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Abstract

Let Ml,n be the number of blocks with frequency l in the exchangeable random par-
tition induced by a sample of size n from the Ewens-Pitman sampling model. We
show that as n tends to infinity n−1Ml,n satisfies a large deviation principle and we
characterize the corresponding rate function. A conditional counterpart of this large
deviation principle is also presented. Specifically, given an initial observed sample of
size n from the Ewens-Pitman sampling model, we consider an additional unobserved
sample of size m thus giving rise to an enlarged sample of size n+m. As m tends to
infinity, and for any fixed n, we establish a large deviation principle for the conditional
number of blocks with frequency l in the enlarged sample, given the initial sample.
Interestingly this conditional large deviation principle coincides with the unconditional
large deviation principle for Ml,n, namely there is no long lasting impact of the given
initial sample. Applications of the conditional large deviation principle are discussed
in the context of Bayesian nonparametric inference for species sampling problems.

Keywords: Bayesian nonparametrics; discovery probability; Ewens-Pitman sampling model; ex-
changeable random partition; large deviations; population genetics; species sampling problems.
AMS MSC 2010: Primary 60F10, Secondary 92D10.
Submitted to EJP on July 13, 2014, final version accepted on April 8, 2015.

1 Introduction

The Ewens-Pitman sampling model was introduced by Pitman [25] as a generalization
of the celebrated sampling model by Ewens [9]. See Pitman [29] for a comprehensive
review. In order to define the Ewens-Pitman sampling model, let X be a Polish space and
let ν be a nonatomic probability measure on X. For any α ∈ (0, 1) and θ > −α let (Xi)i≥1
be a sequence of X-valued random variables such that P[X1 ∈ ·] = ν(·), and for any i ≥ 1

P[Xi+1 ∈ · |X1, . . . , Xi] =
θ + jα

θ + i
ν(·) +

1

θ + i

j∑
l=1

(nl − α)δX∗
l
(·) (1.1)

with X∗1 , . . . , X
∗
j being the j distinct values in (X1, . . . , Xi) with corresponding frequen-

cies (n1, . . . , nj). The conditional probability (1.1) is referred to as the Ewens-Pitman
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LDP for Ewens-Pitman sampling model

sampling model. The Ewens sampling model is recovered as special case of (1.1) by
letting α → 0. Pitman [25] showed that (Xi)i≥1 is exchangeable and its de Finetti
measure Π is the distribution of the two parameter Poisson-Dirichlet process P̃α,θ,ν in
Perman [24], namely

Xi | P̃α,θ,ν
iid∼ P̃α,θ,ν i = 1, . . . , n (1.2)

P̃α,θ,ν ∼ Π,

for any n ≥ 1. In particular P̃α,θ,ν
d
=
∑
i≥1 Vi

∏
l≤i−1(1 − Vl)δZi where (Vi)i≥1 are inde-

pendent random variables such that Vi is distributed according to a Beta distribution
with parameter (1− α, θ + iα), and (Zi)i≥1 are random variables independent of (Vi)i≥1
and independent and identically distributed according to ν. See, e.g., Perman [24] and
Pitman and Yor [28] for further details on the discrete random probability measure
P̃α,θ,ν .

According to (1.1) a sample (X1, . . . , Xn) from P̃α,θ,ν induces an exchangeable random
partition of the set {1, . . . , n} into Kn ≤ n blocks with corresponding frequencies Nn =

(N1, . . . , NKn) such that
∑

1≤i≤Kn
Ni,n = n. As shown in Pitman [25] this exchangeable

random partition leads to the following generalization of the celebrated Ewens sampling
formula: if Ml,n denotes the number of blocks with frequency 1 ≤ l ≤ n, namely
Ml,n =

∑
1≤i≤Kn

1{Ni,n=l} such that Kn =
∑

1≤l≤nMl,n and n =
∑

1≤l≤n lMl,n, then

P[(M1,n, . . . ,Mn,n) = (m1, . . . ,mn)] =

∏j−1
i=0 (θ + iα)

(θ)(n)
n!

n∏
i=1

(
(1− α)(i−1)

i!

)mi 1

mi!
, (1.3)

where (x)(n) = x(x+ 1) · · · (x+n− 1) with the proviso (x)(0) = 1. The distribution (1.3) is
known as the Ewens-Pitman sampling formula and it has been the subject of a rich and
active literature. In particular there have been several studies on the large n asymptotic
behaviour of Kn in terms of fluctuation limits and large deviations. See, e.g., Pitman
[27], Feng and Hoppe [15] and Favaro and Feng [12]. In this paper we focus on large
deviations for Ml,n: for any α ∈ (0, 1) and θ > −α we show that n−1Ml,n satisfies a large
deviation principle with speed n and we characterize the corresponding rate function.
We also present a conditional counterpart of this large deviation principle. These results
complete the study initiated in Feng and Hoppe [15] and Favaro and Feng [12].

1.1 Notation and background

We start by recalling the distribution of the random variables Kn and Ml,n in-
duced by a sample (X1, . . . , Xn) from P̃α,θ,ν . For any nonnegative integers n and
j ≤ n we denote by C (n, j;α) the so-called generalized factorial coefficient, namely
C (n, j;α) = (j!)−1

∑j
i=1(−1)i

(
j
i

)
(−iα)(n). See Charalambides [6] for a detailed account

on this combinatorial coefficient. According to results in Pitman [25] and Favaro et al.
[11], one has

P[Kn = j] =

∏j−1
i=0 (θ + iα)

(θ)n
C (n, j;α) (1.4)

and

P[Ml,n = ml] =

n−ml∑
i=0

(−1)i
(

n

i,ml, n− lml − li

)
αml+i

(
θ

α

)
(ml+i)

(1.5)

×
(

(1− α)(l−1)

i!

)ml+i (θ + (ml + i)α)(n−lml−li)

(θ)(n)
,
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respectively. For α → 0 the distributions (1.4) and (1.5) reduce to distributions orig-
inally obtained in Ewens [9], Watterson [32] and Watterson [33]. Indeed one has
limα→0 α

−jC (n, j;α) = |s(n, j)|, where |s(n, j)| denotes the signless Stirling number
of the first type.

Conditional counterparts of (1.4) and (1.5) have been proposed in Lijoi et al. [22] and
Favaro et al. [11]. See also Griffiths and Spanò [19], Lijoi et al. [23] and Bacallado et al.
[4]. Specifically, let (X1, . . . , Xn) be an initial sample from P̃α,θ,ν and featuring Kn = j

blocks with frequencies Nn = n = (n1, . . . , nj), and let (Xn+1, . . . , Xn+m) be an additional
unobserved sample. This is equivalent to say that (Xn+1, . . . , Xn+m) is a sample from

a discrete random probability measure P̃
(n)
α,θ,ν whose distribution is the conditional

distribution of P̃α,θ,ν given (X1, . . . , Xn). This conditional distribution is characterized in
Corollary 20 of Pitman [26]. Specifically, if (W1, . . . ,Wj+1) a random variable distributed
according to a Dirichlet distribution with parameter (n1 − α, . . . , nj − α, θ + jα), then

P̃
(n)
α,θ,ν

d
=

j∑
i=1

WiδX∗
i

+Wj+1P̃α,θ+jα,ν

where (W1, . . . ,Wj+1) is independent of P̃α,θ+jα,ν . Proposition 1 in Lijoi et al. [22]

provides the conditional distribution, given (Kn,Nn), of the number K(n)
m of new blocks

in (Xn+1, . . . , Xn+m), whereas Proposition 5 and Proposition 6 in Favaro et al. [11]

provide the conditional distribution, given (Kn,Nn), of the number M (n)
l,m of blocks

with frequency l ≥ 1 in (X1, . . . , Xn+m). These conditional distributions have found
applications in Bayesian nonparametric inference for species sampling problems arising
from ecology, bioinformatic, genetic, etc. Indeed from a Bayesian perspective (1.2) is a
nonparametric model for the individuals Xi’s of a population with infinite species X∗i ’s,
with Π being the prior distribution on the composition of such a population. Within this
Bayesian framework P[K

(n)
m = k |Kn = j,Nn = n] and P[M

(n)
l,m = ml |Kn = j,Nn = n]

are the posterior distributions of the number of new species in (Xn+1, . . . , Xn+m) and the
number of species with frequency l in the enlarged sample (X1, . . . , Xn+m), respectively,

given (X1, . . . , Xn). Hence Eα,θ[K
(n)
m |Kn = j,Nn = n] and Eα,θ[M

(n)
l,m |Kn = j,Nn = n]

are the corresponding Bayesian nonparametric estimators under a squared loss function.
For any α ∈ (0, 1) and q > −1, let Sα,qα be a positive random variable such that

P[Sα,qα ∈ dy] = α−1Γ−1(q+1)Γ(qα+1)yq−1−1/αfα(y−1/α)dy where fα denotes the density
function of the positive α-stable random variable and Γ(·) denotes the Gamma function.

