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Abstract� We develop an imperative calculus that provides a formal
model for both single and mixin inheritance� By introducing classes and
mixins as the basic object�oriented constructs in a ��calculus with records
and references� we obtain a system with an intuitive operational seman�
tics� New classes are produced by applying mixins to superclasses� Ob�
jects are represented by records and produced by instantiating classes�
The type system for objects uses only functional� record� and reference
types� and there is a clean separation between subtyping and inheritance�

Keywords� object�oriented language� mixin� class� inheritance�
calculus� operational semantics� type system�

� Introduction

Mixins �classes parameterized over superclasses� have become a focus of active
research both in the software engineering ���� ��� 	
� and programming lan�
guage design ���� �	� �
� �
� �
� communities� Mixin inheritance has been shown
to be an expressive alternative to multiple inheritance and a powerful tool for
implementing reusable class hierarchies� However� there has been a dearth of
formal calculi to provide a theoretical foundation for mixin inheritance and� in
particular� few attempts have been made to use mixins as the basic inheritance
construct in the core calculus� Although mixin inheritance is easy to formalize
in an untyped setting� static type checking of mixins at the time of declaration
�as opposed to the time of mixin use� is more di�cult� In addition� many ap�
proaches to mixins do not address the modular construction of objects� including
initialization of �elds�

While popular object�oriented languages such as C�� ��	� and Java ��� are
overwhelmingly class�based� most previous core calculi for object�oriented lan�
guages were based on objects� In our framework� classes and mixins are basic con�
structs� The decision to directly include classes in a core calculus re�ects many
years of struggle with object�based calculi� In simple terms� there is a fundamen�
tal con�ict between inheritance and subtyping of object types �	
� ��� �� 	��� Our



calculus resolves this con�ict by supporting class inheritance without class sub�
typing and object subtyping without object extension� The separation between
inheritance �an operation associated with classes� and run�time manipulation of
objects allows us to represent objects by records and keep the type system for ob�
jects simple� involving only functional� record� and reference types� In particular�
we do not need polymorphic object types or recursive MyType�

An important advantage of our type system is that it gives types to mixin
declarations and mixin applications separately� The actual class to which the
mixin is applied may have a �richer� type than that expected by the mixin� For
example� it may have more methods� or the types of its methods may be subtypes
of those assumed when typing the mixin� This facilitates modular development
of class hierarchies� promotes reuse of mixins� and enables the programmer to
use a single mixin to add the same functionality to a wide variety of classes�
Name clashes between mixins and classes to which they are applied are detected
and resolved at the time of mixin application�

We discuss design motivations and tradeo�s� and give a brief overview of the
core calculus in section 	� We then present the syntax of the calculus �section ���
its operational semantics �section ��� and the type system �section 
�� Finally� we
compare our calculus with other object�oriented calculi and indicate directions
for future research�

A simpler version of the calculus described in this paper was presented at
MFPS ��� ���� The calculus of ��� supports conventional single inheritance instead
of mixins�

� Design of the Core Calculus

In this section� we present our design motivations� discuss tradeo�s involved
to designing calculi for object�oriented languages� give a short overview of our
calculus� and present an example illustrating mixin usage�

��� Design Motivations

Our goal is to design a simple class�based calculus that correctly models the ba�
sic features of popular class�based languages and re�ects modular programming
techniques commonly employed by working programmers� Modular program de�
velopment in a class�based language involves minimizing code dependencies such
as those between a superclass and its subclasses� and between a class implementa�
tion and object users� Our calculus minimizes dependencies by directly support�
ing data encapsulation� mixin inheritance� structural subtyping� and modular
object creation�

Data encapsulation� We use the C�� terminology �private� protected� and public�
for levels of encapsulation� Unlike C�� and some approaches to encapsulation
in object calculi such as existential types� our levels of encapsulation describe
visibility� and not merely accessibility� For example� in our calculus even the
names of private items are invisible outside the class in which they are de�ned�



We believe that this is a better approach since no information about data rep�
resentation is revealed � not even the number and names of �elds� One of the
bene�ts of using visibility�based encapsulation is that no con�icts arise if both
the superclass and the subclass declare a private �eld of the same name� Among
other advantages� this allows the same mixin to be applied twice �see the example
in section 	����

Mixin inheritance� Amixin is a class de�nition parameterized over the superclass�
The decomposition of ordinary inheritance into mixins plus mixin application is
similar to the decomposition of let binding into functions plus function applica�
tion� A mixin can be viewed as a function that takes a class and derives a new
subclass from it� The same mixin can be applied to many classes� obtaining a
family of subclasses with the same set of methods added and�or replaced� By
providing an abstraction mechanism for inheritance� mixins remove the depen�
dency of the subclass on the superclass� enabling modular development of class
hierarchies � e�g�� a subclass can be implemented before its superclass has been
implemented� Mixin inheritance can be used to model single inheritance and
many common forms of multiple inheritance ���� ���

Mixins were �rst introduced in the Flavors system ���� and CLOS ����� al�
though as a programming idiom rather than a formal language construct� Our
calculus is an attempt to formalize mixins as the basic mechanism underlying
all inheritance� To ensure that mixin inheritance can be statically type checked�
our calculus employs constrained parameterization� From each mixin de�nition
the type system infers a constraint specifying to which classes the mixin may be
applied so that the resulting subclass is type�safe� The constraint includes both
positive �which methods the class must contain� and negative �which methods
the class may not contain� information� The actual class to which the mixin is
applied does not have to match the constraint exactly� It may have more meth�
ods than required by the positive part of the constraint� and the types of the
required methods may be di�erent from those speci�ed by the constraint as long
as the resulting subclass is type�safe�

We believe that new and rede�ned methods should be distinguished in the
mixin implementation� From the implementor�s viewpoint� a new method may
have arbitrary behavior� while the behavior of a rede�ned method must be �com�
patible� with that of the old method it replaces� Having this distinction in the
syntax of our calculus helps mixin implementors avoid unintentional rede�ni�
tions of superclass methods and facilitates generation of the mixin�s superclass
constraint �see section ��� It also helps resolve name clashes when the mixin is
applied� Suppose the mixin and the class to which it is applied both de�ne a
method with the same name� If the mixin method is marked as rede�ned� then it
is put in the resulting subclass �subject to type compatibility with the replaced
method�� If the mixin method is marked as new� the type system signals an
error�

Structural subtyping� As in most popular object�oriented languages� objects in
our calculus can only be created by instantiating a class� In contrast to C���
where an object�s type is related to the class from which it was instantiated



and subtyping relations apply only to object instantiated from the same class
hierarchy� we made a deliberate design decision to use structural subtyping in
order to remove the dependency of object users on class implementation� Objects
created from unrelated classes can be substituted for each other if their types
satisfy the subtyping relation�

Modular object construction� Class hierarchies in a well�designed object�oriented
program must not be fragile� if a superclass implementation changes but the
speci�cation remains intact� the implementors of subclasses should not have
to rewrite subclass implementations� This is only possible if object creation is
modular� In particular� a subclass implementation should not be responsible for
initializing inherited �elds when a new object is created� since some of the inher�
ited �elds may be private and thus invisible to the subclass� Also� the de�nitions
of inherited �elds may change when the class hierarchy changes� making the
subclass implementation invalid� Instead� the object construction system should
call a class constructor to provide initial values only for that class�s �elds� call
the superclass constructor to provide initial values for the superclass �elds� and
so on for each ancestor class� This approach is used in many object�oriented
programming languages� including C�� and Java�

Unlike many theoretical calculi for object�oriented languages� our calculus di�
rectly supports modular object construction� The mixin implementor only writes
the local constructor for his own mixin� Mixin applications are reduced to gen�
erator functions which call all constructors in the inheritance chain in correct
order� producing a fully initialized object �see section ���

��� Design Tradeo�s

In this section� we explain the design decisions and tradeo�s chosen in our calcu�
lus� Our goal was to sacri�ce as little expressive power as possible while keeping
the type system simple and free of complicated types such as polymorphic object
types and recursive MyType�

Classes� Even in purely object�based calculi� the con�ict between inheritance
and subtyping usually requires that two sorts of objects be distinguished �	���
�Prototype objects� do not support full subtyping but can be extended with
new methods and �elds and�or have their methods rede�ned� �Proper objects�
support both depth and width subtyping but are not extensible� Without this
distinction� special types with extra information are required to avoid adding
a method to an object in which a method with the same name is hidden as a
consequence of subtyping �e�g�� labeled types of ����� In our calculus� the class
construct plays the role of a �prototype� �extensible but not subtypable�� while
objects � represented by records of methods � are subtypable but not exten�
sible�

Objects� Records are an intuitive way to model objects since both are collec�
tions of name�value pairs� The records�as�objects approach was in fact developed
in the pioneering work on object�oriented calculi ����� in which inheritance was
modeled by record subtyping� Unlike records� however� object methods should



be able to modify �elds and invoke sibling methods �	��� To be capable of up�
dating the object�s internal state� methods must be functions of the host object
�self �� Therefore� objects must be recursive records� Moreover� self must be ap�
propriately updated when a method is inherited� since new methods and �elds
may have been added and�or old ones rede�ned in the new host object� In our
calculus� reduction rules produce class generators that are carefully designed so
that methods are given a �recursive� reference to self only after inheritance has
been resolved and all methods and �elds contained in the host object are known�

Object updates� If all object updates are imperative� self can be bound to the
host object when the object is instantiated from the class� We refer to this
approach as early self binding� Self then always refers to the same record� which
is modi�ed imperatively in place by the object�s methods� The main advantage of
early binding is that the �xed�point operator �which gives the object�s methods
reference to self � has to be applied only once� at the time of object instantiation�

If functional updates must be supported � which is� obviously� the case for
purely functional object calculi � early binding does not work �see� for example�
���� where early binding is called recursive semantics�� With functional updates�
each change in the object�s state creates a new object� If self in methods is bound
just once� at the time of object instantiation� it will refer to the old� incorrect
object and not to the new� updated one� Therefore� self has to be bound each
time a method is invoked� We refer to this approach as late self binding�

Object extension� Object extension in an object�based calculus is typically mod�
eled by an operation that extends objects by adding new methods to them�
There are two constraints on such an operation� �i� the type system must pre�
vent addition of a method to an object which already contains a method with
the same name� and �ii� since an object may be extended again after method
addition� the actual host object may be larger than the object to which the
method was originally added� The method body must behave correctly in any
extension of the original host object� therefore� it must have a polymorphic type
with respect to self � The ful�llment of the two constraints can be achieved� for
instance� via polymorphic types built on row schemes �
� that use kinds to keep
track of methods� presence�

Even more complicated is the case when object extension must be supported
in a functional calculus� In the functional case� all methods modifying an object
have self as their return type� Whenever an object is extended or has its meth�
ods rede�ned �overriden�� the type given to self in all inherited methods must
be updated to take into account new and�or rede�ned methods� Therefore� the
type system should include the notion of MyType �a�k�a� SelfType� so that the
inherited methods can be specialized properly� Support for MyType generally
leads to more complicated type systems� in which forms of recursive types are
required� This can be accomplished by using row variables combined with recur�
sive types �	�� 	�� 	��� match�bound type variables ���� ��� or by means of special
forms of second�order quanti�ers such as the Self quanti�er of ����



Tradeo�s� Our goal is to achieve a reasonable tradeo� between expressivity
and simplicity� We do not support functional updates because we believe that
imperative updates combined with early self binding provide such a tradeo��
Without functional updates� we can use early binding of self � Early binding
eliminates the main need for recursive object types� There is also no need for
polymorphic object types in our calculus since inheritance is modeled entirely at
the class level and there are no object extension operations� This choice allows us
to have a simple type system and a straightforward form of structural subtyping�
in contrast with the calculi that support MyType specialization �	�� ����

There are at least two possible drawbacks to our approach� Although methods
that return a modi�ed self can be modeled in our calculus as imperative methods
that modify the object and return nothing� methods that accept a MyType

argument cannot be simulated in our system without support for MyType� We
therefore have no support for binary methods of the form described in ��
��
Also� the type system of our calculus does not directly support implementation

types �i�e�� types that include information about the class from which the object
was instantiated and not just the object�s interface�� We believe that a form
of implementation types can be provided by extending our type system with
existential types�

��� Design of the Core Calculus

The two main concepts in object�oriented programming are objects and classes�
In our calculus� objects are records of methods� Methods are represented as
functions with a binding for self �the host record� and �eld �the private �eld��
Since records� functions� and ��binding are standard� we need not introduce
new operational semantics or type rules for objects� Instead� we introduce new
constructs and rules for mixins and classes only� The new constructs are� class
values �representing complete classes obtained as a result of mixin application��
mixin expressions �containing de�nitions of methods� �elds� and constructors��
and instantiation expressions �representing creation of objects from classes��

A class value is a tuple containing the generator function� the set of public
method names� and the set of protected method names� The generator produces
a function from self to a record of methods� When the class is instantiated�
the �xed�point operator is applied to the generator�s result to bind self in the
methods� bodies� creating a full��edged object�

Mixins � i�e�� classes parameterized over the superclass � are represented
by mixin expressions� Inheritance is modeled by the evaluation rule that applies
a mixin to a class value representing the superclass� producing a new class value�
The generator of the new class takes the record of superclass methods built by
the superclass generator and modi�es it by adding and�or replacing methods as
speci�ed by the mixin� Only class values can be instantiated� mixins are used
solely for building class hierarchies�

For simplicity� the core calculus supports only private �elds and public and
protected methods� Private methods can be modeled by private �elds with a
function type� public or protected �elds can be modeled by combining private



�elds with accessor methods� Instead of putting encapsulation levels into object
types� we express them using subtyping and binding� Protected methods are
treated in the same way as public methods except that they are excluded from
the type of the object returned to the user� Private �elds are not listed in the
object type at all� but are instead bound in each method body� In the core
calculus each class has exactly one private �eld� which may have a record type�
Each method body takes the class�s private �eld as a parameter�

��� An Example of Mixin Inheritance

Mixin inheritance can be a powerful tool for constructing class hierarchies� In
this section� we give a simple example that demonstrates how a mixin can be
implemented in our calculus and explain some of the uses of mixins� For read�
ability� the example uses functions with multiple arguments even though they
are not formalized explicitly in the calculus�

Mixin de�nition� Following is the de�nition of Encrypted mixin that implements
encryption functionality on top of any stream class� Note that the class to which
the mixin is applied may have more methods than expected by the mixin� For
example� Encrypted can be applied to Socket � Object where Object is the root
of all class hierarchies� even though Socket � Object has other methods besides
read and write�

let File � let Socket �
mixin mixin
method write � � � � method write � � � �
method read � � � � method read � � � �
� � � method hostname � � � �

end in method portnumber � � � �
� � �

end in

let Encrypted �
mixin
rede�ne write � � next� �key� � self � � data� next �encrypt�data� key���
rede�ne read � � next� �key� � self � � � decrypt�next ��� key��
constructor � �key� arg�� f�eldinit�key� superinit�argg�
protect ���

end in � � �

Mixin expressions contain new methods �marked by the method keyword�� re�
de�ned methods �rede�ne keyword�� and constructors� The names of protected
methods should be listed following the protect keyword� Instead of introducing
a special �eld construct� every mixin contains a single private �eld which is
��bound in each method body �� key� � � ���

Methods can access the host object through the self parameter� which is
��bound in each method body to avoid introducing special keywords� Rede�ned
methods can access the old method body inherited from the superclass via the



next parameter� Constructors are simply functions returning a record of two
components� The �eldinit value is used to initialize the private �eld� The su�

perinit value is passed as an argument to the superclass constructor�
From the de�nition of Encrypted� the type system infers the constraint that

must be satis�ed by any class to which Encrypted is applied� The class must
contain write and read methods whose types must be supertypes of those given
to write and read� respectively� in the de�nition of Encrypted�

Mixin usage� To create an encrypted stream class� one must apply the Encrypted
mixin to an existing stream class� In our calculus� the notation for applying mixin
M to class C isM �C� For example� Encrypted � FileStream is an encrypted �le
class� The power of mixins can be seen when we apply Encrypted to a family of
di�erent streams� For example� we can construct Encrypted � NetworkStream�
which is a class that encrypts data communicated over a network� In addition to
single inheritance� we can express many uses of multiple inheritance by applying
more than one mixin to a class� For example� PGPSign � UUEncode � Encrypt
� Compress � FileStream produces a class of �les that are compressed� then
encrypted� then uuencoded� then signed� In addition� mixins can be used for
forms of inheritance that are not possible in most single and multiple inheritance�
based systems� In the above example� the result of applying Encrypted to a
stream satis�es the constraint required by Encrypted itself� therefore� we can
apply Encrypted more than once� Encrypted � Encrypted � FileStream is a
class of �les that are encrypted twice� In our system� private �elds of classes do
not con�ict even if they have the same name� so each application of Encrypted
can have its own encryption key� Unlike most forms of multiple inheritance� it is
easy to specify the order and number of times the mixins are applied�

A note on an implementation� Our calculus uses structural object types that
retain no connection to the class from which the object was instantiated� Since
unrelated classes may use di�erent layouts for the method dictionary� the com�
piler cannot use the object�s static type to determine the exact position of a
method in the dictionary in order to optimize method lookup as is done in
C��� Adding mixins in this environment does not impose an extra overhead�

It is possible to support e�cient method lookup by introducing a separate
hierarchy of mixin interfaces similar to the one analyzed by Flatt et al� ��
� and
requiring that the order of methods in a mixin�s dictionary match that given in
the interface implemented by the mixin� However� a separate interface hierarchy
would make the calculus signi�cantly more complicated�

� Syntax of the Core Calculus

The syntax of our calculus is fundamentally class�based� There are four expres�
sions involving classes� classval� mixin� � �mixin application�� and new� Class�
related expressions and values are treated as any other expression or value in
the calculus� They can be passed as arguments� put into data structures� and
so on� However� class values and object values are not intended to be written



Expressions� e � � � const j x j �x�e j e� e� j �x j ref j � j ��
j fxi � eig

i�I j e�x j H h�e j new e

j classvalhvg� �mi�
i�Meth � �p��

��Proti
j mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end

j e� � e�

Values� v � � � const j x j �x�e j �x j refj � j �� j �� v j fxi � vig
i�I

j classvalhvg � �mi�
i�Meth � �p��

��Proti
j mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end

Fig� �� Syntax of the core calculus

directly� instead� these expression forms are used only to de�ne the semantics of
programs� Class values can be created by mixin application� and object values
can be created by class instantiation�

Let Var be an enumerable set of variables �otherwise referred to as identi�
�ers�� and Const be a set of constants� ExpressionsE and values V �with V � E�
of the core calculus are as in Fig��� where const � Const � x� xi�mi�mj � Var �
�x is the �xed�point operator� ref� �� �� are operators�� fxi � eigi�I is a record�
e�x is the record selection operation� h is a set of pairs h � � � fhx� vi�g where
x � Var and v is a value ��rst components of the pairs are all distinct�� �mi�� �p��
are sets of identi�ers� and I� J�K�L�Meth�Prot �New �Redef � IN�

Our calculus takes a standard calculus of functions� records� and imperative
features and adds new constructs to support classes and mixins� We chose to
extend Reference ML ��
�� in which Wright and Felleisen analyze the operational
soundness of a version of ML with imperative features� Our calculus does not
include let expressions as primitives since we do not need polymorphism to model
our objects� We do rely on the Wright�Felleisen idea of store� which we call heap�
in order to evaluate imperative side e�ects�

The expression Hhx�� v�i � � � hxn� vni�e associates reference variables x�� � � � xn
with values v�� � � � � vn� H binds x�� � � � xn in v�� � � � � vn and in e� The set of pairs

� Introducing ref� �� �� as operators rather than standard forms such as refe� �e� ��e�e��
simpli�es the de�nition of evaluation contexts and proofs of properties� As noted in
�
��� this is just a syntactic convenience� as is the curried version of ���



h in the expression Hh�e represents the heap� where the results of evaluating
imperative subexpressions of e are stored�

The intuitive meaning of the class�related expressions is as follows�

� classvalhvg � �mi�
i�Meth � �p��

��Proti is a class value� i�e�� the result of mixin
application� It is a triple� containing one function and two sets of variables�
The function vg is the generator for the class� The �mi� set contains the names
of all methods de�ned in the class� and the �p�� set contains the names of
protected methods�

� mixin

method mj � vmj
� �j�New�

rede�ne mk � vmk
� �k�Redef �

protect �p���
���Prot�

constructor vc�
end
is a mixin� in which mj � vmj

are de�nitions of new methods� and mk � vmk

are method rede�nitions that will replace methods with the same name in
any class to which the mixin is applied� Each method body vmj�k

is a function
of self � which will be bound to the newly created object at instantiation time�
and of the private �eld� In method rede�nitions� vmk

is also a function of
next� which will be bound to the old� rede�ned method from the superclass�
The vc value in the constructor clause is a function that returns a record of
two components� When evaluating a mixin application� vc is used to build
the generator as described in section ��

� e� � e� is an application of mixin e� to class value e�� It produces a new class
value� Mixin application is the basic inheritance mechanism in our calculus�

� new e uses generator vg of the class value to which e evaluates to create a
function that returns a new object� as described in section ��

Programs and answers are de�ned as follows�

p � � � e where e is a closed expression
a � � � v j H h�v

Finally� we de�ne the root of the class hierarchy� class Object� as a prede�ned
class value�

Object
�
� classvalh � �� �fg� � �� � � i

The root class is necessary so that all other classes can be treated uniformly�
Intuitively� Object is the class whose object instances are empty objects� It is
the only class value that is not obtained as a result of mixin application� The
calculus can then be simpli�ed by assuming that any user�de�ned class that does
not need a superclass is obtained by applying a mixin containing all of the class�s
method de�nitions to Object�

Throughout this paper� we will use let x � e� in e� in terms and examples
as a more readable equivalent of ��x�e��e�� Also� we use unit as an abbreviation
for the empty record or type fg� instead of having a new unit value and type�
We will use the word �object� when the record in question represents an object�
To avoid name capture� we apply ��conversion to binders � and H�



� Operational Semantics

const v � ��const � v� if ��const � v� is de�ned ���
��x�e� v � �v�x� e ��v�

�x ��x�e�� ��x ��x�e��x�e ��x�
f� � � � x � v� � � �g�x � v �select�

refv � Hhx� vi�x �ref�
Hhx� vih�R��x� � Hhx� vih�R�v� �deref�

Hhx� vih�R���xv�� � Hhx� v�ih�R�v�� �assign�
R�H h�e� � H h�R�e�� R �� � � �lift�

H h�H h��e � H h h��e �merge�
new classvalhg�M�Pi � �v�SubM�P�M��x �g v�� �new�

�
BBBBB�

mixin
method mj � vmj

�
rede�ne mk � vmk

�
protect �p���
constructor c�
end

�
CCCCCA

j � New�

k � Redef �

� � Prot

� classvalhg�M�Pi �
classvalhGen � �mj � �M� �p�� � Pi

�mixin�

if �mj � �M � �� �mk� �M� and �p�� � �mj � �M�Gen is de�ned below

Fig� �� Reduction Rules

The operational semantics for our calculus extends that of Reference ML
��
�� Reduction rules are given in Fig�	� where R are reduction contexts �		� 	��
���� Expression Gen is de�ned below� Relation �� is the re�exive� transitive�
contextual closure of �� with respect to contexts C� as de�ned �in a standard
way� in appendix A�

Reduction contexts are necessary to provide a minimal relative linear order
among the creation� dereferencing and updating of heap locations� since side
e�ects need to be evaluated in a deterministic order� Reduction contexts R are
de�ned as follows�

R � � � � � j R e j v R j R�x j new R j R � e j v � R

j fm� � v�� � � � �mi�� � vi���mi � R�mi�� � ei��� � � � �mn � eng
��i�n

To abstract from a precise set of constants� we only assume the existence of
a partial function � � Const � ClosedVal � ClosedVal that interprets the
application of functional constants to closed values and yields closed values�
See section 
 for the � typability condition�

��v� and �select� rules are standard�

�ref�� �deref� and �assign� rules evaluate imperative expressions following the
linear order given by the reduction context R and acting on the heap� They are



formulated after ��
�� �ref� generates a new heap location where the value v is
stored� �deref� retrieves the contents of the location x� �assign� changes the value
stored in a heap location�

�lift� and �merge� rules combine inner local heaps with outer ones whenever a
dereference operator or an assignment operator cannot �nd the needed location
in the closest local heap�

�mixin� rule evaluates mixin application expressions which represent inheritance
in our calculus� A mixin is applied to a superclass value classvalhg�M�Pi� M is
a set of all method names de�ned in the superclass� P is an annotation listing
the names of protected methods in the superclass� The resulting class value is
classvalhGen � �mj � � M� �p�� � Pi where Gen is the generator function de�ned
below� �mj � �M is the set of all method names� and �p�� � P is an annotation
listing protected method names� Using a class generator delays full inheritance
resolution until object instantiation time when self becomes available�

Gen is the class generator� It takes a single argument x which is used by the
constructor subexpression c to compute the initial value for the �eld of the new
object� and returns a function from self to a record of methods� When the �xed�
point operator is applied to the function returned by the generator� it produces
a recursive record of methods representing a new object �see the �new� rule��

Gen
�
� �x��self �

let t � c�x� in
let supergen � g�t�superinit� in��
�
mj � �y�vmj

t��eldinit self y
mk � �y�vmk

�supergen self ��mk t��eldinit self y
mi � �y� �supergen self ��mi y

��
	

mi � M n �mk�

In the mixin expression� the constructor subexpression c is a function of one
argument which returns a record of two components� one is the initialization ex�
pression for the �eld ��eldinit�� the other is the superclass generator�s argument
�superinit�� Gen �rst calls c�x� to compute the initial value of the �eld and the
value to be passed to the superclass generator g� Gen then calls the superclass
generator g� passing argument t�superinit� to obtain a function supergen from
self to a record of superclass methods�

Finally� Gen builds a function from self that returns a record containing all

methods � from both the mixin and the superclass� To understand how the
record is created� recall that method bodies take parameters �eld� self � and� if
it�s a rede�nition� next� Methods mj are the new mixin methods� they appear
for the �rst time in the current mixin expression� Gen has to bind �eld and self

for them� Methods mi � M n �mk� are the inherited superclass methods� they
are taken intact from the superclass�s object �supergen self �� Methods mk are
rede�ned in the mixin� Their bodies can refer to the old methods through the
next parameter� which is bound to �supergen self ��mi by Gen� They also receive
a binding for �eld and self � For all three sorts of methods� the method bodies
are wrapped inside �y� � � � y to delay evaluation in our call�by�value calculus�



��x� rule is standard�

�new� rule builds a function that can create a new object� The resulting function
can be thought of as the composition of three functions� Sub � �x � g� Given an
argument v� it will apply generator g to argument v� creating a function from
self to a record of methods� Then the �xed�point operator �x �following �	��� is
applied to bind self in method bodies and create a recursive record� Finally� we
apply SubM�P�M� a coercion function from records to records that hides all
components which are in M� P but not in M� The resulting record contains
only public methods� and can be returned to the user as a fully formed object�

� Type System

Our types are standard and the typing rules are fairly straightforward� The com�
plexity of typing object�oriented programs in our system is limited exclusively to
classes and mixins� Method selection� which is the only operation on objects in
our calculus� is typed as ordinary record component selection� Since methods are
typed as ordinary functions� method invocation is simply a function application�

Types are as follows�

� � � � 	 j �� � �� j � ref j fxi � �igi�I

j classh�� fmi��ig� �p��ii�I���L

j mixinh��� ��� fmj ��jg� fmk��kg� �p��ij�J�k�K���L

where 	 is a constant type� � is the functional type operator� � ref is the type of
locations containing a value of type � � fxi��igi�I is a record type� and I� J�K�L �
IN� In class types� fmi � �ig is a record type and �p�� is a set of names� where
�p�� 	 �mi�� In mixin types� fmj � �jg� fmk � �kg are record types and �p�� is a set
of names� where �p�� 	 ��mj �� �mk��� Although record expressions and values are
ordered so that we can �x an order of evaluation� record types are unordered�
We also assume we have a function typeof from constant terms to types that
respects the following typability condition ��
�� for const � Const and value v�
if typeof �const� � � � � � and 
 � v � � �� then ��const� v� is de�ned and

 � ��const� v� � � �

Our type system supports structural subtyping �the 
� relation� along with
the subsumption rule �sub�� The subtyping rules are shown in appendix B� Since
subtyping on references is unsound and we wish to keep subtyping and inheri�
tance completely separate� we have only the basic subtyping rules for function
and record types� Subtyping only exists at the object level� and is not supported
for class or mixin types�

Typing environments are de�ned as follows�

� � � � � j �� x � � j �� 	�
� 	�

where x � Var � � is a well�formed type� 	�� 	� are constant types� and x� 	� ��
dom�� ��



� 	 g � � � fmi � 	ig
i�All � fmi � 	ig

i�All

� 	 classvalhg� �mi�
i�All � �p��

��Proti � classh�� fmi�	ig
i�All � �p��

��Proti
�class val�

� 	 e � classh�� fmi�	ig
i�All � �p��

��Proti

� 	 new e � � � fmj �	jg
j�AllnProt

�instantiate�

�New� For j 
 New � � 	 vmj
� 
 � � � 	�mj

�Redef� For k 
 Redef � � 	 vmk
� 	�mk

� 
 � � � 	�mk

�Constr� � 	 c � �d � f�eldinit � 
� superinit � �bg

� 	

�
BBBBB�

mixin
method mj � vmj

�
rede�ne mk � vmk

�
protect �p���
constructor c�
end

�
CCCCCA

j � New

k � Redef

� � Prot

� mixinh�b� �d� fmi � 	
�
mi

�mk � 	
�
mk
g�

fmj � 	
�
mj

�mk � 	
�
mk
g� �p��i

�mixin�

where
� � fmi � 	

�
mi

�mj � 	
�
mj

�mk � 	
�
mk
g

�p�� � �mi� � �mj � � �mk�
mi� 	

�
mi

� 	�mk
are inferred from method bodies

� 	 e� �mixinh�b� �d� �Old� �New� Pdi
� 	 e� � classh�c� �b� Pbi
� 	 �d���b���Old
� 	 �b�� �c

� 	 e� � e� � classh�d� �d� Pb � Pdi
�mixin app�

where

�b � fmk � 	mk
�ml � 	ml

�mi � 	mi
g

�Old � fmi � 	
�
mi

�mk � 	
�
mk
g

�New � fmj � 	
�
mj

�mk � 	
�
mk
g

�d � fmi � 	mi
�mj � 	

�
mj

� mk � 	
�
mk

�ml � 	ml
g

Fig� �� Typing Rules for Class�Related Forms



Typing judgments are as follows�

� � ��
� �� �� is a subtype of ��
� � e � � e has type �

The set of typing rules for class�related forms is shown in Fig��� The remaining
rules are standard and can be found in appendix B�

�class val� rule types class values� A class value is composed of an expression
and two sets of method names� The expression g is the generator �see section ��
which produces a function that will later� at the time of new application� return
a real object� The type of g can be determined by examining the type of the
class value� classh
� fmi��ig� �p��i� Generator g takes an argument of type 
 and
returns a function that will return an object once the �xed�point operator is
applied� The return type of g is therefore � � �� where � represents the type of
self � fmi � �ig� This record type includes all methods� not only public methods�
When the �xed�point operator is applied� �x�gv� will have type � when v has
type 
�

�mixin� rule types mixin declarations� We describe it following the order of its
premises� Note that mixin methods make typing assumptions about methods
of the superclass to which the mixin will be applied� We refer to these types
as expected types since the actual superclass methods may have di�erent types�
The exact relationship between the types expected by the mixin and the actual
types of the superclass methods is formalized in rule �mixin app�� We mark types
that come from the superclass with � and those that will be changed or added
in the subclass with � �

� �New� The bodies of the new methods vmj
are typed with a function type�

The argument types are the type of the private �eld ��� and the type of self
���� We do not lose generality by assuming only one �eld per class since �
can be a tuple or record type� The return type is ��mj �

� �Redef� The bodies of the rede�ned methods vmk
are also typed with a

function type� The �rst argument type ��mk
is that of next� i�e�� the superclass

method with the same name �recall that the new body can refer to the old
body via next�� The meaning of � and � is the same as for the new methods�
It is not known at the time of mixin de�nition to which class the mixin will
be applied� so the actual type of the method replaced by mk may be di�erent
from the expected type ��mk �

� �Constr� The constructor expression c is a function that takes an argument
of type 
d and returns a record with two components� The component la�
belled �eldinit is the initialization expression for the private �eld� Clearly�
it has to have the same type � as that assumed for the �eld when typing
methods bodies� The component labeled superinit is the expression passed
as the parameter to the superclass generator� Its type 
b is inferred from
the constructor de�nition since the superclass is not available at the time of
mixin de�nition�



Both new and rede�ned methods in the mixin may call superclass methods
�i�e�� methods that are expected to be supported by any class to which the mixin
is applied�� We refer to these methods as mi� Their types �

�
mi are inferred from

the mixin de�nition�

The mixin is typed with a mixinh� � �i type� which encodes the following in�
formation about the mixin�

� 
b is the expected argument type of the superclass generator�

� 
d is the exact argument type of the mixin generator�

� fmi � �
�
mi �mk � �

�
mk
g are the expected types of the methods that must be

supported by any class to which the mixin is applied� Recall that mi are
the methods that are not rede�ned by the mixin but still expected to be
supported by the superclass since they are called by other mixin methods�
and ��mk

are the types assumed for the old bodies of the methods rede�ned
in the mixin�

� fmj ��
�
mj �mk ��

�
mk
g are the exact types of mixin methods �new and rede�ned�

respectively��

� �p�� is an annotation listing the names of all methods to be protected� both
new and rede�ned�

Type information contained in the mixinh� � �i type is used when typing mixin
application in rule �mixin app��

�mixin app� rule types mixin�based inheritance� In the rule de�nition� �b contains
the type signatures of all methods supported by the superclass to which the mixin
is applied� In particular� mk are the superclass methods rede�ned by the mixin�
mi are the superclass methods called by the mixin methods but not rede�ned�
and ml are the superclass methods not mentioned in the mixin de�nition at all�
Note that the superclass may have more methods than required by the mixin
constraint�

Type �d contains the signatures of all methods supported by the subclass
created as a result of mixin application� Methods mi�l are inherited directly from
the superclass� methods mk are rede�ned by the mixin� and methods mj are the
new methods added by the mixin� We are guaranteed that methods mj are not
present in the superclass by the construction of �b and �d� �d is de�ned so that it
contains all the labels of �b plus labels mj � Type �Old lists the �expected� types
of the superclass methods assumed when typing the mixin de�nition� Type �New
lists the exact types of the methods newly de�ned or rede�ned in the mixin�

The premises of the rule are as follows�

� mixinh� � �i and classh� � �i are the types of the mixin and the superclass� re�
spectively�

� The �d
��b constraint requires that the types of the methods rede�ned by
the mixin �mk� be subtypes of the superclass methods with the same name�
This ensures that all calls to the rede�ned methods in mi and ml �methods
inherited intact from the superclass� are type�safe�



� The �b
��Old constraint requires that the actual types of the superclass
methods mi and mk be subtypes of the expected types assumed when typing
the mixin de�nition�

� The 
b
� 
c constraint requires that the actual argument type of the super�
class generator be a supertype of the type assumed when typing the mixin
de�nition�

In the type of the class value created as a result of mixin application� �b is the
argument type of the generator� and �d �see above� is the type of objects that
will be instantiated from the class �except for the protected methods which are
included in �d but hidden in the instantiated objects�� In the resulting subclass
we protect all methods that are protected either in the superclass or in the mixin�

The �mixin app� rule also determines how name clashes between the mixin
and the superclass are handled� Suppose the superclass and the mixin contain a
method with the same name m� If m is a rede�ned method in the mixin �i�e��
m � �mk��� then it will replace the method from the superclass as long as its
type ��mk is a subtype of the replaced method�s type �mk

� This is checked by
the �d
��b premise� If m is a new method �i�e�� m � �mj ��� then the rule�s
premises will fail since a method that is considered new by the mixin appears in
the superclass �m � mj � �b�� and the type system will signal an error�

�instantiate� rule types the creation of a new object� The new e term is typed as
a function that takes the generator�s argument and returns a fully initialized ob�
ject� The object�s type contains only the public methods� the protected methods
are hidden�

The proof of soundness is omitted for lack of space� The complete meta�theory
may be found in ����

� Related Work

In the literature� there exists an extensive body of work on calculi for object�
oriented languages� Our calculus can be directly compared with the following
class�oriented calculi�

� In the simplest of Cook�s calculi �	��� objects are represented by records of
methods� and created by taking the �xed�point of the function representing
the class �constructor in Cook�s terminology�� Inheritance is modeled by
generating the subclass constructor from the superclass constructor� and self

is bound early� However� classes are not a basic construct� The calculus relies
on record concatenation operators� but typing issues associated with them
are not addressed�

� The closure semantics version of the �dynamic inheritance� language ana�
lyzed by Kamin and Reddy ��	� is similar to our calculus� The language is
class�based� and the semantics of inheritance is similar to our generators�
They also compare late and early self binding ��xed�point model and self�

application model in their terminology�� However� no type system is provided
and there is no discussion of object construction or method encapsulation�



� The calculus of Wand ���� is class�based� Classes are modeled as extensible
records� inheritance is record concatenation plus self update so that inher�
ited methods refer to the correct object� As in our calculus� objects are
records� self is bound early� and the new operation �called constructor� is
an application of the �xed�point operator� In contrast to our calculus� the
subclass must know and directly initialize the �elds of the superclass� There
is also no support for parameterized inheritance� Another solution� proposed
in ��
�� is to rename the superclass �elds� but this does not ensure consistent
initialization�

� TOOPL ���� is a calculus of classes and objects� MyType specialization is
used for inheritance� forcing late self binding �i�e�� self is bound each time
a method is invoked� and not just once when the object is created�� To en�
sure type safety when MyType appears in the method signature� there are
standard constraints on method subtyping� A related work is PolyTOIL
����� where inheritance is completely separated from subtyping� Inheritance
is based on matching� which is a relation between class interfaces that does
not require method types to follow the standard constraints on recursive
types� while object types employ standard subtyping� PolyTOIL also has
imperative updating of object �elds� but inheritance is still modeled with
MyType in order to support binary methods� The drawback is the complex�
ity of the type system� In ����� another language is presented� Loom� where
only matching is used and the type system is simpli�ed�

This paper is an attempt to built a simpler class�based calculus� The absence
ofMyType makes it weaker� but imperative updating appears su�cient to model
the desirable features that are needed in practice�

Other approaches to modeling classes can be found in object�based calculi�
where classes are not �rst�class expressions and have to be constructed from
more primitive building blocks�

� Abadi and Cardelli have proposed encoding classes in a pure object system
using records of pre�methods ���� Pre�methods can be thought of as functions
from self to method bodies or functions that are written as methods but
not yet installed in any object� The di�erence between the result of Gen
�see section � above� and a record of pre�methods is that the former is a
function from self to a record of methods while the latter is a record of
functions from self to methods� In the Abadi�Cardelli approach� a class is
an object that contains a record of pre�methods and a constructor function
used to package pre�methods into objects� The primary advantage of the
record�of�pre�methods encoding is that it does not require a complicated
form of objects� All that is needed is a way of forming an object from a
list of component de�nitions� However� this approach provides no language
support for classes� and imposes complicated constraints on the objects used
as classes to obey to some basic requirements for class constructs �see section
	 above and �	�� for a complete account��

� Another approach to modeling classes as objects is developed by Fisher �	��
in a functional setting� and by Bono and Fisher �
� in an imperative setting�



Classes are modeled as encapsulated extensible objects� Inheritance is then
modeled as the method addition operation on objects� which can be in one of
two states �	��� a prototype �can be extended but not subtyped� so prototype
objects are similar to classes�� and a �proper� object which is subtypable
but cannot be extended� A form of a bounded existential quanti�er is used
to �partially� abstract the class implementation when objects are in the
prototype state� While the system of �
� can model a form of mixins� our
calculus is simpler� more intuitive� and has encapsulation and object creation
semantics closer to those used by popular programming languages�

� Pierce and Turner ���� model classes as object�generating functions� They
interpret inheritance as modi�cation of the object�generating functions used
to model classes �existential models�� This encoding is somewhat cumber�
some� since it requires programmers to explicitly manipulate get and put

functions which intuitively convert the hidden state of superclass objects
into that of subclass objects� Hofmann and Pierce ���� introduce a re�ned
version of F�� that permits only positive subtyping� With this restriction�
get and put functions are both guaranteed to exist and hence may be han�
dled in a more automatic fashion in class encodings� In our calculus� instead
of encapsulation at the object type level� we use subtyping to hide protected
methods and ��binding to hide private �elds�

� The Hopkins Object Group has designed a type�safe class�based object�
oriented language with a rich feature set called I�Loop �	��� Their type
system is based on polymorphic recursively constrained types� for which
they have a sound type inferencing algorithm� The main advantage of this
approach is the extreme �exibility a�orded by recursively constrained types�
However� inferred types are large and di�cult to read�

Bruce et al� ���� show how the main approaches to modeling objects can be
seen in a uni�ed framework� The state of the art in modeling classes is not as
well established� We hope that this work might be a step in this direction�

To the best of our knowledge� there are not many formal settings in which
mixin�based inheritance is analyzed�

� Flatt et al� implement mixins in theMzScheme language �	
� and formalize
an extension of a subset of Java with mixins in ��
�� Their system supports
higher�order mixin composition� a hierarchy of named interface types� and
resolution of accidental name collisions� The collision resolution system al�
lows old and new method de�nitions to coexist� The two are distinguished
using the �view� of an object� which is carried with the object at run�time
and altered at each subsumption step� As a result� method lookup is sensitive
to the object�s history of subsumptions� In contrast to the system of ��
�� our
calculus is not based on any particular language� Our mixins are created and
manipulated as run�time values as opposed to static top�level declarations�
Mixin constraints prevent objects from having incompatible methods with
the same name� so method lookup is straightforward and does not depend on
the object�s subsumption history� Proper object initialization is guaranteed�



� Beta ���� replaces classes� procedures� functions� and types by a single ab�
straction mechanism called the pattern� Objects are created from the pat�
terns� and in addition to traditional objects as found in conventional object�
oriented languages� objects in Beta may also represent function activations�
exception occurrences� or concurrent processes� Patterns may be used as su�
perpatterns to other patterns in a manner similar to conventional inheritance�
Since patterns are a general concept� inheritance is available also for proce�
dures� functions� exceptions� coroutines� and processes� Virtual patterns are
similar to generic templates or parameterized classes with the additional
bene�t that the parameter may be restricted without actually instantiating
the template �this is similar to computing the mixin constraint without ac�
tually applying the mixin to a class�� Mixin inheritance is a partial case of
the very general pattern inheritance mechanism developed in Beta�

� OCAML ���� supports a very limited form of parameterized inheritance by
combining a module abstraction mechanism with classes that can inherit
across module boundaries� Because the exact module containing the super�
class may not be known when the subclass is de�ned� the same subclass can
be used with multiple superclass de�nitions� However� methods not men�
tioned in the superclass type become inaccessible� In the example of section
	��� this would mean that all methods that are present in the Socket �Object

class besides read and write are forgotten once Encrypted mixin is applied
to it�

� Ancona and Zucca �	� study a rigorous semantics foundations for mixins
independently from the notions of classes and objects� starting from an al�
gebraic setting for module composition� It may be possible to apply their
techniques to the study of the algebraic semantics of our calculus�

� Conclusions and Future Work

The main strengths of our calculus are its simplicity and its power in mod�
eling mixin inheritance� Both the operational semantics and the type system
are structured to combine new rules for class�based features �mixins� classes�
and instantiation� with standard rules for object�based features �represented by
records� functions� and assignable locations�� We also preserve such properties
as encapsulation �private �elds� protected methods� and modularity �minimized
dependencies of a subclass on superclasses� modular object creation� automatic
propagation of changes in the superclass to all subclasses�� All of these are de�
sirable features for a formalism used to model classes �	��� Our mixin construct
provides a formal model for a �exible inheritance mechanism� capable of express�
ing single inheritance� most uses of multiple inheritance� and also new uses of
inheritance such as applying the same mixin more than once�

Some of the design choices may appear debatable� e�g�� the decision not to
support super in the calculus� While a rede�ned method can refer to the old
method body via next� other methods have no way of calling it� This decision
was motivated mainly by our desire to support an e�cient implementation� and�



in fact� the calculus can be easily extended to support super by keeping a ref�
erence to the entire superclass object �supergen self � instead of selecting the
component being rede�ned �see section ��� Also debatable is the decision to sup�
port imperative instead of functional object updates� This choice was motivated
by our desire for simplicity and the relative complexity of supporting functional
update �e�g�� the need for MyType��

We believe that our calculus can be considered a step towards a better un�
derstanding of class�based languages� both because it shows how support for
modular programming techniques can be included in a sound calculus without
compromising its simplicity� and because it can serve as a starting point for more
foundational studies such as denotational semantics for the class and mixin con�
structs� Topics for future research include developing an e�cient implementation
of the core calculus and extending it to a full language� studying an extension of
the core calculus withML polymorphism in order to combine classes and objects
with the full power of ML type inference� combining existential types with our
simple object types to provide a form of implementation types� and expanding
our rules for mixins to account for higher�order mixins�
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A De�nition of Contexts

The de�nition of contexts is standard but lengthy due to the number of subexpressions
in the mixin expression�

C � � � � � j C e j e C j �x�C j C�x j C � e j e �C
j fm� � e�� � � � �mi�� � ei���mi � C�mi�� � ei��� � � � �mn � eng

��i�n

j H h�C j Hhx�Cih�e j new C j classvalhC�M�Pi

j mixin

j � New

k � Redef

� � Prot

method mj � vmj
�

rede�ne mk � vmk
�

protect �p���
constructor C�
end

j mixin

j � New n �i�
k � Redef

� � Prot

method mj � vmj
�

method mi � C�
rede�ne mk � vmk

�
protect �p���
constructor vc�
end

jmixin

j � New

k � Redef n �i�
� � Prot

method mj � vmj
�

rede�ne mk � vmk
�

rede�ne mi � C�
protect �p���
constructor vc�
end



B Type Rules

The type rules for class�related forms were presented in section �� The remaining type
rules are presented here�

B�� Subtyping Rules

The subtyping rules are standard� Objects support both depth and width subtyping�
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��� 
� 	 
��� 
�
��� proj �

� 	 	 �� 	
�re��

� 	 	��� 	� � 	 	��� 	�

� 	 	��� 	�
�trans�

� 	 	 ��� 	 � 	 �����

� 	 	 � ��� 	 � � ��
�arrow�

� 	 	i���i i 
 I I � J

� 	 fmi � 	ig
i�I �� fmj � �jg

j�J
��� record �

B�� Type Rules for Expressions

The type rules for expressions other than class�related forms are simple� except for
heaps� which have to be typed globally�

typeof �const� � 	

� 	 const � 	
�const�

�� x � 	 	 x � 	
�proj �

�� x � 	 	 e � �

� 	 �x�e � 	 � �
���

� 	 e� � 	 � � � 	 e� � 	

� 	 e� e� � �
�app�

� 	 fix � �� � ��� �
��x�

� 	 e � 	 � 	 	 ���

� 	 e � �
�sub�

� 	 ei � 	i

� 	 fxi � eig
i�I � fxi � 	ig

�record�

� 	 e � fx � �g

� 	 e�x � �
�lookup�

� 	 ref � 	 � 	 ref
�ref �

� 	 � � 	 ref � 	
���

� 	 �� � 	 ref � 	 � 	
����

� � � �� x� � 	� ref� � � � � xn � 	n ref � � 	 vi � 	i � � 	 e � 	

� 	 Hhx�� v�i � � � hxn� vni�e � 	
�heap�


