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Nonicosahedral pathways for capsid expansion
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For a significant number of viruses a structural transition of the protein container that encapsulates the viral
genome forms an important part of the life cycle and is a prerequisite for the particle becoming infectious. Despite
many recent efforts the mechanism of this process is still not fully understood, and a complete characterization
of the expansion pathways is still lacking. We present here a coarse-grained model that captures the essential
features of the expansion process and allows us to investigate the conditions under which a viral capsid becomes
unstable. Based on this model we demonstrate that the structural transitions in icosahedral viral capsids are likely
to occur through a low-symmetry cascade of local expansion events spreading in a wavelike manner over the
capsid surface.
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I. INTRODUCTION

Viruses are important examples of symmetry in biology.
This is due to the principle of genetic economy [1,2], which
suggests that protein containers built from multiple copies
of identical building blocks guided by symmetry principles
can be coded for by relatively short genomic sequences,
hence making genome packaging efficient. Symmetry has
therefore dominated the field of virus structure for decades
and is the bedrock of imaging techniques that provide insights
into capsid structures with remarkable precision. However,
it has recently become increasingly clear that asymmetric
components play crucial roles for virus function, e.g., for the
mechanisms of genome release. Therefore, any models trying
to understand how viruses form and infect their hosts must
take such asymmetric components into account. An example
of such an asymmetric feature is the single copy of maturation
protein in bacteriophage MS2, which may replace one of the
capsomeres (in this virus protein dimers) and play an essential
role in genome ejection at that site.

On the other hand, even when the capsid is fully symmetric,
conformational changes are often triggered by variations of
its chemical environment that, in turn, modify the interaction
energies between the proteins. The effect of such changes
is most likely nonuniform, in the sense that they induce
fluctuations in the interactions that may be stronger at specific
random sites of the capsid.

We present here a coarse-grained model that allows us to
study the effect of nonuniform intercapsomere bonds on the
transition path during the expansion of the capsid, either due
to, e.g., the insertion of asymmetric features in the capsid or
to random local fluctuations of the bond energy induced by
variations of the environment.

Structural transitions occur in many viruses, for example,
in a large number of plant viruses [3–5]. Since these have
devastating effects on agriculture, a better understanding
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of these transition mechanisms and the potential roles of
asymmetric components in this process may open up new
insights in how to block such transitions, and could lead
to the design of antiviral strategies. Structural transitions
of viral capsids have been studied extensively both in the
theoretical and the experimental literature [6]. A prominent
example is bacteriophage HongKong97 (HK97), which un-
dergoes a maturation process that involves an expansion
of the capsid [7–9]. Different experimental techniques have
been used to study such capsid expansions, including cryo-
electron microscopy [10] and atomic force microscopy [11],
and elastic network models have been used to study these
transitions [12,13]. While bacteriophage HK97 is perhaps
the most widely studied system, viruses with other capsid
geometries, such as cowpea chlorotic mottle virus (CCMV),
have also been studied [14,15].

An important common feature of these transitions is the
importance of subunit rotations [16]. We therefore construct
here a model system to study the mechanism by which such
subunit rotations may occur along the transition path. A model
system often used to study mechanisms underlying vital stages
of the viral life cycle is the dodecahedron, a shape formed
from 12 regular pentagons. It provides a simple geometric
representation of an icosahedral capsid, yet captures all its
essential features. For example, it has been used to model the
principles of capsid self-assembly from 12 pentagonal protein
clusters [17,18]. Even though the dodecahedron provides
a geometric idealization, there are viruses for which the
structural transition in the protein container occurs via a rigid
body movement of pentagonal protein clusters, e.g., equine
rhinitis A virus (ERAV [19]), and our model is therefore
directly applicable to them (Fig. 1). However, the purpose
of this paper is to investigate the physical determinants of such
transitions in general terms and to show that in the case of
nonuniform intercapsomere bonds the capsid opening occurs
via a cascade of localized detachment events propagating along
the capsid surface in a wavelike motion.

We show here that this wavelike expansion is a consequence
of a competition between the attractive forces between protein
interfaces and a repulsive force exerted by the packaged
genome. Such an opening scenario is plausible given that,
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FIG. 1. (Color online) Equine rhinitis A virus (ERAV) follows
the geometry of our dodecahedral model system.

as we show here, the energy required to initiate opening
at localized interfaces is far less than that required for the
capsid to open instantaneously as a whole. Local variations
in the bond strengths could easily be triggered either by
asymmetric components impacting on specific subsets of
intercapsomere bonds or by local fluctuations in solution
conditions favoring certain bonds over others. We also show
that even if a transition path breaks icosahedral symmetry, the
final state of the expansion must be icosahedral again. Our
analysis hence predicts icosahedral configurations (modulo
localized asymmetric components) before and after transition.
The lower intermediate symmetry during transitions depends
on the number and locations of the weakened intercapsomere
bonds.

Even though we consider explicitly the rigid motion of
pentagonal protein building blocks in the context of an
idealized dodecahedral capsid, the conclusions transfer to
other scenarios of rigid body motion and are hence valid for
larger classes of viruses. Examples of such rigid body motion
are well known and can also involve rigid motion of protein
domains [5,16]. In viruses where the units of rigid motion are
not known a priori, domain decomposition techniques based
on a normal mode analysis can help to determine them [20].
Moreover, an analysis of the atomic positions of the capsid
proteins (pdb files available, e.g., from VIPER [21]) makes it
possible to characterize the rigid domains of a virus of interest
in terms of their center of mass and contact map. It is possible
to add a further layer of complexity to our models by using
the available libraries of empirical potentials to approximate
the interactions between capsid proteins, which would hence
customize this analysis to specific viruses of interest. However,
it is the purpose of this paper to demonstrate in general
terms in a coarse-grained setting that a wavelike cascade of
localized low-symmetry opening events is the most likely
scenario for viral capsid transitions and to provide a framework
that allows the impact of a nonhomogeneous distribution of
intercapsomere bonds, e.g., caused by asymmetric components
or solution conditions, on structural transitions in viral capsids
to be studied.

Since it explicitly takes into account the interactions
among the proteins, our work may complement either existing
phenomenological approaches based on continuum elastic-
shell models [22–24] or coarse-grained models similar to ours
but where icosahedral symmetry is imposed on the transition
intermediates [25].

The paper is organized as follows. We start with a section
introducing the model system and the variables that describe
it. This section also introduces the energy function and model
assumptions. In the subsequent section, we analyze the triggers
of the capsid expansion event, discussing the symmetric case
in which all bond strengths are assumed to be equal and the
asymmetric case in which one bond strength differs from the
others.

We then show that in these cases capsid expansion is
likely to occur as a wavelike cascade of local expansion
events, involving rotation and radial expansion of individual
capsomeres. This section is followed by a discussion of the
nature of the end point of the expansion. We conclude by
discussing the implications of the results for wider classes of
viruses.

II. THE MODEL SYSTEM

We consider a dodecahedral model system [see Fig. 2(a)]
in which the pentagonal faces Fi , i = 1, . . . ,12, act as rigid
units during the transition. We refer to Fi as the pentamers,
even though, in actual dodecahedral capsids, each subunit can
be composed of multiples of five proteins.

Information on adjacency of the pentamers is captured
by the adjacency set A = {(i,j ):pentamer i is adjacent to
pentamer j}, i < j} and the adjacency matrix

Aij =
{

1 when (i,j ) ∈ A,

0 otherwise.

Moreover, N (i) indicates the set of faces adjacent to
pentamer i.

