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Synopsis

Objectives  Tuberculosis  is  currently the  second cause  of  death  among  patients  affected  with

infectious  diseases. Quantification  of  drug  levels  in  plasma  and  in  cells  where  Mycobacterium

tuberculosis persists  and growths  may be useful  in  understanding the appropriateness  of  dosage

regimens.  We  report  a  new  and  fully  validated  chromatographic  method  to  quantify  first  line

antituberculars in plasma and in peripheral blood mononuclear cells (PBMCs). The method was used

for  plasma and cell  quantification  of  antituberculars  in  patients  in  treatment  with  standard  oral

therapy.

Methods 

Ethambutol, isoniazid, pyrazinamide, and rifampicin were extracted from plasma and PBMCs using

two separated and optimized procedures; analysis was performed using an UPLC coupled with mass-

mass detector system (UPLC-MS-MS). Antitubercular levels in patients were assayed at the end of

dosing interval (Ctrough) and two hours post dose (Cmax). 

Results

The method resulted accurate and precise, recovery and matrix effect resulted reproducible.  While

rifampicin  intracellular  concentrations  were  similar  to  plasma values  (median  intra-PBMCs Cmax

7503  ng/mL versus  median  plasma  Cmax 6505  ng/mL),  isoniazid  and  pyrazinamide  were  lower

(median intra-PBMCs Cmax 12 ng/mL versus median plasma Cmax 3258 ng/mL for isoniazid and 2364

ng/mL  versus  median  plasma  Cmax 26988  ng/mL  for  pyrazinamide);  ethambutol  intracellular

concentrations were significantly higher than plasma values (median intra-PBMCs Cmax 73334 ng/mL

versus median plasma Cmax 2244 ng/mL).

Conclusions

The method was suitable for both therapeutic drug monitoring and for pharmacokinetic analysis.

Should  the  clinical  usefulness  of  measuring  antitubercular  drugs  intracellular  concentrations  be

confirmed, this method could be useful to enhance the clinical application of intra-PBMC evaluation.



Introduction 

In 2012 it was estimated that 8.6 million people worldwide developed tuberculosis (TB) and 1.3

million died with it1; TB is considered the second cause of death among infectious diseases after HIV

infection. Suboptimal concentrations (mostly in the plasma compartment) have been associated with

delayed mycobacteria clearance, relapse and selection of drug resistant strains.2-9 

Macrophages play an important role in the control of  Mycobacterium tuberculosis growth, spread,

and  granuloma  formation  10 and  immunodeficient  patients  are  at  higher  risk  of  developing

disseminated and extrapulmonary infections.  As antibacterial  activity  is  concentration-dependent,

antitubercular  drugs  must  reach  appropriate  levels  at  the  site  of  action,  i.e.  inside  infected

macrophages.4 However since resident macrophages are usually derived from circulating monocytes

and since they are far more easily accessed, it may be relevant to measure antitubercular drugs in

peripheral blood mononuclear cells (PBMCs). 

We aimed to develop and validate a new chromatographic method to quantify ethambutol, isoniazid,

pyrazinamide, and rifampicin in plasma and in PBMCs.



Materials and methods

Chemicals  and  reagents:  Ethambutol,  isoniazid,  pyrazinamide,  rifampicin,  thymidine,  and  6,7-

Dimethyl-2,3-di(2-pyridyl)quinoxaline  (QX) were purchased from Sigma Aldrich (St.Louis,  MO,

USA). Acetonitrile HPLC grade and methanol HPLC grade were purchased from VWR (Radnor, PA,

USA). Formic acid was obtained by Sigma Aldrich. HPLC grade water was obtained by Milli-DI

system coupled with a Synergy 185 system by Millipore (Billerica, MA, USA). Blank PBMCs were

taken from buffy coat of healthy donors, kindly supplied by the Blood Bank of the Maria Vittoria

Hospital (Turin, Italy). 

Equipment:  The  chromatographic  system  used  was  an  AcquityTM Ultraperformance  Liquid

Chromatography system (UPLC) (Waters, Milford, MA, USA) coupled with a Quadrupole Detector

(TQD). An AcquityTM UPLC HSS T3 1.8 µm (2.1x150 mm) column (Waters, Milford, MA, USA),

protected by a  ACQUITY UPLC column In-Line Filter  (Waters,  Milford,  MA, USA) was used.

MS/MS settings, values of cone voltage, collision energy, and mass transitions are reported in Table

S1. 



Stock  solutions,  standards,  and  quality  controls:  Stock  solutions  of  ethambutol,  isoniazid,  and

rifampicin  were  made  in  methanol  100%,  pyrazinamide  stock  solution  was  prepared  in

water:methanol (50:50; v/v), stock solution of thymidine was done in water 100%, stock solution of

QX was prepared in water:methanol (10:90; v/v). 

Internal standard working solution (IS) was made by diluting thymidine and QX in water:methanol

(50:50; v/v) at the concentration of 20 mg/L and 1 mg/mL, respectively. Calibration ranges and QCs

levels are reported in Table S2.

Extraction procedure from plasma: 200 µL of STD, QCs, and patients samples were added to 50 µL

of IS and 400 µL of acetonitrile. After centrifugation at 20000 x g for 10 min at 4°C, supernatant was

diluted 1:10 with water before injection in UPLC system.

Extraction procedure from PBMCs:  STDs,  QCs,  and samples  of  patients  consisting  of  1  mL of

PBMCS at the concentration of 10x106cells/mL were spiked with 50 µL of IS solution. Each sample

was vortexed for 15 seconds and then sonicated in a water bath for 15 minutes at room temperature.

Samples were centrifugated at 20000 x g for 10 min at 4°C, and supernatant was transferred to glass

tubes. Supernatant was evaporated in a vacuum-centrifuge at 60°C, reconstituted with 300 µL of

water:acetonitrile (95:5;v/v) and injected in UPLC system.

Recruiting of patients, sampling, and calculation of cell associated drug concentrations:  Clinical

samples  were  collected  after  obtaining  written  informed  consent,  according  to  local  Ethics

Committee indications (ASLTO2, protocol “TB INTRA”). The method was tested on patients who

attended the Amedeo di Savoia Hospital (Turin). All subjects were over the age of 18 years and

received standard oral dosages, given on an empty stomach, of ethambutol (20 mg/kg/day), isoniazid

(5  mg/kg/day),  pyrazinamide  (20  mg/kg/day),  and  rifampicin  (10  mg/kg/day).  Samples  were

obtained after four weeks of treatment. Venous blood samples were collected at the end of the dosing



interval (Ctrough) and two hours post dose (Cmax). They were centrifuged (900 x g, 15 min at 4°C) to

separate the plasma. PBMCs were isolated from blood (28 mL) using BD Vacutainer® CPT™ tubes.

Tubes were centrifuged at 800 × g,15 min at 20°C. PBMCs were then washed 2 times in ice cold

NaCl  0.9%  solution.  Cell  number  and  mean  cellular  volume  (MCV)  were  determined  by  an

automated cell counter (Z2™ COULTER COUNTER®, Beckman Coulter, Brea, CA, USA). Plasma

samples and the resulting pellet of PBMCs, dissolved with 800 µl of solution water:methanol (30:70;

v/v), were stored at −80°C. The time taken from blood sampling to PBMC storage was less than 1 h.

PBMCs associated concentrations of antituberculars, expressed in ng/mL, were obtained using the

following formula: antitubercular amount (ng) / number of PBMCs × MCV (fL) × 10−12. 11-15



Results

Validation of the assay

The assay was validated in accordance with FDA guidelines. {FDA, 2013 #16}

Representative chromatograms are reported in Figure S1. 

Absence of interference from endogenous and exogenous compounds (antibacterials, antiretrovirals)

was confirmed by the analysis of six different blank plasma and PBMC samples.

A quadratic forced through the zero calibration curve (mean r2>0.99) was used for all drugs assayed

for  both  plasma  and  PBMCs.  Intra  and  inter-day  accuracy  (percentage  error)  and  precision

(percentage relative standard deviation, R.S.D%)  was lower than 15% (n=5, Table 1). The lower

limit of quantification, LLOQ, was considered the lowest point of the calibration curve (Table S2).

The LOD for the plasma and PBMC method was 58 ng/mL and 2.93 ng/mL for ethambutol, 58

ng/mL and 0.391 ng/mL for isoniazid, 68 ng/mL and 0.391 ng/mL for pyrazinamide, and 117 ng/mL

and  0.976 ng/mL for rifampicin. 

Recovery was evaluated by calculating the ratio among peak area of extracted and un-extracted QCs

(n=5). 16 Matrix effect was assayed by calculating the ratio among peak area of un-extracted QCs and

standards of the analytes present in the reconstitution solvent [water and acetonitrile (95:5, v/v)]. 16

Results are reported in Table S3.