Specifically, S−1/αα,qα is the so-called polynomially tilted positive α-stable random variable.
Pitman [27] and Pitman [29] established a large n fluctuation limit for Kn and Ml,n,
namely

lim
n→+∞

Kn

nα
= Sα,θ a.s. (1.6)

and

lim
n→+∞

Ml,n

nα
=
α(1− α)(l−1)

l!
Sα,θ a.s. (1.7)

In contrast, for α → 0 Korwar and Hollander [21] and Arratia et al. [2] showed that
limn→+∞Kn/ log n = θ and limn→+∞Ml,n = Pθ/l almost surely, where Pθ/l is a Poisson
random variable with parameter θ/l. A weak convergence version of (1.6) and (1.7)
can also be derived from asymptotic results for urn model with weighted balls. See
Proposition 16 in Flajolet et al. [16] and Theorem 5 in Janson [20] for details. Let X |Y
be a random variable whose distribution coincides with the conditional distribution of X
given Y . A conditional counterpart of (1.6) and (1.7) has been established in Favaro et
al. [10]. Specifically, if (Kn,Nn) is the random partition induced by a sample of size n
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from P̃α,θ,ν , then

lim
m→+∞

K
(n)
m

mα
| (Kn = j,Nn = n) = Bj+θ/α,n/α−jSα,θ+n a.s. (1.8)

and

lim
m→+∞

M
(n)
l,m

mα
| (Kn = j,Nn = n) =

α(1− α)(l−1)

l!
Bj+θ/α,n/α−jSα,θ+n a.s. (1.9)

where Bj+θ/α,n/α−j is a random variable independent of Sα,θ+n and distributed according
to a Beta distribution with parameter (j + θ/α, n/α − j). Moreover, for α → 0 one has

limm→+∞K
(n)
m / logm = θ and limm→+∞M

(n)
l,m = Pθ/l almost surely. The reader is referred

to Arratia et al. [3], Barbour and Gnedin [5], Schweinsberg [30] and Favaro and Feng
[12] for recent generalizations and refinements of the fluctuation limits (1.6), (1.7), (1.9)
and (1.8).

Feng and Hoppe [15] further investigated the large n asymptotic behaviour of the
random variable Kn and, in particular, they established a large deviation principle for Kn.
Interestingly the large deviation principle is characterized by a rate function depending
only on the parameter α, which displays the different roles of the two parameters,
α ∈ (0, 1) and θ > −α, at different scales. Specifically, Feng and Hoppe [15] showed that
n−1Kn satisfies a large deviation principle with speed n and rate function of the form

Iα(x) =

 supλ{λx− Λα(λ)} x ∈ [0, 1]

+∞ otherwise,
(1.10)

where Λα(λ) = − log(1 − (1 − e−λ)1/α)1(0,+∞)(λ). As α → 0 it was shown by Feng and
Hoppe [15] that (log n)−1Kn satisfies a large deviation principle with speed log n and
rate function

Iθ(x) =


x log x

θ − x+ θ x > 0

θ x = 0

+∞ x < 0.

(1.11)

As suggested by (1.6) and (1.8), one may expect that Kn and K
(n)
m | (Kn,Nn) have

different asymptotic behaviours also in terms of large deviations, as n and m tend to
infinity, respectively. Favaro and Feng [12] showed that for any fixed n and as m tends to
infinity, m−1K(n)

m | (Kn,Nn) satisfies a large deviation principle with speed m and rate
function (1.10), for α ∈ (0, 1), and rate function (1.11), for α→ 0. In other words, there
is no long lasting impact of the given initial sample to the large deviation principle for
K

(n)
m | (Kn,Nn).

1.2 Main results and outline of the paper

Under the Ewens-Pitman sampling model we establish a large deviation principle for
Ml,n, for any l ≥ 1. Specifically, for any λ > 0 and l ≥ 1 let us define x = 1 − e−λ and
x̃ = αx(1− α)(l−1)/(1− x)l!. Moreover, let ε0(λ) be the unique solution of the following
equation

(l − α) log(1− (l − α)ε)− l log(1− lε)− α logαε− log x̃ = 0,

and let

Λα,l(λ) =

 log
(

1 + αε0(λ)
1−lε0(λ)

)
if λ > 0

0 if λ ≤ 0.
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We show that

−Iαl (A◦) ≤ lim inf
n→+∞

1

n
logP

[
Ml,n

n
∈ A

]
≤ lim sup

n→+∞

1

n
logP

[
Ml,n

n
∈ A

]
≤ −Iαl (Ā)

where we set Iαl (A) = infy∈A{Iαl (y)} and Iαl (x) = supλ∈R{λx− Λα,l(λ)} for any measur-
able set A ⊂ R, and where A◦ and Ā denote the interior and the closure of A, respectively.
In other words, we can state the following large deviation principle for Ml,n.

Theorem 1.1. Under the Ewens-Pitman sampling model n−1Ml,n satisfies a large de-
viation principle with speed n and rate function Iαl , for any α ∈ (0, 1) and θ > −α. In
particular,

lim
n→+∞

1

n
logP

[
Ml,n

n
> x

]
= −Iαl (x)

for almost all x > 0, where Iαl (0) = 0, Iαl (x) < +∞ for any x ∈ (0, 1/l], and Iαl (x) = +∞
for any x /∈ [0, 1/l].

Like the large deviation principle for Kn in Feng and Hoppe [15], the large deviation
principle for Ml,n, for any l ≥ 1, is characterized by a rate function depending only on
α. In other terms, for any θ > −α the rate function Iαl coincides with the rate function
of the special case α ∈ (0, 1) and θ = 0. An intuitive explanation for this comes from
the representation of P̃α,θ,ν through a collection of independent Beta random variables
(Vi)i≥1. Large deviations are determined mostly by the tail of (Vi)i≥1 where α plays the
dominant role. We derive an explicit expression for Iαl under the assumption α = 1/2

and l = 1. The speciality of the case α = 1/2 is determined by a well-known interplay
between P̃1/2,0,ν and the Brownian motion: the distribution of the decreasing ordered

random masses of P̃1/2,0,ν coincides with the distribution of the decreasing ordered
length of excursions of a Brownian motion, away from 0, in the time interval [0, 1]. In
particular Pitman [27] showed that the distribution of Kn can be derived from the zeros
of a Brownian motion. For θ = 1/2 a similar relationship follows with respect to the
Brownian bridge. We refer to Pitman [29] for a detailed account on P̃1/2,0,ν and P̃1/2,1/2,ν .

We also present a conditional counterpart of Theorem 1.1, in the same spirit as the
fluctuation limit (1.9) represents a conditional counterpart of (1.7). In particular we
establish a large deviation principle for M (n)

l,m | (Kn,Nn), as m → +∞, where (Kn,Nn)

is the random partition induced by a sample of size n from P̃α,θ,ν . We can state the
following theorem.

Theorem 1.2. Under the Ewens-Pitman sampling model m−1M (n)
l,m | (Kn,Nn) satisfies

a large deviation principle with speed m and rate function Iαl , for any α ∈ (0, 1) and
θ > −α. In particular,

lim
m→+∞

1

m
logP

[
M

(n)
l,m

m
> x |Kn = j,Nn = n

]
= −Iαl (x)

for almost all x > 0, where Iαl (0) = 0, Iαl (x) < +∞ for any x ∈ (0, 1/l], and Iαl (x) = +∞
for any x /∈ [0, 1/l].

Note that, similarly to the large deviation principle for K(n)
m | (Kn,Nn) obtained in Favaro

and Feng [12], the large deviation principle for M (n)
l,m | (Kn,Nn), as m→ +∞, coincides

with the large deviation principle for Ml,n, as n → +∞. In other words, there is
no long lasting impact of the given initial sample to the large deviation principle for
M

(n)
l,m | (Kn,Nn).
A closer inspection of (1.8) and (1.9) reveals that for l = 1 the large deviation principle

in Theorem 1.2 has a natural interpretation in the context of Bayesian nonparametric
inference for discovery probabilities. Specifically, let P[D

(n)
m ∈ · |Kn = j,Nn = n] be the
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conditional, or posterior, distribution of the probability of discovering a new species at the
(n+m+1)-th draw, given the random partition (Kn,Nn) induced by (X1, . . . , Xn). We show

that P[D
(n)
m ∈ · |Kn = j,Nn] and P[m−1M

(n)
1,m ∈ · |Kn = j,Nn = n] are approximately

equal for large m. Accordingly Theorem 1.2 provides a large m approximation of
P[D

(n)
m ≥ x |Kn = j,Nn = n], which is a Bayesian nonparametric estimator of the

decay of the discovery probability. Similarly, Eα,θ[m−1M
(n)
1,m |Kn = j,Nn = n] provides

a large m approximation of the Bayesian nonparametric estimator of the discovery
probability, namely Eα,θ[D

(n)
m |Kn = j,Nn = n]. An illustration of these asymptotic

estimators is presented by using a genomic dataset. The interest in the estimators
Eα,θ[D

(n)
m |Kn = j,Nn = n] and P[D

(n)
m ≥ x |Kn = j,Nn = n], as well as in their large m

approximations, is related to the classical problem of determining the optimal sample
size in species sampling problems. Indeed this problem is typically faced by setting a
threshold τ for an exact or approximate mean functional of P[D

(n)
m ∈ · |Kn = j,Nn = n],

and then making inference on the sample size m for which this mean functional falls
below, or above, τ . This procedure naturally introduces a criterion for evaluating the
effectiveness of further sampling.

