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Abstract 

It is well known that regular exercise training can reduce the incidence of coronary events 

and increase survival chances after myocardial infarction. Myocardial beneficial effects are 

due to the reduction of several cardiovascular disease risk factors, such as high cholesterol, 

hypertension, metabolic syndrome, obesity, etc. Moreover, exercise can reproduce the so-

called “preconditioning”: the capacity of brief periods of ischemia to induce myocardial 

protection against ischemia/reperfusion injury. Pre- and post-conditioning of the 

myocardium are two treatment strategies that considerably reduce post-ischemic 

contractile dysfunction and the amount of necrosis. Paradoxically, reactive oxygen and 

nitrogen species (ROS and RNS) have been identified as essential cardioprotective signaling 

molecules, in either pre- or post-conditioning phenomena. Several clues demonstrate that 

preconditioning may be directly induced by exercise, thus leading to a protective 

phenotype at cardiac level without the necessity of causing ischemia. Also exercise appears 

to act as a physiological redox-sensible stress that induces antioxidant beneficial 

myocardial adaptive responses at cellular level. The purpose of the present work is to 

review the role played by factors released during exercise in improving exercise 

performance and in triggering cardioprotection via a redox-sensible mechanism.  

Keywords: Exercise performance; Preconditioning; Postconditioning; Endothelial factors; 

Redox balance. 
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Introduction 

Cardiovascular diseases (CVDs) will be the major cause of death in the world as a whole by 

the year 2020, and will determine a human and economic costs that will be unmatched by 

any other disease [1]. Physical inactivity is now recognized as a major risk factor for CVD. 

For example, the relative risk of coronary artery disease has been estimated to be circa 2 

fold higher for inactive subjects compared to physically active individuals [2]. Recent 

esteems suggest that about 12% of the cost of CVD can be attributed to physical inactivity 

[3], making physical inactivity a multi-billion € problem.  

Regular exercise is beneficial for the cardiovascular system 

A significant amount of time, effort and resources are devoted to methods of prevention 

trying to reduce the burden that ischemic heart disease poses to our health care system. 

The notion that regular exercise may prevent and cure CVD is supported by numerous 

epidemiological studies. Physical inactivity is a risk factor for these pathologies and 

physical activity is cardioprotective. Actually, exercise is one of the oldest therapeutic 

interventions recommended for the treatment or prevention of diseases. In fact it was 

recommended by the ancient Chinese, Indians, Greeks, and Romans in various forms [4]. 

More recently, we can find prescription of regular exercise for the prevention of CVD 

already in the 1850s in Scotland, Scandinavia and Germany [4], as well as in 1904 in the USA 

[5]. Nowadays the concept that regular exercise confers protection against coronary disease 

can be traced to the seminal work of Morris and co-workers [6] and it has been extensively 

investigated since in a number of studies which have demonstrated that regular exercise is 

beneficial for the cardiovascular apparatus. Regular physical activity (for about 2-4 years), 
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was associated with a 27% reduction in total mortality and a 31% reduction in cardiac 

mortality [7]. Moreover, exercise has been suggested as a useful tool in rehabilitation for 

stable coronary insufficiency and after infarction [8-10], and there are evidences supporting 

the beneficial effect of regular physical activity in patients with coronary disease [11]. It 

has been reported that exercise reduces the incidence of arrhythmias [12-14], improves 

coronary vascular reactivity [15-17] and decrease myocardial stunning [18,19] in hearts 

experimentally exposed to ischemia/reperfusion (I/R). In humans, exercise decreases the 

incidence of myocardial infarction and increases the chances of survival after coronary 

events [20-30]. Furthermore, it is well established that exercise capacity is a good predictor 

of reduced risk of death from any cause in both healthy subjects and in those with CVD 

[31].  

However, the mechanisms through which regular exercise protects against chronic and 

acute CVD have not yet been completely elucidated.  

The putative mechanisms of cardiovascular protection by exercise 

It has been proposed that physical training operates by: 

1) improvement of endothelial function. Indeed, the vasculature is the largest organ in 

the body and endothelium is important in regulating some key functions in homeostasis such 

as platelet aggregation, immune responses, and vascular permeability. Moreover, the 

endothelial cells produce numerous substances, including nitric oxide (NO), which is 

important in regulating vasomotor function, thereby determining blood flow distribution to 

each tissue and in maintaining the health of the vascular wall [32]. It is now established 

that exercise improving endothelial functions and endothelial-dependent vasodilatation 

increases gene expression for endothelial NO synthase (eNOS) [16,33-36]. 
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2) reduction of vascular resistance and structural adaptations in the coronary tree (i.e. 

increased number of capillaries and number and size of arteries and arterioles), thereby 

enhancing the blood transport capacity at this level [15-17];  

3) reduction of several risk factors related to cardiovascular pathologies, including high 

blood pressure, dyslipidemia, obesity, insulin resistance, and autonomic deregulation 

[3,8,37,38]. 

