in contrast with the calculi that support MyType specialization �	�� ����

There are at least two possible drawbacks to our approach� Although methods
that return a modi�ed self can be modeled in our calculus as imperative methods
that modify the object and return nothing� methods that accept a MyType

argument cannot be simulated in our system without support for MyType� We
therefore have no support for binary methods of the form described in ��
��
Also� the type system of our calculus does not directly support implementation

types �i�e�� types that include information about the class from which the object
was instantiated and not just the object�s interface�� We believe that a form
of implementation types can be provided by extending our type system with
existential types�

��� Design of the Core Calculus

The two main concepts in object�oriented programming are objects and classes�
In our calculus� objects are records of methods� Methods are represented as
functions with a binding for self �the host record� and �eld �the private �eld��
Since records� functions� and ��binding are standard� we need not introduce
new operational semantics or type rules for objects� Instead� we introduce new
constructs and rules for mixins and classes only� The new constructs are� class
values �representing complete classes obtained as a result of mixin application��
mixin expressions �containing de�nitions of methods� �elds� and constructors��
and instantiation expressions �representing creation of objects from classes��

A class value is a tuple containing the generator function� the set of public
method names� and the set of protected method names� The generator produces
a function from self to a record of methods� When the class is instantiated�
the �xed�point operator is applied to the generator�s result to bind self in the
methods� bodies� creating a full��edged object�

Mixins � i�e�� classes parameterized over the superclass � are represented
by mixin expressions� Inheritance is modeled by the evaluation rule that applies
a mixin to a class value representing the superclass� producing a new class value�
The generator of the new class takes the record of superclass methods built by
the superclass generator and modi�es it by adding and�or replacing methods as
speci�ed by the mixin� Only class values can be instantiated� mixins are used
solely for building class hierarchies�

For simplicity� the core calculus supports only private �elds and public and
protected methods� Private methods can be modeled by private �elds with a
function type� public or protected �elds can be modeled by combining private

�elds with accessor methods� Instead of putting encapsulation levels into object
types� we express them using subtyping and binding� Protected methods are
treated in the same way as public methods except that they are excluded from
the type of the object returned to the user� Private �elds are not listed in the
object type at all� but are instead bound in each method body� In the core
calculus each class has exactly one private �eld� which may have a record type�
Each method body takes the class�s private �eld as a parameter�

��� An Example of Mixin Inheritance

Mixin inheritance can be a powerful tool for constructing class hierarchies� In
this section� we give a simple example that demonstrates how a mixin can be
implemented in our calculus and explain some of the uses of mixins� For read�
ability� the example uses functions with multiple arguments even though they
are not formalized explicitly in the calculus�

Mixin de�nition� Following is the de�nition of Encrypted mixin that implements
encryption functionality on top of any stream class� Note that the class to which
the mixin is applied may have more methods than expected by the mixin� For
example� Encrypted can be applied to Socket � Object where Object is the root
of all class hierarchies� even though Socket � Object has other methods besides
read and write�

let File � let Socket �
mixin mixin
method write � � � � method write � � � �
method read � � � � method read � � � �
� � � method hostname � � � �

end in method portnumber � � � �
� � �

end in

let Encrypted �
mixin
rede�ne write � � next� �key� � self � � data� next �encrypt�data� key���
rede�ne read � � next� �key� � self � � � decrypt�next ��� key��
constructor � �key� arg�� f�eldinit�key� superinit�argg�
protect ���

end in � � �

Mixin expressions contain new methods �marked by the method keyword�� re�
de�ned methods �rede�ne keyword�� and constructors� The names of protected
methods should be listed following the protect keyword� Instead of introducing
a special �eld construct� every mixin contains a single private �eld which is
��bound in each method body �� key� � � ���

Methods can access the host object through the self parameter� which is
��bound in each method body to avoid introducing special keywords� Rede�ned
methods can access the old method body inherited from the superclass via the

next parameter� Constructors are simply functions returning a record of two
components� The �eldinit value is used to initialize the private �eld� The su�

perinit value is passed as an argument to the superclass constructor�
From the de�nition of Encrypted� the type system infers the constraint that

must be satis�ed by any class to which Encrypted is applied� The class must
contain write and read methods whose types must be supertypes of those given
to write and read� respectively� in the de�nition of Encrypted�

Mixin usage� To create an encrypted stream class� one must apply the Encrypted
mixin to an existing stream class� In our calculus� the notation for applying mixin
M to class C isM �C� For example� Encrypted � FileStream is an encrypted �le
class� The power of mixins can be seen when we apply Encrypted to a family of
di�erent streams� For example� we can construct Encrypted � NetworkStream�
which is a class that encrypts data communicated over a network� In addition to
single inheritance� we can express many uses of multiple inheritance by applying
more than one mixin to a class� For example� PGPSign � UUEncode � Encrypt
� Compress � FileStream produces a class of �les that are compressed� then
encrypted� then uuencoded� then signed� In addition� mixins can be used for
forms of inheritance that are not possible in most single and multiple inheritance�
based systems� In the above example� the result of applying Encrypted to a
stream satis�es the constraint required by Encrypted itself� therefore� we can
apply Encrypted more than once� Encrypted � Encrypted � FileStream is a
class of �les that are encrypted twice� In our system� private �elds of classes do
not con�ict even if they have the same name� so each application of Encrypted
can have its own encryption key� Unlike most forms of multiple inheritance� it is
easy to specify the order and number of times the mixins are applied�

A note on an implementation� Our calculus uses structural object types that
retain no connection to the class from which the object was instantiated� Since
unrelated classes may use di�erent layouts for the method dictionary� the com�
piler cannot use the object�s static type to determine the exact position of a
method in the dictionary in order to optimize method lookup as is done in
C��� Adding mixins in this environment does not impose an extra overhead�

It is possible to support e�cient method lookup by introducing a separate
hierarchy of mixin interfaces similar to the one analyzed by Flatt et al� ��� and
requiring that the order of methods in a mixin�s dictionary match that given in
the interface implemented by the mixin� However� a separate interface hierarchy
would make the calculus signi�cantly more complicated�

� Syntax of the Core Calculus

The syntax of our calculus is fundamentally class�based� There are four expres�
sions involving classes� classval� mixin� � �mixin application�� and new� Class�
related expressions and values are treated as any other expression or value in
the calculus� They can be passed as arguments� put into data structures� and
so on� However� class values and object values are not intended to be written

Expressions� e � � � const j x j �x�e j e� e� j �x j ref j � j ��
j fxi � eig

i�I j e�x j H h�e j new e

j classvalhvg� �mi�
i�Meth � �p��

��Proti
j mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end

j e� � e�

Values� v � � � const j x j �x�e j �x j refj � j �� j �� v j fxi � vig
i�I

j classvalhvg � �mi�
i�Meth � �p��

��Proti
j mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end

Fig� �� Syntax of the core calculus

directly� instead� these expression forms are used only to de�ne the semantics of
programs� Class values can be created by mixin application� and object values
can be created by class instantiation�

Let Var be an enumerable set of variables �otherwise referred to as identi�
�ers�� and Const be a set of constants� ExpressionsE and values V �with V � E�
of the core calculus are as in Fig��� where const � Const � x� xi�mi�mj � Var �
�x is the �xed�point operator� ref� �� �� are operators�� fxi � eigi�I is a record�
e�x is the record selection operation� h is a set of pairs h � � � fhx� vi�g where
x � Var and v is a value ��rst components of the pairs are all distinct�� �mi�� �p��
are sets of identi�ers� and I� J�K�L�Meth�Prot �New �Redef � IN�

Our calculus takes a standard calculus of functions� records� and imperative
features and adds new constructs to support classes and mixins� We chose to
extend Reference ML ��
�� in which Wright and Felleisen analyze the operational
soundness of a version of ML with imperative features� Our calculus does not
include let expressions as primitives since we do not need polymorphism to model
our objects� We do rely on the Wright�Felleisen idea of store� which we call heap�
in order to evaluate imperative side e�ects�

The expression Hhx�� v�i � � � hxn� vni�e associates reference variables x�� � � � xn
with values v�� � � � � vn� H binds x�� � � � xn in v�� � � � � vn and in e� The set of pairs

� Introducing ref� �� �� as operators rather than standard forms such as refe� �e� ��e�e��
simpli�es the de�nition of evaluation contexts and proofs of properties� As noted in
�
��� this is just a syntactic convenience� as is the curried version of ���

h in the expression Hh�e represents the heap� where the results of evaluating
imperative subexpressions of e are stored�

The intuitive meaning of the class�related expressions is as follows�

� classvalhvg � �mi�
i�Meth � �p��

��Proti is a class value� i�e�� the result of mixin
application� It is a triple� containing one function and two sets of variables�
The function vg is the generator for the class� The �mi� set contains the names
of all methods de�ned in the class� and the �p�� set contains the names of
protected methods�

� mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end
is a mixin� in which mj � vmj

are de�nitions of new methods� and mk � vmk

are method rede�nitions that will replace methods with the same name in
any class to which the mixin is applied� Each method body vmj�k

is a function
of self � which will be bound to the newly created object at instantiation time�
and of the private �eld� In method rede�nitions� vmk

is also a function of
next� which will be bound to the old� rede�ned method from the superclass�
The vc value in the constructor clause is a function that returns a record of
two components� When evaluating a mixin application� vc is used to build
the generator as described in section ��

� e� � e� is an application of mixin e� to class value e�� It produces a new class
value� Mixin application is the basic inheritance mechanism in our calculus�

� new e uses generator vg of the class value to which e evaluates to create a
function that returns a new object� as described in section ��

Programs and answers are de�ned as follows�

p � � � e where e is a closed expression
a � � � v j H h�v

Finally� we de�ne the root of the class hierarchy� class Object� as a prede�ned
class value�

Object
�
� classvalh � �� �fg� � �� � � i

The root class is necessary so that all other classes can be treated uniformly�
Intuitively� Object is the class whose object instances are empty objects� It is
the only class value that is not obtained as a result of mixin application� The
calculus can then be simpli�ed by assuming that any user�de�ned class that does
not need a superclass is obtained by applying a mixin containing all of the class�s
method de�nitions to Object�

Throughout this paper� we will use let x � e� in e� in terms and examples
as a more readable equivalent of ��x�e��e�� Also� we use unit as an abbreviation
for the empty record or type fg� instead of having a new unit value and type�
We will use the word �object� when the record in question represents an object�
To avoid name capture� we apply ��conversion to binders � and H�

� Operational Semantics

const v � ��const � v� if ��const � v� is de�ned ���
��x�e� v � �v�x� e ��v�

�x ��x�e�� ��x ��x�e��x�e ��x�
f� � � � x � v� � � �g�x � v �select�

refv � Hhx� vi�x �ref�
Hhx� vih�R��x� � Hhx� vih�R�v� �deref�

Hhx� vih�R���xv�� � Hhx� v�ih�R�v�� �assign�
R�H h�e� � H h�R�e�� R �� � � �lift�

H h�H h��e � H h h��e �merge�
new classvalhg�M�Pi � �v�SubM�P�M��x �g v�� �new�

�
BBBBB�

mixin
method mj � vmj

�
rede�ne mk � vmk

�
protect �p���
constructor c�
end

�
CCCCCA

j � New�

k � Redef �

� � Prot

� classvalhg�M�Pi �
classvalhGen � �mj � �M� �p�� � Pi

�mixin�

if �mj � �M � �� �mk� �M� and �p�� � �mj � �M�Gen is de�ned below

Fig� �� Reduction Rules

The operational semantics for our calculus extends that of Reference ML
��
�� Reduction rules are given in Fig�	� where R are reduction contexts �		� 	��
���� Expression Gen is de�ned below� Relation �� is the re�exive� transitive�
contextual closure of �� with respect to contexts C� as de�ned �in a standard
way� in appendix A�

Reduction contexts are necessary to provide a minimal relative linear order
among the creation� dereferencing and updating of heap locations� since side
e�ects need to be evaluated in a deterministic order� Reduction contexts R are
de�ned as follows�

R � � � � � j R e j v R j R�x j new R j R � e j v � R

j fm� � v�� � � � �mi�� � vi���mi � R�mi�� � ei��� � � � �mn � eng
��i�n

To abstract from a precise set of constants� we only assume the existence of
a partial function � � Const � ClosedVal � ClosedVal that interprets the
application of functional constants to closed values and yields closed values�
See section
 for the � typability condition�

��v� and �select� rules are standard�

�ref�� �deref� and �assign� rules evaluate imperative expressions following the
linear order given by the reduction context R and acting on the heap� They are

formulated after ��
�� �ref� generates a new heap location where the value v is
stored� �deref� retrieves the contents of the location x� �assign� changes the value
stored in a heap location�

�lift� and �merge� rules combine inner local heaps with outer ones whenever a
dereference operator or an assignment operator cannot �nd the needed location
in the closest local heap�

�mixin� rule evaluates mixin application expressions which represent inheritance
in our calculus� A mixin is applied to a superclass value classvalhg�M�Pi� M is
a set of all method names de�ned in the superclass� P is an annotation listing
the names of protected methods in the superclass� The resulting class value is
classvalhGen � �mj � � M� �p�� � Pi where Gen is the generator function de�ned
below� �mj � �M is the set of all method names� and �p�� � P is an annotation
listing protected method names� Using a class generator delays full inheritance
resolution until object instantiation time when self becomes available�

Gen is the class generator� It takes a single argument x which is used by the
constructor subexpression c to compute the initial value for the �eld of the new
object� and returns a function from self to a record of methods� When the �xed�
point operator is applied to the function returned by the generator� it produces
a recursive record of methods representing a new object �see the �new� rule��

Gen
�
� �x��self �

let t � c�x� in
let supergen � g�t�superinit� in��
�
mj � �y�vmj

t��eldinit self y
mk � �y�vmk

�supergen self ��mk t��eldinit self y
mi � �y� �supergen self ��mi y

��
	

mi � M n �mk�

In the mixin expression� the constructor subexpression c is a function of one
argument which returns a record of two components� one is the initialization ex�
pression for the �eld ��eldinit�� the other is the superclass generator�s argument
�superinit�� Gen �rst calls c�x� to compute the initial value of the �eld and the
value to be passed to the superclass generator g� Gen then calls the superclass
generator g� passing argument t�superinit� to obtain a function supergen from
self to a record of superclass methods�

Finally� Gen builds a function from self that returns a record containing all

methods � from both the mixin and the superclass� To understand how the
record is created� recall that method bodies take parameters �eld� self � and� if
it�s a rede�nition� next� Methods mj are the new mixin methods� they appear
for the �rst time in the current mixin expression� Gen has to bind �eld and self

for them� Methods mi � M n �mk� are the inherited superclass methods� they
are taken intact from the superclass�s object �supergen self �� Methods mk are
rede�ned in the mixin� Their bodies can refer to the old methods through the
next parameter� which is bound to �supergen self ��mi by Gen� They also receive
a binding for �eld and self � For all three sorts of methods� the method bodies
are wrapped inside �y� � � � y to delay evaluation in our call�by�value calculus�

��x� rule is standard�

�new� rule builds a function that can create a new object� The resulting function
can be thought of as the composition of three functions� Sub � �x � g� Given an
argument v� it will apply generator g to argument v� creating a function from
self to a record of methods� Then the �xed�point operator �x �following �	��� is
applied to bind self in method bodies and create a recursive record� Finally� we
apply SubM�P�M� a coercion function from records to records that hides all
components which are in M� P but not in M� The resulting record contains
only public methods� and can be returned to the user as a fully formed object�

� Type System

Our types are standard and the typing rules are fairly straightforward� The com�
plexity of typing object�oriented programs in our system is limited exclusively to
classes and mixins� Method selection� which is the only operation on objects in
our calculus� is typed as ordinary record component selection� Since methods are
typed as ordinary functions� method invocation is simply a function application�

Types are as follows�

� � � � 	 j �� � �� j � ref j fxi � �igi�I

j classh�� fmi��ig� �p��ii�I���L

j mixinh��� ��� fmj ��jg� fmk��kg� �p��ij�J�k�K���L

where 	 is a constant type� � is the functional type operator� � ref is the type of
locations containing a value of type � � fxi��igi�I is a record type� and I� J�K�L �
IN� In class types� fmi � �ig is a record type and �p�� is a set of names� where
�p�� 	 �mi�� In mixin types� fmj � �jg� fmk � �kg are record types and �p�� is a set
of names� where �p�� 	 ��mj �� �mk��� Although record expressions and values are
ordered so that we can �x an order of evaluation� record types are unordered�
We also assume we have a function typeof from constant terms to types that
respects the following typability condition ��
�� for const � Const and value v�
if typeof �const� � � � � � and
 � v � � �� then ��const� v� is de�ned and