The paper is structured as follows. In Section 2 we present the proof of Theorem
1.1 and we derive an explicit expression for the rate function Iαl under the assumption
α = 1/2 and l = 1. Section 3 contains the proof of Theorem 1.2. In Section 4 we discuss
potential applications of Theorem 1.2 in the context of Bayesian nonparametric inference
for species sampling problems and, in particular, in the context of discovery probabilities.

2 Large deviations for Ml,n

The large deviation principle for Ml,n is established through a detailed study of
the moment generating function of the random variable Ml,n. This is in line with the
approach originally adopted in Feng and Hoppe [15] for Kn. For any λ > 0 let y = 1−e−λ
and

GMl,n
(y;α, θ) = Eα,θ

[(
1

1− y

)Ml,n
]

=
∑
i≥0

yi

i!
Eα,θ[(Ml,n)(i)] (2.1)

be the moment generating function of the random variable Ml,n. Let (y)[n] = y(y −
1) · · · (y − n+ 1) be the falling factorial of y of order n, with the proviso (y)[0] = 1. Propo-
sition 1 in Favaro et al. [11] provides an explicit expression for Eα,θ[(Ml,n)[r]]. Recalling
that (y)(n) =

∑
0≤i≤n

∑
0≤j≤i |s(n, i)|S(i, j)(y)[j], where s and S denote the Stirling num-

ber of the first type and the second type, an explicit expression for Eα,θ[(Ml,n)(r)] is
obtained. Specifically,

Eα,θ[(Ml,n)(r)] = r!

r∑
i=0

(
r − 1

r − i

)(α (1−α)(l−1)

l!

)i (
θ
α

)
(i)

(n)[il](θ + iα)(n−il)

i!(θ)(n)
(2.2)

and

Eα,0[(Ml,n)(r)] = (r − 1)!

r∑
i=0

(
r

i

)(α (1−α)(l−1)

l!

)i
(n)[il](iα)(n−il)

αΓ(n)
, (2.3)

where the sums over i is nonnull for 0 ≤ i ≤ min(r, bn/lc). The next lemma provides
an explicit expression for GMl,n

(y;α, 0). This result follows by combining (2.3) with the
series expansion on the right-hand side of (2.1), and by means of standard combinatorial
manipulations.

Lemma 2.1. For any α ∈ (0, 1)

GMl,n
(y;α, 0) (2.4)
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=

bn/lc∑
i=0

(
y

1− y

)i(
α

(1− α)(l−1)

l!

)i
n

n− il

(
n− il + iα− 1

n− il − 1

)
.

Proof. The proof is obtained by simply combining the right-hand side of (2.1), with θ = 0,
with the rising factorial moment displayed in (2.3). This leads to write GMl,n

(y;α, 0) as
follows

GMl,n
(y;α, 0)

=
∑
t≥0

yt

t!

t∑
i=0

(
t

i

)
(t− 1)!

(
α

(1− α)(l−1)

l!

)i
(n)[il](iα)(n−il)

αΓ(n)

=
∑
i≥0

1

i

(
y

1− y

)i(
α

(1− α)(l−1)

l!

)i
(n)[il](iα)(n−il)

αΓ(n)
,

where the last equality is obtained by interchanging the summations and by means of∑
t≥i
(
t
i

)
yt(t − 1)!/t! = i−1(y/(1 − y))i. Since (n)[il] = 0 for i > bn/lc then we can write

the last expression as

GMl,n
(y;α, 0)

=

bn/lc∑
i=0

1

i

(
y

1− y

)i(
α

(1− α)(l−1)

l!

)i
(n)[il](iα)(n−il)

αΓ(n)
.

The proof is completed by rearranging the rising and the falling factorial moments by
means of the well-known identities (iα)(n−il) = Γ(n − il + iα)/Γ(iα) = (n − il + iα −
1)!/(iα− 1)!.

We exploit (2.4) and (2.2) in order to establish the large deviation principle for Ml,n

stated in Theorem 1.1. The proof of this theorem is split into three main parts. The first
two parts deal with the large deviation principle for Ml,n under the assumption α ∈ (0, 1)

and θ = 0, whereas the third part deals with the general case α ∈ (0, 1) and θ > −α.

Proof of Theorem 1.1. In the first part of the proof we show that, assuming α ∈ (0, 1)

and θ = 0, n−1Ml,n satisfies a large deviation principle with speed n and rate function Iαl .
By exploiting the rising factorial moment (2.3) we can write the large n approximation

Eα,0[Ml,n] =
α(1− α)(l−1)

αΓ(n)l!
(n)[l](α)(n−l) ≈ nα

and

GMl,n
(y;α, 0) =

bn/lc∑
i=1

ỹi
n

n− il

(
n− il + αi− 1

n− il − 1

)
where we defined ỹ = αy(1 − α)(l−1)/(1 − y)l!. Note that if n/l is an integer, then the
final term in the above expression corresponds to nỹn/l. By direct calculation we can
prove that limn→+∞ n−1 logEα,0[eλMl,n ] = 0 for any λ ≤ 0. Furthermore, for any λ > 0

and y = 1− e−λ,

lim
n→+∞

1

n
logGMl,n

(y;α, 0)

= lim
n→+∞

1

n
log max

{
ỹi
(
n− il + αi− 1

n− il − 1

)
; i = 0, . . . ,

n

l

}
= lim
n→+∞

max

{
1

n
log ỹi

(
n− il + αi− 1

n− il − 1

)
; i = 0, . . . ,

n

l

}
.
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For αi < 1, it is clear that one has limn→+∞ n−1 log ỹi
(
n−(l−α)i−1
n−li−1

)
= 0. For any i satisfying

0 ≤ n− il < 1, there are two possibilities: either n = il or i = bn/lc < n/l. In both cases
one has

lim
n→+∞

1

n
log ỹi

(
n− (l − α)i− 1

n− li− 1

)
=

1

l
log ỹ.

Next we consider the case for which i satisfies n − li ≥ 1 and αi ≥ 1. For 0 < ε < 1/l,
set φ(ε) = ε log ε and ϕ(ε) = φ(1− (l − α)ε)− φ(1− lε)− φ(αε) + ε log ỹ. By means of the
representation Γ(z) =

√
2πzz−1/2e−z[1 + r(z)], where we set |r(z)| ≤ e1/12z − 1 for any

z > 0, we can write(
n− il + αi− 1

n− il − 1

)
=

Γ(n− (l − α)i)

αiΓ(n− li)Γ(αi)

=
(1 + r(n− (l − α)i))e√

2π(1 + r(n− li))(1 + r(αi))

(
(n− li)

αi(n− (l − α)i)

)1/2

× (1− (l − α)i/n)n−(l−α)i

(1− li/n)n−li(αi/n)αi

=
(1 + r(n− (l − α)i))e√

2π(1 + r(n− li))(1 + r(αi))

(
(n− li)(αi+ 1)

(n− (l − α)i)

)1/2

× exp

{
n

[
φ

(
1− (l − α)

i

n

)
− φ

(
1− l i

n

)
− φ

(
α
i

n

)]}
.

The fact that α−1 ≤ i ≤ (n−1)/l implies that (1+r(n−(l−α)i))e/
√

2π(1+r(n−li))(1+r(αi))

is uniformly bounded from above by some constant d1 > 0. Accordingly, we can write(
n− il + αi− 1

n− il − 1

)
(2.5)

≤ d1
√
n exp

{
n

[
φ

(
1− (l − α)

i

n

)
− φ

(
1− l i

n

)
− φ

(
α
i

n

)]}
,

and

lim
n→+∞

max

{
1

n
log ỹi

(
n− il + αi− 1

n− il − 1

)
;

1

α
≤ i ≤ (n− 1)

l

}
(2.6)

≤ max

{
ϕ(ε) : 0 < ε <

1

l

}
.

In particular, by combining the inequalities stated in (2.5) and (2.6), respectively, we
have

lim
n→+∞

1

n
logGMl,n

(y;α, 0)

= lim
n→+∞

1

n
log max

{
ỹi
(
n− il + αi− 1

n− il − 1

)
; i = 0, . . . ,

n

l

}
= max

{
max

{
lim

n→+∞

1

n
log ỹi

(
n− il + αi− 1

n− il − 1

)
; i <

1

α

}
,

max

{
lim

n→+∞

1

n
log ỹi

(
n− il + αi− 1

n− il − 1

)
;

1

α
≤ i ≤ n− 1

l

}
,

1

l
log ỹ

}
= max

{
0,max

{
ϕ(ε) : 0 < ε <

1

l

}
,

1

l
log ỹ

}
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≤ max

{
ϕ(ε) : 0 < ε <

1

l

}
.

On the other hand, for any ε in (0, 1/l), there exists a sequence (in)n≥1 such that (in/n)n≥1
converges to ε as n tends to infinity. For this particular sequence we can write

ϕ(ε) = lim
n→+∞

1

n
log ỹin

(
n− inl + αin − 1

n− inl − 1

)
≤ lim
n→+∞

1

n
logGMl,n

(y;α, 0).

Thus

lim
n→+∞

1

n
logGMl,n

(y; 0, α) = max

{
ϕ(ε) : 0 ≤ ε ≤ 1

l

}
.