The motion of pentamer Fi during the transition is char-
acterized by its radial displacement λi along, and rotation θi

about the unit vector ni orthogonal to its plane and passing
through the center of the dodecahedron [Fig. 2(b)], i.e., by
Fi "→ Ri(ϑi)Fi + λini , where

Ri(ϑi)v=(v · ni)ni + cos ϑi[v − (v · ni)ni] + sin ϑi(ni × v),

for any vector v. The system is hence entirely characterized
by the 24 degrees of freedom (λ,ϑ) = (λi ,ϑi), i = 1, . . . ,12,
with λi ∈ [0, + ∞) and ϑi ∈ (−π,π) for i = 1, . . . ,12. We do
not impose here any constraint preventing the interpenetration
of the pentamers other than the requirement that λi ! 0. Such
constraints can be introduced by restricting the domain of the
relevant variables but would not change the analysis below.

In order to keep the integrity of the capsid after expansion,
we assume that the pentamers are linked by the C- or N-

FIG. 2. (Color online) (a) The dodecahedral model system. The
translational (λ) and rotational (ϑ) degrees of freedom of each
pentamer, and the links between them, are illustrated in (b).
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terminal arms of the proteins, which we model here as elastic
but almost inextensible threads. For simplicity we assume that
there is only one chain linking each adjacent pair of pentamers
and that the anchor points P ij ∈ Fi and P ji ∈ Fj of this
chain in the closed reference configuration are symmetric with
respect to the common edge of the pentamers; see Fig. 2(b).
As the pentamers move, so do the anchor points: denoting
by Qij (λi ,ϑi), respectively Qji(λj ,ϑj ), the positions of the
anchor points P ij and P ji after displacement of the pentamers
by (λi ,ϑi) (pentamer i) and (λj ,ϑj ) (pentamer j ), the distance
between the displaced anchor points is denoted by

%ij := %(λi ,λj ,ϑi ,ϑj ) := | Qij − Qji | .
Hence, the constraint that the pentamers Fi and Fj are linked
by a chain between the displaced anchor points Qij and Qji

takes the form

0 " %(λi ,λj ,ϑi ,ϑj ) " %0 . (1)

Here %0 > |P ij − Pji | = %(0,0,0,0) is the rest length of the
arm connecting two pentamers, which we assume to be strictly
larger than the initial distance between the points in the
closed configuration. This is to account for the fact that C-
or N-terminal arm connections are not tight and allow for
some give in the distance between the pentamers. To avoid
characterizing the constraint analytically, we relax (1) by
introducing an energy term penalizing its violation.

A. The energy function orchestrating the transition

We assume that the total energy of the capsid has the form

E(λ,ϑ) = Wblk(λ) + Wint(λ,ϑ) + Wconstr(λ,ϑ)

and is given in terms of the following components.
(i) RNA expansion (expansive pressure from the RNA),

Wblk =
12∑

i=1

G(λi), (2)

with G : [0, + ∞) → R a smooth decreasing function such
that G(x) > 0, G(x) → 0 as x → +∞, G′(x) < 0, and G′(x)
is monotone increasing. Wblk accounts for a radial repulsion
force due to RNA confinement (Fig. 3).

(ii) The cohesive interfacial energy,

Wint = 1
2

∑

(i,j )∈A

αijF (d(λi ,λj ,ϑi ,ϑj )), αij ∈ [0,1], (3)

FIG. 3. Qualitative plots of the RNA-capsid and intercapsomere
interaction energy functions.

with F : [0, + ∞) → R a smooth increasing function such
that F (x) < 0, F (x) → 0 as x → +∞, F ′(x) > 0, F ′(x) is
monotone decreasing. We assume that F ′(x) goes to zero much
faster than G′ to account for the fact that interfacial energies
ebb off faster with distance than the radial outwards push of
the RNA (Fig. 3). The weight αij is the strength of the bond
(i,j ) ∈ A.

The function d(λi ,λj ,ϑi ,ϑj ) in (3) is a measure of the
distance between adjacent pentameric building blocks. The
exact expression is not required for our line of arguments,
but we assume that d is symmetric and positive definite,
i.e., d(λ,λ′,ϑ,ϑ ′) = d(λ′,λ,ϑ ′,ϑ) ! 0, with d(λ,λ′,ϑ,ϑ ′) = 0
if and only if λ = λ′ = ϑ = ϑ ′ = 0. Moreover, we assume that

' : = ∂d

∂λ
(λ,λ′,ϑ,ϑ ′)

∣∣∣∣
(0,0,0,0)

> 0 and

(4)
∂d

∂ϑ
(λ,λ′,ϑ,ϑ ′)

∣∣∣∣
(λ,λ′,0,0)

= 0

for λ,λ′ ! 0. We also assume that the distance has a linear
growth with λ, i.e., that there exist positive constants c1 and c2
for which

c1 <
∂d

∂λ
(λ,λ′,ϑ,ϑ ′) < c2,

for all (λ,λ′,ϑ,ϑ ′) with λ,λ′ ! 0. Notice that (4)1 is implied
by the above inequality.

(iii) The constraint energy,

Wconstr = C
∑

(i,j )∈A

{(
%2

ij − %2
0

)n if %2
ij > %2

0,

0 if %2
ij " %2

0,
(5)

with C a positive constant and n ! 2, captures the fact that the
motion of the pentamers is constrained by the C- or N-terminal
arm linking them.

We note that all conclusions of the paper hold true as long
as we assume that there is some force that prevents pentamers
from completely detaching from the capsid. The exact form
of this term is hence irrelevant and could be replaced by any
other form with this property.

The model is formulated in terms of an expansive force
stemming from a radial repulsive force due to RNA confine-
ment that is balanced by a cohesive force between capsomeres.
We note that this is not appropriate for all types of viruses. For
instance, in CCMV the driving force for capsid expansion
is Coulomb repulsion between the capsid proteins, which
is turned on by the removal of calcium ions. However, for
other viruses, such as ERAV, the expansion is triggered by
decrease of the pH, rather than the removal of metal ions,
and closed empty particles at low pH are experimentally
observed [19,26], suggesting that, in this case, there is no
repulsion between the capsomeres and our assumption about
cohesive force is reasonable.

Further, RNA is negatively charged and binds to positively
charged capsid proteins, which helps the assembly in many
RNA viruses, since proteins attach at RNA stem-loops during
the assembly. This attractive force between the RNA and the
capsomeres is not in contrast with the radial repulsive force due
to confinement which we assume to promote capsid expansion.
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B. Model assumptions

We study the dynamics of the system based on the following
hypotheses.

(i) Hypothesis I. When the expansive force on a pentamer
overcomes the cohesive force between it and its neighbors, the
pentamer detaches, but otherwise remains in its initial position.
In other words, the closed capsid is stable as long as the closed
configuration is in a minimum of the total energy.

(ii) Hypothesis II.When a pentamer moves, it does so
according to a dissipative mechanism; i.e., it tends to decrease
the overall energy.

Since the closed configuration of the capsid corresponds
to λ = 0, ϑ = 0, which is a boundary point of the domain
of definition of the energy, the minimum condition should
be restated in terms of the subdifferential of the energy. In our
case, it turns out to be simpler to identify the partial derivatives
−∂E/∂λi and −∂E/∂ϑi with the generalized forces acting on
the pentamers and, consistent with Hypothesis II, assume that
the motion of each pentamer is governed by a gradient system.
We hence obtain the following dynamical system:

λ̇i =






0 if λi = 0 and − ∂E
∂λi

(λ,ϑ) " 0,

− ∂E
∂λi

(λ,ϑ) if λi > 0,

or λi = 0 and − ∂E
∂λi

(λ,ϑ) > 0,

(6)

and

ϑ̇i = − ∂E

∂ϑi

(λ,ϑ) (7)

for i = 1, . . . ,12.
The rationale behind (6)1 is as follows: identifying

− ∂E
∂λi

(λ,ϑ) at λi = 0 with the force opposing or favoring the
expansion of the ith pentamer in its initial configuration, a
negative value implies that this force acts by keeping the
capsid in the closed form, given the constraint λi ! 0, i.e.,
that the capsid cannot contract further from the closed state.
The capsid opens when the force is positive, i.e., when the
expansive contribution overcomes the cohesive term.