 � ��const� v� � � �

Our type system supports structural subtyping �the
� relation� along with
the subsumption rule �sub�� The subtyping rules are shown in appendix B� Since
subtyping on references is unsound and we wish to keep subtyping and inheri�
tance completely separate� we have only the basic subtyping rules for function
and record types� Subtyping only exists at the object level� and is not supported
for class or mixin types�

Typing environments are de�ned as follows�

� � � � � j �� x � � j �� 	�
� 	�

where x � Var � � is a well�formed type� 	�� 	� are constant types� and x� 	� ��
dom�� ��

� 	 g � � � fmi � 	ig
i�All � fmi � 	ig

i�All

� 	 classvalhg� �mi�
i�All � �p��

��Proti � classh�� fmi�	ig
i�All � �p��

��Proti
�class val�

� 	 e � classh�� fmi�	ig
i�All � �p��

��Proti

� 	 new e � � � fmj �	jg
j�AllnProt

�instantiate�

�New� For j
 New � � 	 vmj
�
 � � � 	�mj

�Redef� For k
 Redef � � 	 vmk
� 	�mk

�
 � � � 	�mk

�Constr� � 	 c � �d � f�eldinit �
� superinit � �bg

� 	

�
BBBBB�

mixin
method mj � vmj

�
rede�ne mk � vmk

�
protect �p���
constructor c�
end

�
CCCCCA

j � New

k � Redef

� � Prot

� mixinh�b� �d� fmi � 	
�
mi

�mk � 	
�
mk
g�

fmj � 	
�
mj

�mk � 	
�
mk
g� �p��i

�mixin�

where
� � fmi � 	

�
mi

�mj � 	
�
mj

�mk � 	
�
mk
g

�p�� � �mi� � �mj � � �mk�
mi� 	

�
mi

� 	�mk
are inferred from method bodies

� 	 e� �mixinh�b� �d� �Old� �New� Pdi
� 	 e� � classh�c� �b� Pbi
� 	 �d���b���Old
� 	 �b�� �c

� 	 e� � e� � classh�d� �d� Pb � Pdi
�mixin app�

where

�b � fmk � 	mk
�ml � 	ml

�mi � 	mi
g

�Old � fmi � 	
�
mi

�mk � 	
�
mk
g

�New � fmj � 	
�
mj

�mk � 	
�
mk
g

�d � fmi � 	mi
�mj � 	

�
mj

� mk � 	
�
mk

�ml � 	ml
g

Fig� �� Typing Rules for Class�Related Forms

Typing judgments are as follows�

� � ��
� �� �� is a subtype of ��
� � e � � e has type �

The set of typing rules for class�related forms is shown in Fig��� The remaining
rules are standard and can be found in appendix B�

�class val� rule types class values� A class value is composed of an expression
and two sets of method names� The expression g is the generator �see section ��
which produces a function that will later� at the time of new application� return
a real object� The type of g can be determined by examining the type of the
class value� classh� fmi��ig� �p��i� Generator g takes an argument of type and
returns a function that will return an object once the �xed�point operator is
applied� The return type of g is therefore � � �� where � represents the type of
self � fmi � �ig� This record type includes all methods� not only public methods�
When the �xed�point operator is applied� �x�gv� will have type � when v has
type �

�mixin� rule types mixin declarations� We describe it following the order of its
premises� Note that mixin methods make typing assumptions about methods
of the superclass to which the mixin will be applied� We refer to these types
as expected types since the actual superclass methods may have di�erent types�
The exact relationship between the types expected by the mixin and the actual
types of the superclass methods is formalized in rule �mixin app�� We mark types
that come from the superclass with � and those that will be changed or added
in the subclass with � �

� �New� The bodies of the new methods vmj
are typed with a function type�

The argument types are the type of the private �eld ��� and the type of self
���� We do not lose generality by assuming only one �eld per class since �
can be a tuple or record type� The return type is ��mj �

� �Redef� The bodies of the rede�ned methods vmk
are also typed with a

function type� The �rst argument type ��mk
is that of next� i�e�� the superclass

method with the same name �recall that the new body can refer to the old
body via next�� The meaning of � and � is the same as for the new methods�
It is not known at the time of mixin de�nition to which class the mixin will
be applied� so the actual type of the method replaced by mk may be di�erent
from the expected type ��mk �

� �Constr� The constructor expression c is a function that takes an argument
of type d and returns a record with two components� The component la�
belled �eldinit is the initialization expression for the private �eld� Clearly�
it has to have the same type � as that assumed for the �eld when typing
methods bodies� The component labeled superinit is the expression passed
as the parameter to the superclass generator� Its type b is inferred from
the constructor de�nition since the superclass is not available at the time of
mixin de�nition�

Both new and rede�ned methods in the mixin may call superclass methods
�i�e�� methods that are expected to be supported by any class to which the mixin
is applied�� We refer to these methods as mi� Their types �

�
mi are inferred from

the mixin de�nition�

The mixin is typed with a mixinh� � �i type� which encodes the following in�
formation about the mixin�

� b is the expected argument type of the superclass generator�

� d is the exact argument type of the mixin generator�

� fmi � �
�
mi �mk � �

�
mk
g are the expected types of the methods that must be

supported by any class to which the mixin is applied� Recall that mi are
the methods that are not rede�ned by the mixin but still expected to be
supported by the superclass since they are called by other mixin methods�
and ��mk

are the types assumed for the old bodies of the methods rede�ned
in the mixin�

� fmj ��
�
mj �mk ��

�
mk
g are the exact types of mixin methods �new and rede�ned�

respectively��

� �p�� is an annotation listing the names of all methods to be protected� both
new and rede�ned�

Type information contained in the mixinh� � �i type is used when typing mixin
application in rule �mixin app��

�mixin app� rule types mixin�based inheritance� In the rule de�nition� �b contains
the type signatures of all methods supported by the superclass to which the mixin
is applied� In particular� mk are the superclass methods rede�ned by the mixin�
mi are the superclass methods called by the mixin methods but not rede�ned�
and ml are the superclass methods not mentioned in the mixin de�nition at all�
Note that the superclass may have more methods than required by the mixin
constraint�

Type �d contains the signatures of all methods supported by the subclass
created as a result of mixin application� Methods mi�l are inherited directly from
the superclass� methods mk are rede�ned by the mixin� and methods mj are the
new methods added by the mixin� We are guaranteed that methods mj are not
present in the superclass by the construction of �b and �d� �d is de�ned so that it
contains all the labels of �b plus labels mj � Type �Old lists the �expected� types
of the superclass methods assumed when typing the mixin de�nition� Type �New
lists the exact types of the methods newly de�ned or rede�ned in the mixin�

The premises of the rule are as follows�

� mixinh� � �i and classh� � �i are the types of the mixin and the superclass� re�
spectively�

� The �d
��b constraint requires that the types of the methods rede�ned by
the mixin �mk� be subtypes of the superclass methods with the same name�
This ensures that all calls to the rede�ned methods in mi and ml �methods
inherited intact from the superclass� are type�safe�

� The �b
��Old constraint requires that the actual types of the superclass
methods mi and mk be subtypes of the expected types assumed when typing
the mixin de�nition�

� The b
� c constraint requires that the actual argument type of the super�
class generator be a supertype of the type assumed when typing the mixin
de�nition�

In the type of the class value created as a result of mixin application� �b is the
argument type of the generator� and �d �see above� is the type of objects that
will be instantiated from the class �except for the protected methods which are
included in �d but hidden in the instantiated objects�� In the resulting subclass
we protect all methods that are protected either in the superclass or in the mixin�

The �mixin app� rule also determines how name clashes between the mixin
and the superclass are handled� Suppose the superclass and the mixin contain a
method with the same name m� If m is a rede�ned method in the mixin �i�e��
m � �mk��� then it will replace the method from the superclass as long as its
type ��mk is a subtype of the replaced method�s type �mk

� This is checked by
the �d
��b premise� If m is a new method �i�e�� m � �mj ��� then the rule�s
premises will fail since a method that is considered new by the mixin appears in
the superclass �m � mj � �b�� and the type system will signal an error�

�instantiate� rule types the creation of a new object� The new e term is typed as
a function that takes the generator�s argument and returns a fully initialized ob�
ject� The object�s type contains only the public methods� the protected methods
are hidden�

The proof of soundness is omitted for lack of space� The complete meta�theory
may be found in ����

� Related Work

In the literature� there exists an extensive body of work on calculi for object�
oriented languages� Our calculus can be directly compared with the following
class�oriented calculi�

� In the simplest of Cook�s calculi �	��� objects are represented by records of
methods� and created by taking the �xed�point of the function representing
the class �constructor in Cook�s terminology�� Inheritance is modeled by
generating the subclass constructor from the superclass constructor� and self

is bound early� However� classes are not a basic construct� The calculus relies
on record concatenation operators� but typing issues associated with them
are not addressed�

� The closure semantics version of the �dynamic inheritance� language ana�
lyzed by Kamin and Reddy ��	� is similar to our calculus� The language is
class�based� and the semantics of inheritance is similar to our generators�
They also compare late and early self binding ��xed�point model and self�

application model in their terminology�� However� no type system is provided
and there is no discussion of object construction or method encapsulation�

� The calculus of Wand ���� is class�based� Classes are modeled as extensible
records� inheritance is record concatenation plus self update so that inher�
ited methods refer to the correct object� As in our calculus� objects are
records� self is bound early� and the new operation �called constructor� is
an application of the �xed�point operator� In contrast to our calculus� the
subclass must know and directly initialize the �elds of the superclass� There
is also no support for parameterized inheritance� Another solution� proposed
in ���� is to rename the superclass �elds� but this does not ensure consistent
initialization�

� TOOPL ���� is a calculus of classes and objects� MyType specialization is
used for inheritance� forcing late self binding �i�e�� self is bound each time
a method is invoked� and not just once when the object is created�� To en�
sure type safety when MyType appears in the method signature� there are
standard constraints on method subtyping� A related work is PolyTOIL
����� where inheritance is completely separated from subtyping� Inheritance
is based on matching� which is a relation between class interfaces that does
not require method types to follow the standard constraints on recursive
types� while object types employ standard subtyping� PolyTOIL also has
imperative updating of object �elds� but inheritance is still modeled with
MyType in order to support binary methods� The drawback is the complex�
ity of the type system� In ����� another language is presented� Loom� where
only matching is used and the type system is simpli�ed�

This paper is an attempt to built a simpler class�based calculus� The absence
ofMyType makes it weaker� but imperative updating appears su�cient to model
the desirable features that are needed in practice�

Other approaches to modeling classes can be found in object�based calculi�
where classes are not �rst�class expressions and have to be constructed from
more primitive building blocks�

� Abadi and Cardelli have proposed encoding classes in a pure object system
using records of pre�methods ���� Pre�methods can be thought of as functions
from self to method bodies or functions that are written as methods but
not yet installed in any object� The di�erence between the result of Gen
�see section � above� and a record of pre�methods is that the former is a
function from self to a record of methods while the latter is a record of
functions from self to methods� In the Abadi�Cardelli approach� a class is
an object that contains a record of pre�methods and a constructor function
used to package pre�methods into objects� The primary advantage of the
record�of�pre�methods encoding is that it does not require a complicated
form of objects� All that is needed is a way of forming an object from a
list of component de�nitions� However� this approach provides no language
support for classes� and imposes complicated constraints on the objects used
as classes to obey to some basic requirements for class constructs �see section
	 above and �	�� for a complete account��

� Another approach to modeling classes as objects is developed by Fisher �	��
in a functional setting� and by Bono and Fisher �
� in an imperative setting�

Classes are modeled as encapsulated extensible objects� Inheritance is then
modeled as the method addition operation on objects� which can be in one of
two states �	��� a prototype �can be extended but not subtyped� so prototype
objects are similar to classes�� and a �proper� object which is subtypable
but cannot be extended� A form of a bounded existential quanti�er is used
to �partially� abstract the class implementation when objects are in the
prototype state� While the system of �
� can model a form of mixins� our
calculus is simpler� more intuitive� and has encapsulation and object creation
semantics closer to those used by popular programming languages�

� Pierce and Turner ���� model classes as object�generating functions� They
interpret inheritance as modi�cation of the object�generating functions used
to model classes �existential models�� This encoding is somewhat cumber�
some� since it requires programmers to explicitly manipulate get and put

functions which intuitively convert the hidden state of superclass objects
into that of subclass objects� Hofmann and Pierce ���� introduce a re�ned
version of F�� that permits only positive subtyping� With this restriction�
get and put functions are both guaranteed to exist and hence may be han�
dled in a more automatic fashion in class encodings� In our calculus� instead
of encapsulation at the object type level� we use subtyping to hide protected
methods and ��binding to hide private �elds�

� The Hopkins Object Group has designed a type�safe class�based object�
oriented language with a rich feature set called I�Loop �	��� Their type
system is based on polymorphic recursively constrained types� for which
they have a sound type inferencing algorithm� The main advantage of this
approach is the extreme �exibility a�orded by recursively constrained types�
However� inferred types are large and di�cult to read�

Bruce et al� ���� show how the main approaches to modeling objects can be
seen in a uni�ed framework� The state of the art in modeling classes is not as
well established� We hope that this work might be a step in this direction�

To the best of our knowledge� there are not many formal settings in which
mixin�based inheritance is analyzed�

� Flatt et al� implement mixins in theMzScheme language �	
� and formalize
an extension of a subset of Java with mixins in ���� Their system supports
higher�order mixin composition� a hierarchy of named interface types� and
resolution of accidental name collisions� The collision resolution system al�
lows old and new method de�nitions to coexist� The two are distinguished
using the �view� of an object� which is carried with the object at run�time
and altered at each subsumption step� As a result� method lookup is sensitive
to the object�s history of subsumptions� In contrast to the system of ���� our
calculus is not based on any particular language� Our mixins are created and
manipulated as run�time values as opposed to static top�level declarations�
Mixin constraints prevent objects from having incompatible methods with
the same name� so method lookup is straightforward and does not depend on
the object�s subsumption history� Proper object initialization is guaranteed�

� Beta ���� replaces classes� procedures� functions� and types by a single ab�
straction mechanism called the pattern� Objects are created from the pat�
terns� and in addition to traditional objects as found in conventional object�
oriented languages� objects in Beta may also represent function activations�
exception occurrences� or concurrent processes� Patterns may be used as su�
perpatterns to other patterns in a manner similar to conventional inheritance�
Since patterns are a general concept� inheritance is available also for proce�
dures� functions� exceptions� coroutines� and processes� Virtual patterns are
similar to generic templates or parameterized classes with the additional
bene�t that the parameter may be restricted without actually instantiating
the template �this is similar to computing the mixin constraint without ac�
tually applying the mixin to a class�� Mixin inheritance is a partial case of
the very general pattern inheritance mechanism developed in Beta�

� OCAML ���� supports a very limited form of parameterized inheritance by
combining a module abstraction mechanism with classes that can inherit
across module boundaries� Because the exact module containing the super�
class may not be known when the subclass is de�ned� the same subclass can
be used with multiple superclass de�nitions� However� methods not men�
tioned in the superclass type become inaccessible� In the example of section
	��� this would mean that all methods that are present in the Socket �Object

class besides read and write are forgotten once Encrypted mixin is applied
to it�

� Ancona and Zucca �	� study a rigorous semantics foundations for mixins
independently from the notions of classes and objects� starting from an al�
gebraic setting for module composition� It may be possible to apply their
techniques to the study of the algebraic semantics of our calculus�

� Conclusions and Future Work

The main strengths of our calculus are its simplicity and its power in mod�
eling mixin inheritance� Both the operational semantics and the type system
are structured to combine new rules for class�based features �mixins� classes�
and instantiation� with standard rules for object�based features �represented by
records� functions� and assignable locations�� We also preserve such properties
as encapsulation �private �elds� protected methods� and modularity �minimized
dependencies of a subclass on superclasses� modular object creation� automatic
propagation of changes in the superclass to all subclasses�� All of these are de�
sirable features for a formalism used to model classes �	��� Our mixin construct
provides a formal model for a �exible inheritance mechanism� capable of express�
ing single inheritance� most uses of multiple inheritance� and also new uses of
inheritance such as applying the same mixin more than once�

Some of the design choices may appear debatable� e�g�� the decision not to
support super in the calculus� While a rede�ned method can refer to the old
method body via next� other methods have no way of calling it� This decision
was motivated mainly by our desire to support an e�cient implementation� and�

in fact� the calculus can be easily extended to support super by keeping a ref�
erence to the entire superclass object �supergen self � instead of selecting the
component being rede�ned �see section ��� Also debatable is the decision to sup�
port imperative instead of functional object updates� This choice was motivated
by our desire for simplicity and the relative complexity of supporting functional
update �e�g�� the need for MyType��

We believe that our calculus can be considered a step towards a better un�
derstanding of class�based languages� both because it shows how support for
modular programming techniques can be included in a sound calculus without
compromising its simplicity� and because it can serve as a starting point for more
foundational studies such as denotational semantics for the class and mixin con�
structs� Topics for future research include developing an e�cient implementation
of the core calculus and extending it to a full language� studying an extension of
the core calculus withML polymorphism in order to combine classes and objects
with the full power of ML type inference� combining existential types with our
simple object types to provide a form of implementation types� and expanding
our rules for mixins to account for higher�order mixins�

References

��� M� Abadi and L� Cardelli� A Theory of Objects� Springer�Verlag� �����
�� D� Ancona and E� Zucca� An algebraic approach to mixins and modularity�

In Proc� Algebraic and Logic Programming �ALP�� pages �������� LNCS �����
Springer�Verlag� �����

��� K� Arnold and J� Gosling� The Java Programming Language� Addison�Wesley�
�����

�
� V� Bono and M� Bugliesi� Matching for the lambda calculus of objects� Theoretical
Computer Science� ����� To appear�

��� V� Bono and K� Fisher� An imperative� �rst�order calculus with object exten�
sion� In Proc� ECOOP ���� pages
��
��� LNCS �

�� Springer�Verlag� �����
Preliminary version appeared in FOOL � proceedings�

��� V� Bono and L� Liquori� A subtyping for the Fisher�Honsell�Mitchell lambda
calculus of objects� In Proc� CSL ��	� pages ����	� LNCS ���� Springer�Verlag�
�����

��� V� Bono� A� Patel� V� Shmatikov� and J� C� Mitchell� A core calculus of classes
and objects� In Proc�
�th Conference on the Mathematical Foundations of Pro�
gramming Semantics �MFPS ����� ����� To appear�

��� V� Bono� A� Patel� V� Shmatikov� and J� C� Mitchell� A core calculus of ob�
ject� classes� and mixins� Technical Report� The University of Birmingham and
Stanford University� ����� Forthcoming�

��� N� Boyen� C� Lucas� and P� Steyaert� Generalized mixin�based inheritance to sup�
port multiple inheritance� Technical Report vub�prog�tr��
��� Vrije Universiteit
Brussel� ���
�

��	� G� Bracha� The Programming Language Jigsaw Mixins� Modularity and Multiple
Inheritance� PhD thesis� University of Utah� ����

���� G� Bracha and W� Cook� Mixin�based inheritance� In Proc� OOPSLA ���� pages
�	������ ���	�

��� G� Bracha and G� Lindstrom� Modularity meets inheritance� In Proc� Interna�
tional Conference on Computer Languages �ICCL ����� pages ���	� ����

���� K� B� Bruce� Safe type checking in a statically�typed object�oriented programming
language� In Proc� POPL ���� pages ������ �����

��
� K� B� Bruce� A paradigmatic object�oriented language� design� static typing and
semantics� J� Functional Programming�
������	�� ���
�

���� K� B� Bruce� L� Cardelli� G� Castagna� The Hopkins Object Group� G� Leavens�
and B� C� Pierce� On binary methods� Theory and Practice of Object Systems�
����������� �����

���� K� B� Bruce� L� Cardelli� and B� C� Pierce� Comparing object encodings� In Proc�
TACS ���� pages
���
��� LNCS ���� Springer�Verlag� �����

���� K� B� Bruce� L� Petersen� and A� Finch� Subtyping is not a good �match� for
object�oriented languages� In Proc� ECOOP ���� pages �	
���� LNCS �
��
Springer�Verlag� �����

���� K� B� Bruce� A� Schuett� and R� van Gent� PolyTOIL� A type�safe polymorphic
object�oriented language� In Proc� ECOOP ���� pages ����� LNCS ��� Springer�
Verlag� �����

���� L� Cardelli and P� Wegner� On understanding types� data abstraction� and poly�
morphism� Computing Surveys� ���
��
����� �����

�	� W� Cook� W� Hill� and P� Canning� Inheritance is not subtyping� In Proc� POPL
���� pages ������� ���	�

��� W� R� Cook� A Denotational Semantics of Inheritance� PhD thesis� Brown Uni�
versity� �����

�� E� Crank and M� Felleisen� Parameter�passing and the lambda calculus� In Proc�
POPL ��
� pages ���

� �����

��� J� Eifrig� S� Smith� and V� Trifonov� Sound polymorphic type inference for objects�
In Proc� OOPSLA ���� pages ������
� �����

�
� M� Felleisen and R� Hieb� The revised report on the syntactic theories of sequential
control and state� Theoretical Computer Science� �	���������� ����

��� R� Findler and M� Flatt� Modular object�oriented programming with units and
mixins� In Proc� ICFP ���� pages �
��	
� �����

��� K� Fisher� Type Systems for Object�Oriented Programming Languages� PhD thesis�
Stanford University� �����

��� K� Fisher� F� Honsell� and J� C� Mitchell� A lambda�calculus of objects and
method specialization� Nordic J� of Computing� ���������� ���
� Preliminary
version appeared in Proc� LICS ���� pp� �����

��� K� Fisher and J� C� Mitchell� A delegation�based object calculus with subtyping�
In Proc�
�th International Conference on Fundamentals of Computation Theory
�FCT ����� pages
���� LNCS ���� Springer�Verlag� �����

��� K� Fisher and J� C� Mitchell� On the relationship between classes� objects� and
data abstraction� Theory and Practice of Object Systems�
�������� ����� Pre�
liminary version appeared in Marktoberdorf ��� proceedings�

��	� M� Flatt� S� Krishnamurthi� and M� Felleisen� Classes and mixins� In Proc� POPL
���� pages �������� �����

���� M� Hofmann and B� C� Pierce� Positive subtyping� Information and Computation�
������������ ����� Preliminary version appeared in Proc� POPL ����

��� S� Kamin and U� Reddy� Two semantic models of object�oriented languages� In
C� Gunther and J� C� Mitchell� editors� Theoretical Aspects of Object�Oriented
Programming� MIT Press� ���
�

���� S� Keene� Object�Oriented Programming in Common Lisp� Addison�Wesley� �����

��
� X� Leroy� D� R�emy� J� Vouillon� and D� Doligez� The Objective Caml system�
documentation and user�s guide� http���caml�inria�fr�ocaml�htmlman�� �����

���� M� Van Limberghen and T� Mens� Encapsulation and composition as orthogonal
operators on mixins� a solution to multiple iinheritance problems� Object Oriented
Systems� ��������	� �����

���� O� Lehrmann Madsen� B� Moller�Pedersen� and K� Nygaard� Object�Oriented
Programming in the BETA Language� Addison�Wesley� �����

���� I� Mason and C� Talcott� Programming� transforming� and proving with function
abstractions and memories� In Proc� ICALP ���� pages ��
����� LNCS ���
Springer�Verlag� �����

���� D� Moon� Object�oriented programming with Flavors� In Proc� OOPSLA ����
pages ���� �����

���� B� C� Pierce and D� N� Turner� Simple type�theoretic foundations for object�
oriented programming� J� Functional Programming�
���	��
�� ���
� Pre�
liminary version appeared in Proc� POPL ��� under the title Object�Oriented
Programming Without Recursive Types�

�
	� U� Reddy� Objects as closures� Abstract semantics of object�oriented languages�
In Proc� Conference on Lisp and Functional Programming� pages ������ �����

�
�� Y� Smaragdakis and D� Batory� Implementing layered designs with mixin layers�
In Proc� ECOOP ���� pages ��	���	� �����

�
� B� Stroustrup� The C�� Programming Language ��rd ed��� Addison�Wesley� �����

�
�� M� VanHilst and D� Notkin� Using role components to implement collaboration�
based designs� In Proc� OOPSLA ���� pages �������� �����

�

� M� Wand� Type inference for objects with instance variables and inheritance� In
C� Gunther and J� C� Mitchell� editors� Theoretical Aspects of Object�Oriented
Programming� MIT Press� ���
�

�
�� A� Wright and M� Felleisen� A syntactic approach to type soundness� Information
and Computation� �����������
� ���
�

A De�nition of Contexts

The de�nition of contexts is standard but lengthy due to the number of subexpressions
in the mixin expression�

C � � � � � j C e j e C j �x�C j C�x j C � e j e �C
j fm� � e�� � � � �mi�� � ei���mi � C�mi�� � ei��� � � � �mn � eng

��i�n

j H h�C j Hhx�Cih�e j new C j classvalhC�M�Pi

j mixin

j � New

k � Redef

� � Prot

method mj � vmj
�

rede�ne mk � vmk
�

protect �p���
constructor C�
end

j mixin

j � New n �i�
k � Redef

� � Prot

method mj � vmj
�

method mi � C�
rede�ne mk � vmk

�
protect �p���
constructor vc�
end

jmixin

j � New

k � Redef n �i�
� � Prot

method mj � vmj
�

rede�ne mk � vmk
�

rede�ne mi � C�
protect �p���
constructor vc�
end

B Type Rules

The type rules for class�related forms were presented in section �� The remaining type
rules are presented here�

B�� Subtyping Rules

The subtyping rules are standard� Objects support both depth and width subtyping�

�� ��� � 	 ��� �
��� proj �

� 	 	 �� 	
�re��

� 	 	��� 	� � 	 	��� 	�

� 	 	��� 	�
�trans�

� 	 	 ��� 	 � 	 �����

� 	 	 � ��� 	 � � ��
�arrow�

� 	 	i���i i
 I I � J

� 	 fmi � 	ig
i�I �� fmj � �jg

j�J
��� record �

B�� Type Rules for Expressions

The type rules for expressions other than class�related forms are simple� except for
heaps� which have to be typed globally�

typeof �const� � 	

� 	 const � 	
�const�

�� x � 	 	 x � 	
�proj �

�� x � 	 	 e � �

� 	 �x�e � 	 � �
���

� 	 e� � 	 � � � 	 e� � 	

� 	 e� e� � �
�app�

� 	 fix � �� � ��� �
��x�

� 	 e � 	 � 	 	 ���

� 	 e � �
�sub�

� 	 ei � 	i

� 	 fxi � eig
i�I � fxi � 	ig

�record�

� 	 e � fx � �g

� 	 e�x � �
�lookup�

� 	 ref � 	 � 	 ref
�ref �

� 	 � � 	 ref � 	
���

� 	 �� � 	 ref � 	 � 	
����

� � � �� x� � 	� ref� � � � � xn � 	n ref � � 	 vi � 	i � � 	 e � 	

� 	 Hhx�� v�i � � � hxn� vni�e � 	
�heap�

