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Abstract

Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the
tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel,
nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great
promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible
and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving
pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and
versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to
highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update
of literature in this field.

lipid nanocarrier, passive or active targeting, diagnosis, theranostic

Introduction
Cancer is the first leading cause of death in developed
countries and the second one in developing countries,
accounting for 7.6 million deaths (around 13% of all
deaths) in 2008[1]. The World Health Organization pre-
dicts that by 2030 12 million of all deaths worldwide will
be due to cancer [1]. Far from being a “modern” disease,
cancer is one of the oldest maladies even if it start receiv-
ing more and more attention only when other severe killer
diseases (such as tuberculosis, dropsy, cholera, smallpox,
leprosy or pneumonia) had been eradicated. Despite an
old and impatient battle, in which the international scien-
tific and non-scientific committees are engaged, the
knowledge of cancer’s biology and the discovery of new
molecules are unlikely to fully eradicate it. Even if new
molecules are discovered to treat cancer, the efficacy of
conventional chemotherapeutics is hampered by the
following limitations: i) drug resistance at the tumour level

due to physiological barriers (i.e.;non-cellular based
mechanisms) ii) drug resistance at the cellular level (i.e.cel-
lular mechanisms) and iii) non-specific distribution,
biotransformation and rapid clearance of anticancer drugs
in the body [2]. The process that drives a drug to the
target is indeed dependent on drug physico-chemical
properties that affect its stability in the systemic circula-
tion, the extravasation and the intratumoral distribution,
also leading to undesired side effects [2]. To overcome
these limits, the “magic bullet” theory, which refers to a
drug which goes straight to its specific target, was postu-
lated at the beginning of the XXth century [3]. In the past
decades the application of this concept has led to the
development of a plethora of colloidal systems aimed at
deliver the drug exclusively to the diseased tissues, thus
reducing systemic toxicity. In particular, in the past 35
years, cutting-edge research based on multidisciplinary
approaches has been led to the development of nanoscaled
drug carriers for medical application [2,4]. The first paper
on nanoparticles was published in 1976 by Peter Speiser, a
pioneer in the concept of nanoparticles: it focused on the
development of nanoparticles for vaccination purposes,
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aiming at a slow release profile of the antigen thus leading
to a better immune response [5]. Later, Couvreur et al [6]
discovered the lysosomotropic effect of nanoparticles and
for the first time published that nanocapsules were able to
introduce compounds into cells which do not sponta-
neously accumulate intracellularly.
Rapidly, nanoparticles (NPs) found important applica-

tion in cancer therapy due to numerous advantages that
they offer over the free drugs [Table 1][7-10]. Some
engineered nanocarriers were been approved by the
FDA (Doxil® [11], Daunoxome® [12], Abraxane® [13],
Genexol® [14], Marqibo® [15]). Marqibo® is a vincris-
tine loaded liposomal formulation made of sphingomye-
lin and cholesterol approved in 2012 for the treatment
of adult patients with Philadelphia chromosome-negative
(Ph -) acute lymphoblastic leukaemia[15].
Aside from therapeutic use, in recent years nanocarriers

have also been employed as imaging tools which hold
great promises both in preclinical research and in clinical
settings[16-21]. Nanoparticles for diagnostic purposes
have now been marketed for 10 years[4]. The encapsula-
tion of different imaging contrast agents (e.g., paramag-
netic metal ions, superparamagnetic iron oxide
nanoparticles (SPIOs), Near Infra-Red (NIR) probes,
radionuclides) in nanocarriers makes possible to enhance
the signal to noise ratio in the targeted tissue compared
to the surrounding health one. The increase of imaging
resolution highlights small lesions which are undetectable
with traditional methods.
At the moment, biodegradable polymers or lipid-based

colloids are the only drug vehicles approved for clinical
use. These materials offer promising possibilities to
assure specific drug accumulation at the tumour site,
improving the pharmacokinetic profile and safety of
both drug and contrast imaging agents[22].
The present review is focused on lipid-based nanocar-

riers which have classically received great attention due to
their biodegradability, biocompatibility and targetability
[23]. Lipid nanocarriers used for drug delivery purposes
include liposomes, micelles, nanoemulsions, nanosuspen-
sions, solid-lipid nanoparticles and lipoproteins-containing
systems. Liposomal systems attract a great deal of interest
and a simple research on the PubMed database reveals
that more than 150 review articles have been published

within this field in the last year alone. Consequently, we
decided to limit the present review to non-liposomal lipid-
based nanocarriers. After a short description of these drug
nanocarriers, their applications as multifunctional tools for
therapeutic and/or diagnostic applications in cancer man-
agement are reviewed.

Non-liposomal lipid-based nanocarriers
A broad range of lipid nanocarriers is currently used for
drug delivery purposes. Although sometimes the bound-
aries between categories are not clearly defined, they
can be classified into micelles, nanoemulsions, nanosus-
pensions, solid lipid nanoparticles, lipid nanocapsulesand
lipoproteins (Figure 1).
Micelles are colloidal dispersions, which form sponta-

neously from amphiphilic or surfactant agents at certain
concentrations and temperatures. They are characterized
by two distinct portions with opposite affinities towards a
given solvent. Lipid micelles are formulated adding phos-
pholipids or long-chain fatty acids in the presence of
appropriate surfactants[24]. At low concentrations, in an
aqueous medium amphiphilic molecules exist separately
and aggregation takes place within concentrations above
to critical micelle concentration[25].
Micelles possess a hydrophobic core and hydrophilic

shell; they have been successfully used as pharmaceuti-
cal carriers for water-insoluble drugs or molecular
imaging probes[26]. Thanks to their small size (from 5
to 100 nm) they demonstrated a very efficient and
spontaneous accumulation in pathological areas with
compromised vasculature. However, due to the limited
size of their core they cannot load high amount of
drugs. Lipid micelles are formulated adding phospholi-
pids The formation of micelles is driven by the
decrease of free energy in the system because of the
removal of hydrophobic fragments from the aqueous
environment and the reestablishment of a hydrogen
bond network in water. Lipid-based micelle prepara-
tion is a simple process, often base on a detergent or
water-miscible solvent removal method that gives
spontaneous formation of colloids with very similar
diameters in aqueous media.
Nanoemulsions are transparent or translucent oil-in-

water (o/w) or water-in-oil (w/o) droplets that can encap-
sulate either lipophilic and hydrophilic drugs or imaging
agents in the oil or in the aqueous phase, respectively
[27-29]. They are formulated from lipid components
through high-energy methods (e.g., high-pressure homo-
genization, microfluidization or ultrasonification in order
to obtain small size droplets) or through low-energy meth-
ods (e.g., spontaneous emulsification, solvent-diffusion
method and phase-inversion temperature for labile drugs)
[30]. Advantages of nanoemulsions over macroemulsions
include higher surface areas and free energy without the

Table 1 Nanocarriers advantages and properties required
for clinical translation [22]

Advantages offered by nanocarriers

• Prevention of undesired drug interaction with the biological
environment (i.e., drug inactivation by metabolization)
• Control on pharmacokinetic/pharmacodynamic parameters
• Enhanced drug accumulation at the tumor target site and improved
intracellular uptake
• Safety (i.e.; decrease of drug toxicity and side-effects).
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inherent creaming, flocculation, coalescence and/or
sedimentation[27].
Likewise, nanosuspensions are sub-micron colloidal

dispersions of particles of drug stabilized by surfactants
(e.g., soya lecithin, mainly composed phospholipids).
High pressure and multiple high-energy passes are often
required for their production, owing to the drug crystal
binding and its stabilization in the colloidal system[31].
Even if they could be prepared directly by crystallization
or precipitation, high pressure homogenization is the

most frequently employed in large-scale production[32].
They are usually used as injectable dosage forms for
poorly soluble drugs. In the case of high melting point
compounds, the nanosuspensions allow preserving the
crystalline state to obtain the small size required for an
intravenous administration. Taking advantage of the
absence of any solvent, the nanosuspensions possess
higher drug loading compared to nanoemulsions[27].
Solid lipid nanoparticles (SLN) can be considered as

nanosuspensions with a solid lipid core stabilized by

Figure 1 Schematic representation of non-liposomal lipid-based nanocarriers.
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surfactants[33]. They are typically formed by heating an
aqueous lipid mixture above the melting point of the lipid,
adding drug, homogenizing and finally cooling to freeze
the drug within the solid lipid spheres. Other procedures
like microemulsification, high-pressure homogenization,
solvent emulsification-evaporation and “coacervation”
method have been proposed for the preparation of SLN
[34-36]. A broad range of biocompatible and biodegrad-
able lipids that remains in solid form at physiological tem-
peratures has been used for SLN: fatty acids (e.g., stearic
acid, palmitic acid), triglycerides (e.g., trilaurin, tripalmitin,
and tristearin) and satured fatty acids (e.g., glycerol
behenate, and cetylpalmitate).
SLN show a significant versatility for drug or contrast

agent delivery since they can load lipophilic, hydrophilic,
amphiphilic as well as charged molecules. They are char-
acterized by an important physical stability that offers sev-
eral technological advantages, including (i) better storage
stability in comparison to liposomes, (ii) easy management
in large-scale production and (iii) possibility of lyophiliza-
tion [37,38]. Numerous investigations have demonstrated
that SLN can very efficiently control drug release, also
improving drug accumulation into the tumour, along with
a concomitant minimization of severe side effects and low
toxicity of the carrier[39,40]. Despite these advantages, the
solid crystalline core of SLN can present several
drawbacks, such as problems of reproducibility in the par-
ticle growth, possibility of polymorphic transitions, which
can induce drug expulsion during storage, and low drug
incorporation capacities[41].
Lipid nanocapsules (LNC) are constituted by an oily core

surrounded by a tensioactive-based rigid membrane which
represents a hybrid structure between polymeric nanocap-
sules and liposomes[42]. Empty or drug-loaded LNC, with
a diameter below 100 nm and a narrow size distribution,
can be prepared by a phase inversion temperature process
and show long physical stability (> 18 months)[42].
Different anticancer drugs, [43-45] nucleic acids [46] or,
imaging agents [47-49] have been encapsulated in the lipid
core of these nanoformulations. Surface modification with
PEG chains has been also described[44]. Promising results
have been obtained both in vitro on several cell lines and
on in vivo models of experimental cancers.
Natural lipoproteins present in the blood as macromole-

cular carriers for hydrophobic lipids have also been
employed as nanocarriers. Lipoproteins are classified in
four categories depending on the density, from the largest
diameters and lowest density: chylomicrons, very low-
density lipoprotein (VLDL), low-density lipoprotein (LDL)
and high density lipoprotein (HDL). They are basically
formed by a core of triacylglycerides and cholesterol esters
coated by a phospholipid and apolipoprotein shell [50].
By mimicking the endogenous shape and structure of lipo-
proteins, lipoprotein-inspirated nanocarriers could escape

mononuclear phagocyte system recognition, thus remain-
ing in the blood stream for an extended period of time,
[51] ranging from 10 to 12 h in rodents [52] and up to 5
days in humans, as demonstrated by a clinical study in
which autologous biotinyl-HDL3 was injected to five nor-
molipidemic male volunteers as a probe for the determina-
tion of nanocarrier turnover [52,53]. LDL and HDL,
mostly used for their diameters lower than 40 nm, can be
loaded with drugs or imaging agents through covalent
linkage with the phospholipid or protein material, interca-
lation of the molecules into the phospholipid shell or
encapsulation in the nanoparticle core.
This approach provides a highly versatile natural

nanoplatform for the delivery of poorly soluble drugs or
imaging agents [54]; however, one potential hurdle in
developing lipoproteins as clinically viable nanocarriers
lies in the fact that lipoproteins are isolated from fresh-
donor plasma, which might result in batch-to-batch
variations thus posing several scale-up challenges[55].

Targeted non-liposomal lipid-based nanocarriers
Nanoscaled systems appear as an attractive approach to
overcome the limitations associated to conventional drug
delivery strategies. However, the existence of endogenous
self-defence mechanisms able to recognize either viral/
bacterial or synthetic exogenous particles may hinder their
effectiveness or cause side undesirable effects. The
mononuclear phagocyte system is a part of the immune
system that consists of the phagocytic cells (monocytes,
macrophages and Kupffer cells) widely distributed and
strategically placed in many tissues of the body (lymph
nodes, spleen and liver) to recognize and neutralize foreign
particles[56]. The recognition by these cells is promoted by
the adsorption of specific proteins (renames “opsonins”),
capable of interaction with specific plasma membrane
receptors on monocytes and various subsets of tissue
macrophages[57-59].
In the case of infectious diseases, this mechanism

provides an opportunity for the efficient delivery of thera-
peutic agents to these cells by using colloidal drug delivery
systems[60,61]. However, in cancer treatment, the rapid
sequestration of intravenously injected colloidal particles
by liver and spleen decreases drug accumulation at the
tumour site. Thus, the engineering of colloidal carrier
systems which avoid rapid recognition by Kupffer cells
and show long blood circulation time (i.e., Stealth® nano-
particles) is essential[62]. To this aim, several approaches
have been investigated to modify the surface properties of
the nanocarriers by using emulsifying agents or copolymer
nonionic surfactants such as poloxamers and poloxamines,
in order to block the opsonization process[63,64]. One of
the most successful methods is the anchoring onto the
nanoparticle surface, of a hydrophilic and flexible polymer,
like polyethylene glycol (PEG) or its derivatives[65-71].
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Surface modification of nanoparticles not only confer
significantly reduced mononuclear phagocyte system
uptake, better stability and enhanced circulation time, but
also result in an increased accumulation of the stealth
particles in the tumour[72,73]. Compared to healthy tis-
sues, tumours show high irregular vessels with abnormal
heterogeneous density, large pores on the endothelial
walls, reduced lymphatic drainage and higher interstitial
pressure[74]. Due to this enhanced permeability and
retention (EPR) effect, drug-loaded nanocarriers are able
to accumulate at the tumour site by passive targeting
(Figure 2A)[75,76].
However, PEGylation presents some important limits

and drawbacks concerning the translation to the clinic.
The observed discrepancy between preclinical and clinical
results could, indeed, be attributed to the different
progression rate of tumours models in animals and those
of human patients, an important factor for EPR based

anticancer nanomedicines[77]. In addition, it is already
well known that the Doxil®, a PEGylated doxorubicin
liposomal formulation, is able to trigger complement
activation in human serum, leading to a pseudoallergic
reactions called “complement activation-related pseudoal-
lergy” (CARPA) which is associated with cardiopulmonary
disturbance and other related symptoms of anaphylaxis
[78]. For instance, a recent study showed that the extent
of complement activation was correlated to the amount of
methoxyPEG 2000 (or 5000) at the surface of the lipid
carrier[79]. Moreover, relying only on the EPR effect
and therefore on tumour anatomy, in some cases pas-
sive targeting did not allow therapeutic drug amounts
to reach the target site. Indeed, the physiology of
tumours and especially fibrosis, hypovascularization
[80,81] and the presence of extracellular matrix, [77] a
highly interconnected network of collagen fibers,
obstruct the nanoparticles to reach cancer cells. That

Figure 2 (A) Passive targeting. Healthy blood vessels are regular and continuous with tight endothelial junctions between cells. Conversely,
the angiogenic vessels show gross architectural changes, such as large intracellular pore, presence of interrupted endothelium and incomplete
basement membrane, allowing the extravasation of nanoparticles from blood vessels. In the tumour stroma nanoparticles remain trapped due to
higher interstitial pressure, due to a lack of effective lymphatic drainage coupled with lower intravascular pressure. These pathophysiological
characteristics enhance the tumour site accumulation of nanoparticles. However, aside to the well perfused and rapidly growing regions, a non-
uniform tissue oxygenation due to the vascular heterogeneity led to the presence of poorly perfused, often necrotic areas in which the efficacy
of the treatment is hampered. (B) Active targeting. In order to improve the intracellular delivery of the drug, nanoparticles could be
functionalized with specific ligands that specifically bind receptors expressed primarily on malignant cells leading to receptor-mediated
internalization, which is often necessary to release drugs inside the cells.
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seems to be the cause of the failure in pancreatic ade-
nocarcinoma treatment[82,83].
One of the major requirements for a successful cancer

therapy is its ability to selectively kill cancer cells with
minimal damage to healthy tissues[84]. In cancer cells,
the extracellular leaflet of the plasma membrane is not
characterized by unique molecular target but rather
by overexpressed antigens that are relatively down
regulated in healthy cells[85,86]. Thus, functionalization
of nanocarrier surface with various targeting moieties
that specifically bind the receptors mainly expressed on
malignant cells has been widely investigated as valuable
strategy to achieve an active targeting to cancer cells
(Figure 2B)[87,88]. Receptor-mediated internalization of
nanocarriers would then allow efficient drug release
inside the cell. Several ligands that belong to the families
of small molecules, polysaccharides, peptides, proteins
or even antibodies have been used for targeted nanocar-
riers. A broad range of techniques could be employed to
investigate specific homing devices such as (i) antibody-
based screens [89], (ii) cloning strategies [90], (iii) in
vivo biotinylation and (iv) phage-displayed peptide
libraries[91]. In literature, several synthesis methods and
coupling strategies are described to achieve the desired
macromolecular architecture and display the homing
device on the surface of nanocarriers (for a systematic
review see [88]). Furthermore, nanoparticles generally
carry more than a single targeting ligand molecule thus
allowing multivalent binding, which improves targeting
efficacy with high binding constants[92].
Lipid-based nanocarriers have been successfully

employed for active targeting. The first example was
published in Science in 2002[93]. In this study, cationic
NPs were prepared by self-assembly and polymerization
of appropriate lipid molecules and then functionalized
by conjugation of a trivalent lipid with the integrin aνb3
ligand for endothelial cell targeting (aνb3-NPs). The
expression of aνb3 integrins in 25% of human tumours
(e.g., melanoma, glioblastoma, ovarian, breast cancer)
makes them a successful choice for the design of tar-
geted drug delivery systems[94,95]. These actively tar-
geted SLNs enabled selective gene delivery both in vitro
(towards aνb3-expressing M21 human melanoma cells)
and in vivo (towards angiogenic blood vessels in mice
bearing aνb3-negative M21-L melanomas). The thera-
peutic efficacy was then tested injecting NPs conjugated
with the mutant Raf-1 gene (aνb3-NPs/ Raf (-)) that
blocks endothelial signalling and angiogenesis. Ανb3-
NPs/ Raf (-) decreased angiogenesis, leading to tumour
cell apoptosis and sustained regression of established
primary and metastatic tumours. In a competitive assay
experiment, treatment with 20-fold molar excess of
soluble targeting ligand led to a tumour burden similar
to that observed in control mice, demonstrating that the

efficacy of targeted NPs resulted from aνb3 specific
recognition[93]. The well-known peptide sequence RGD
(Arg-Gly-Asp), which recognizes the aνb3 integrins, was
identified 20 years ago[96]. Its cyclic form (cRGD),
designed from the peptides developed by Kessler’s
group, provides easy conjugation to imaging and/or
therapeutic moieties[41,94]. The importance of the
peptide sequence for specific receptor targeting was
demonstrated using negative control peptides which
differ from the positive one only in few amino acids [41].
Lipid NPs were functionalized with both cRGD targeting
ligand (SLN-cRGD) and cRAD peptide negative control
(SLN-cRAD)[41]. Results in vitro on HEK293(b3) cells
line (human embryonic kidney genetically modified
which strongly express aνb3 integrins) showed specific
targeting of SLN-cRGD in comparison with SLN-cRAD
and non-functionalized SLN after incubation with cells at
4°C or 37°C. Nanoparticle internalization was inhibited
by pre-saturation of cells with free cRGD, demonstrating
the key role of aνb3 integrins. Similarly, an active accu-
mulation of cRGD-targeted particles was observed in
HEK293(b3) xenografts-bearing mice after intravenous
injection[41]. However, cRGD targeting failed in a murine
mammary carcinoma model clearly demonstrating that
cancer physiopathology is a crucial parameter for cRGD
targeting efficacy[41,97]. Efficient drug targeting requires
the increased accumulation of the drug at the tumour
site thanks to the EPR effect, followed by a facilitated cel-
lular uptake through ligand-mediated endocytosis[22,98].
The proof of concept has been provided by Wang et al.
[98] using passively and actively targeted lipid-based-
nanosuspensions (LNSs) loaded with docetaxel. LNS
modification with PEG moieties conferred stealth proper-
ties while further conjugation of PEG chains with folic
acid enabled to achieve active targeting properties. Folic
acid (FA) is widely used as targeting ligand due to the
overexpression of FA receptors (FR) in several human
cancer cells, including malignancies of the ovary, brain,
kidney, breast, lung and myeloid cells[99]. FR binding
affinity (Kd = 1 × 1−10 M) does not appear to be affected
by conjugation to the nanocarriers, [98,100]. FA-functiona-
lized systems represent an effective strategy for specific
delivery of therapeutic agents to tumours[98,101-105].
Therefore, compared to non-functionalized LNS, targeted
LNS showed a slightly higher toxicity on mouse melanoma
B16 cells overexpressing FR, which was probably due to a
synergy between the passive and active targeting[98].
FA was also used to decorate lipid-based nanoparticles

made of (DSPC)/triolein/ cholesterol oleate/polyethylene
glycol cholesterol (PEG-Chol) (40:40:18:2.5, mole: mole),
in which a paclitaxel prodrug, the paclitaxel-7-carbonyl-
cholesterol (Tax-Chol), was encapsulated in the lipid
phase. In FA targeted formulations, 20% of the PEG-Chol
was replaced by folate-PEG-Chol (f-PEG-Chol)[106].
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The incorporation of a lipid paclitaxel prodrug was chosen
as strategy to overcome the paclitaxel propensity to preci-
pitate and increase formulation stability. The FR-targeted
LNPs showed enhanced activity against FR (+) tumour-
bearing mice also inducing an effective extension of their
survival[106]. FA has been also conjugated to the Lys
residues of the apolipoprotein B (apoB-100) to develop an
actively targeted LDL-based nanoplatform[107]. LDLs
possess an intrinsic tumour targeting property due to the
overexpression of the LDL receptor (LDLr) in various
tumour cells, which was attributed to the large amount of
cholesterol and fatty acids required for sustaining the
rapid tumour proliferation[108]. Although this approach
might provide a targeted delivery of drugs and diagnostic
agents to tumours, the application of LDL-like NPs is
clearly limited to the dysregulation of the LDLR associated
with several diseases [107]. Concerning FA-LDL, internali-
zation studies performed on FR-overexpressing and
FR-nonexpressing cells confirmed that the FA-targeted
LDL-like NPs uptake was driven by the FR receptor[107].
EGFR is a transmembrane tyrosine kinase receptor

overexpressed in a wide range of cancers including
breast, ovarian, bladder, head and neck, glioma, pancrea-
tic, kidney, lung and prostate, making it an attractive
target for both therapeutic and diagnostic applications
[109-111]. An example of EGFR-directed nanocarriers
was provided through the functionalization of doxorubi-
cin or carmustine-loaded cationic SLN with specific
monoclonal antibody against EGFR for the treatment of
brain glioblastoma multiforme[112,113]. Exposure to
targeted nanoparticles resulted in higher inhibition of
U87MG human glioblastoma-astrocytoma cells com-
pared to non-targeted control NPs. Although these
nanoparticles improved the administration of hydropho-
bic drugs, such as carmustine, allowing intravenously
injection, an in vivo proof of evidence of the increased
accumulation at the tumour site has not been provided
yet. More recently, a new class of proteins known as
affibody molecules has been introduced as an alternative
approach to antibodies for EGFR-targeted systems
[114,115]. These affibodies are composed of 58 amino
acid residues bundled in a three-helix scaffold, a
structure derived from the staphylococcal protein A
Z-domain, which is an engineered variant of a gene
encoding five highly homologous Ig-binding domains
[116]. Taking inspiration from the advances in protein
library technology, the Z domain was employed to
design a novel class of high-affinity molecules. For
example, the EGFR-binding Z domain was employed as
homing device for the delivery of therapeutic agents
towards a wide range of EGFR-overexpressing cancer
cells [84]. To further improve binding efficiency, a hep-
tameric EGFR-binding ligand was developed by fusing a
heptamerization domain with an EGFR-binding Z

domain. This heptameric EGFR-binding targeting ligand
was used to decorate the surface of nickel-loaded
lipid-based oil-filled nanoparticles (Ni-LNPs) [84]. Nano-
particles were prepared from warm oil/water (o/w) micro-
emulsion technique using polyoxyethylene (20) stearyl
ether, D-alpha-tocopheryl polyethylene glycol 1000 succi-
nate (TPGS) and a mixture of caprylic and capric fatty
acid triglycerides. In vitro cell uptake studies showed up to
90% internalization of the EGFR-targeted Ni-LNPs into
the EGFR overexpressing A431 human epidermoid
carcinoma cells, while a significantly lower uptake (10%)
was observed with untargeted Ni-LNPs. The targeting effi-
ciency of the novel heptameric Z-EGFR domain was also
demonstrated in vivo with an almost two-fold increase of
intracellular Ni accumulation in tumour cells[84].
The CD44 receptor-hyaluronic acid (HA) interaction

has also been investigated for cancer targeting[117]. HA
is an anionic, non-sulphated glycosaminoglycan distribu-
ted throughout connective, epithelial and neural tissues
[118]. Contrary to HA oligomer, the native high molecu-
lar weight HA is a “bioinert” component that does not
induce inflammation, proliferation or proangiogenic
effect[119,120]. HA has been used as homing device
able to target CD44-expressing tumour initiating cells
[121]. Moreover, due to its hydrophilicity it could
prevent opsonin adsorption by steric repulsion, allowing
to reduce mononuclear phagocyte system uptake[122].
Thus, HA-Ceramide-based self-assembled NPs loaded
with docetaxel [118] and doxorubicin[123]was devel-
oped. Ceramides, which are composed of sphingosine
and fatty acid triglycerides, are cellular membranes com-
ponent which play a role as cellular signalling molecules
involved in the regulation of differentiation, proliferation
and programmed cell death[124]. In vitro studies on
several cells lines showed that the cellular uptake of
docetaxel and doxorubicin-loaded HA-ceramide
nanoparticles was driven by CD44 receptor-mediated
endocytosis[118,123]. The in vivo tumour targetability
for the docetaxel-loaded nanoparticles labelled with a
NIR fluorescence die (cyanine 5.5) showed interaction
between HA and CD44 receptors in MCF-7/ADR
tumour bearing mice. Doxorubicin-loaded HA-ceramide
nanoparticles showing PEG chains at their surface
demonstrated an increased therapeutic efficacy in
tumour-bearing mice, probably due to the improved
half-life and reduced clearance of doxorubicin together
with its tumour accumulation by passive and active
targeting[123].
Galactose and galactosamine are also interesting

ligands to target cancer cells which overexpress the asia-
loglycoprotein receptor (e.g., hepatic and cervical cancer
cells)[88,125]. For efficient hepatocyte targeting, galac-
tose was linked to the distal end of the PEG chains at
the surface of DOTAP/DOPE lipid nanocapsules
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encapsulating DNA[126]. In primary hepatocytes, such
functionalized lipid nanocapsules were found to increase
by 18-fold the luciferase expression compared to non-
galactosylated ones[126].
Galactoside functionalization of SLN loaded with tas-

pine, a bioactive aporphine alkaloid that inhibits
tumour angiogenesis and controls tumour growth,
[127] enabled a 3-4-fold increase of drug accumulation
in the liver of healthy mice[128]. Docetaxel-loaded
SLN were instead targeted to hepatic cells using the
galactosylated dioleoylphosphatidyl ethanolamine
(DCT-tSLN)[129]. DCT-tSLN showed higher cytotoxi-
city on hepatocellular carcinoma cell line BEL7402
compared to Taxotere® and non-targeted nanoparticles
(DCT-nSLN). In vivo studies in hepatoma-bearing mice
showed that the DCT-tSLN had a better therapeutic
index compared to Taxotere®. Moreover, histological
analysis demonstrated that DCT-tSLN had no detri-
mental effect on both healthy and fibrotic liver[129].
Human and murine macrophages express mannose

receptor on their surface, [130] and several studies con-
firmed the feasibility of using mannose- or mannan-modi-
fied nanocarriers to target macrophages[131]. Alveolar
macrophages play a key role in the first-line host defence
and lung cell homeostasis, [132] thus targeting macro-
phages may provide innovative therapeutic strategies
against tumour invasion and metastasis for lung cancer
which represents one of the most aggressive solid cancers.
Polysaccharides or multiple oligosaccharides, such as man-
nan, which contains a large group of mannose residues,
are recognized as having a much higher affinity than single
sugar molecules because of the moiety density[131].
Indeed, surface of DNA-loaded cationic SLN was modified
with L-a-phosphatidylethanolamine (PE)-grafted mannan-
based ligand (Mannan-PE) obtaining mannan-targeted
SLN-DNA (Man-SLN-DNA)[131]. Transfection efficiency
of Man-SLN-DNA was evaluated in vitro on RAW 264.7
cells (mouse leukemic monocyte macrophage cell line)
and in vivo following pulmonary administration in rats.
Man-SLN-DNA showed lower cytotoxicity than non-
modified SLN-DNA and achieved higher gene expressions
in comparison to Lipofectamine 2000-DNA. The above
mentioned results indicated that mannan modification
enhanced the active targeting ability of the carriers, and
that Man-SLN-DNA may be a promising non-viral vector
for targeted lung gene delivery[131].
Finally, taking advantages of overexpressed transferrin

receptor at the surface of brain tumour cells, the surface
of lipid nanocapsules has been coated with the OX26
murine monoclonal antibody and the NFL-TBS.40-63
peptide derived from the light neurofilament subunit
(NFL)[133]. Intra-carotidal treatment with NFL-TBS.40-
63 peptide functionalized nanocapsules was found to
enhance the survival time (44 days versus 27 days)

which was not obtained with non-targeted LNC. This
suggests that this active targeting strategy may offer a
promising approach for glioma treatment[133].

Non-liposomal lipid-based nanocarriers for diagnostic
(imaging) applications
The currently most accessible imaging techniques include
magnetic resonance imaging (MRI), optical imaging,
ultrasonography (US) and positron emission tomography
(PET).
MRI is a powerful non-invasive technique based on

magnetic properties, which offers the possibility of deep
penetration into soft tissues. The human body consists by
two-thirds of water molecules whose hydrogen atoms are
able to act as microscopic compass needles susceptible to
an externally applied magnetic field[134,135]. The differ-
ent relaxation properties of various tissues allow using
MRI to reconstruct images of structures, such as organs
and lesions and to evaluate perfusion and flow-related
abnormalities. MRI is optimized by using contrast agents
able to increase the T1 signal or decrease the T2 signal,
thus leading to a bright (positive) or dark (negative)
contrast enhancement[136].
The electronic configuration (seven unpaired 4f elec-

trons) of the lanthanide ion Gd3+ allows to long electronic
relaxation times or slower relaxation rates making it the
most frequently T1 positive contrast agents for T1-
weighted imaging in MRI[136]. The main drawback of
Gd3+ is its similarity with endogenous metals (e.g., calcium
and zinc) that might cause transmetallation or neuromus-
cular transmission arrest[137]. In order to sequester the
ion for a safe administration, cyclic (e.g.,cyclen-based tetra-
acetic acid derivative complex DOTA) or acyclic (e.g.,
diethylenetriaminepentaacetic acid complexes DTPA) che-
lating agents have been approved for clinical use[136].
Lipid-based nanoparticulate carriers able to carry multiple
contrast agent moieties were developed (e.g., Gd-DTPA
was encapsulate in SLN [138] or incorporated into the
lipid layer of LDL-based nanoparticles [139])with the aim
to increase the accumulation of the contrast agent at the
target site, consequently enhancing the signal intensity,.
Contrast agents could also use of the ferromagnetic

properties of natural elements (i.e., iron), which consist
in both being attracted in the presence of an externally
applied magnetic field and retaining the magnetization
after its removal. Superparamagnetic iron oxide nano-
particles (SPIOs) have been investigated as a category of
T2 MRI contrast agents for both in vitro and in vivo
imaging. They show a high magnetic moment that can
increase proton relaxivities up to 10-folds[136].
Magnetic nanoparticles (MNPs)-encapsulated SPIOs

have already demonstrated broader applicability and
improved efficacy for the detection of primary tumours,
metastasis, sentinel lymph node invasion and for the
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visualization of biological processes (e.g., apoptosis, cell
trafficking, and gene expression)[21,140-142]. Biophar-
maceutical performances, pharmacokinetics and toxicity
depend on their composition and physicochemical prop-
erties as well as on the route of administration and dose
(for review see [21]). Lipid-based nanocarriers have been
suggested as a MRI contrast agent after encapsulation of
MNPs[28,143-145].
Optical imaging is a non-invasive technique based on

the specific optical properties of tissue constituents at dif-
ferent wavelengths[146]. The “biological window” for
optical imaging in NIR region (wavelengths 700-900 nm)
is characterized by low absorption and low scattering in
soft tissue that allow increasing the penetration depth,
the major limit in optical imaging[147].
Only two fluorophores (indocyanine green (ICG) and

fluorescein) are currently approved by the FDA for medi-
cal use [148]. A successful optical molecular probe for
medical imaging must show specific characteristics, such
as absorption/emission wavelength in the deep or near
infrared range, brightness, bio- and photo-stability and a
successful pharmacokinetic profile (For review see [148]).
Application of ICG is limited by its numerous disadvanta-
geous properties, including its concentration-dependent
aggregation, poor aqueous stability in vitro, low quantum
yield and high binding to nonspecific plasma proteins,
leading to rapid elimination from the body. To overcome
these problems, ICG has been effectively encapsulated in
lipid micellar systems, such as glycocholic acid and phos-
phatidylcholine [149] or phospholipid-PEG [149,150]
micelles, improving ICG optical properties and prolonging
up to a few weeks its stability in aqueous buffer.
“Lipidots™”, a recent technology based on oil-in-water
nanoemulsions, in which a soybean oil and wax are coated
with lecithin and PEG [151,152], has also been investigated
to encapsulate near infrared dyes obtaining highly bright
fluorescent nanoprobes with very low cytotoxicity and
good pharmacokinetic profile in vivo[152,153]. For exam-
ple, in a first clinical trial, ICG was successfully evaluated
as a new method for sentinel lymph node biopsy in breast
cancer patients [154] that represents an efficient aid to
eradicate the tumour or prevent further metastasis[155].
In parallel, HDLs [55,156] and LDLs [107,157] have

been modified by the inclusion of lipophilic fluorophores,
such as DiR (1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindotri-
carbocyanine Iodide), DiR-bis-oleate [55,156,157], carbo-
cyanine-based optical probe (DiI) [107] or novel
fluorescent lipids (such as bacteriochlorine6bisoleate
(BchlBOA), a synthetic analog of Bacteriochlorophyll a
(Bchl))[55,156]. Contrast generating materials can be
included in the coating of the particle [157] or loaded in
the hydrophobic core of lipoproteins[55,158].
Ultrasonography (US) is a low cost and in real time clin-

ical imaging modality based on the partial backscattering

of ultrasound waves - frequency range from 2 to 15
MHz - by different structures of the body because of the
impedance mismatch between different tissues[159].
Due to the weak difference of echogenicity between

different soft tissues, ultrasound contrast agents are
usually needed to improve imaging and to distinguish
between diseased and healthy tissues.
Perfluorocarbons (PFCs) are fluorinated aliphatic

compounds that have been used as contrast agents for
ultrasonography and magnetic resonance imaging (MRI)
since the end of the 1970s[160]. Liquid PFCs (long
perfluorinated carbon chain) have been used instead of
gaseous PFCs (small perfluorinated carbon chain) due to
higher resistance to pressure changes and mechanical
stresses[161,162]. In order to administer liquid PFC by
the parenteral route, nanoparticulate systems which
encapsuled PFC droplets such as nanodroplets coated
with phospholipid and cholesterol were designed
[163,164].
Based on the use of a radiolabeled compound, Positron

