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Abstract This paper is concerned with the construction of high order schemes on
irregular grids for balance laws, including a discussion of an a-posteriori error indi-
cator based on the numerical entropy production. We also impose well-balancing
on non uniform grids for the shallow water equations, which can be extended simi-
larly to other balance laws, obtaining schemes up to fourth order of accuracy with
very weak assumptions on the regularity of the grid. Our results show the expected
convergence rates, the correct propagation of shocks across grid discontinuities and
demonstrate the improved resolution achieved with a locally refined non-uniform
grid. The schemes proposed in this work naturally can also be applied to systems
of conservation laws. They may also be extended to higher space dimensions by
means of dimensional splitting.

The error indicator based on the numerical entropy production, previously
introduced for the case of systems of conservation laws, is extended to balance
laws. Its decay rate and its ability to identify discontinuities is illustrated on several
tests.

Keywords high order finite volumes · non-uniform grids · entropy · well balancing

Mathematics Subject Classification (2000) 65M08 · 76M12

1 Introduction

Many problems arising from engineering applications involve the ability to com-
pute flow fields on complex domains, governed by hyperbolic systems of balance
laws. Often, many scales are involved and this prompts the need for algorithms
that are able to modify the scheme and/or the underlying grid following the evo-
lution of the flow. Several wide purpose codes are available and many of them are
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based on finite volume schemes, see e.g. Fluent [14] or ClawPack [8]. Usually these
codes are second order accurate with high order versions, if available, in progress.
On the other hand they provide the user with the flexibility of an adaptive grid,
which is extremely useful to tackle highly non-homogeneous solutions.

At the same time, high order finite volume schemes are well established in
the literature: from the early review in [36] to the more recent paper [12], exten-
sive studies have been conducted on the construction of high order finite volume
schemes. In this paper we carry out a detailed study of the issues arising in fi-
nite volume algorithms on irregular grids. Non-uniform grids of the type analyzed
in this work arise naturally in several applications, already in one space dimen-
sion. We mention the grids generated by moving mesh algorithms [37] or by an
h-adaptive strategy [32] or the grids that arise when discretizing problems with
moving boundaries [7]. In this last case, as for example in the piston problem [13],
cells close to the boundary are created or destroyed and resized according to the
location of the boundary in each timestep.

In particular we construct finite volume high order WENO schemes, includ-
ing the treatment of source terms and addressing the issue of well balancing for
steady state solutions. We concentrate on the one-dimensional case, since most
problems already arise in this setting. These results can be naturally extended to
multidimensional problems discretized with Cartesian grids by means of dimen-
sional splitting. Schemes based on Cartesian grids can be easily parallelized and
boundary conditions for complex domains can be implemented with the immersed
boundary method as in [17].

Adaptive grids can be constructed either by defining a single non uniform
grid on which all degrees of freedom are located, as in most unstructured grid
managers, or superposing several patches of uniform Cartesian grids of different
levels of refinement as in the ClawPack solver [8]. In this latter approach the
different patches must communicate and the enforcement of conservativity and
well balancing for steady states are not straighforward [11]. High order schemes
for the AMR approach can be found in [2,34]. For applications to the shallow
water equations, see the software GeoClaw [8] and [16].

In our case we consider a single highly non-uniform grid. Such grids com-
monly arise in h-adaptive methods [18], or also when using moving mesh meth-
ods [38,37]. In one space dimension, when the grid size varies smoothly, one can
remap the problem to a uniform grid as in [13], but this cannot be expected
to work in more space dimensions or when the grid size can jump abruptly as
in dyadic/quadtree/octree grid refinement. These latter discretization techniques
start from a conforming, often uniform, partitioning of the simulation domain and
allow the local refinement of each control volume by splitting it in 2d parts in d

space dimensions, as in [20] for simplices and [41] for quads. Lower order schemes
on such grids were employed by the authors in [32] in one space dimension and
in [33] in two space dimensions for general conservation laws. Two-dimensional
applications to the shallow water system may be found in [28], or in [27].

The construction of a fifth order WENO scheme for conservation laws on one-
dimensional non-uniform grids, based on the superposition of three parabolas, has
been conducted in [42]. Here we extend this construction to the case of balance
laws, showing how to obtain positive coefficients in the quadrature of the source
term. Moreover we also construct a third order scheme based on [26], charac-
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terized by a stencil of three cells. This reconstruction is particularly suited for
two-dimensional problems due to its very compact stencil, see [9].

A first key ingredient of this work is the use of semidiscrete schemes which
permit to decouple the space from the time discretization: in this fashion the non-
uniformity of the grid boils down to an interpolation problem to reconstruct the
boundary extrapolated data which interact through the numerical fluxes. Secondly,
the use of the Richardson extrapolation as in [29] is crucial for the preservation of
steady states on a non uniform grid, since it allows to enforce equilibrium at the
level of each single cell, thus avoiding the need to account for the non-uniformity
of the grid. This yields automatic well-balancing over the whole grid, unlike in the
block-structured AMR case, where well-balancing has to be enforced not only on
each grid patch but also in the projection and interpolation operators that relate
the solution on different grid levels [11].

Moreover, we extend the entropy indicator of [32] to the case of balance laws.
We show that the numerical entropy production provides a measure of the local
error on the cell also in the case of balance laws on non-uniform grids. This com-
plements the introduction of high order schemes on non-uniform grids: the entropy
indicator can be used to drive an adaptive mesh refinement algorithm, but also as
a monitor function in moving mesh algorithms. Moreover, the entropy can be used
to locally modify a scheme in the presence of shocks, with p adaptive strategies.
Other possible applications are discussed in [32].

Before giving the outline of the paper, we briefly introduce the setting and the
notation used in the bulk of this work. We consider balance laws with a geometric
source term of the form

ut +∇ · f(u) = g(u, x) (1)

and we seek the solution on a domain Ω, with given initial conditions. The compu-
tational domain Ω is an interval, discretized with cells Ij = [xj−1/2, xj+1/2], such
that ∪Ij = Ω. The amplitude of each cell is δj = xj+1/2 − xj−1/2, with cell center
xj = (xj−1/2 + xj+1/2)/2.

We consider semidiscrete finite volume schemes and denote with Uj(t) the
cell average of the numerical solution in the cell Ij at time t. The semidiscrete
numerical scheme can be written as

d

dt
Uj = − 1

δj

(
Fj+1/2 − Fj−1/2

)
+Gj(U, x). (2)

The numerical fluxes are computed starting from the boundary extrapolated data,
namely

Fj+1/2 = F(U−j+1/2, U
+
j+1/2), (3)

where F is a consistent and monotone numerical flux, evaluated on two estimates
of the solution at the cell interface U±

j+1/2
. These values are obtained with a high

order non oscillatory reconstruction, as described in detail in §2. Finally, Gj is a
consistently accurate discretization of the cell average of the source term on the
cell Ij , see §3.

In order to obtain a fully discrete scheme, we apply a Runge-Kutta method
with Butcher’s tableau (A, b), obtaining the evolution equation for the cell averages

U
n+1
j = U

n
j −

∆t

δj

s∑
i=1

bi

(
F

(i)
j+1/2

− F (i)
j−1/2

)
+ ∆t

s∑
i=1

biG
(i)
j . (4)
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Here F
(i)
j+1/2

= F
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
and the boundary extrapolated data U

(i),±
j+1/2

are

computed from the stage values of the cell averages

U
(i)
j = U

n
j −

∆t

δj

i−1∑
k=1

aik

(
F

(k)
j+1/2

− F (k)
j−1/2

)
+ ∆t

i−1∑
k=1

aikG
(k)
j .

We point out that the spatial reconstruction procedures of §2 and the well-balanced
quadratures for the source term of §3 must be applied for each stage value of the
Runge-Kutta scheme. In this paper we consider a uniform timestep over the whole
grid. A local timestep keeping a fixed CFL number over the grid can be enforced
using techniques from [32,22].

We will also consider the preservation of steady state solutions and we will
illustrate these techniques on the shallow water system, namely

u =

(
h

q

)
f(u) =

(
q

q2/h+ 1
2gh

2

)
g(u, x) =

(
0

−ghzx

)
. (5)

Here h denotes the water height, q is the discharge and z(x) the bottom topography,
while g is the gravitational constant (see also Figure 4). The preservation of steady
states depends heavily on the structure of the equilibrium solution one wishes to
preserve. Here we will concentrate on the lake at rest solution of the shallow
water equation, given by H(t, x) = h(t, x) + z(x) = constant and q(t, x) = 0.
Many works have been dedicated to this problem since the paper [3] shed light
on the importance of well-balancing (or C-property). For example, see [44] in the
finite difference setting, [45,29,30] in the finite volume setting, [45,43,5] in the
Discontinuous Galerkin framework and [40,6] for the ADER methods.

The structure of the paper is as follows: in §2 we introduce the third order
accurate C-WENO (Compact WENO) reconstruction on non uniform grids, gen-
eralizing the results of [26], and we extend the fifth order accurate WENO recon-
struction on non uniform grids of [42], adding the evaluation of the reconstruction
at the centre of cells which is needed in the computation of the source term. In §3
we extend the construction of well-balanced schemes of [1,29] to the non-uniform
grid setting. Next, in §4 we extend the notion of numerical entropy production
to non uniform grids for balance laws. Finally, §5 contains numerical tests, which
illustrate the consistency between accuracy of the schemes and rate of convergence
of the numerical entropy production, for several types of grids.

2 High order reconstructions on non uniform grids

The mission of reconstruction algorithms is to give estimates of a function at some
chosen points, starting from discrete data. In particular, for finite volume schemes
for balance laws, the starting data are the cell averages of a function v, and we
wish to estimate v at the cell interfaces, and, if needed, at some other internal
points, using a finite dimensional approximation, such as a piecewise polynomial
interpolator. Typically, estimates of v at internal points within a cell are needed
to compute the cell averages of the source term through a quadrature formula.
Thus, the reconstruction will be described as an interpolation algorithm.
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Suppose then that we are given the cell averages

V j =
1

δj

∫
Ij

v(x) dx

of a smooth function v(x). In order to fix ideas, we consider a piecewise polynomial
reconstruction R such that

R(V , x) =
∑
j

χIj (x)Pj(x),

which gives the boundary extrapolated data as

V −j+1/2 = Pj(xj+1/2), V +
j+1/2 = Pj+1(xj+1/2). (6)

The reconstruction must be conservative, i.e.

1

δj

∫
Ij

R(V , x) dx = V j ,

and high order accurate at the cell interfaces for smooth data, in the sense that

V ±j+1/2 = v(xj+1/2) +O(δpj ), V ±j−1/2 = v(xj−1/2) +O(δpj ).

Moreover, the reconstruction should be non-oscillatory, preventing the onset of
spurious oscillations. Finally, for accuracy of order higher than 2, the evaluation
of the cell average of the source term requires the reconstruction of the point values
of v at the nodes of the well-balanced quadrature formula. For schemes of order 3
and 4, it is enough to reconstruct v at the cell centers, thus we will require that,
for smooth v(x),

Vj = v(xj) +O(δpj ).

First order reconstruction

In this case, the reconstruction is piecewise constant, and we have

V −j+1/2 = V j , V +
j−1/2 = V j .

Second order reconstruction

Here, the reconstruction is piecewise linear, and we have

V −j+1/2 = V j + 1
2σjδj , V +

j−1/2 = V j − 1
2σjδj ,

where σj is a limited slope, i.e., chosen a limiter Φ, define the interface slopes as

σj+1/2 =
V j+1 − V j
xj+1 − xj

=
V j+1 − V j
1
2 (δj + δj+1)

, (7)

then the limited slope within the Ij cell is given by

σj = Φ
(
σj−1/2, σj+1/2

)
.

For a collection of limiting functions, see [24]. In our tests, we have chosen the
MinMod limiter.
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POPT

P1RP1L P2C

xj xj+1xj-1

Fig. 1 Compact WENO reconstruction

Third order reconstruction

The third order reconstruction is based on the compact WENO (C-WENO) tech-
nique introduced in [26]. This reconstruction is characterized by a particularly
compact stencil, which is very important when dealing with adaptive grids. More-
over, unlike the classical WENO third order reconstruction based on the combina-
tion of two linear functions, the C-WENO reconstruction contains also a parabola
and it remains uniformly third order accurate throughout the interval Ij on smooth
flows. To our knowledge, the reconstruction presented here is the first extension
of the C-WENO reconstruction to the case of non-uniform grids. Fig. 1 illustrates
the polynomials composing this reconstruction.

The interpolant is piecewise quadratic, and the parabola reconstructed in each
cell is the convex combination of two linear functions P 1

L, P 1
R, and a parabola, P 2

C .
In order to simplify the notation we describe the reconstruction on a reference cell,
labelled with the index j = 0. The two linear functions interpolate v in the sense
of cell averages on the stencils {I−1, I0} and {I0, I+1}. Each of these functions
approximates v with order O(δ20) accuracy uniformly on I0. Further, the parabola
P 2
OPT is introduced by the requirement that

1

δ0

∫
I0

P 2
OPT(x) dx = V 0,

1

δ±1

∫
I±1

P 2
OPT(x) dx = V ±1.

This parabola approximates v with order O(δ30) accuracy uniformly on I0. Next,
the parabola P 2

C is introduced, defined as

P 2
OPT = α0P

2
C + α+1P

1
R + α−1P

1
L

with α0 = 1
2 , α±1 = 1

4 . The reconstruction is given by

P 2(x) = ω0P
2
C + ω+1P

1
R + ω−1P

1
L.

When the function v is smooth, one would like that ωk = αk + O(δ20), to ensure
that P 2 has the same accuracy of P 2

OPT, otherwise, the non linear weights ωk are
designed to switch on only the contribution coming from the one-sided stencil on
which the function is smooth.

For a non-uniform grid, the coefficients of the two linear interpolants on the
cell I0 are

P 1
R(x) = V 0 + σ+1/2(x− x0),

P 1
L(x) = V 0 + σ−1/2(x− x0),
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where σ±1/2 have been defined in (7). The optimal parabola is

P 2
OPT = a+ b(x− x0) + c(x− x0)2,

c =
3

2

σ+1/2 − σ−1/2

δ−1 + δ0 + δ+1
,

b =
(δ0 + 2δ−1)σ+1/2 + (δ0 + 2δ+1)σ−1/2

2(δ−1 + δ0 + δ+1)
,

a = V 0 − 1
12c δ

2
0 .

As in WENO-like reconstructions, the non linear weights ωk are computed as

ω̃k =
αk

(ε+ ISk)2
, ωk =

ω̃k∑1
l=−1 ω̃l

,

starting from the smoothness indicators ISk defined in [36]. In this case, they are
given by

IS−1 = δ20σ
2
−1/2,

IS1 = δ20σ
2
+1/2,

IS0 =
1

α2
0

[(
b− α−1σ−1/2 − α+1σ+1/2

)
δ20 + 13

3 c
2 δ40

]
.

Since P 2
OPT is uniformly third order accurate on the whole interval, the boundary

extrapolated data and the value V0 at the cell center are all computed evaluating
the same quadratic polynomial at the corresponding points inside the cell.

Fourth order reconstruction

The fourth order reconstruction is based on the fifth order WENO reconstruc-
tion computed from the convex combination of three parabolas, as in [36]. The
coefficients of the combination of the three parabolas are computed in order to
yield fifth order accuracy at the boundary of the cell, see Fig 2. It is tedious but
straightforward to see that positive coefficients can be found to result in fifth or-
der accuracy at the cell interfaces even on non uniform grids (see below and [42]).
However, there is no set of positive coefficients resulting in fifth order accuracy
at the cell center, see [29]. This issue has already prompted the development of
the CWENO reconstruction for central schemes [25] and the generalization of the
classical WENO procedure described in [35]. Here we show that it is possible to
find three positive coefficients giving fourth order accuracy at the center of the
cell, which is sufficient to construct a fourth order accurate scheme that employs
the reconstruction at three quadrature nodes located at the boundary and at the
center of the cells.

For the sake of completeness, we review the coefficients of the reconstruction
on non uniform grids, as in [42], using the notation established in Fig. 2. Again we
consider a reference cell with index 0. The goal of the reconstruction is to mimic
the quartic polynomial POPT interpolating the data V l, l = −2, . . . , 2 in the sense
of cell averages. Clearly, POPT would provide fifth order accuracy uniformly in the
interval I0, in the case of smooth data.
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h0 h1 h2h-1h-2

P0
P1

P-1

POPT

Fig. 2 Parabolic WENO reconstruction

For each point x̂ in which the reconstruction is needed, we look for three
positive coefficients d−1, d0, d1 that add up to 1 and such that

POPT(x̂) =
1∑

l=−1

dlPl(x̂), (8)

where the Pl’s are the three parabolas, interpolating in the sense of cell averages
the data V l−1, V l, V l+1. The coefficients of the three parabolas can be found in
[42]. Here we give the linear weights that permit to reconstruct the left and right
boundary extrapolated data. To simplify the notation, we write

δkl =
k∑
i=l

δi, (9)

then the coefficients for the boundary extrapolated data V −
+1/2

are

d1 =
δ−1(δ−2 + δ−1)

δ2−2δ
2
−1

,

d0 =
δ20(δ−2 + δ−1)(δ1−2 + δ2−1)

δ2−2δ
2
−1δ

1
−2

,

d−1 =
δ20(δ0 + δ1)

δ2−2δ
1
−2

.

Note that, if δ−2 = δ−1 = δ0 = δ1 = δ2, then d−1 = 3
10 , d0 = 3

5 , d1 = 1
10 , as in the

usual uniform grid case. Similarly, the coefficients for the reconstruction of V +
−1/2

are

d−1 =
δ1(δ1 + δ2)

δ2−2δ
1
−2

,

d0 =
δ0−2(δ1 + δ2)(δ1−2 + δ2−1)

δ2−2δ
2
−1δ

1
−2

,

d1 =
δ0−2(δ−1 + δ0)

δ2−2δ
2
−1

.

We remark that the coefficients dk are positive and add up to 1, so that (8) is a
convex combination, for all possible values of the local grid size δ−2, . . . , δ2.
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d-1

d1
δ1>δ-1

δ-1>δ1

Fig. 3 Reconstruction of the point value in the cell center for WENO. Locus of positive linear
weights (dash-dot lines) and the coefficients chosen by (10) (black dots).

For the fifth order reconstruction at cell center x0, one finds negative coefficients
even for uniform meshes. In fact, see [29], d−1 = − 9

80 , d0 = 49
40 , d1 = − 9

80 . Since
the well balanced quadrature based on the three points x±1/2, x0 (see the next
section) is only fourth order accurate, even a fifth order accurate reconstruction
at the middle quadrature point would not give overall fifth order accuracy: the
fourth order limitation is given by the quadrature formula and a more accurate
quadrature formula would require the reconstruction at extra quadrature points,
which would make the scheme much more complicated. Thus, we look for positive

coefficients d0, d±1 such that 1 =
∑
dl, and V0 is fourth order accurate,

V0 =
1∑

l=−1

dlPl(x0) = v(x0) +O(δ40).

After tedious computations, we find that d1 and d−1 must satisfy

δ1−2d−1 − δ2−1d1 = δ1 − δ−1.

Since we wish all coefficients to be positive, the solution must be sought in the
simplex shown in Fig. 3. Clearly, the solution is over-determined, we pick the values
that maximize the size of the minimum coefficient, that is

If δ1 > δ−1


d1 =

1

2

δ−2 + 2δ−1 + δ0
δ1−2 + δ2−1

d−1 =
δ1 − δ−1 + d1δ

2
−1

δ1−2

d0 = 1− d−1 − d1

, else


d−1 =

1

2

δ2 + 2δ1 + δ0
δ1−2 + δ2−1

d1 =
δ−1 − δ1 + d−1δ

1
−2

δ2−1

d0 = 1− d−1 − d1

(10)

where again we have used the convention (9).

3 Well-balanced schemes

It is important to perform numerical integration of a system of balance laws with
schemes that preserve the steady states exactly at a discrete level (well-balanceed
schemes), since only these allow to distinguish small perturbations of these states
from numerical noise [3].



10 G. Puppo, M. Semplice

In this section we describe a technique to obtain well-balanced schemes on
non-uniform grids for the shallow water equations, with particular attention to
the lake at rest solution. Recall that the equilibrium variables are the momentum

q and the energy E = q2

2h2 + g(h + z). The lake at rest solution corresponds to
the particular choice q = 0, for which the equilibrium energy E is stationary
if and only if the total water height H = h + z remains constant. We use and
generalize to non-uniform meshes the techniques of [1] for obtaining well-balanced
schemes irrespectively of the chosen numerical fluxes and of [29] to obtain high
order accuracy through Richardson extrapolation.

There are two sources of error in non well-balanced schemes. We illustrate them
with a very simple example. We consider a first order reconstruction with the Lax-
Friedrichs numerical flux on the lake at rest solution (see Fig. 4 for notation), thus
we suppose that for every index j, qnj = 0 and hnj + zj = H. The discretized
equation on a uniform grid would be

hn+1
j = hnj + λ

2α
(
hnj+1 − 2hnj + hnj−1

)
,

qn+1
j = −λ4 g

(
(hnj+1)2 − (hnj−1)2

)
+ λ

2 gh
n
j (zj+1 − zj−1) ,

where we have already substituted qnj = 0. It is easy to see that in the first equation,
h does not remain stationary because the artificial diffusion term introduces a
perturbation whenever z(x) is not constant, thus impliying that the equilibrium
variable would change, i.e. Hn+1

j = zj + hn+1
j 6= zj + hnj = Hn

j . In order to
prevent this kind of perturbation it is enough to reconstruct along equilibrium
variables or to ensure that the boundary extrapolated values at the interface are
continuous when equilibrium occours. In the second equation, the perturbation
due to the artificial diffusion does not appear exactly because q is an equilibrium
variable for the lake at rest equilibrium. However there is a lack of balance betweeen
the source and the fluxes at the discrete level: in fact one finds that qn+1

j =

−λ4 (z2j+1−2zjzj+1+2zjzj−1−z2j−1), which is in general nonzero, unless the bottom
is flat.

For these reasons we use the hydrostatic reconstruction of [1] which ensures that
the reconstruction is continuous across interfaces when the system is in equilibrium
and moreover preserves positivity of the water height. Given a reconstruction
algorithm R with accuracy of order p, reconstruct the equilibrium variables H

and q, obtaining the boundary extrapolated data as in equation (6). In order to
ensure that the water height appearing in the fluxes remains non-negative, one
locally modifies the bottom by computing boundary extrapolated data also for h
and defining

z±j+1/2 = H±j+1/2 − h
±
j+1/2

and these are used to compute the bottom topography at the interface

zj+1/2 = max(z+j+1/2, z
−
j+1/2).

Once these are known, the interface values of h are corrected giving new values

ĥ±j+1/2 = max(H±j+1/2 − zj+1/2, 0).
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Note that ĥ±
j+1/2

≥ 0 and that at equilibrium ĥ+
j+1/2

= ĥ−
j+1/2

. The numerical

fluxes (3) are then applied to the states

U±j+1/2 =
[
ĥ±j+1/2, ĥ

±
j+1/2v

±
j+1/2

]
.

Here v±
j+1/2

denotes the velocity, obtained as v±
j+1/2

= q±
j+1/2

/ĥ±
j+1/2

or through a

desingularization procedure as proposed in [21]. In this fashion, the reconstruction
is continous at equilibrium, for lake at rest data. Thus, for each consistent numer-
ical flux, one has F(U−

j+1/2
, U+
j+1/2

) = f(U±
j+1/2

) at equilibrium. In this fashion

Audusse et al. are able to ensure well-balancing independently of the particular
numerical flux used [1].

In order to complete the semidiscrete scheme (2) we still need to specify the
discretization of the source term. For a first order scheme it is enough to choose

Gj =
g

2

(
0

(ĥ−
j+1/2

)2 − (ĥ+
j−1/2

)2

)
. (11)

Note that at equilibrium, the above expression exactly cancels out the numerical
fluxes and thus the lake at rest solution is preserved at the discrete level. Con-
sistency is obtained through the dependence of ĥ on z. For instance, if z(x) is
monotonically increasing, then zj+1/2 = zj+1 and zj−1/2 = zj . Thus

ĥ+j−1/2 = max(hj , 0) ĥ−j+1/2 = max(hj + zj − zj+1, 0)

and substituting into Gj one recovers the term ghzx. For more details, see [1].
At second order, the second component of the source term is

Gj,2 =
g

2
( (ĥ−j+1/2)2 − (h−j+1/2)2 + (h+j−1/2 + h−j+1/2)(z+j−1/2 − z

−
j+1/2) (12)

+ (h+j−1/2)2 − (ĥ+j−1/2)2 ).

On the lake at rest solution, the two ĥ terms cancel the numerical fluxes, while
the other terms add up to zero, again giving a well-balanced scheme [1]. On the
other hand, off equilibrium, the first and the last two terms cancel by consistency
and the middle term is consistent with the cell average of the source. Clearly,
equation (12) must be applied to both stages of the second order Runge-Kutta
method needed to achieve second order accuracy also in time.

For higher orders, we use Richardson extrapolation as in [29]. This technique
is particularly useful on non-uniform grids because it concentrates all the compu-
tational effort for the source term within one cell. In fact, the subcell resolution
required to compute the quadrature of the source term with high order accuracy
can be naturally applied introducing uniformly distributed nodes within each cell.
Thus the high order evaluation of the source term is performed entirely within
one cell and the coefficients of the quadrature formula will not be affected by the
non-uniformity of the mesh. The source can be rewritten as

Gj =
g

2

(
0

(ĥ−
j+1/2

)2 − (h−
j+1/2

)2 + G̃j + (h+
j−1/2

)2 − (ĥ+
j−1/2

)2

)
. (13)
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Fig. 4 Shallow water set up.

At second order,

G̃j =
1

2
(h+j−1/2 + h−j+1/2)(z+j−1/2 − z

−
j+1/2) = −

∫ xj+1/2

xj−1/2

hzxdx+O(δ2j ).

Following [29] that showed that the well-balanced property of the above quadrature
is maintained under numerical extrapolation, for order up to four, it is enough to
perform one Richardson extrapolation step, namely

G̃j =
4

3

(
(h+j−1/2 + hj)(z

+
j−1/2 − zj) + (hj + h−j+1/2)(zj − z−j+1/2)

)
− 1

3
(h+j−1/2 + h−j+1/2)(z+j−1/2 − z

−
j+1/2),

where hj and zj denote the reconstruction at the center of the cell, which is why
we have developed high order reconstructions for the point values of the solution in
xj . Again, equation (13) will be applied to all stages of the Runge-Kutta method
used in the fully discrete scheme. For higher orders, more Richardson steps must
be applied [29] and this in turn introduces additional quadrature points, which
must be computed with high order reconstructions.

4 Numerical entropy production for balance laws

We wish to devise an error indicator for driving adaptive schemes for balance laws.
In particular we extend the notion of numerical entropy production proposed in
[31,32] to the case of balance laws with a geometric source term.

In the homogeneous case, that is for systems of hyperbolic conservation laws,
the entropy is defined as a convex function η(u) for which there exists a function
ψ(u) (called entropy flux) such that ∇T ηf ′ = ∇Tψ where f ′ denotes the Jacobian
of the flux function f . Then, on smooth solutions,

∂tη + ∂xψ = 0,

while on entropic shocks
∂tη + ∂xψ ≤ 0

in a weak sense, thus singling out the correct unique solutions [10]. One can exploit
this structure at the discrete level to devise a regularity indicator for finite volume
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schemes for conservation laws. A fully discrete finite volume conservative scheme
for a hyperbolic system can be written in the form

U
n+1
j = U

n
j − λ

(
Fj+1/2 − Fj−1/2

)
.

Here

Fj+1/2 =
s∑
i=1

biF
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
,

F is a consistent and monotone numerical flux and U
(i),±
j+1/2

denote the boundary

extrapolated data computed on the i-th stage value.
Choosing a numerical entropy flux P, consistent with the exact entropy flux

ψ, we define the numerical entropy production as

Snj =
1

∆tn

[
η(Un+1)j − η(Un)j + λ

(
Pj+1/2 − Pj−1/2

)]
, (14)

where

Pj+1/2 =
s∑
i=1

biP
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
and η(U)j denotes the average of η(U(x)) on the j-th cell. η(U)j can be computed

as η(Uj) up to second order accuracy or, for higher orders, with the help of the
reconstruction and of a sufficiently accurate quadrature formula.

In [32] we proved that the scaling of the numerical entropy production Snj with
respect to the cell size h is

Snj =


O(hp) on smooth flows

O(1) on contacts

∼ C/h on shocks,

where C does not depend on h and p is the order of accuracy of the scheme. Thus,
on regular solutions, Snj is of the same order of the local truncation error.

Moreover, if the numerical flux can be written in viscous form as

F(U−, U+) = 1
2 (f(U−) + f(U+))− 1

2Q(U−, U+) (U+ − U−), (15)

we choose the numerical entropy flux as

P(U−, U+) = 1
2 (ψ(U−) + ψ(U+))− 1

2Q(U−, U+) (η(U+)− η(U−)). (16)

In [32] we have proved that, with this choice, the entropy Snj is negative definite on
monotone profiles for the upwind and the Lax Friedrichs numerical fluxes applied
to first order schemes in the scalar case, while it can exhibit very small positive
overshoots (which are O(h4)) only near local extrema. Without taking into account
the viscous term in (16), the resulting Snj has the same convergence rate, but it is
much more oscillatory and thus less suited to drive an h-adaptive scheme. Further,
numerical evidence shows that the numerical entropy production Snj designed with
the viscous correction is less oscillatory also in the case of systems of conservation
laws and for higher order schemes.



14 G. Puppo, M. Semplice

We wish to extend this construction to systems of m balance laws. We consider
balance laws of the form

g(u, x) =
M∑
j=1

sj(u, x)z′j(x), (17)

(with sj : Rm × R → Rm). This idea follows from the definition of separable
balance laws in the sense of [45], where the authors write the source in equilibrium
variables, obtaining the form (17) with M = 2 even for the lake at rest solution,
because then the equilibrium variables are H = h+z and q, and the source becomes
g(H, q) = −gHzx+g/2(z2)x. Another interesting case in which the source is splitted
in the sum of two different greometric terms can be found in [39], where the first
term is the standard force term given by the slope in the bottom topography, while
the second term is due to variations in the orthogonal sections of a channel.

When the source is written in the form (17), the balance law can be rewritten
as an homogeneous system of m+M equations. For the case M = 1, denoting with
A(u) the m×m Jacobian matrix of the flux f , one has

∂t

(
u

z1

)
+

(
A(u) s1(u, x)

0 0

)
∂x

(
u

z1

)
= 0. (18)

Exploiting this structure one can extend the notion of entropy. In fact the entropy-
entropy flux pair for the balance law must satisfy[

∇Tu ηA(u), ∇Tu η · s1(u, x)
]

=
[
∇Tuψ, ∂z1ψ

]
. (19)

Note that the z-derivative of η does not appear in the compatibility condition
above, and thus convexity with respect to z is not required. This construction can
be easily extended for M > 1.

Thus we still have entropy conservation for the balance law in the smooth
case, provided the entropy-entropy flux pair satisfies (19), and the entropy residual
defined in (14) gives a measure of the local error of the numerical scheme.

In the shallow water case, the entropy pair can be chosen as

η(h, v) = 1
2

(
hv2 + gh2

)
+ ghz ψ(h, v) = η(h, v)v + 1

2gh
2v, (20)

where v is the water velocity (see [4]). Note that the function η represents the total
energy of the system including the potential energy due to the bottom topography.
In the following section we will show that the entropy residual converges with the
expected rate on smooth flows and detects the presence of shocks in the solution.

5 Numerical tests

The following tests assess the accuracy of the high order reconstructions on non-
uniform grids proposed in this work, the well-balancing properties of the fully
discrete schemes for the shallow water equations, the resolution of discontinuities
on non-uniform grids and the performance of the entropy residual as an error
indicator.

In all tests we used the local Lax-Friedrichs numerical flux, i.e. we choose
Q(U−, U+) = max(|v−|+ g

√
h−, |v+|+ g

√
h+) in the viscous forms (15) and (16).
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Fig. 5 Grid spacing δ as a function of x for the non-uniform grids used in the numerical tests,
shown for the case of 100 points in [0, 1]. Quasi-regular grids (left) and random grids (right).
The dashed line is the spacing of the uniform grid with the same number of points.

Grids In the numerical tests we use several grids that will be referred to as uniform,
quasi-regular, random and locally refined. For simplicity we define them on the
reference interval [0, 1]. The quasi regular grid is obtained as the image of a uniform
grid with spacing δ = 1/N under the map

ϕ(x) = x+ 0.1 ∗ sin(10πx)/5.

The resulting grid spacing is depicted in the left panel of Figure 5: we point out
that δj ∼ 1

N ϕ
′(j/N) and thus

(1− π
5 ) 1

N ≤ δj ≤ (1 + π
5 ) 1

N .

Next, we consider non-uniform rough grids that are obtained moving randomly
the interfaces of a uniform grid, namely starting from a uniform grid with spacing
δ we consider grids with interfaces at

x̃j+1/2 = jδ + 3
5ξjδ,

where ξj are random numbers uniformly distributed in [−0.5, 0.5]. A realization of
such a grid is shown in the right panel of Figure 5. Here it is easily seen that

2
5

1
N ≤ δj ≤

8
5

1
N .

We use this grid for the purpose of illustration even if of course one would not use
such an irregular grid in an application. This grid will be referred to as random

grid. We point out that the ratio of the maximum to the minimum cell size is
approximately 4 in both quasi-uniform and random grids. On the other hand, the
ratio of the size of nearby cells is approximately 4 on random grids, but slightly
lower than 2 in quasi-uniform grids.

In some tests we need a grid which is locally refined around a given point
wC . For this purpose we consider a grid which, on the standard domain [0, 1], is
a map of a uniform grid under a monotone function ϕ : [0, 1] → [0, 1] such that
0, wC , 1 are fixed points and ϕ′′(wC) = 0, so that the grid spacing is minimum at
wC . In particular we consider the quartic polynomial defined by ϕ(0) = 0, ϕ(1) =
1, ϕ(wC) = wC , ϕ

′′(wC) = 0 and ϕ′(wC) = α, where α is a parameter which gives
the amplitude of the grid at wC , and it must be chosen in order to ensure that the
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Fig. 6 Error decay under grid refinement for first (top-left), second (top-right), third (bottom-
left) and fourth (bottom-right) order schemes. The dashed line indicates the expected decay
in each case.

map remains monotone. In our case, we pick α = 0.25, which gives a grid with a
ratio between maximum and minimum spacing of order 4. We find

ϕ(x) = x
[
1 + 1−α

wC
(x− wC)

[
−1 + 1

wC
(x− wC)

[
1 + (x− wC) 2wC−1

(1−wC)2

]]]
. (21)

5.1 High order schemes on non-uniform grids

Convergence tests Following [44], we compute the flow with initial data given by

z(x) = sin2(πx) h(0, x) = 5 + ecos(2πx) q(0, x) = sin(cos(2πx)), (22)

with periodic boundary conditions on the domain [0, 1]. At time t = 0.1 the solution
is still smooth and we compare the numerical results with a reference solution
computed with the fourth order scheme and 16384 cells. The 1-norm of the errors
appears in Figure 6 and the maximum entropy production is shown in Figure 13
for all schemes and the three grid types considered.