Noting that

ϕ′(ε) = −(l − α) log(1− (l − α)ε) + l log(1− lε)− α logαε+ log ỹ, (2.7)

one has

ϕ(ε) = log(1− (l − α)ε)− log(1− lε) + ϕ′(ε)ε. (2.8)

Since ϕ′(0+) = +∞ and ϕ′(1/l−) = −∞, then the function ϕ(ε) reaches a maximum at a
point ε0 in the set (0, 1/l) where ϕ′(ε0) = 0. Clearly ε0 depends on the parameter α, and
it also depends on l and λ. Moreover note that ϕ′′(ε) = −α/ε(1 − (l − α)ε)(1 − lε) < 0,
which implies that ε0(λ) is unique and that Λα,l(λ) = log[1 + αε0/(1− lε0)]. In particular,
since

log ỹ = λ+ log
eλ − 1

eλ
+ log

α(1− α)(l−1)

l!

and ϕ′(ε0) = −(l − α) log(1 − (l − α)ε0) + l log(1 − lε0) − α logαε0 + log ỹ = 0, then one
obtains

λ+ log
eλ − 1

eλ
+ log

α(1− α)(l−1)

ααl!

= l log
1− (l − α)ε0

1− lε0
+ α log

ε0
1− (l − α)ε0

.

Set

h1(λ) = λ+ log
eλ − 1

eλ
+ log

α(1− α)(l−1)

ααl!
(2.9)

and

h2(ε0) = l log
1− (l − α)ε0

1− lε0
+ α log

ε0
1− (l − α)ε0

. (2.10)

Since h1 and h2 are strictly increasing functions with differentiable inverses, then
ε0 = h−12 ◦ h1(λ) is a differentiable strictly increasing function and, in particular, we have
limλ→0 ε0 = 0 and limλ→+∞ ε0 = 1/l. Now, if we set Λα,l(λ) to be zero for nonpositive λ,
and for λ > 0

Λα,l(λ) = log

(
1 +

αh−12 ◦ h1(λ)

1− lh−12 ◦ h1(λ)

)
, (2.11)

then it is clear that {λ : Λα,l(λ) < +∞} = R and Λα,l(λ) is differentiable for λ 6= 0. The
left derivative of Λα,l(λ) at zero is clearly zero. On the other hand, for any λ > 0 we can
write

dΛα,l(λ)

dλ
=

[
α− l

1 + (α− l)ε0
+

l

1− lε0

]
dε0
dλ

.
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Since ε0 converges to zero it follows from direct calculation that, as λ ↓ 0 one obtains
the following

dε0
dλ

=
(eh1(λ))′

(eh2(ε))′|ε=ε0
→ 0.

Hence Λα,l(λ) is differentiable everywhere. By the Gärtner-Ellis theorem, see Dembo
and Zeitouni [7] for details, a large deviation principle holds for n−1Ml,n on space R as
n tends to infinity with speed n and good rate function Iαl (x) = supλ{λx− Λα,l(λ)}. This
completes the first part of the proof. In the second part of the proof we further specify
the rate function Iαl . In particular, let us rewrite Λα,l(λ) as Λα,l(λ) = λ/l+ Λ̃α,l(λ), where
we defined

Λ̃α,l(λ) = −λ/l,

for λ ≤ 0, and

Λ̃α,l(λ) =
1

l
log

eλ − 1

eλ
+

1

l
log

α(1− α)(l−1)

ααl!
− α

l
log

ε0
1− (l − α)ε0

for any λ > 0. We observe that, since there exists a strictly positive constant d2 > 0 such
that ε0 ≥ d2 for λ ≥ 1, then the function Λ̃α,l(λ) is uniformly bounded for λ ≥ 1. This
implies that the rate function Iαl (x) = supλ{λ (x− 1/l)− Λ̃α,l(λ)} is infinity for any point
x > 1/l, which is consistent with the fact that n−1Ml,n ≤ 1/l. Additionally we have that

Iαl (x) =


0 if x = 0

< +∞ if x ∈ (0, 1/l]

+∞ otherwise .

(2.12)

For this to hold, we need to verify that the rate function Iαl (x) is finite for x in (0, 1/l]. By
definition,

sup
0≤λ≤1

{λx− Λ(λ)} ≤ sup
0≤λ≤1

{λx} = x < +∞ (2.13)

for any x in (0, 1/l]. For any λ ≥ 1, let d2 be the value of ε0 at λ = 1. Then ε0 ≥ d2 for
any λ ≥ 1 and this implies that Λ̃(λ) is bounded for all λ ≥ 1. Accordingly, we can write
supλ≥1{λ (y − 1/l) − Λ̃α,l(λ)} ≤ supλ≥1{|Λ̃α,l(λ)|} < +∞, which combined with (2.13)
implies (2.12). This completes the second part of the proof. Finally, in the third part of
the proof we extend the large deviation principle to the case α ∈ (0, 1) and θ > −α. By
combining the definition (2.1) with (2.2), and by means of combinatorial manipulations,
one has

GMl,n
(y;α, θ)

=

bn/lc∑
i=0

D(α, θ, n, i)

(
yα

(1− α)(1−y)(l−1)

l!

)i
n

(n− il)

(
n− il + iα− 1

n− il − 1

)
,

where the function D(α, θ, n, i) is such that D(α, θ, n, 0) = 1 and, in general, for any
1 ≤ i ≤ bn/lc,

D(α, θ, n, i) =
Γ(n)

(θ + 1)(n−1)

(θ/α+ 1)(i−1)

Γ(i)

(θ + iα)(n−il)

(iα)(n−il)
.

Note that, since θ/α > −1, it follows from standard basic algebra that one can find
positive constants, say d3 and d4, that are independent of n and of i, and such that it
follows

d3n
−2 ≤ D(α, θ, n, i) ≤ d4nk (2.14)
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where k is the smallest integer greater than 1 + |θ| + |θ/α|. Accordingly, we have the
identities

lim
n→+∞

1

n
logEα,θ[e

λMl,n ]

= lim
n→+∞

1

n
logGMl,n

(y;α, θ)

= lim
n→+∞

1

n
logGMl,n

(y;α, 0)

= lim
n→+∞

1

n
logEα,0[eλMl,n ] = Λα,l(λ).

Then, for any α ∈ (0, 1) and θ > −α, n−1Ml,n satisfies a large deviation principle with
speed n and with rate function Iαl . This completes the third part of the proof and the
proof. 2

In general it is difficult to get a more explicit expression for Iαl . Indeed, Λα,l depends
on λ in an implicit form, namely Λα,l is a function of λ in terms of h−12 ◦ h1(λ), where h1
and h2 are in (2.9) and (2.10) respectively. However, under the assumption α = 1/2 and
l = 1, an explicit expression for Iαl can be derived. For general α ∈ (0, 1) and θ > −α,
the rate function Iαl displayed in (2.11) can be easily evaluated by means of numerical
techniques.

Proposition 2.2. For any x ∈ [0, 1]

I
1/2
1 (x) = x log[B1(x) + 1] + log 2− log

(
1 +

√
B2

1(x) + 1

)
,

where

B1(x) = 2

√
−p
3

cos

(
1

3
arccos

(
3q

2p

√
−3

p

))
− 2

3(1− x)
.

Proof. Let us consider the equation (2.7). Under the assumption α = 1/2 and l = 1, the
equation −(l − α) log(1− (l − α)ε0) + l log(1− lε0)− α logαε0 + log ỹ = 0 becomes of the
form

−1

2
log
(

1− ε0
2

)
+ log(1− ε0)− 1

2
log ε0 +

1

2
log 2 + log(eλ − 1)− log 2 = 0.

Equivalently we have (eλ − 1)2 = (2− ε0)ε0/(1− ε0)2. By solving the equation we obtain
ε0 = 1 − 1/

√
B2 + 1 with B = eλ − 1. Going back to the rate function, we have the

following identities

I
1/2
1 (x) = sup

λ>0

{
λx− log

1− ε0/2
1− ε0

}
= sup

λ>0

{
λx− log

2− ε0
1− ε0

}
+ log 2

= sup
λ>0

{
λx− log(1 +

√
B2 + 1)

}
+ log 2.

It is known that I1/21 (0) = 0. Moreover, for x = 1, we have the following expression for
the rate function

sup
λ>0

{
λ− log(1 +

√
B2 + 1)

}
= sup

λ>0

{
log

B + 1

1 +
√
B2 + 1

}
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= lim
λ→+∞

log
B + 1

1 +
√
B2 + 1

= 0,

which implies that I1/21 (1) = log 2. In general, for 0 < x < 1, set h(λ) = λx − log(1 +√
B2 + 1). Then h′(λ) = x − B(B + 1)/(B2 + 1 +

√
B2 + 1) the solution of the equation

h′(λ) = 0 satisfies

(1− x)2B3 + 2(1− x)B2 + (1− x)2B − 2x = 0, (2.15)

and

∆ = 64x(1− x)3 + 4(1− x)6 − 36x(1− x)5 − 4(1− x)8 − 108x2(1− x)4

= 4(1− x)6[1− (1− x)2] + (1− x)3x[64− 36(1− x)2 − 108x(1− x)]

≥ 4(1− x)6[1− (1− x)2] + (1− x)3x[64− 36− 27] > 0

is the discriminant. Let G(B) denote the left-hand side of the equation displayed in
(2.15). By a direct calculation it follows that G′(B) = 0 has two negative roots. This,
combined with the fact that G(0) = −2x < 0, implies that one and only one of the three
roots of (2.15) is positive. Denote this root by B1(x). Then the rate function coincides
with

I
1/2
1 (x) = x log[B1(x) + 1] + log 2− log

(
1 +

√
B2

1(x) + 1

)
. (2.16)

By means of a change of variable in the equation (2.15), such that C = B + 2/(3(1− x))

we obtain the following depressed form of the equation C3 +pC+q = 0 where we defined

p = 1− 4

3(1− x)2
< 0

and

q =
16− 18(1− x)2 − 54x(1− x)

27(1− x)3
.

Then we can write

B1(x) = 2

√
−p
3

cos

(
1

3
arccos

(
3q

2p

√
−3

p

))
− 2

3(1− x)
(2.17)

follows by a direct application of the Viéte’s trigonometric formula. The proof is com-
pleted by simply combining the rate function displayed in (2.16) with the function B1 in
(2.17).

To some extent Theorem 1.1 provides a generalization of the large deviation principle
for Kn established in Theorem 1.2 of Feng and Hoppe [15]. Indeed, recall that one has
the following relations between Kn and Ml,n: Kn =

∑
1≤i≤nMl,n and n =

∑
1≤i≤n lMl,n.

So far it is not clear to us how to relate the large deviation principle for Ml,n, for any l ≥ 1,
with the large deviation principle for Kn. In this respect we retain that results introduced
in Dinwoodie and Zabell [8] may be helpful in understanding such a relationship.

3 Large deviations for M
(n)
l,m | (Kn,Nn)

Let (X1, . . . , Xn) be an initial sample from P̃α,θ,ν and let (Xn+1, . . . , Xn+m) be an
additional sample, for any m ≥ 1. Furthermore, let X∗1 , . . . , X

∗
Kn

be the labels identifying
the Kn blocks generated by (X1, . . . , Xn) with corresponding frequencies Nn, and let

L
(n)
m =

∑
1≤i≤m

∏
1≤k≤Kn

1{X∗
k}c(Xn+i) be the number of elements in the additional

sample that do not coincide with elements in the initial sample. If we denote by K(n)
m the
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number of new blocks generated by these L(n)
m elements and by X∗Kn+1, . . . , X

∗
Kn+K

(n)
m

their labels, then

Si =

m∑
l=1

1{X∗
Kn+i}(Xn+l), (3.1)

for i = 1, . . . ,K
(n)
m , are the frequencies of the K(n)

m blocks. Finally, note that the frequen-
cies of the blocks generated by the remaining m−L(n)

m elements of the additional sample
are

Ri =

m∑
l=1

1{X∗
i }(Xn+l), (3.2)

for i = 1, . . . ,Kn. The blocks generated by the m − L
(n)
m elements of the additional

sample are termed “old" to be distinguished from the K(n)
m new blocks generated by the

L
(n)
m elements of the additional sample. The random variables (3.1) and (3.2), together

with L
(n)
m and K

(n)
m , completely describe the conditional random partition induced by

(Xn+1, . . . , Xn+m) given (X1, . . . , Xn). See Lijoi et al. [23] and Favaro et al. [11] for a
comprehensive study on the conditional distributions of these random variables given
the initial sample.

The random variables (3.1) and (3.2) lead to define the number M (n)
l,m of blocks with

frequency l in (X1, . . . , Xn+m). This is the number of new blocks with frequency l

generated by (Xn+1, . . . , Xn+m) plus the number of old blocks with frequency l that arise
by updating, via (Xn+1, . . . , Xn+m), the frequencies already induced by (X1, . . . , Xn).
Specifically, let

N
(n)
l,m =

K(n)
m∑
i=1

1{Si=l}

be the number of new blocks with frequency l. Specifically, these new blocks are
generated by the L(n)

m elements of the additional sample (Xn+1, . . . , Xn+m). Furthermore,
let

O
(n)
l,m =

Kn∑
i=1

1{Ni+Ri=l}

be the number of old blocks with frequency l. These old blocks are generated by
updating, via the m− L(n)

m elements of the additional sample, the frequencies of random
partition induced by the initial sample. Therefore, M (n)

l,m = O
(n)
l,m +N

(n)
l,m. The conditional

distribution of M (n)
l,m, given the initial sample, has been recently derived and investigated

in Favaro et al. [11].

The study of large deviations for M (n)
l,m | (Kn,Nn) reduces to the study of large devia-

tions for the conditional number of new blocks with frequency l, namely N (n)
l,m | (Kn,Nn).

Indeed N
(n)
l,m ≤ M

(n)
l,m ≤ N

(n)
l,m + n. Hence, by means of a direct application of Corollary

B.9 in Feng [14], m−1M (n)
l,m | (Kn,Nn) and m−1N (n)

l,m | (Kn,Nn) satisfy the same large de-
viation principle. As in Theorem 1.1, this large deviation principle is established through
the study of the moment generating function of N (n)

l,m | (Kn,Nn). For any λ > 0 and

y = 1− e−λ, let

G
N

(n)
l,m

(y;α, θ) (3.3)

= Eα,θ

( 1

1− y

)N(n)
l,m

|Kn = j,Nn = n
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=
∑
i≥0

yi

i!
Eα,θ[(N

(n)
l,m)(i) |Kn = j,Nn = n].

Theorem 1 in Favaro et al. [11] provides an expression for the falling factorial moment
Eα,θ[(N

(n)
l,m)[r] |Kn = j,Nn = n]. By exploiting the relation between falling factorials

and rising factorials in terms of signless Stirling numbers of the first type and Stirling
numbers of the second type, an explicit expression for Eα,θ[(N

(n)
l,m)(r) |Kn = j,Nn = n] is

obtained. Specifically,

Eα,θ[(N
(n)
l,m)(r) |Kn = j,Nn = n] (3.4)

= r!

r∑
i=0

(
r − 1

r − i

)(α(1−α)(l−1)

l!

)i (
θ
α

)
(j+i)

(m)[il](θ + iα+ n)(m−il)

i!(θ + n)(m)(θ/α)(j)

and

Eα,0[(N
(n)
l,m)(r) |Kn = j,Nn = n] (3.5)

= j(r − 1)!

r∑
i=0

(
r

i

)(
j + i− 1

i− 1

)(α(1−α)(l−1)

l!

)i
(m)[il](iα+ n)(m−il)

(n)(m)

where the sums over i is nonnull for 0 ≤ i ≤ min(r, bm/lc). Note that Eα,θ[(N
(n)
l,m)(r) |Kn =

j,Nn = n] = Eα,θ[(N
(n)
l,m)(r) |Kn = j]. In other words the number Kn of blocks in the

initial sample is a sufficient statistics for Eα,θ[(N
(n)
l,m)(r) |Kn = j,Nn = n]. This property

of sufficiency was pointed out in Favaro et al. [11]. Along lines similar to Lemma 2.1, in
the next lemma we provide an explicit expression for the moment generating function
G
N

(n)
l,m

(y;α, 0).

Lemma 3.1. For any α ∈ (0, 1)

G
N

(n)
l,m

(y;α, 0) (3.6)

=
m!

(n)(m)

bm/lc∑
i=0

(
y

1− y

)i(α(1− α)(l−1)

l!

)i
×
(
j + i− 1

i

)
(iα+ n)

(m− il)

(
n+m+ iα− il − 1

m− il − 1

)
.

Proof. The proof is obtained by simply combining the right-hand side of (3.3), with θ = 0,
with the rising factorial moment displayed in (3.5). This leads to write G

N
(n)
l,m

(y;α, 0) as

follows

G
N

(n)
l,m

(y;α, 0)

= j
∑
t≥0

yt

t!
(t− 1)!

t∑
i=0

(
t

i

)(
j + i− 1

i− 1

)(
α(1− α)(l−1)

l!

)i
(m)[il](iα+ n)(m−il)

(n)(m)

=
∑
i≥0

(
j + i− 1

i

)(
y

1− y

)i(α(1− α)(l−1)

l!

)i
(m)[il](iα+ n)(m−il)

(n)(m)
,

where the last equality is obtained by interchanging the summations and by means of∑
t≥i
(
t
i

)
yt(t− 1)!/t! = i−1(y/(1− y))i. Since (m)[il] = 0 for i > bm/lc then we can write

the last expression as

G
N

(n)
l,m

(y;α, 0)
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=

bm/lc∑
i=0

(
j + i− 1

i

)(
y

1− y

)i(α(1− α)(l−1)

l!

)i
(m)[il](iα+ n)(m−il)

(n)(m)
.

The proof is completed by rearranging the rising and the falling factorial moments by
means of the identities (iα+ n)(m−il) = Γ(n+m− il+ iα)/Γ(iα+ n) = (n+m− il+ iα−
1)!/(iα+ n− 1)!.

We exploit the moment generating function (3.6) and rising factorial moment (2.2) in
order to establish the large deviation principle for M (n)

l,m | (Kn,Nn) stated in Theorem 1.2.
We also make use of the unconditional large deviation principle established in Theorem
1.1.

Proof of Theorem 1.2. As we anticipated, in order to prove the theorem, it is sufficient
to prove the large deviation principle for N (n)

l,m |Kn, for any α ∈ (0, 1) and θ > −α. We
start with the assumption α ∈ (0, 1) and θ = 0 and then we consider the general case.
According to (3.6),

G
N

(n)
l,m

(y;α, 0) =

bm/lc∑
i=0

ỹiC(i,m;n, j, α, l)

where

C(i,m;n, j, α, l)

=
m!