Emission Tomography (PET) is a non-invasive, nuclear
imaging technique, capable of visualizing deep tissues with
a high sensitivity and generating a three-dimensional
image of living subjects. Using mathematical reconstruc-
tion methods and correction factors, quantitative informa-
tion can be extracted from the images and radioisotope
concentration can be measured in the specific region of
interest[165].
Radiolabel SLNs with positron emitter 64Cu have been

designed through the incorporation of a lipid-PEG-chelate
(6-[p-(bromoacetamido) benzyl]-1,4,8,11-tetraazacyclote-
tradecane-N,N’,N’’,N’’’-tetraacetic acid (BAT)), conjugated
to a synthetic lipid, into the phospholipid monolayer
forming the SLN surface[165]. The blood half-life of these
SLNs was increased, comparatively to polymeric nanopar-
ticles of similar size, due to reduced clearance in kidneys,
liver and spleen.
Owing to the typical limitation for each technique,

monomodal imaging was not enough for a successful
diagnosis. In this context, multifunctional nanocarriers
with plural imaging tools capabilities could be employed
to exploit different modalities achieving molecular mean-
ingful images at different levels of spatial resolution and
dept. For example, functional multiplexed imaging with
submicrometer resolution could be obtained using by
optical imaging, although this technique does not provide
quantitative concentration measurements and is basically
restricted to biological objects no thicker than a few
millimeters or centimeters. In contrast, PET allows quan-
titative whole body imaging with a low (a few mm) spa-
tial resolution[166]. Taking advantage of multifunctional
nanotechnology platforms, which include several contrast
agents for multimodal imaging and tools for combining
the different levels of observation, it was possible to
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reconcile molecular images into a global picture in order
to the overcome the limit of each technique [28,166]. In
this view, quantum dots nano-crystals (QDs) were encap-
suled in functionalized phospholipid micellescovalently
labeled with fluorine-18, a commonly used fluorophore for
clinical imaging, developing a novel bifunctional probe for
fluorescence and nuclear imaging [166]. Phospholipid QD
micelles exhibited long circulation half-time in the
bloodstream and slow uptake by the mononuclear phago-
cyte system, in contrast with several previous studies using
other polymer coatings [166]. In addition, this bifunctional
micellar probe showed that a combination of PET and
fluorescence imaging can be used to quantitatively and
dynamically improve the monitoring of nanoparticles
biodistribution and pharmacokinetics. Despite that, toxi-
city due to the presence of heavy metals such as cadmium
and selenium is their major concern. Unless QDs can be
made especially small (around 6 nm) and thus excreted via
the kidneys, these particles typically have delayed clearance
and are mostly excreted through the liver and into the bile
without significant metabolism[167].
Chen and co-workers have designed a novel multimodal

tumour targeting molecular imaging probe encapsulating
amphiphilic gadolinium chelates (Gd3+- Gadolinium
diethylenetriaminepentaacetate-di (stearylamide)) and
fluorescent dyes (DiR) in HDL-RGD targeted nanoparticle
[168]. In vitro observation showed that specific HDL-RGD
nanoparticles were preferentially taken up by endothelial
cells escaping macrophage phagocytosis. RGD-targeted
and untargeted HDL showed different accumulation/
binding kinetics in mice-bearing subcutaneous human
EW7 Ewing’s sarcoma tumours. The combination of NIR
and MR imaging exploits the complimentary features of
both techniques providing high sensitivity and high spatial
resolution[168].
Actively targeted contrast agent-loaded nanocarriers

have also been developed to increase dye amounts at the
tumour site. Since HDL’s core lipid transfer is mediated
through the interaction between ApoA-1, the major apoli-
poprotein, and the scavenger receptor class B type I
(SR-BI), that is overexpressed in some cancer cell lines,
[156,169] targeting this receptor represents a novel way to
deliver imaging agents to tumours which overexpress this
receptor. Furthermore, it is conceivable that a wide range
of tumour-specific targets, such as epidermal growth
factor (EGF), can be applied to HDL-like NPs[55,107,157].
A coordinated dual receptor (EGFR and SR-BI) targeting
phenomenon leading to enhanced dye delivery has been
shown by adding EGF targeting ligand to HDL-like NPs
carrying DiR-BOA, a near-infrared fluorescent compound
used as a model functional cargo[55].
Furthermore as mentioned above, LDL nanoparticles

could reroute away from their native receptors by conju-
gating tumour-homing ligands to their surface. Proof of

this strategy has been demonstrated in vitro with fluor-
escent-labeled folic acid-conjugated LDL[107]. Later,
DiR-LDL-FA (actively targeted LDL obtained by interca-
lation of DiR into the LDL phospholipid monolayer and
conjugation of FA to ApoB-100) have successfully tar-
geted FR expressing tumours, thus effectively validating
the LDL rerouting strategy for enhanced cancer optical
imaging in vivo[157].

Theranostics applications of non-liposomal lipid-based
nanocarriers
“Nanotheranostics” (i.e., theranostic nanomedicines)
represent a novel extremely interesting versatile plat-
form for both detection and cure of diseases, thanks to
the development of multifunctional systems combing
therapeutic and diagnostics functions(Figure 3)[16,170].
Taking advantage of the combination of simultaneous

non-invasive diagnosis and treatment of diseases, one of
the most promising aspects of the nanotheranostics is real
time monitoring of pharmacokinetic drug profile to
predict and validate the effectiveness of the therapy
[18,171,172]. Due to these features, nanotheranostics are
extremely attractive to optimize treatment outcomes in
cancer, leading to the realization of a “personalized nano-
medicine”, which would enable to administer “the right
drug to the right patient at the right moment”[173,174].
Significant benefits in the management of cancers could
be achieved combining the highest therapeutic efficiency
with the best safety profile[20].
HDL-like NPs for theranostic application were designed

by incorporating a chemically stable bacteriochlorophyll
analogue, a dye synthesized by the phototrophic bacteria,
in their core [55,156]. This fluorescent photosensitizer can
be tracked in vivo through NIR fluorescence imaging and
can be activated to generate singlet oxygen upon light
irradiation. NPs were successfully detected in epidermal
carcinoma KB cells both in vitro and in tumour xenografts
using the dorsal skinfold window chamber technique,
which allows the monitoring of the nanoparticle tumour
penetration with high spatial and temporal resolution
[156]. Recently, Wang and co-workers proposed doxorubi-
cin-loaded acoustic droplets containing a core of liquid
perfluoropentane and lipid-based (DSPC, cholesterol,
distearoylphosphatidylethanolamine (DSPE)-PEG2000)
shell. High-intensity focused ultrasounds (HIFU) caused
nanodroplets phase transition (i.e., acoustic droplet vapori-
zation (ADV)) that led to the formation of gas bubbles,
which mediated both mechanical cancer cell destruction
and localized drug release, thus leading to significant cell
toxicity[175]. Optical studies clearly illustrated the transi-
ent changes that occurred upon ADV of droplet-targeted
and B-mode ultrasound imaging, revealing contrast
enhancement by ADV in ultrasound images. Moreover,
droplets were conjugated with aptamers, factitious
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oligonucleotides, providing the ability to specifically target
CCRF-CEM human acute lymphoblastic leukaemia cells.
Gianella et al. [28] have developed a theranostic