All schemes have the expected accuracy, except for the fourth order scheme on
the random grids, where the accuracy is decreased due to the extreme irregularity
of the grid. We point out however that, despite the reduced decay rate, the actual
values of the error of the fourth order scheme even on the random grid are orders
of magnitude smaller than those obtained with the third order scheme with the
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‖∆(h+ z)‖∞ ‖q‖∞
Smooth 100 200 400 800 100 200 400 800
p = 1 0 0 0 0 4.51e-16 5.55e-16 5.00e-16 7.68e-16
p = 2 0 2.22e-16 2.22e-16 2.22e-16 3.82e-16 8.47e-16 7.36e-16 1.54e-15
p = 3 0 4.44e-16 4.44e-16 6.66e-16 6.87e-16 1.47e-15 1.67e-15 2.47e-15
p = 4 8.88e-16 6.66e-16 1.55e-15 1.55e-15 9.89e-16 1.82e-15 1.67e-15 1.90e-15

Random
p = 1 2.22e-16 2.22e-16 2.22e-16 2.22e-16 2.08e-16 6.24e-16 6.77e-16 9.65e-16
p = 2 2.22e-16 2.22e-16 2.22e-16 2.22e-16 2.91e-16 7.25e-16 8.95e-16 9.99e-16
p = 3 2.22e-16 6.66e-16 6.66e-16 6.66e-16 5.63e-16 8.47e-16 9.94e-16 1.28e-15
p = 4 6.66e-16 8.88e-16 1.33e-15 1.11e-15 8.68e-16 7.94e-16 1.11e-15 1.43e-15

Table 1 Lake at rest test: well-balancing errors with rough bottom.
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Fig. 7 LeVeque’s test (23). Third order scheme on a uniform (blue circles) and quasi-regular
grid (red crosses) on top of a reference solution (black solid line).

same number of degrees of freedom. We also point out that a real life application
of adaptive grids would produce a non-uniform grid which is refined especially
around shocks, which are isolated discontinuities along which accuracy degrades
anyhow because of the non regularity of the solution. What matters in this case
is to keep a high resolution, i.e. a small local error.

Well-balancing We show a well-balancing test on the lake at rest solution using a
bottom topography described by a uniformly distributed random variable sampled
between 0 and 1, with water heigth at h(x) + z(x) = 1.5. Table 1 shows the well-
balancing errors in the total water height and momentum, in the case of smooth
non-uniform grids and random grids. Here ∆(h+ z)j+1/2 = (h+ z)j+1 − (h+ z)j .
All data are close to machine precision, as expected.

Small perturbation of a lake at rest The domain is x ∈ [0, 2], the bottom and initial
total height are given by

z(x) =

{
0.25(1 + cos(10π(x− 0.5))) 1.2 ≤ x ≤ 1.4

0 otherwise,

H(x, 0) = 1 + 0.001χ[1.1,1.2](x).

(23)

This test was first used by LeVeque in [23] with a second order scheme, but
here we use it with a smaller perturbation for the third and fourth order schemes,
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Fig. 8 LeVeque’s test (23). Third order scheme on uniform (blue circles) and random grid
(red crosses) on top of a reference solution (black solid line)
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Fig. 9 LeVeque’s test (23). Fourth order scheme on uniform (blue circles) and quasi-regular
grid (red crosses), on top of a reference solution (black solid line)
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Fig. 10 LeVeque’s test (23). Fourth order scheme on uniform (blue circles) and random grids
(red crosses), on top of a reference solution (black solid line).

as in [29]. This test requires a well-balanced scheme to resolve correctly the small
perturbations which otherwise would be hidden by numerical noise. The solutions
with N = 200 cells are shown in Fig. 7 and 8 for the third order scheme and Fig.
9 and 10 for the fourth order one. In each of the figures the numerical solution
obtained with the uniform grid is compared with the one obtained on a non-
uniform mesh. It can be seen that the pulse is well-resolved in all cases and the
results obtained with a non-uniform grid can be perfectly superposed on those
computed with the uniform mesh. As already pointed out in [29], for this test the
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Fig. 11 Steady solution with transcritical shock, approximated with a third order scheme
(uniform and adapted grids). The dashed line in the left panel is the local grid size in the
non-uniform grid (it should be read against the axis on the left).
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Fig. 12 Steady solution with transcritical shock, approximated with a fourth order scheme
(uniform and adapted grids). The dashed line in the left panel is the local grid size in the
non-uniform grid (it should be read against the axis on the left).

parameter ε in the nonlinear weights of the WENO schemes has to be reduced; we
have chosen 10−12 for the fourth order scheme (see [29]) and 10−9 for the third
order case.

Moving water equilibria Since our schemes are well-balanced around the lake-at-
rest equilibrium, one does not expect them to compute moving water equilibria
at machine precision. Here we show two tests. In the first case we consider a
transcritical steady state with a shock, over the parabolic hump

z(x) =

{
(0.2− 0.05 ∗ (x− 10)2) 8 ≤ x ≤ 12

0 otherwise

in the domain [0, 25]. We consider the steady state solution with q(x) = 0.18, with
Dirichlet boundary conditions q = 0.18 at x = 0 and h = 0.33 at x = 25. The
flow starts off subcritical, turns supercritical on the hump and goes back to the
subcritical regime through a steady shock located at xs = 11.6655042815533. The
computation was initialized with the exact steady state solution (computed as
explained in the Appendix A of [19]) and the numerical integration was performed
until t = 50.
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p = 1 p = 2 p = 3 p = 4
Uniform error rate error rate error rate error rate

100 1.96e-1 – 5.54e-2 – 2.02e-2 – 2.92e-3 –
200 1.17e-1 0.74 1.42e-2 1.96 4.26e-3 2.24 1.40e-4 4.38
400 6.35e-2 0.89 3.29e-3 2.11 4.87e-4 3.13 5.12e-6 4.77
800 3.26e-2 0.96 8.08e-4 2.03 3.89e-5 3.65 1.60e-7 5.00

Adapted
100 9.20e-2 – 6.96e-3 – 9.78e-4 – 4.54e-5 –
200 4.67e-2 0.97 1.71e-3 2.02 7.97e-5 3.62 1.36e-6 5.07
400 2.34e-2 0.99 4.25e-4 2.01 6.57e-6 3.60 3.87e-8 5.13
800 1.17e-2 1.00 1.06e-4 2.01 5.63e-7 3.55 1.25e-9 4.95

Table 2 Well-balancing errors for the subcritical steady state with gaussian bottom.

We show the solutions computed with uniform grids and with a grid refined
ad-hoc around the shock position (as in Eq (21), with wC = xs/25) with the
scheme of order three (Figure 11) and four (Figure 12). The figures report with a
dashed line the local cell size of the non-uniform grid, which is refined close to the
shock. The right panels of each figure show a zoom on the shock. It is clear that
the adapted solution (in red with crosses) approximates better the exact solution
(thin black line) than the solution obtained with a uniform grid with the same
number of points (blue line with dots), with no spurious oscillations.