4) cardioprotection by exercise includes also modified gene expression. In fact, it has 

been demonstrated that even mild exercise can trigger gene modifications that may 

become relevant for cardioprotection [39,40]. In particular, exercise induces the increase 

of cytoprotective molecules, including heat shock proteins (HSPs) and antioxidant defense 

(see below) [19]. However, there is a need for studies that utilize an integrated “omics” 

approach (genomic, proteomic and metabolic analysis) with subsequent robust network 

bioinformatics analysis to identify key regulatory networks, signaling hubs and confounders 

in response to exercise as well as to other conditioning stimuli. 

Similarity between preconditioning and exercise 

Besides exercise, a growing number of strategies have been described as possible treatment 

to protect the heart from I/R injury. Among them, one the most powerful is the so called 

“ischemic preconditioning” phenomenon, first described by Murry et al. [41], where a 

series of short periods of ischemia separated by brief episodes of reperfusion before a long 

index/infarcting ischemia greatly reduced infarct size. Since then, several researchers have 

put forward the idea that cardiovascular protection by exercise and by ischemic 

preconditioning may share several mechanisms. 
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The similarity and differences between exercise and preconditioning have been analyzed in 

some recent reviews [42-48]. Similarly to exercise, conditioning protocols may affect gene 

expression, as elegantly reviewed by Ferdinandy’s group [49]. Here we consider only some 

aspects of the mechanisms of preconditioning and exercise. 

After a general introduction on preconditioning and exercise we will specifically analyze 

mitochondrial and endothelial function as they are of paramount importance both in 

exercise and preconditioning. In particular, we will describe a) the role of some autocrine 

and paracrine factors in influencing endothelial function in exercise and preconditioning, b) 

the role of mitochondrial reactive oxygen species (ROS) in these two phenomena, c) redox 

aspect and interaction with gasotransmitters on the endothelial function during exercise 

and preconditioning. 

 

Conditioning by brief ischemia as protective procedure 

Ischemic Preconditioning 

As said, one of the most promising approaches in reducing myocardial I/R injury is ischemic 

preconditioning (I-PreC), a phenomenon induced by repetitive brief episodes of ischemia 

during early reperfusion before a prolonged ischemic insult [42,50-52] In recent years, it 

has been shown both in the experimental and clinical settings that the infarct-limiting 

effect of ischemic preconditioning is due to the autocrine/paracrine effects of ligands 

released by the preconditioned tissue (see below). It is likely that ligand formation and 

release is favored by oxygen tension drop in the tissue, which occurs also in exercise [53]. 

Of note, the hypoxia also promotes an increase of mRNA levels of protective expression of 
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hypoxia-inducible factor 1 (HIF-1) target genes, such as HSPs (for extensive reviews, see 

[49,54]). However, it has been suggested that hypoxic preconditioning is due to the 

reoxygenation rather than to hypoxia per se [55]. 

The Trigger phase: the ligands may couple to G-protein-linked receptors, or 

tyrosine kinase receptors, or may activate directly intracellular signaling pathways, 

including kinases, such as protein kinase C (PKC), nitric oxide synthase (NOS), 

mitochondrial ATP-sensitive potassium channels (mKATP), which may promote ROS 

production. Nitric oxide and ROS may react to obtain reactive nitrogen species (RNS). 

Both ROS and RNS have a fundamental signaling role. In fact, antioxidant given in 

this phase avoids the induction of preconditioning cardioprotection [42,43,50-52,56]. 

The mediation phase: cardioprotective mechanisms and pathways similar to those 

observed in the trigger phase are operative in the reperfusion phase. These ROS/RNS 

signaling, as well as protective signaling pathways, namely cGMP/PKG (cyclic 

guanosine monophosphate/Protein kinase G), RISK (Reperfusion Injury Salvage 

Kinase) and SAFE (Survivor Activating Factor Enhancement), which converge on 

mitochondria. Thus, for the endogenous ligands the final targets of the protective 

pathways are the mitochondria, where the signaling induces protection by preventing 

mitochondrial permeability transition pore (mPTP) formation, which is considered 

the end-effector of the protective pathway. Thus, regardless the fact that the 

ligands are formed during the pre-conditioning procedure, the real protection occurs 

against reperfusion injury, which follows the index ischemia [43,56].  

In brief, three mainstream cardioprotective pathways are described, namely the 

cGMP/PKG pathway, which starts from nitric oxide formation and guanylyl cyclase (GC) 
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activation, the RISK pathway, which includes activation of protein kinase B (PKB, also 

known as Akt) and extracellular signal-regulated kinase (ERK)1/2, and the SAFE pathway, 

which requires the activation of the signal transducer and activator of transcription 3 

(STAT3). These protective pathways, here only mentioned, have been described in several 

excellent reviews, to which the reader is kindly redirected; see for example [43,52,57-61]. 

Other conditioning protocols 

Besides ischemic preconditioning the heart may be “conditioned” by other approaches. 

Ischemic postconditioning can be triggered by short cycles (a few seconds) of I/R at 

beginning of reperfusion, immediately after ischemia. It is a protective mechanisms 

observed in early phase of reperfusion after an infarcting ischemia and has also shown to be 

protective against I/R injury [59,60,62-64]. Similarly to preconditioning, postconditioning 

reduces: infarct size, apoptosis, post-ischemic arrhythmias and endothelial-

dysfunction/activation. 

Cardioprotection by pharmacological postconditioning has also been described. It is 

obtained with the infusion of some of the agents able to induce preconditioning, but these 

agents must be applied very soon in reperfusion, because the first minutes of reperfusion 

are critically important [59,60,65,66]. 

More recently, remote ischemic pre-, per- and post-conditioning have also proved to be 

protective against cardiac I/R damage [67-73]. These approaches consist in subjecting a 

limb or organ, remote from the heart, to brief cycles (a few minutes) of 

ischemia/reperfusion, prior to or during or after cardiac ischemia, respectively (Fig. 1). 
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Cardiac ischemic and remote preconditioning have been shown to induce both early (the 

above described phenomenon) and delayed cardioprotection [73-76]. This delayed 

protection, is also named “second window of protection” (SWOP). 

While the early protective phenomenon is active immediately after conditioning ischemia 

and lasts for about 2-3 hours, SWOP begins 12-24 hours after the initial conditioning 

ischemia and lasts 72-90 hours conferring a delayed cardioprotection [77,78]. This late 

phase of protection is particularly interesting in a clinical perspective because of its 

sustained duration. Besides duration, other differences between early preconditioning and 

SWOP exist. For instance, SWOP is more effective than early preconditioning in attenuating 

myocardial stunning, whereas the early phase is characterized by a pronounced infarct-

sparing effect [42,79,80]. Notably, a cardioprotective role of HIF-1 and related target genes 

have been demonstrated in both delayed and early phase of preconditioning as well as in 

remote limb ischemic preconditioning [43,81]. 

The redox signaling in cardioprotection (preconditioning and 

postconditioning) 

Here we report some details about the role of ROS/RNS signaling in pre- and 

postconditioning of the heart. Transient pre-ischemic ROS/RNS formation is of paramount 

importance in triggering preconditioning cardioprotection. Whether redox signals arise 

during the reperfusion phase which follows the brief preconditioning ischemia [82] or during 

preconditioning hypoxia/ischemia itself [83], is a matter of controversy. Although 

preconditioning modulates ROS/RNS production during the infarcting ischemia [82-85], it 

also limits, but not avoids, ROS/RNS production in reperfusion [52,58,61,83,85,86]. 
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Actually, the acidosis and redox signaling at the beginning of reperfusion contribute to 

trigger cardioprotective pathways, comprising several processes of activation/inhibition of 

key enzymes. Moderate acidosis plays a critical role in the prevention of mPTP opening. In 

fact, similarly to ischemic postconditioning a slight acidosis treatment in the initial phase of 

reperfusion is protective. Acidosis cardioprotective role has also been clearly demonstrated 

in postconditioning experiments and has been attributed to the direct action on 

mitochondria, where mPTP formation is prevented [87]. Consistently, transient 

preconditioning with acidosis is cardioprotective [88]. Preconditioning not only decreases 

tissue acidosis and anaerobic glycolysis during the subsequent sustained ischemic period 

[84], but also avoids quick pH recovery in the early reperfusion [58]. Therefore, in the 

initial phase of reperfusion a slight acidosis plays a critical role in the cardioprotection 

against reperfusion injury both in pre- and post-conditioning. Thus preventing mPTP 

opening, slight acidosis limits ROS production and avoids the ROS-induced ROS release 

(RIRR) phenomenon, which is irreversible and will lead inevitably to cell death. Therefore, 

ROS/RNS signaling is also cardioprotective at the beginning of reperfusion. In fact, ROS/RNS 

are double-edged swords whose harmful role is well known in I/R context. Nevertheless 

their cardioprotective role has been unequivocally demonstrated in postconditioning 

experiments. This redox sensible protection has been attributed to the direct and indirect 

modulation of pro-survival kinases activity, including PKC [52,61,82,89] (Fig 2). In summary, 

both in pre- and post-conditioning the persistence of a slight acidosis and a slight 

production of ROS/RNS in the early phase of reperfusion play crucial roles in the 

cardioprotection against I/R injury.  

The redox signaling in exercise  
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It is clear that acute exercise modifies redox homeostasis in every fluid, blood cell, tissue 

and organ. In fact, several studies have found alterations in redox homeostasis after acute 

exercise in several tissues [90-100] including the heart [101]. 

There are several types of exercise and ROS/RNS production may be typical for each type of 

exercise protocol and this makes this issue particularly complex. From the point of view of 

redox signaling, it may be important/useful to divide the acute exercise in non-muscle- and 

muscle-damaging exercise. It seems clear that non-muscle-damaging exercise induces 

changes in redox homeostasis that lasts in tissue and blood a few hours after the exercise 

bout [102-106]. This form of exercise seems more similar to the ischemic conditioning, 

where brief non-damaging ischemia triggers protection. Exercise may be a paradigmatic 

example of the beneficial effects induced by transient oxidative signaling [107-109], which 

also comprises an up-regulation of eNOS [110,111] and other cytoprotective molecules, 

including HSPs. HSPs up-regulation occurs as a consequence of both acute exercise and, 

especially, of chronic cardioprotective exercise, and persists over training cessation 

[112,113].  