(n)(m)

(
j + i− 1

i

)
iα+ n

m− il

(
n+m+ iα− il − 1

m− il − 1

)
=

(
n+m+ iα− il − 1

n+m− il − 1

)
m!

(n)(m)

(
j + i− 1

i

)
(m− il + 1)(n−2)

(iα+ 1)(n−2)

=

(
n+m+ iα− il − 1

n+m− il − 1

)
× (n− 1)!

(m+ 1) · · · (m+ n− 1)

(m− il + 1)(n−2)

(iα+ 1)(n−2)

(
j + i− 1

i

)
which is bounded below by ((n − 1)!/(m + n)n−1)2, and from above by (m + n)n+j−1.
Hence,

G
N

(n)
l,m

(y;α, 0) ≤ (m+ n)n+j−1GMl,n+m
(y;α, 0) (3.7)

and

G
N

(n)
l,m

(y;α, 0) ≥

(
GMl,n+m

(y;α, 0)−
∑b(n+m)/lc
i=bm/lc+1 ỹ

i
(
n+m+iα−il−1
n+m−il−1

))
(

(n−1)!
(m+n)n−1

)−2 . (3.8)

Note that for any index i such that bm/lc + 1 ≤ i ≤ b(m + n)/lc, we can write the
following inequalities 1 ≤

(
n+m+iα−il−1
n+m−il−1

)
= (n + m− il) · · · (n + m− il − 1 + iα)/(iα)! ≤

(n+1) · · · (n+iα)/(iα)! ≤ (2n+m)n. Accordingly, the following limit can be easily verified

lim
m→+∞

1

m
log

b(n+m)/lc∑
i=bm/lc+1

ỹi
(
n+m+ iα− il − 1

n+m− il − 1

)
= 0. (3.9)

Accordingly, putting together equations displayed in (3.7), (3.8) and (3.9), we obtain the
following identity

lim
m→+∞

1

m
logG

N
(n)
l,m

(y;α, 0) = lim
m→+∞

1

n+m
logGMl,n+m

(y;α, 0)
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which, once combined with Theorem 1.1, implies that m−1N (n)
l,m |Kn satisfies a large

deviation principle with speed m and rate function Iαl . In order to deal with the general
case α ∈ (0, 1) and θ > −α, we need a termwise comparison between (3.4) and (3.5). For
any i ≤ m/l let

D(m, i;α, θ, n, j) =
(n)(m)

(θ + n)(m)

(j − 1)!( θα )(j+i)

(j + i− 1)!( θα )(j)

(θ + n+ iα)(m−il)

(n+ iα)(m−il)1
.

Then, one has

Eα,θ[(N
(n)
l,m)(r) |Kn = j]

=
j

(n)(m)
(r − 1)!

r∑
i=0

D(m, i;α, θ, n, j)

(
r

i

)(
j + i− 1

i− 1

)
(m)[il]

×
(
α(1− α)(l−1)

l!

)i
(iα+ n)(m−il).

By means of arguments similar to those used for deriving the inequalities in (2.14), it
follows that one can find constants d5 > 0 and d6 > 0 and positive integers k1 and k2
independent of m and i such that d5(n +m)−k1 ≤ D(m, i;α, θ, n, j) ≤ d6(n +m)k2 . This
leads to

d5

(
1

n+m

)k1
G
N

(n)
l,m

(y;α, 0)

≤ G
N

(n)
l,m

(y;α, θ)

≤ G
N

(n)
l,m

(y;α, 0)d6(n+m)k2 .

Such a result, combined with the large deviation principle stated in Theorem 1.1, implies
that m−1N (n)

l,m |Kn satisfies a large deviation principle with speed m and rate function Iαl .

Hence, by a direct application of Corollary B.9 in Feng [14], m−1M (n)
l,m | (Kn,Nn) satisfies

a large deviation principle with speed m and rate function Iαl , and the proof is completed.
2

In contrast with the fluctuation limits (1.7) and (1.9), Theorem 1.1 and Theorem 1.2
show that in terms of large deviations the given initial sample (X1, . . . , Xn) have no long
lasting impact. Specifically the large deviation principle for Ml,n, as n→ +∞, coincides

with the large deviation principle for M (n)
l,m | (Kn,Nn), as m → +∞ and fixed n. This

is caused by the two different scalings involved, namely m−1 for large deviations and
m−α for the fluctuations. According to Corollary 20 in Pitman [26], the initial sample
(X1, . . . , Xn) leads to modify the parameter θ in the conditional distribution of P̃α,θ,ν
given (X1, . . . , Xn). Hence we conjecture that the conditional and the unconditional
large deviation results will be different if n is allowed to grow and it leads to a larger
parameter θ. In the unconditional setting this kind of asymptotic behaviour is thoroughly
discussed in Feng [13], where the parameter θ and the sample size n grow together and
the large deviation result will depend on the relative growth rate between n and θ.

If m depends on n and both approach infinity, then one can expect very different
behaviours in terms of law of large numbers and fluctuations. The large deviation
principle for M (n)

l,m | (Kn,Nn) may not be easily derived, by means of a direct comparison

argument, from the large deviation principle of N (n)
l,m |Kn. In this respect, it is helpful to

study directly

G
M

(n)
l,m

(y;α, θ) (3.10)
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= Eα,θ

( 1

1− y

)M(n)
l,m

|Kn = j,Nn = n


=
∑
i≥0

yi

i!
Eα,θ[(M

(n)
l,m)(i) |Kn = j,Nn = n].

We intend to pursue this study further in a subsequent project. Here we conclude by
providing an explicit expression for (3.10) with θ = 0. An expression for any θ > −α
follows by means of similar arguments. The rising factorial moments of M (n)

l,m | (Kn,Nn)

are obtained from Theorem 3 in Favaro et al. [11]. Specifically, one has the following
expressions

Eα,θ[(M
(n)
l,m)(r) | (Kn = j,Nn = n)]

= r!

r∑
t=0

r−t∑
v=0

(
r − 1

v + t− 1

)(
α(1− α)(l−1)

l!

)t
×

∑
(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

m!

(m− tl − vl +
∑v
h=1 nch)!

×

(
θ
α + j

)
(t)

(θ + n+ tα+ vα−
∑v
h=1 nch)(m−tl−vl+

∑v
h=1 nch

)

t!(θ + n)(m)

and

Eα,0[(M
(n)
l,m)(r) | (Kn = j,Nn = n)] (3.11)

= r!

r∑
t=0

r−t∑
v=0

(
r − 1

v + t− 1

)(
α(1− α)(l−1)

l!

)t
×

∑
(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

m!

(m− tl − vl +
∑v
h=1 nch)!

×
(j)(t) (n+ tα+ vα−

∑v
h=1 nch)(m−tl−vl+

∑v
h=1 nch

)

t!(n)(m)
,

where the sum over the indexes t, v and (c1, . . . , cv) is non-null for any t = 0, . . . , r,
v = 0, . . . , r− t and (c1, . . . , cv) ∈ Cj,v such that (m− tl− vl+

∑
1≤h≤v nch) ≥ 0. An explicit

expression for (3.10) follows by combining the rising factorial moments of M (n)
l,m | (Kn,Nn)

with the right-hand side of (3.3), and by means of standard combinatorial manipulations.

Proposition 3.2. For any α ∈ (0, 1)

G
M

(n)
l,m

(x;α, 0)

=
m!

(n)(m)

j∑
v=0

(
x

1− x

)v ∑
(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

×
bml −v+

∑v
h=1

nch
l c∑

i=0

1

i!

(
x

1− x

)i
(j)(i)

(
α(1− α)(l−1)

l!

)i
(n+ iα+ vα−

∑v
h=1 nch)

(m− il − vl +
∑v
h=1 nch)

×
(
n+ iα+ vα−

∑v
h=1 nch +m− il − vl +

∑v
h=1 nch − 1

m− il − vl +
∑v
h=1 ncb − 1

)
.
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Proof. The proof is obtained by simply combining the right-hand side of (3.10), with θ = 0,
with the rising factorial moment displayed in (3.11). This leads to write G

M
(n)
l,m

(y;α, 0) as

follows

G
M

(n)
l,m

(y;α, 0)

=
∑
t≥0

yt

t!

t∑
i=0

(
t

i

) t−i∑
v=0

(
t− i
v

)
(t− 1)!

(v + i− 1)!
v!

(
α(1− α)(l−1)

l!

)i

×
∑

(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

m!

(m− tl − vl +
∑v
h=1 nch)!

× (j)(i)
(n+ iα+ vα−

∑v
h=1 nch)(m−il−vl+

∑v
h=1 nch

)

(n)(m)

=
∑
i≥0

∑
v≥0

1

(v + i− 1)!
v!

(
α(1− α)(l−1)

l!

)i

×
∑

(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

m!

(m− il − vl +
∑v
h=1 nch)!

× (j)(i)
(n+ iα+ vα−

∑v
h=1 nch)(m−il−vl+

∑v
h=1 nch

)

(n)(m)

∑
t≥i+v

yt

t!

(
t

i

)(
t− i
v

)
(t− 1)!

=
∑
i≥0

∑
v≥0

v!

(v + i)!

(
α(1− α)(l−1)

l!

)i(
y

1− y

)i+v (
i+ v

i

)

×
∑

(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

m!