In order to quantify the improvement due to the adapted grid and the rate
of convergence of the schemes on moving water equilibria, we consider a smooth
test problem, namely a subcritical steady flow over the smooth bump z(x) =

0.2e−(x−12.5)2 on the domain [0, 25]. The numerical scheme was initialized with
the exact solution and the flow computed until t = 10. Since the behaviour of the
errors on the water height and on momentum is very similar, only the former are
reported in Table 2. The first and second order schemes show the expected rates
of convergence, while the third and fourth order ones have convergence rates well
above the expected values (respectively 3.60 and 5.00).

We also consider non-uniform grids that are finer on the hump and coarser on
the flat portion of the bottom function, namely the grid is defined by Eq. (21) with
wC = 12.5/25 = 0.5. The errors on the adapted grids are much smaller than the
corresponding results on uniform grids and the convergence rates are confirmed
also on non-uniform grids. Note also that the improvement obtained with the
adapted grid is stronger for the high order schemes.

5.2 Numerical entropy production

Rate of decay on smooth flows. Figure 13 shows the numerical entropy production
in the smooth test (22) on several grid types. In particular, for each number of
grid points, we plot the 1-norm of the numerical entropy production defined in
equation (14) observed in the last timestep of each simulation. It is apparent that
the decay rate, as expected, follows the order of accuracy of the corresponding
schemes. Moreover, comparing this figure with Figure 6, we note that the entropy
decay mimics exactly the behaviour of the error, even in the case of the slight
deterioration of accuracy observed on the random grid for the fourth order scheme.
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Fig. 13 Numerical entropy production decay under grid refinement for first (top-left), second
(top-right), third (bottom-left) and fourth (bottom-right) order schemes. The dashed line
indicates the expected decay in each case.

Two shocks. We set up initial data with a flat bottom, water at rest and h(0, x) =

e−50x2

on the domain [−2, 2]. As the flow evolves, two shocks form and separate
from each other: at t = 0.2 the computed water height is depicted in the top-
left plot of Figure 14. Each of the other panels of Figure 14 shows the entropy
residual obtained with four different grid sizes. The results for second, third and
fourth order schemes appear in the top-right, lower left and lower right panels
respectively. In all three cases it can be seen that the numerical entropy production
on the two shocks increases under grid refinement like 1/h. On the other hand,
the magnitude of the peak of the numerical entropy production does not depend
on the order of the scheme. This is to be contrasted with the numerical entropy
production on smooth flows just shown, where one observes entropy residuals of
O(hp), where p is the order of the scheme.

Due to the different orders of magnitude of the numerical entropy production
in the smooth regions of the flow and around shocks, it can be concluded that the
entropy residual provides an effective discontinuity detector, expecially in the case
of high order schemes.
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Fig. 14 Entropy production on shocks under grid refinement for several schemes. Top-left:
water height. Top-right: second oder scheme. Bottom-left: third order scheme. Bottom right:
fourth order scheme. N = 800 (black solid line), N = 400 (red line with circles), N = 200
(green line with crosses), N = 100 (blue line with stars).

Stream on artificial river bed. In the domain [−0.5, 1.5] we consider the bottom
topography and initial conditions:

z(x) =

{
x(1− x) sin(10πx) x ∈ [0, 1]

0 otherwise,
(24)

H(0, x) =

{
1.0 x < −0.2

0.5 x ≥ −0.2,
q(0, x) =

{
1
2

√
3
2g x < −0.2

0.0 x ≥ −0.2.

We integrate with free flow boundary conditions until t = 0.4, when the shock
originated from the Riemann problem has overcome the irregularity in the bot-
tom topography (see the left panel of Figure 15). The right panel compares the
numerical entropy production of the second order scheme with grids varying from
200 to 1600 points. The vertical axis is in logarithmic scale. The peaks in the
numerical entropy production clearly show the location of the shocks and have the
expected O(1/h) behaviour, while in regions of smoothness the numerical entropy
production reduces with the grid size.

Finally, we wish to illustrate the importance of choosing the numerical en-
tropy flux customized on the numerical flux used by the scheme, as in (16).
Figure 16 shows the numerical entropy production on the test (24) computed
with the numerical entropy flux of (16), which uses the same viscous form of
the underlying scheme (black solid line), and with the numerical entropy flux
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Fig. 15 Stream on artificial river bed, integrated with the second order scheme. Left: water
height. Right: numerical entropy production. The black curve is the bottom topography.
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Fig. 16 Comparison of the numerical entropy production obtained with (black line) and
without (blue line) the viscous correction.

Ψ(U−, U+) = 1
2 (ψ(U−) + ψ(U+)) (blue line with circles). Note that both numeri-

cal entropy fluxes are consistent with the exact entropy flux ψ, and therefore they
will both provide entropy residuals with the same rate of decay of the local error
of the scheme.

However, for all the schemes considered here, it is clear from the example in
Figure 16 that using the local Lax-Friedrichs flux for both the conservation law
and the computation of the numerical entropy flux leads to much smaller positive
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overshoots in the numerical entropy production and thus a much more reliable
error indicator.

6 Conclusions

In this work we have derived formulas for high order schemes for balance laws on
non-uniform grids. More precisely, we give the extension of the third order compact
WENO reconstruction of [26] to non-uniform grids and we also derive high order
reconstructions to compute the cell averages of source terms, needed by high order
finite volume schemes on balance laws. Further, we illustrate how well balancing
on equilibrium solutions can be enforced for high order schemes on irregular grids.

We also include the extension of the entropy indicator we proposed in [32] and
[31] to the case of balance laws. The proofs given in [32] carry over to the case of
balance laws with geometric source terms, and prove that the entropy indicator
provides a measure of the local truncation error on smooth flows, and it reliably
selects the location of discontinuities.

Several numerical tests are included, to show the achievement of the expected
accuracy of the schemes proposed, even on extremely irregular grids, and the
improvement obtained with ad-hoc chosen grids.

Future work on this topic will be dedicated to the construction of locally refined
Cartesian grids of octree type, driven by the entropy error indicator for balance
laws, with particular attention on the enforcement of equilibrium solutions at the
discrete level.
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