Antituberculars were found to be stable  (degradation lower than 20%)  in stock solutions and in

plasma at -80°C for one month and after three cycles of freezing at -80°C and thawing at room

temperature (over 1 h).

Absence of antitubercular loss during the washing procedure of PBMCs. 

To asses if the washing procedure of PBMCs leads to drug loss, 40 mL of washing supernatant were

collected  and  quantified  as  reported  above.  We found  that  antitubercular  levels  in  the  washing

supernatant was lower than the LOD and we can conclude that no drug loss happens during the

washing procedure of PBMCs.



Analysis of antitubercular concentrations in patients.

In Figure 1, plasma and PBMCs associated concentrations obtained from 15 subjects are reported. As

already reported in literature 2, isoniazid and rifampicin had undetectable or very low plasma Ctrough

levels and ethambutol and pyrazinamide had low Ctrough levels. Plasma Cmax  were within the target

therapeutic  range  for  the  four  drugs  quantified.  2 Isoniazid,  pyrazinamide,  and  rifampicin  had

undetectable  or  very  low  intracellular  Ctrough levels.  Isoniazid  and  pyrazinamide  seemed  not  to

accumulate  in  PBMCs,  rifampicin  accumulates  around  1-fold  within  PBMCs  and  ethambutol

accumulates around 30-fold. 



Discussion 

We developed and validated a new chromatographic method to simultaneously quantify first line

antituberculars in plasma and PBMCs. To date, only one study reported an assay to simultaneously

quantify first-line antitubercular drugs plasma concentrations using HPLC-MS/MS. 17 Our method of

extraction from plasma, compared to the previous published method, has the advantage of a faster

extraction procedure using a single precipitation step with acetonitrile and direct injection in UPLC.

The method described by Song et al.  17 involves two steps of deproteinization and a run time of 4

minutes. The longer time of chromatographic run used in our method (6 minutes) allows to better

separate analytes reducing potential interferences from endogenous and exogenous compounds and

reducing matrix effect. 

The only method published on antitubercular associated PBMC concentrations was described by

Hartkoorn et al. 18 and it only quantifies rifampicin. In our method calibration curves and QCs used

for the intracellular quantification of antituberculars were prepared in  PBMCs and recovery and

matrix effect were evaluated using PBMCs differently from what observed in the above cited method

18. Furthermore we measured MCV (median MCV = 272 fL) instead of assuming a fixed MCV of

400  fL;  this  may  be  more  accurate  when  estimating  intracellular  concentrations  reducing  the

probability of under  or overestimating drug levels  in PBMCs.  11,  13-15,  19  Rifampicin accumulation

inside PBMCs was lower to what was previously observed (intracellular to plasma ratios of 1 versus

1.8 in the work from Hartkoorn et al. 18), but further studies are needed to confirm these findings. 

A high interpatient variability was observed both in plasma and intracellular concentrations thus

supporting  the  use  of  therapeutic  drug  monitoring  for  optimizing  the  antitubercular  drug

pharmacokinetic profile. The reported intra-PBMC concentrations warrant further investigation in

order  to  study  the  potential  concentration-dependant  efficacy  or  toxicity  in  patients  treated  for

tuberculosis. This newly developed method that allows for rapid and simultaneous quantification of



first-line  plasma  and  intra-PBMC  antitubercular  drug  concentrations  may  be  a  useful  tool  for

tailoring antitubercular regimens in selected patients.
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Mean accuracy (% error) Mean precision (R.S.D.%)

EMB INH PZA RFP EMB INH PZA RFP
Method of extraction from plasma

Intra-day
QC H 7.81 7.91 6.09 7.21 10.15 7.06 5.09 9.72
QC M 7.96 7.87 4.65 6.05 6.96 12.74 6.08 6.25

QC L 3.28 3.39 8.00 11.37 2.46 4.59 8.00 3.09
 Inter-day

QC H 6.88 8.18 10.41 7.43 12.28 9.31 8.77 7.71
QC M 4.54 7.03 8.33 8.22 10.62 9.90 8.33 9.05

QC L 6.78 9.48 4.82 8.77 12.92 13.63 6.97 12.65
Method of extraction from PBMC’s

Intra-day
QC H 5.54 7.44 9.65 8.00 13.04 11.84 6.63 10.50
QC M 4.04 4.16 10.17 7.41 4.72 6.09 2.98 8.77