nanodevice composed of an oil in water nanoemulsion,
loaded with iron oxide crystals, Cy7 dye and glucocorti-
coid prednisolone acetate valeranate, for MRI, NIRF and
therapeutic use respectively. The effectiveness of this
nanotheranostic, which combined the high spatial
resolution of MRI with the high sensitivity of optical
fluorescence imaging,was evaluated on a colon cancer
model. The massive uptake of NPs in the tumour was
confirmed in in vivo studies by MRI images, in which
tumours appeared bright compared to the surrounding
tissue, as well as by NIRF imaging since the injection of
Cy7-labeled nanoemulsions led to a strong fluorescent
signal compared to Cy7-unlabeled ones. RGD peptide-
functionalized nanoemulsions resulted in vivo as active as
the untargeted ones, due to the already extended tumour
targeting of nanoparticles. Dayton and co-workers devel-
oped perfluorocarbon emulsion nanoparticles containing a
core of at least 50% of liquid perfluorocarbons and a mix-
ture of triacetin and soybean oils in which paclitaxel was
encapsuled[29]. Another promising theranostic approach
using ultrasound as imaging modality is represented by an
oil-in-water emulsion made of liquid perfluoroctylbromide
(PFOB) drops stabilized by a lipid layer in which the pep-
tide melittin has been incorporated[176]. Melittin has
already been proposed in the treatment of several cancers
as cytotoxic agent that induces cell lysis through mem-
brane permeabilization[177,178]. Feasibility as theranostic
tool was investigated in vivo on xenograft models of breast

cancer. Compared with control saline solution or mellitin
free emulsion, the NPs treatment showed a significant
inhibition of tumour growth. At the same time, they also
provided a significant contrast enhancement, which
enabled to monitor the therapeutic efficacy by ultrasound
imaging[28,29].
Recently, Couvreur and co-workers reported a novel

nanotheranostic platform in which SPIOs are coated with
squalene-based anticancer prodrugs [144,145]. Lipid-drug
conjugates have gained considerable attention in recent
years thanks to the improvement of the pharmacokinetic
and of the therapeutic index of the associated drugs.
Squalene (SQ), which is a natural acyclic triterpene, is the
corner stone in the biosynthesis of most triterpenes
including lanosterol and cycloartenol which in turn are
the precursors of steroids [179]. In 2006 the covalent link-
age of the anticancer drug gemcitabine to squalene was
found to lead to the formation of amphiphilic bioconju-
gates which spontaneously self-assembled as nanoparticles
in water [180]. This proof of concept has since been
enlarged to other nucleoside analogue drugs (e.g., ddI,
ddC, AZT, ACV, Ara-C [180-184]), to more lipophilic
drugs (e.g., paclitaxel [185,186]), to imaging transition
metals (e.g., ruthenium[187] or gadolinium[188]) as
well as to antibiotics (e.g., penicillin [61])and nucleic acids
(e.g., SiRNA[189]).
In general, these squalenoylated nanomedicines dis-

played an increased pharmacological activity in solid,
metastatic and orthotopic experimental cancers (Figure 4)
[190]. When the SPIOs/SQgemcitabine NPs were intrave-
nously injected in the tumour-bearing mice and guided

Figure 3 Schematic representation of nanotheranostics.

Valetti et al. Journal of Nanobiotechnology 2013, 11(Suppl 1):S6
http://www.jnanobiotechnology.com/content/11/S1/I6

Page 11 of 17



using an extracorporeal magnetic field, an impressive
anticancer activity was obtained at very low doses of the
anticancer drug. Moreover, the magnetic responsiveness
of embedded SPIOs coupled to their T2 imaging proper-
ties make them an efficient candidate for theranostic appli-
cations, because tumour collapse could be easily visualized
by MRI[145]. This concept has also been found feasible by
using Gd3+ for T1 positive imaging[188], showing that the
squalenoylation is a versatile and safe nanotheranostic

platform with high drug loading and controlled release
properties.

Conclusions
Lipids are a class of natural or synthetic compounds with a
range of structure and functions. Their supramolecular
organization may be tailored to design nanoscaled struc-
tures able to be loaded with drugs or imaging agents or
both ("nanotheranostics”). The proof of concept that such

Figure 4 In vivo antitumor efficacy of SQgemcitabine NP. (A) Mice bearing pancreatic chemoresistent Panc1 orthotopic tumour model were
treated with equivalent drug dose of gemcitabine (dFdC) or SQgemcitabine (SQdFdC). After 1 month of treatment, volume of the primary tumour
and tumour extension were significantly reduced by SQgemcitabine showing its superior antitumour efficacy compared to physiological solution
or vehicle nanoparticles treated (pure SQ) or gemcitabine treated mice. (B) Mice survival curves showed a significant enhancement of the median
survival after SQgemcitabine treatment. All the gemcitabine treated and untreated mice died respectively within 64 and 47 days following tumour
implantation. Remarkably, mice treated with SQgemcitabine were still alive after 3 months and no tumours were detected after autopsy. (C)
Tumour biopsy samples were collected from each group of mice and used for immunohistochemistry examination. Paraffin sections submitted to
hematoxylin-eosin (H.E) from SQgemcitabine treated mice revealed an absence of mitotic figures and demonstrated enlarged cells with significant
necrotic changes. Tissues staining with terminal deoxynucleotidyltransferase (TUNEL), for detecting DNA fragmentation, and aspartic acid-specific
cysteine proteases (CASPASE3), that are both present during apoptotic signaling cascades, revealed that apoptosis was most prominent in animals
treated with SQgemcitabine. The number of Ki-67-positive tumour cells, a marker for proliferation, showed a significant decrease of the tumour
proliferative activity in SQgemcitabine in comparison to gemcitabine treatment. (D) Quantitation rates of apoptotic cells confirmed the
considerably increased apoptosis in the tumours from SQgemcitabine-treated mice and the statistically significant difference between
SQgemcitabine and gemcitabine treatment. Adapted from ref 176. Copyright 2011 Nanomedicine.
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lipid nanocarriers may be used for cancer treatment and
diagnosis is demonstrated in the present review.
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