(m− il − vl +
∑v
h=1 nch)!

× (j)(i)
(n+ iα+ vα−

∑v
h=1 nch)(m−il−vl+

∑v
h=1 nch

)

(n)(m)
,

where in the last identity we used the fact that
∑
t≥i+v y

t(t!)−1
(
t
i

)(
t−i
v

)
(t− 1)! = ((v + i−

1)!/i!v!)(y/(1−y))i+v. The sum over i and v are bounded by j and bm/l − v +
∑v
h=1 nch/lc,

respectively. Hence

G
M

(n)
l,m

(y;α, 0)

=

j∑
v=0

(
y

1− y

)v ∑
(c1,...,cv)∈Cj,v

v∏
h=1

(nch − α)(l−nch
)

(l − nch)!

×
bml −v+

∑v
h=1

nch
l c∑

i=0

1

i!

(
y

1− y

)i
(j)(i)

(
α(1− α)(l−1)

l!

)i
m!

(m− il − vl +
∑v
h=1 nch)!

×
(n+ iα+ vα−

∑v
h=1 nch)(m−il−vl+

∑v
h=1 nch

)

(n)(m)
.

The proof is completed by rearranging the factorial moments by means of (n + iα +

vα −
∑

1≤h≤v nch)(m−il−vl+
∑

1≤h≤v nch
) = (n + iα + vα + m − il − vl − 1)!/(n + iα + vα −∑

1≤h≤v nch − 1)!.
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4 Discussion and numerical illustrations

Our large deviation results contribute to the study of conditional and unconditional
properties of the Ewens-Pitman sampling model. Theorem 1.2 has potential applications
in the context of Bayesian nonparametric inference for species sampling problems.
Indeed, as we pointed out in the Introduction, in such a context P[M

(n)
l,m ∈ · |Kn = j,Nn =

n] takes on the interpretation of the posterior distribution of the number of species with
frequency l in a sample (X1, . . . , Xn+m) from P̃α,θ,ν , given the initial observed sample
(X1, . . . , Xn) featuring Kn = j species with corresponding frequencies Nn = n. The
reader is referred to Favaro et al. [11] for a comprehensive account on this posterior
distribution with applications to Bayesian nonparametric inference for the so-called rare,
or local, species variety.

For a large additional sample size m, m−1M (n)
l,m represents the random proportion

of species with frequency l in the enlarged sample (X1, . . . , Xn+m). In Theorem 1.2 we
characterized the rate function Iαl of a conditional large deviation principle associated
to such a random proportion. The rate function Iαl is nondecreasing over the set [0, 1/l].
Then the number of discontinuous points of Iαl is at most countable and therefore
infz≥x I

α
l (z) = infz>x I

α
l (z) for almost all x ∈ [0, 1/l]. Accordingly, for almost all x > 0 we

can write

lim
m→+∞

1

m
logP

[
M

(n)
l,m

m
≥ x |Kn = j,Nn = n

]
(4.1)

= lim
m→+∞

1

m
logP

[
M

(n)
l,m

m
> x |Kn = j,Nn = n

]
= −Iαl (x).

Therefore the identity (4.1) provides a large m approximation of the Bayesian nonpara-
metric estimator P[m−1M

(n)
l,m ≥ x |Kn = j,Nn = n], for any x ≥ 0. In other words, we

can write

T (n)
l,m (x) = P

[
M

(n)
l,m

m
≥ x |Kn = j,Nn = n

]
≈ exp{−mIαl (x)}, (4.2)

for any x ≥ 0. Hereafter we thoroughly discuss the tail probability T (n)
1,m within the

context of Bayesian nonparametric inference for discovery probabilities. In particular we
introduce a novel approximation, for large m, of the posterior distribution of the probabil-
ity of discovering a new species at the (n+m+ 1)-th draw. Such an approximation, then,

induces a natural interpretation of T (n)
1,m within the context of Bayesian nonparametric

inference for the probability of discovering a new species at the (n+m+ 1)-th draw.

4.1 Discovery probabilities and large deviations

Let D(n)
m be the probability of discovering a new species at the (n + m + 1)-th

draw. Since the additional sample (Xn+1 . . . , Xn+m) is assumed to be not observed,

D
(n)
m | (Kn,Nn) is a random probability. The randomness D(n)

m | (Kn,Nn) is determined by
(Xn+1 . . . , Xn+m). In particular, by means of the predictive distribution (1.1), we observe

that P[D
(n)
m ∈ · |Kn = j,Nn = n] is related to P[K

(n)
m ∈ · |Kn = j,Nn = n] as follows

P[D(n)
m ∈ · |Kn = j,Nn = n] (4.3)

= P[D(n)
m ∈ · |Kn = j]

= P

[
θ + jα+K

(n)
m α

θ + n+m
∈ · |Kn = j

]
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= P

[
θ + jα+K

(n)
m α

θ + n+m
∈ · |Kn = j,Nn = n

]
,

where the conditional, or posterior, distribution P[K
(n)
m ∈ · |Kn = j] was first obtained

in Lijoi et al. [22] and then further investigated in Favaro et al. [10]. Specifically, let
C (n, x, a, b) = (x!)−1

∑
0≤i≤x(−1)i

(
x
i

)
(−ia− b)(n) be the noncentral generalized factorial

coefficient. See, e.g., Charalambides [6] for details. Then, for any k = 0, 1, . . . ,m, one
has

P[K(n)
m = k |Kn = j] =

(θ/α+ j)(k)

(θ + n)(m)
C (m, k;α,−n+ αj), (4.4)

and

Eα,θ[K
(n)
m |Kn = j] =

(
θ

α
+ j

)(
(θ + n+ α)(m)

(θ + n)(m)
− 1

)
. (4.5)

The distribution (4.3) takes on the interpretation of the posterior distribution of the
probability of discovering a new species at the (n+m+1)-th draw. An explicit expression

for this distribution is obtained by means of the distribution (4.4). Furthermore, D(n)
m =

Eα,θ[D
(n)
m |Kn = j] provides the Bayesian nonparametric estimator, with respect to a

squared loss function, of the probability of discovering a new species at the (n+m+1)-th
draw. Of course an explicit expression of this estimator is obtained by combining (4.3)
with (4.5).

We introduce a large m approximation of P[D
(n)
m ∈ · |Kn = j] and a correspond-

ing large m approximation of the Bayesian nonparametric estimator D(n)
m . Such an

approximation sets a novel connection between the posterior distribution of the propor-
tion of species with frequency 1 in the enlarged sample and the posterior distribution
P[D

(n)
m ∈ · |Kn = j]. Specifically, by combining the fluctuation limit (1.8) with (4.3), one

obtains

lim
m→+∞

D
(n)
m

mα−1 | (Kn = j) = αS
(n,j)
α,θ a.s. (4.6)

where S(n,j)
α,θ has been defined in (1.8) and (1.9). In particular E[S

(n,j)
α,θ ] = (j + θ/α)Γ(θ +

n)/Γ(θ + n+ α). Then, for large m, the fluctuations (4.6) and (1.9) lead to the following
approximation

P[D(n)
m ∈ · |Kn = j] (4.7)

≈ P[mα−1αS
(n,j)
α,θ ∈ · |Kn = j]

≈ P

[
M

(n)
1,m

m
∈ · |Kn = j,Nn = n

]
and

D(n)
m =

θ + jα

θ + n

(θ + n+ α)m
(θ + n+ 1)m

(4.8)

≈ mα−1(jα+ θ)
Γ(θ + n)

Γ(θ + n+ α)

≈ Eα,θ

[
M

(n)
1,m

m
|Kn = j,Nn = n

]

=
m1

m

(θ + n− 1 + α)m
(θ + n)m

+ (θ + jα)
(θ + n+ α)m−1

(θ + n)m

where the last identity of (4.8) is obtained by means of Theorem 3 in Favaro et al. [11].
The second approximation of (4.8) is somehow reminiscent of the celebrated Good-Turing

EJP 20 (2015), paper 40.
Page 20/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3668
http://ejp.ejpecp.org/


LDP for Ewens-Pitman sampling model

estimators introduced in Good [17] and Good and Toulmin [18]. Indeed, it shows that
the estimator of the probability of discovering a new species at the (n+m+ 1)-th draw
is related to the estimator of the number of species with frequency 1 in the enlarged
sample.

Intuitively, when the parameter θ and the sample size n are moderately large and
not overwhelmingly smaller than m, the exact value of D(n)

m given in (4.8) is much
smaller than its large m approximation, which is much smaller than the exact value
of m−1M(n)

1,m = Eα,θ[m
−1M

(n)
1,m |Kn = j,Nn = n]. This behaviour suggests that a finer

normalization constant than mα is to be used in the fluctuation limits (1.9) and (4.6),
respectively. Equivalent, though less rough, normalization rates for (1.9) and (4.6) are
given by

rM (m;α, θ, n, j,m1) (4.9)

=
Γ(θ + α+ n+m− 1)

Γ(θ + n+m)

(
m1

θ + α+ n− 1

θ + jα
+m

)
,

and

rD(m;α, θ, n, j) =
Γ(θ + α+ n+m)

Γ(θ + n+m+ 1)
(4.10)

respectively. Obviously rM (m;α, θ, n, j,m1)/mα → 1 and rD(m;α, θ, n, j)/mα−1 → 1 as m
tends to infinity. These corrected normalization rates are determined in such a way that
D(n)
m and m−1M(n)

1,m coincide with the corresponding asymptotic moments. Of course
different procedures may be considered. Note that the number j of species and the
number m1 of species with frequency 1 affect the corrected normalization rate displayed
in (4.9).