Here a first question arises: is exercise-induced cardioprotection due to an enhanced 

ability to produce ROS/RNS or to an ameliorated capacity to scavenge ROS/RNS? 

It must also be considered that amount of products deriving from the anaerobic metabolism 

(such as ADP, adenosine, lactate etc.) is released into the blood during exercise, even 

without the need of flow reduction used to cause remote preconditioning [114-116]. Among 

these substances in the blood are also found factors modifying the redox homeostasis [102-

106]. 
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Thus a second question arises: are these substances and factors produced during exercise 

by remote organ to trigger cardiac preconditioning?  

To the best of our knowledge there is not a definitive answer to these two questions. 

Nevertheless, for what concern the second question, it has been recently demonstrated 

that dialysate plasma from humans undergoing high-intensity exercise reduced infarct size 

in isolated rabbit hearts after ischemia-reperfusion injury. This phenomenon was also 

present with plasma from humans exposed to remote ischemic preconditioning [117]. These 

data suggest that exercise-induced cardioprotection is, at least in part, similar to remote 

conditioning, i.e. it is mediated by systemic release of one or more humoral factors 

reaching the heart. Similar results were also obtained in the mice heart perfused with 

dialysate plasma from highly trained humans (swimmers) undergoing a protocol of ischemia-

reperfusion to trigger the remote preconditioning phenomenon. In this study, along with 

the infarct reduction effect in the mice heart, the remote ischemic preconditioning 

maneuvers were also able to enhance the athletic performance during swimming [118].  

All together the above data support an important role for the substances produced by 

“remote organs” in protecting the hearts also during exercise. However the metabolic 

demand of the heart increases almost in parallel with exercise effort, thus a contribution 

from the autocrine/paracrine effects of factors released by the heart itself is more than 

likely. 

For what concern the first question (is exercise-induced cardioprotection due to an 

enhanced ability to produce ROS/RNS or to an ameliorated capacity to scavenge 

ROS/RNS?). Either phenomena may be true. The predominance of one or the other 

mechanism may depend from several factors. 
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As candidates for triggering cardioprotection after acute exercise, the activation of 

adenosine, bradykinin and/or opioid receptors, and/or surges in inflammatory 

adipocytokines, as well as transient ROS/RNS production have been put forward (Fig. 2). 

Several studies reported that the improvements in cardiac function and infarct-sparing 

effects triggered by exercise, are lost when antioxidants are assumed by the individuals 

during the exercise bouts [119-121]. Moreover, exercise increases the activity of myocardial 

NADPH oxidase (a ROS producers), and its inhibition abrogated the cardioprotective effects 

of acute exercise [122]. A small ROS burst may increase antioxidant buffering capacity by 

promoting gene expression and protein synthesis, similar to what observed in skeletal 

muscle [123].  

In the heart there are several antioxidant enzymes, which can upregulate their activity 

after exercise. However, it seems that this is not a feature of acute exercise, which may 

be, however, able to induce preconditioning-like cardioprotection. In fact in animals 

voluntary free wheel running [124] and low-intensity treadmill running [125-127] do not 

increase myocardial manganese-dependent superoxide dismutase (MnSOD) levels. Moreover, 

neither MnSOD mRNA [128] nor protein levels [129] are augmented after acute exercise. A 

clear upregulation of MnSOD, in both activity and enzyme expression, can be seen only in 

studies examining exercise protocols of longer duration [125,130-133] a feature that 

appears to be preserved in the aged heart [132,133]. While, heightened enzymatic 

scavenging of superoxide anion (O2
-) seems a feature of adaptation to chronic exercise, an 

enhanced enzymatic set of hydrogen peroxide (H2O2) scavengers does not seem to be 

necessary for exercise-induced cardioprotection. In fact, only a few studies have reported 

and enhanced catalase activity in the heart [130], with most studies reporting no difference 
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in cardiac catalase and glutathione peroxidase activities after exercise training 

[14,124,134-136]. Moreover, myocardial thioredoxin appears to be unaffected by exercise 

[134]. Finally, whether glutathione reductase is involved in exercise-induced 

cardioprotection remains to be clarified. Some studies observed enzyme increase with 

exercise [132,137] whereas others reported no change [124,131,134]. 

Moreover, the results with exogenous antioxidants are controversial. In fact, while several 

studies suggest that antioxidant supplementation induces a positive effect [138,139], others 

studies report either a negative [140,141] or a neutral effect [142-144] on exercise 

performance. Similarly, several studies have reported that antioxidant supplementation 

limits oxidative stress [145,146], others report a pro-oxidant effect [147] and others 

describe a neutral effect on redox homeostasis [144]. 

In summary, it seems that a modest increase in reactive species may trigger 

cardioprotection, whereas this positive effect may be reversed at higher ROS/RNS 

concentrations in a dose-dependent manner. This is in line with the idea that antioxidant 

supplementation on redox homeostasis are dependent on the antioxidant concentration and 

effect: too much generation of ROS/RNS may be harmful whereas modest generation may 

be beneficial [148]. 

The beneficial effects of exercise on properties of endothelial 

cells and vasculature: a redox perspective. 

Endothelium plays a role of paramount importance in exercise regulation [149,150]. 

Endothelial cells (ECs) form a multifunctional signal-transducing surface, which regulates 

several fundamental processes, including blood flow and pressure response to exercise. ECs 
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present numerous ion channels and enzymes and produce many factors affecting the 

response to exercise. Some of these factors are produced “on demand” (NO, endothelins, 

PGI2, and apelin), whereas others compounds (tissue plasminogen activator, von Willebrand 

factor, tissue factor pathway inhibitor, etc.) are stored in granules and released by 

exocytose, tonically and in response to various stimuli. Among stimuli there are both 

chemicals/neurotransmitters (such as apelin, histamine, acetylcholine, angiotensin, 

bradykinin, ATP, ADP, thrombin, growth factors) and mechanical stimuli (such as increased 

pulsatility and shear stress) [149-152]  

The increase of shear stress and pulsatile pressure during acute exercise represent the 

mechanical stimulation of the arteries and arterioles. These two important mechanical 

stimuli “augment” the endothelial regulation of vascular tone to ameliorate blood flow 

where needed. Shear stress and cyclic tension may thus operate to maintain the viability 

and phenotype of normal endothelium [153,154]. During acute exercise, in particular, the 

mechanical forces acting on ECs induce the release of NO and other vasodilator factors, 

that in some vascular district (see infra) dilate preferentially arteries and more proximal 

arterioles and may act as a local vasodilator amplifier of the metabolites released by the 

muscle, which act mainly on smaller arterioles [155,156]. Therefore metabolites (such as 

adenosine or K+ acting on K+ ATP sensible channels) and endothelial factors (e.g. NO acting 

also via cGMP) present a synergistic action in determining in specific vascular regions their 

vasodilator effects. 

Even when the function of the endothelium is compromised, as it can occur in aging and/or 

exposure to risk factors for cardiovascular disease, exercise represents an important and 

beneficial effect and this effect is correlated with improved production of NO [157]. The 
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beneficial effects of exercise, such as increased vasodilators and reduced vasoconstrictors, 

and lowered blood pressure, may contribute to reverse the endothelial dysfunction possibly 

through an increased availability of NO due to an increased production and/or inhibition of 

NO degradation and scavenging by lowered lipoprotein levels. Importantly, the 

improvement of endothelial function during exercise is correlated with an increased 

extracellular superoxidismutase (ecSOD) activity leading to a reduction of ROS and 

increasing NO half-life [110,158,159]. In fact ROS have a major role in NO degradation. It is 

likely that exercise inducing the formation of NO and scavengers of O2
-, limits the 

formation of the deleterious peroxynitrite (ONOO-) and favors positive processes of S-

nitrosylation [52,56]. However, as said above, it is not clear whether and how different 

exercise types and training alters antioxidant defense system and NO availability in 

humans. Intriguingly, animal studies suggest that at certain point of training an increased 

NO availability is no longer detectable [160,161]. It has been suggested that short-term 

exercise training enhances NO production and bioactivity to induce vasodilation and to 

buffer increased shear stress. After extended training increased NO production, and 

possibly other factors, induces structural changes to the vessel resulting in an increase in 

lumen diameter. Hence, shear stress is constantly normalized and endothelial NO 

production returns towards initial levels [161]. However, a regional differences in effects 

must be taken in account as endothelial and/or vascular adaptations are specific to certain 

regions, regardless if the skeletal muscles of the considered region are active or not during 

training bouts [157,162,163]. 
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Autocrine/paracrine protective effects of factors released during 

I-PreC or Exercise 

Several substances released by exercising tissue may be responsible of the observed 

protective effects. Among these are included adenosine, apelin, bradykinin, opioids and 

gasotransmitters (CO, H2S and NO); several of these have been widely described in several 

recent reviews [42-48,52,57-61,164], here we consider only apelin and H2S giving particular 

emphasis to their redox signaling role. 

Apelin 

Adipokines or adipocytokines are active polypeptides produced by the adipocytes. They 

exert a plethora of functions in physiological and pathological conditions and several of 

them are considered as predictor markers for cardiovascular diseases [165]. 

Production and concentration of various adipocytokines, such as apelin, visfatin, resistin. 

leptin, adiponectin, IL-6, MCP1 and TNF-α are influenced by physical exercise. Because of 

the role of exercise in protecting myocardium against I/R injury, it may be argued that 

changes in the production of one or more adipocytokines could affect the exercise-induced 

protection. Actually, the exercise-induced changes in leptin, TNF-a, adiponectin, IL-6 and 

MCP1 release have already been extensively discussed in recent reviews [166,167]. 

Here we focus our attention on apelin, an adipokine widely studied in cardiovascular system 

for its cardiac protective effect. The most active isoforms on cardiovascular system are 

apelin 13 and, to a lesser extent apelin 36, while the predominant in the heart and plasma 

is the pyroglutamyl apelin 13 ((pyr)-apelin 13) [168-170]. Adipose tissue is not the only 

source of apelin. It is also expressed in various organs and tissue, as, e.g., heart (right 
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atrium), lungs, kidney, liver, gastrointestinal tract, brain, adrenal gland and endothelium of 

large conduit vessels and endocardium [171,172]. 

On the cardiovascular system, apelin acting on its own receptor (i.e. APJ, a G protein 

coupled receptor) induces vasodilatation and cardiac inotropy, attenuates arrhythmias and 

I/R injuries, and promotes angiogenesis. The inotropic effect of apelin has been considered 

a component of the response to increases in pre- and afterload [172]. Nevertheless, apelin 

inotropic efficiency is a matter of controversy because apelin was seen to produce either a 

powerful [168,173,174] or a slight (18%) and brief (1-3 min) increase in left ventricular 

developed pressure [170,175-177]. 

As above-mentioned and similarly to other endothelial factors, apelin may be released by 

endocardial endothelium and vascular endothelium after an increase of shear stress [172]. 

In fact, it has been reported that an exercise-induced increase in shear stress triggers 

apelin-mediated vasodilatation and improve cardiac contractility [172]. Actually, the apelin 

vasodilator effect is endothelium- and NO-dependent [168,177,178]. In fact, in the 

presence of endothelial dysfunction or NOS inhibition, apelin acts directly on smooth 

muscle causing vasocostriction via a PKC activation and an increase in intracellular calcium 

concentration [177,179]. 

Intriguingly, it has been observed that aerobic exercise induces an increase of NOS mRNA 

expression and NO production, together to an increase in plasma apelin concentration 

[180]. This is in line with the observation that the i.v. administration of apelin induces NO 

production and promotes eNOS mRNA expression in vascular endothelial cells [181], via 

PI3K/Akt pathway [182].  
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Apelin plasma level doubled after training with repeated aerobic exercise in both middle-

age and old healthy subject [180]. Moreover, in spontaneous hypertensive rats, which were 

characterized by a down-regulation of apelin, swimming training induced an increase of 

apelin and APJ levels in plasma, myocardium and aorta, together with a reduction in blood 

pressure. These results suggest that the effect of training on hypertension may be mediated 

by an up-regulation of apelin/APJ system [183]. 

An increase of apelin concentration was observed in plasma of type 2 diabetes patients, 

after training with aerobic, but not with resistance exercise. In these patients, aerobic 

training induced also an increase in insulin sensitivity and attenuated carotid intima-media 

thickness progression [184]. It this study there was no difference in apelin level between 

healthy and diabetic subjects before training. On the contrary Krist et al., [185] report a 

higher apelin mRNA expression in adipose tissue and concentration in plasma of diabetic 

patients. Since in the studied diabetic cohort the fat mass percentage was significantly 

higher than in the control, it can be argued that the increased apelin concentration was 

related to the overweight. 

Consistent with what described right above, apelin plasma level is augmented in obese 

subjects, but decreased in women when aerobic exercise training causes a reduction of 

body fat mass [186]. However, this does not occur in males in spite of a reduction in fat 

mass; interestingly, apelin mRNA expression does not change in adipose tissue but increased 

in skeletal muscle [187].  

In the case of exercise training also a protection against I/R injury takes place. The 

protection consisted in the limitation of the infarct size and the improvement of post-

ischemic mechanical recovery [188]. Due to the timing of exercise training, this kind of 
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protection must be taken as a sort of preconditioning. However, in isolated rat hearts, 

protection was obtained only if apelin was infused at beginning of reperfusion (that is 

postconditioning), but not if given before the infarcting I/R [177]. Since exogenous apelin 

acts as postconditioning agent only, it may be argued that the relevant endogenous apelin 

in trained subjects is acting in reperfusion. 

Apelin exerts its protective effect against I/R by delaying the opening of mPTP via PI3K/Akt 

and NOS signaling pathway [189]. Apelin displays also antioxidant properties. In fact, ROS 

production was reduced in cardiomyocytes when apelin was added to the medium before 

hypoxia-reoxygenation [190]. Attenuation in O2
- and ONOO- levels was seen also in isolated 

hearts when apelin was given before I/R [191]. Moreover, apelin affects O2
- and H2O2 

production in mitochondria [192]. These antioxidant effects of apelin seem to be due to the 

recovery of the activity of antioxidant enzymes, such as Cu- and Zn-SOD, catalase, and 

glutathione peroxidase, in myocardium after I/R [191,193]. In particular, the involvement 

of catalase in mediating apelin-induced removal of H2O2 has been observed also in pressure 

overload mice hearts, where this effect was also seen to prevent myocardial hypertrophy 

[194]. As reported above, this is in part at variance with the antioxidant effects of chronic 

exercise, in which SOD expression increases, but peroxide scavenging activities are not 

usually up-regulated. Notably, apelin effects on redox conditions are also mediated by pro-

survival signaling pathways, comprising PI3K, PKC, and/or mKATP channels [191] (Fig 2). 

Nevertheless, it has been reported that after 2 weeks of apelin injection in male rats, an 

increase in mitochondrial enzyme activity and respiratory chain protein content can be 

observed in triceps, but not in soleus muscle and in myocardium [195]. The absence of this 
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increase was attributed to the already high levels of mitochondria in high oxidative tissue, 

such as the myocardium.  

Gasotransmitters, physical exercise and cardioprotection 

The role of gaseous signaling molecules in physiology and pathophysiology has been 

extensively described in recent literature [e.g. 33-35,162-164,196]. Concomitantly, 

gasotransmitters (CO, NO and H2S) effect on physical exercise has received scientist 

attention with particular focus on NO. By definition, gasotransmitters are toxic at high 

concentrations whilst indispensable at low doses that are constitutively produced [164,196]. 

Impaired basal production of these molecules leads to altered cardiovascular functions and 

all gasotransmitters have been involved in cardioprotection [164]. In addition, as said, 

there are a plethora of evidences for cardioprotection conferred by physical exercise via 

NO metabolites [164,197] suggesting an important role of gasotransmitters in exercise-

induced cardiac protection. Although NO is a paramagnetic species and as such can act as 

gasotransmitter in short distance (in neighboring cells) during organ’s conditioning 

procedures, its halftime in the circulation is brief and would not allow long traveling 

distance as remote conditioning would need. Nevertheless, nitrite may represent a major 

bioavailable pool of NO, on which hemoglobin may act as a nitrite reductase, thus 

potentially contributing to NO-mediated hypoxic and exercise vasodilatation, even in 

remote organs [198]. Despite of the large amount of research about CO and its 

cardiovascular effects [164], very few studies considered a possible involvement in the 

cardioprotective effect of physical exercise. The advent of CO-releasing molecules (CO-

RMs), as compounds capable of carrying and liberating controlled quantities of CO, may 

help to overcome the dangerous limitations of CO as gasotransmitter [199]. In particular, 
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Vanergriff et al provided the first evidence for CO-MP4, a CO-carrier agent, as deliverer of 

CO to the circulation is able to reduce I/R injury in rats [200]. Intriguingly, an increase in 

the mRNA levels of heme-oxygenase-1 (HSP32), the endogenous CO generator with 

antioxidant properties, has been observed in skeletal muscle after repetitive contractions 

[201]. This may underlie an inducible antioxidant pathway in muscle responsive to 

metabolic stresses associated with repeated muscle contractions. However, to the best of 

our knowledge, an upregulation of heme oxygenase-1 (HSP32) after exercise in cardiac 

muscle has not been described so far. 

NO and Physical exercise. As seen above, NO is the member of the gasotransmitters family 

which has received the major attention. Its beneficial effects in terms of endothelial 

function, response to ischemia and blood pressure regulation are also involved in the 

adaptation to physical exercise. A pivotal mechanism against myocardial I/R injury, which 

deserves few words of discussion, relies on the β-adrenergic stimulation of NOS. In fact, 

circulating catecholamines are elevated upon voluntary physical exercise and eNOS activity 

increases via stimulation of β3-adrenergic receptors and after injection of epinephrine 

[202]. However, while β1 and β2 stimulation increases inotropism and lusitropism, β3 

receptors are shown to enhance production of NO from eNOS leading to a negative inotropic 

effect [203]. However, another putative mechanism is based on the sympathetic drive that, 

during physical exercise, stimulates β2 receptors both on endothelial and cardiac cells 

upregulating eNOS activity. In fact, recent evidences show how β2 stimulation can activate 

eNOS via a pro-survival Src kinase-PI3K/Akt-dependent pathway although independently 

from cAMP/PKA, MAPK, and AMPK [204]. As said above NO may exert both positive and 
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negative inotropic regulations [164], thus an interesting relation exists with sympathetic 

signals, which deserves further attention.  

H2S and Physical exercise. Hydrogen sulfide has been shown to influence exercise capacity 

during sub-maximal and maximal exercise [205] and, concomitantly, several evidences 

confirm a potent cardioprotective effect against ischemia\reperfusion injury and a 

mediatory role in both pre- and postconditioning [164,206,207]. A possible link between the 

two effects probably relies in the ability of H2S to influence mitochondrial activity. At sub 

toxic doses, H2S can serve to the respiratory chain through Sulphide Quinone Reductase 

[208]. Considering these experimental evidences it seems reasonable to assume a potential 

role for H2S in physical exercise-mediated cardioprotection. However, probably due to the 

recently emerged attention to the latest member of the gasotransmitters family, there is 

no animal study showing a link between the subjects. The only report that somehow 

approaches the problem is Tiagy’s review on the effect of H2S on myocytes metabolism 

[209]. Unfortunately, aside from analyzing power output capacity upon inhalation of 

different concentration of H2S, there is no evidence linking H2S mediated cardioprotection 

and physical exercise. 

Along with the protective action on the myocardium, emerging evidence supports the 

notion that preconditioning may be beneficial also for the skeletal muscle, thereby 

improving exercise performance. 

Preconditioning and its potential effects on exercise performance 

An increasing number of studies have been published and have demonstrated that I-PreC 

can effectively enhance performance in several kinds of exercise [118,210-212]. However, 
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these beneficial effects have not been unanimously proved, and some studies reported 

uncertain [213-216] or even negative effects [217]. These different outcomes could be the 

consequence of differences in the maneuvers to induce preconditioning, in the different 

exercise duration and modes, and in timing between preconditioning and exertion. We 

cannot rule out that the differences are due to the redox status of the tissue. 