QC L 7.36 6.08 8.25 7.21 8.51 11.99 8.81 13.12
 Inter-day

QC H 8.20 5.07 8.67 5.69 12.19 11.48 13.34 9.81
QC M 7.17 4.87 6.88 4.97 10.40 7.07 9.87 6.48

QC L 12.66 9.98 7.87 7.48 14.22 12.60 9.44 9.13

Table 1. Average values of intra and inter-day accuracy and precision values obtained from the

method of extraction from plasma and from PBMCs. R.S.D, relative standard deviation; QC, quality

control; H, high; M, medium; L, low; EMB, ethambutol; INH, isoniazid; PZA, pyrazinamide; RFP,

rifampicin.



Figure 1. Plasma and PBMCs associated concentrations of the four antituberculars obtained from 15 

subjects.



Cone voltage (V) Collision Energy  (eV) MRM transition (m/z)

EMB 25 16 205 → 116   

INH 32 24 138 → 79   

PZA 25 15 124 → 81   

RFP 35 16 824 → 792

QX 58 40 313 → 246   

THY 14 14 243 → 127   

Table S1. MS/MS conditions and drug MRM transitions. The mass spectrometer was settled in the

positive  ion  mode,  with  a  capillary  voltage  of  3.5  kV,  a  source  temperature  of  150°C,  and  a

desolvation temperature of 500°C. The nitrogen gas flow was 800 L/h and 50 L/h for desolvation and

cone,  respectively.  MS/MS,  mass  mass;  MRM, multiple  reaction  monitoring.  EMB,  ethambutol;

INH,  isoniazid;  PZA,  pyrazinamide;  RFP,  rifampicin,  THY,  thymidine;  QX,  dimethyl-2,3-di(2-

pyridyl)quinoxaline. 



Standard and quality control levels used for quantification in plasma
 EMB INH PZA RFP

(ng/mL) (ng/mL) (ng/mL) (ng/mL)

STD 1 117 117 547 469
STD 8 15000 15000 70000 60000
QC H 12000 12000 60000 50000
QC M 4000 4000 20000 16000
QC L 300 300 1500 1500

Standard and quality control levels used for quantification in PBMCs
 EMB INH PZA RFP

(ng/10x106cells) (ng/10x106cells) (ng/10x106cells) (ng/10x106cells)

STD 1 5.86 0.781 0.781 1.95
STD 9 1500 200 200 500
QC H 800 150 150 400
QC M 80 15 15 40
QC L 16 3 3 8

Table S2. Standard and quality control levels used for quantification in plasma and PBMCs. STD, 

standard; QC, quality control; H, high; M, medium; L, low; EMB, ethambutol; INH, 

isoniazid; PZA, pyrazinamide; RFP, rifampicin. 



Figure S1. Representative chromatograms relative to the stock solutions of the four antituberculars

and internal standards dissolved in water and acetonitrile (95:5, v/v) at the concentration of 10000

ng/mL.  EMB, ethambutol; INH, isoniazid; PZA, pyrazinamide; RFP, rifampicin, THY, thymidine;

QX, dimethyl-2,3-di(2-pyridyl)quinoxaline.



 
Mean recovery 
(%)

R.S.D.%
Mean matrix effect
(%)

R.S.D.%

Plasma

EMB 28.59 12.12 88.97 10.44

INH 11.45 14.04 94.51 8.02

PZA 12.64 14.73 104.93 3.53

RFP 9.90 13.55 92.96 4.20

THY 91.22 11.86 114.62 10.00

QX 61.74 14.96 111.68 4.98

PBMCs

EMB 65.90 12.28 34.36 13.28

INH 57.54 11.31 50.39 12.54

PZA 94.30 4.77 82.40 6.42

RFP 60.92 7.81 99.94 13.89

THY 84.31 10.19 95.05 12.87

QX 88.47 9.17 103.53 3.87

Table S3. Mean recovery  and mean matrix  effect  obtained from the  method of  extraction  from

plasma and PBMCs. R.S.D, relative standard deviation; EMB, ethambutol;  INH, isoniazid; PZA,

pyrazinamide; RFP, rifampicin, THY, thymidine; QX, dimethyl-2,3-di(2-pyridyl)quinoxaline.

 

  

 

 



 

 


