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Abstract. We present some of the main features of the multidimensional COMPASS multiplicities, via our

analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asym-

metries.

1 Introduction

Multidimensional Semi-Inclusive Deep Inelastic Scatter-

ing (SIDIS) data recently released by the COMPASS col-

laboration [1], present a unique opportunity to study x, z
and Q2 dependences of the unpolarized Transverse Mo-

mentum Dependent Distribution and Fragmentation func-

tions (TMDs). Of particular interest is the study of

the Q2 dependence of TMDs, in the context of TMD-

evolution, which in principle may be observed in these

multiplicities. However, some aspects of the data make

it non-trivial to draw any sensible conclusion when us-

ing a TMD-evolution scheme. For instance, the kine-

matics of the data, which include regions were factor-

ization may not necessarily hold, the short range of Q2

(1.11 GeV2 − 7.57 GeV2), which might make it difficult

to observe Q2-evolution, just to mention a few. These fea-

tures are not unique to the COMPASS data set, neither

do these complications arise solely from the nature of the

data, but also from the flexibility introduced in any current

formalism of TMD evolution, via the prescription used to

avoid the Landau pole in b-space and the non-perturbative

piece of the TMDs which is model-dependent.

If one is to understand what aspects of an analysis us-

ing full TMD-evolution arise from QCD and which ones

are just the result of a flexible enough parametrization, it is

necessary to have a control analysis or a “benchmark". We

performed such an analysis for the COMPASS multiplic-

ities, which serves as the first step towards the extraction

of the universal unpolarized TMDs. The present work is

a summary of our analysis, already published in Ref. [2].

We also show some preliminary results from our ongoing

analysis of COMPASS azimuthal asymmetries [3].
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2 A first Glance at the Data

Before presenting the results of our analysis, in this sec-

tion we will describe some of the features of the COM-

PASS multiplicities. These observations are important

when constructing a model for the unpolarized TMDs.

The most noticeable feature of the COMPASS data

set is the strong variation of its normalisation in the x Q2

plane. To illustrate the trend of the data, Figure 1 shows a

selection of multiplicities, for which interpolation curves

have been drawn in the following way: first, interpolating

the data in the 5 bottom panels, for two bins of z (red and

green), then using each of these curves in the upper panel

that best matches the value of y of the interpolated data.

For instance, all of the red curves in the three leftmost pan-

els are the same. This simple exercise, shows that for the

same value of z, the data on panels along the ”diagonal“ in

the x Q2-plane seem to have not only very similar width,

but also roughly the same normalisation. This signals an

unexpected dependence on y of the COMPASS multiplic-

ities. Furthermore, the blue lines in Figure 1 show that the

normalisation can be roughly approximated by a straight

line. Note that trend is a feature of the data alone, as no

use of any model has been made for this very simple ex-

ercise. This observation must be taken into account when

using these multiplicities in any attempt to extract the Un-

polarized TMDs. It must be noted that such a behaviour

is not likely to be connected to TMD-evolution, which ef-

fects are expected to be much smaller in this kinematical

range.

3 Formalism

The unpolarised � + p → �′ h X SIDIS cross section in the

TMD factorisation scheme, at order (k⊥/Q) and α0
s , in the
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Figure 1. A selection of the COMPASS multiplicities data. Solid lines are interpolation curves for the 5 panels at the bottom. The

same interpolation lines have been used for top panels, matching values of z and y (see text). Blue lines are all parallel to each other.

This illustrates the roughly linear dependence on y of the normalisation of the multiplicities.

kinematical region where PT � k⊥ � Q , reads [4, 5]:

dσ�+p→�′hX

dxB dQ2 dzh dP2
T

=
2 π2α2

(xB s)2

[
1 + (1 − y)2

]
y2

FUU (1)

FUU ≡
∑

q

e2
q

∫
d2 k⊥ fq/p(x, k⊥) Dh/q(z, p⊥) .(2)

In the γ∗ − p c.m. frame the measured transverse momen-

tum, PT , of the final hadron is given at order k⊥/Q by

PT = zh k⊥ + p⊥ . The exact relations can be found in

Ref. [6]. Furthermore, we assume for the k⊥ and p⊥ depen-

dences a Gaussian form, factorized from other kinematical

variables,

fq/p(x, k⊥) = fq/p(x)
e−k2⊥/〈k2⊥〉

π〈k2⊥〉
, (3a)

Dh/q(z, p⊥) = Dh/q(z)
e−p2⊥/〈p2⊥〉

π〈p2⊥〉
· (3b)

The integrated parton distribution functions (PDFs) and

fragmentation functions (FFs) , fq/p(x) and Dh/q(z), can

be taken from the available fits of the world data: in this

analysis we used the CTEQ6L set for the PDFs [7] and the

DSS set for the fragmentation functions [8]. In the sim-

ple Gaussian parameterisation, supported by a number of

experimental evidences [9] as well as by dedicated lattice

simulations [10], by inserting Eqs. (3) into Eq. (2), one

obtains

FUU =
∑

q

e2
q fq/p(xB ) Dh/q(zh)

e−P2
T /〈P2

T 〉

π〈P2
T 〉
, (4)

where 〈P2
T 〉 is given by

〈P2
T 〉 = 〈p2

⊥〉 + z2
h 〈k2

⊥〉 . (5)

For the multiplicities, defined as Mh
n ≡ σS IDIS /σDIS (see

reference [2] for further details ), one gets

1

2PT
Mh

n(xB ,Q
2, zh, PT ) =

π
∑

q e2
q fq/p(xB ) Dh/q(zh)∑
q e2

q fq/p(xB )

e−P2
T /〈P2

T 〉

π〈P2
T 〉
, (6)

with 〈P2
T 〉 given in Eq. (5). Notice that 〈k2⊥〉 and 〈p2⊥〉 are

the free parameters of our fit.

4 Results on multiplicities

In this section we show the results from two different fits

on the COMPASS SIDIS multiplicities of Ref. [1]. In both

fits, we used the model of Eqs. (3). Only in the second fit,

we used an extra normalisation factor for the multiplicities,
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to account for the trend of the data explained in section 2.

Such normalisation was parameterised as

Ny = N1 + yN2, (7)

which introduces two additional parameters, for the entire

subset of data considered in the fit. Results are shown in

table 1 and Figure 2. From these two fits, one can readily

see that the value of χ2 is dramatically reduced by intro-

ducing the normalisation of Eq. (7), while the values of the

widths for the TMDs remain essentially the same. This is

expected from the observations made in section 2. Notice

that the still sizeable value of χ2
do f receives a large con-

tribution from those bins with low values of y, enclosed

in red boxes in Fig. 2. In fact, except for those bins, the

simple Gaussian model of Eq. (3) makes a rather remark-

able job in reproducing the COMPASS data. Following

this analysis, one can see that any effect introduced by Q2-

evolution must be very subtle, in the considered kinemat-

ics.

5 Azimuthal Asymmetries and Parameter
Interpretation

The results of our analysis are relevant not only when look-

ing at the multiplicities, but also regarding the data on

〈cos(φ)〉 and 〈cos(2φ)〉 asymmetries of [11]. These asym-

metries in principle contain information about the Boer-

Mulders and Collins functions. We are currently finaliz-

ing the analysis of the COMPASS azimuthal asymmetries,

which we will submit for publication in the near future.

For the purposes of this discussion, we only want to men-

tion a few key points concerning the parameter interpreta-

tion. We then focus only on 〈cos(φ)〉which up to O(k⊥/Q)

receives two contributions

〈cos(φ)〉 ∝
(
Fcos φh

UU

)
Cahn

FUU
+

(
Fcos φh

UU

)
BM

FUU
, (8)

where (Fcos φh
UU )Cahn depends only on the unpolarized TMDs

and (Fcos φh
UU )BM on both the Boer-Mulders and the Collins

functions. FUU is given in Eq. (2). Notice that the Cahn

and Boer-Mulders effects in 〈cos(φ)〉 cannot be disentan-

gled. It might be tempting to use the TMDs extracted

from the analysis in the multiplicities, in order to cal-

culate the Cahn contribution to 〈cos(φ)〉 , and simply at-

tempt to learn about the Boer-Mulders effect. However,

through Eq. (5), one can see that from an analysis on the

multiplicities alone, one can only get information about〈
P2

T

〉
=
〈
p2⊥
〉
+ z2

h

〈
p2⊥
〉
, and not directly about

〈
k2⊥
〉

and〈
p2⊥
〉
. It is then a very delicate matter to interpret the pa-

rameters of the model. To illustrate this point, let us con-

sider the case in which
〈
p2⊥
〉

is z-dependent. To make the

argument clearer, we chose the specific functional form

〈
p2
⊥
〉
= A + z2 B. (9)

In this case,
〈
P2

T

〉
can be written as

〈
P2

T

〉
→ A + z2

(〈
k2
⊥
〉
+ B
)
. (10)

Looking at Eqs. (5) and (10), and focusing on the term

quadratic in z, one would reach two different conclusions

about the value of
〈
k2⊥
〉
. So one cannot really disentangle〈

p2⊥
〉

and
〈
k2⊥
〉

without additional information, such as that

contained in 〈cos(φ)〉 . To see why this asymmetry can

help in separating
〈
p2⊥
〉

from
〈
k2⊥
〉
, one can focus on the

Gaussian model, in which

(
Fcos φh

UU

)
Cahn

FUU
∝
〈
k2⊥
〉

〈
P2

T

〉 . (11)

So the same quantities
〈
k2⊥
〉

and
〈
p2⊥
〉

appear, but in a con-

figuration different from that of the multiplicities.

Finally, for completeness, we show here preliminary

results of a simultanoeus fit of the COMPASS data on

multiplicities and 〈cos(φ)〉 , using the parametric form of

Eq. (10). In this fit, we have only used the Cahn effect

to calculate 〈cos(φ)〉 . We show in Fig. 3 the results for

〈cos(φ)〉 . For the multiplicities one gets the same as dis-

cussed previously, in Fig 2. The kinematical cuts used in

this fits are the same as those shown in Table 1. It must be

mentioned that without additional flexibility, introduced

through to some scheme like that of Eq. (10), one cannot

describe both multiplicities and 〈cos(φ)〉 simultanoeusly.

In an forthcoming publication, we will discuss these issues

in detail.
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Table 1. χ2 values of our best fits, following Eqs. (2-6), of the experimental COMPASS measurements of the SIDIS multiplicities

Mh
n(xB ,Q

2, zh, PT ) for h+ and h− production, off a deuteron target. We show the total χ2
dof

and, separately, the χ2
dof

for h+ and h− data.

CTEQ6 PDFs and DSS FFs are used. Notice that the errors quoted for the parameters are statistical errors only, and correspond to a

5% variation over the total minimum χ2. The two lowest rows of numerical results are obtained allowing for a y-dependent extra

normalisation factor, Eq. (7).

COMPASS

Cuts χ2
dof

n. points [χ2
point

]h+ [χ2
point

]h− Parameters

Q2 > 1.69 GeV2 〈k2⊥〉 = 0.61 ± 0.20 GeV2

0.2 < PT < 0.9 GeV 8.54 5385 8.94 8.15 〈p2⊥〉 = 0.19 ± 0.02 GeV2

z < 0.6

Q2 > 1.69 GeV2 〈k2⊥〉 = 0.60 ± 0.14 GeV2

0.2 < PT < 0.9 GeV 3.42 5385 3.25 3.60 〈p2⊥〉 = 0.20 ± 0.02 GeV2

z < 0.6 N1 = 1.06 ± 0.06

Ny = N1 + yN2 N2 = −0.43 ± 0.14

Figure 2. The multiplicities obtained including the y-dependent normalisation factor of Eq. (7) are compared with the COMPASS

measurements for h+ SIDIS production off a deuteron target. The shaded uncertainty bands correspond to a 5% variation of the total

χ2. It is interesting to note that about 50% of the value of χ2 comes from the three panels inside red boxes, which enclose the bins with

lowest value of y.
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Figure 3. Comparson of 〈cos(φ)〉 data with minimal curves, obtained from a simultaneous fit of COMPASS multiplicities and 〈cos(φ)〉 .

For this preliminary fit, Eqs. (2-6) and Eq. (10) were used. The kinematical cuts are those shown in Table 1.
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