De Groot and co-workers [210] were among the first to test the I-PreC effect on exercise 

performance. They found that skeletal muscle I-PreC increased maximal oxygen uptake and 

power output during maximal cycling performance in healthy and physically fit subjects. 

The increment in subjects’ performance after I-PreC was slight but significant. Similarly, in 

another investigation it has been demonstrated that skeletal muscle I-PreC slightly 

improved maximal performance in highly trained swimmers [119]. Of note, these authors 

were able to demonstrate that the dialysate plasma from the preconditioned athletes could 

reduce the infarct area of perfused mice hearts. The possibility to enhance exercise 

performance by I-PreC was substantially confirmed by Crisafulli and co-workers [211] during 

maximal cycling. However, these investigators failed to detect any benefit of I-PreC during 

all-out testing, a kind of exercise mostly related to athletes’ anaerobic capacity. A very 

recent paper has confirmed the fact that I-PreC can not ameliorate athletic performance 

during anaerobic testing [218]. Another very recent investigation confirmed the positive 

effect of I-PreC on exercise performance and fatigue perception [219]. Collectively, 

reported data seem to suggest that I-PreC can only produce little improvements in exercise 

performance (in the order of 2-3%) and that this effect is more pronounced in aerobic 

exercise (running, swimming, cycling etc.) than in power and sprint performance. It should 

however be borne in mind that athletic competitions are often decide by a small margin of 
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differences. Therefore, from an athletic performance point of view improvements of 2-3% 

may be substantial. That is, increments of this order is highly relevant in elite athletes’ 

competitions. 

As far as the mechanisms by which I-PreC operates to increase exercise performance, to 

date none has provided any definite explanation. It has been suggested that I-PreC 

produces a more efficient muscle contraction, thereby promoting an ATP-sparing effect 

which, in turn, led to a larger work load per oxygen consumed. This effect has in fact been 

demonstrated in a pig model of I-PreC [220]. Authors speculated that the ATP-sparing 

effect afforded by I-PreC may occur because of a tightening of excitation-contraction 

coupling and a reduction in futile ion pumping. It is also possible that I-PreC reduces the 

feeling of fatigue, thus allowing the subjects to exercise longer [211]. This fact could be 

related to the desensitization of groups III and IV nerve endings in the muscle, which act as 

mechanic and metabolic sensors. The reduction of signals by these nerve endings may 

decrease the central sensation of fatigue and could at least in part explain the increased 

performance. Alternatively, I-PreC-related enhancement in exercise performance may be 

the consequence of improvements in peripheral vascular functions. Indeed, I-PreC can 

increase NO production, which induces vasodilation, increments in muscle blood flow and 

oxygen delivery, thereby improving muscle aerobic capacity [48,74]. This latter mechanism 

may be particularly relevant in the adaptive effects of physical training, where an 

enhanced exercise-induced NO production is usually observed in some vascular districts 

[15,33,35]. 

Finally, similar to exercise, I-PreC can induce an increase in ROS/RNS production 

[91,92,96.], followed by an antioxidant and survival proteins up-regulation in both training 
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and late preconditioning [78,79,133,136], thus reinforcing the concept that I-PreC and 

exercise can act in the same biochemical pathways. However, we should keep in mind that 

ROS/RNS have multi-phasic effects on the contractile function of skeletal muscle. The low 

ROS levels present under basal conditions are essential for normal force production. 

Selective depletion of ROS from unfatigued muscle by use of SOD or catalase causes force 

to fall. Conversely, modest ROS supplementation causes force to increase. This positive 

effect is reversed at higher ROS concentrations; force production falls in a time- and dose-

dependent manner [221] 

In conclusion, preconditioning has similarity with exercise and both induce a great benefit 

against I/R injury via several mechanisms, which comprises a redox modulation. However, 

I-PreC induces a small benefit on exercise performance, mainly during aerobic efforts. 

Further investigation is warranted to better clarify effects and mechanisms of both 

phenomena: exercise and preconditioning.  
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FIGURE LEGENDS 

Figure 1.  

Ischemic conditioning consists of a series of brief periods of ischemia and reperfusion 

performed before (preconditioning), during (perconditioning) or after (postconditioning) the 

infarcting/index ischemia. The conditioning procedure can be performed in a remote organ 

with respect to the target organ (e.g. the conditioning protocol can be applied to the limbs 

and the index ischemia to the heart).  

 

Figure 2 

The release of several endogenous cardioprotective agents. Cardioprotective agents can be 

released by several cell types and may act in a paracrine/autocrine fashion to activate 

membrane receptors and to trigger redox-sensitive intracellular pro-survival pathways. 

Cardioprotective pathways converge on mitochondria where they prevent mitochondrial 

permeability transition pore (mPTP) formation. 

Adenosine receptors, AR; Bradykinin receptors, BkR; Opioid receptors, OpR, Apelin receptor 

APJ. For other acronyms see text. 