Besides being a novel large m approximation of the posterior distribution P[D
(n)
m ∈

· |Kn = j], the result displayed in (4.7) induces a natural interpretation of Theorem 1.2,
with l = 1, in the context of Bayesian nonparametric inference for discovery probabilities.
Indeed by combining the approximations in (4.2) and (4.7) we can write the large m

approximation

D(n)
m (x) = P[D(n)

m ≥ x |Kn = j] (4.11)

≈ T (n)
1,m(x)

≈ exp{−mIα1 (x)}.

By exploiting the corrected normalization rates (4.9) and (4.10), a corrected version of
(4.11) is

D(n)
m (x) = P[D(n)

m ≥ x |Kn = j] (4.12)

≈ T (n)
1,m

(
x
rM (m;α, θ, n, j,m1)

mrD(m;α, θ, n, j)

)
≈ exp

{
−mIα1

(
x
rM (m;α, θ, n, j,m1)

mrD(m;α, θ, n, j)

)}
.

In other words Theorem 1.2 with l = 1 provides a large m approximation of the Bayesian
nonparametric estimator of the right tail of the probability of discovering a new species
at the (n+m+ 1)-th draw, without observing (Xn+1, . . . , Xn+m). If α = 1/2 then the rate
function in the approximations (4.11) and (4.12) can be exactly computed by means of
Proposition 2.2.
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4.2 An application to EST data

We conclude by presenting an brief illustration of our results to the analysis of
Expressed Sequence Tag (EST) data. ESTs data, which have been first introduced and
investigated in Adams et al. [1], are generated by partially sequencing randomly isolated
gene transcripts that have been converted into complementary DNA (cDNA). ESTs play
an fundamental role in the identification and discovery of organisms as they provide an
attractive and efficient alternative to full genome sequencing. The resulting transcript
sequences and their corresponding abundances are the main focus of interest providing
the identification and level of expression of genes (species). Within the context of ESTs
data an important issue to be addressed in terms of design of a future study is the
determination of an "optimal" number of genes to be sequenced by the experimenter.
Indeed, despite the novel advances in technology, sequencing is still expensive and
therefore suitable cost-effectiveness thresholds must be established. This suggests
that there is the need for assessing the relative redundancy of various cDNA libraries
prepared from the same organism in order to detect which one yields new genes at
a higher rate. Indeed, there are "normalization" protocols which aim at making the
"frequencies" of genes in the library more uniform thus typically improving the discovery
rate. However, performing such protocols is also expensive. The decision whether to
proceed with sequencing of a non-normalized library or to resort to a normalization
procedure, has to balance the involved costs: such a decision is necessarily based on the
future discovery rate.

This practical issue naturally translates in the statistical problem in which, given
an initial sample of ESTs, we are interest in making inference on the probability of
discovering a new species at the (n+m+ 1)-th draw, namely D(n)

m . Under the Bayesian
nonparametric model (1.2), where the genes composition of the population is assumed
to be modeled according to P̃α,θ,ν , D(n)

m and D(n)
m (x), as well as their large m approxi-

mations, provides useful pointwise predictive measures of the evolution of redundancy
as the sequencing ideally proceeds. Hereafter we present an application of these mea-
sures to an EST dataset which is obtained by sequencing two cDNA libraries of the
amitochondriate protist Mastigamoeba balamuthi: the first library is non-normalized,
whereas the second library is normalized, namely it undergoes a normalization proto-
col which aims at making the frequencies of genes in the library more uniform so to
increase the discovery rate. See Susko and Roger [31] for comprehensive account on
the Mastigamoeba cDNA library. For the Mastigamoeba non-normalized the observed
sample consists of n = 715 ESTs with j = 460 distinct genes whose frequencies are
mi,715 = 378, 33, 21, 9, 6, 1, 3, 1, 1, 1, 1, 5 with i ∈ {1, 2, . . . , 10}∪{13, 15}. For the the Mastig-
amoeba normalized the observed sample consists of n = 363 with j = 248 distinct genes
whose frequencies are mi,363 = 200, 21, 14, 4, 3, 3, 1, 0, 1, 1 with i ∈ {1, 2, . . . , 9}∪{14}. This
means that we are observing m1,n genes which appear once, m2,n genes which appear
twice, etc.

Under the Bayesian nonparametric model (1.2), the first issue to face is represented
by the specification of the parameter (α, θ). This is typically achieved by adopting an
empirical Bayes procedure in order to obtain an estimate (α̂, θ̂) of (α, θ). Specifically we
fix (α, θ) so to maximize the likelihood function of the model (1.2) under the observed
sample, namely

(α̂, θ̂) = arg max
(α,θ)

{∏j−1
i=0 (θ + iα)

(θ)n

j∏
i=1

(1− α)(ni−1)

}
.

Alternatively, one could specify a prior distribution for (α, θ). Here we adopt a less
elaborate specification of the parameter (α, θ). We choice α = 1/2 and then we set θ such
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that E1/2,θ[Kn] = (2θ)(((θ+ 2−1)n/(θ)n)− 1) = j. Empirical investigations with simulated
data suggests that α = 1/2 is always a good choice when no precise prior information
is available. See Lijoi et al. [22] for details. This approach gives (α, θ) = (1/2, 206.75)

for the Mastigamoeba non-normalized and (α, θ) = (1/2, 132.92) for the Mastigamoeba
normalized.

For the Mastigamoeba non-normalized and normalized cDNA libraries, Table 1 reports
the exact estimate D(n)

m and the corresponding large m approximate estimates under the
uncorrected normalization rate mα−1 and the corrected normalization rate (4.9). These
are denoted by D̄(n)

m and D̃(n)
m , respectively. In a similar fashion, Table 2 reports the

exact estimate m−1M(n)
1,m and the corresponding large m approximate estimates under

the uncorrected normalization rate mα and the corrected normalization rate (4.10),
respectively. These are denote by m−1M̄(n)

1,m and m−1M̃(n)
1,m, respectively. See (4.8) for

details. Table 1 and Table 2 clearly show that the corrected normalization rates displayed
in (4.9) and (4.10) are of fundamental importance when the additional sample size m is
not much larger than the sample size n and the parameter θ. Figure 1 and Figure 2 show
the large deviation approximations (4.11) and (4.12) of the pointwise estimate D(n)

m (x).

Table 1. Exact estimate and corresponding asymptotic estimates under the uncorrected and
corrected normalization rate.

cDNA Library m D(n)
m D̄(n)

m D̃(n)
m

Mastigamoeba non-normalized b100−1nc 0.472 5.438 0.472
b10−1nc 0.456 1.696 0.456

n 0.357 0.538 0.357
(n = 715) 10n 0.160 0.314 0.160

100n 0.054 0.054 0.054

Mastigamoeba normalized b100−1nc 0.516 5.770 0.516
b10−1nc 0.500 1.923 0.500

n 0.397 0.606 0.397
(n = 363) 10n 0.180 0.288 0.180

100n 0.060 0.061 0.060

Table 2. Exact estimate and corresponding asymptotic estimates under the uncorrected and
corrected normalization rate.

cDNA Library m m−1M(n)
1,m m−1M̄(n)

1,m m−1M̃(n)
1,m

Mastigamoeba non-normalized b100−1nc 54.268 5.438 54.268
b10−1nc 5.213 1.696 5.213

n 0.752 0.538 0.752
(n = 715) 10n 0.178 0.314 0.178

100n 0.054 0.054 0.054

Mastigamoeba normalized b100−1nc 50.316 5.770 50.316
b10−1nc 5.865 1.923 5.865

n 0.812 0.606 0.812
(n = 363) 10n 0.199 0.288 0.199

100n 0.061 0.061 0.061

Results displayed in Table 1 and Table 2, as well as Figure 1 and Figure 2, provide a
natural guideline for selecting the size m of a future sample. Specifically, in the case the
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estimated discovery rate D̃(n)
m falls below a certain threshold τ suggested by the problem

at issue, then it may be convenient to reduce the size of the future sample in a way that
D̃

(n)
m does not fall below τ . On the other hand, if D̃(n)

m is still relatively high with respect
to τ , one may decide to enlarge the size of the future sample. In both these situations
the large deviation rates in Figure 1 and Figure 2 provide an approximate estimate
of the decay of the discovery rate. As expected the Mastigamoeba normalized data
exhibit a higher discovery rate, with respect to the Mastigamoeba non-normalized data.
Of course this is the effect of the normalization protocol applied to the Mastigamoeba
non-normalized data. However, since the discovery rate has a faster decay for the
Mastigamoeba normalized data, it appears that, already for moderately large m, the
effect of the normalization protocol is exhausted producing fewer number of new genes.

Figure 1. Mastigamoeba non-normalized. Large deviation approximations of the estimate D(715)
m (x)

under the uncorrected (blue line) and corrected (red line) normalization rate.
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Figure 2. Mastigamoeba normalized. Large deviation approximations of the estimate D(363)
m (x)

under the uncorrected (blue line) and corrected (red line) normalization rate.
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