III. THE INITIATION OF THE EXPANSION

We first explore the energetic cost of initiating capsid
expansion, either at all interfaces simultaneously or at selected
interfaces. As the constraint energy and its derivatives vanish
in the closed form of the capsid, the stability conditions
(6)1, i.e.,

− ∂E

∂λi

(0,0) " 0,

reduce to

0 " G′(0) + 'F ′(0)
∑

j∈N(i)

αij , i = 1, . . . ,12, (8)

where αij denote the interpentamer bond strengths. The above
condition is equivalent to

∑

j∈N(i)

αij ! 5αc with αc := − G′(0)
'F ′(0)

,

(9)
i = 1, . . . ,12,

where G′(0) < 0. When one of the above inequalities is not
satisfied for some pentamer i, the closed capsid is unstable. The
stability condition (8) can be interpreted in terms of a balance
of forces: we can identify the term Fblk = − ∂Wblk

∂λi
(0,0) =

−G′(0) with the expansive force acting on each pentamer
and the term Fint,i = − ∂Wint

∂λi
(0,0) = −'F ′(0)

∑
j∈N(i) αij with

the cohesive force keeping the capsid together. Hence, rewrit-
ing (8) as

|Fblk| " |Fint,i|,

we can reformulate the stability condition as saying that the
pentamer i does not detach when the cohesive force is larger
than the expansive force acting on it.

The stability condition depends on the bond strengths αij ,
and we discuss two special cases below.

Case 1: all bond strengths are equal. In this case, we have

αij = α for (i,j ) ∈ A, αij = 0 otherwise,

and the stability condition reduces to α ! αc.
When, e.g., due to a variation in the chemical environment,

the bond strengths decrease uniformly and reach this threshold,
the capsid undergoes expansion. The energy required to
overcome the threshold starting from a given closed configu-
ration, in which all bond strengths are equal to a given value
α0 > αc, is

Eαc
(0,0) − Eα0 (0,0) = [12G(0) + 30F (0)αc]

−[12G(0) + 30F (0)α0]

= −30F (0)(α0 − αc),

which is positive since F (0) < 0.
Case 2: one bond strength is lower than the others. Many

viruses have asymmetric features in their capsids that play
a role in disassembly and genome ejection. An example
is bacteriophage MS2, with a capsid in which one of the
protein dimers is substituted by a single copy of maturation
protein [27]. The presence of such asymmetric features
motivates the analysis of an asymmetric energy formulation, in
which a small number of the inter-subunit bonds differs from
the others. This case may also occur due to fluctuations of the
bond strengths induced by changes of the environment.

We consider here explicitly the case in which one bond is
weaker than the others. The overall conclusions also hold for
other asymmetric scenarios as we discuss in the conclusions
section. In this case we have, for instance,

α12 = α21 = α − ε, ε > 0, and αij = α otherwise,

for (i,j ) ∈ A and assume that α = α0 > αc. Instability arises
if one of the inequalities (9) is not satisfied. Since α0 > αc,
this can only occur for i = 1,2, i.e., when

0 > G′(0)+'F ′(0)(5α0 − ε) ⇔ ε > εc = 5(α0 − αc).

(10)

The above inequality is meaningful when α12 = α0 − ε > 0,
which means that αc < α0 < 5

4αc, i.e., α0 is sufficiently close
to αc. The energetic cost of decreasing the bond strength α12
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from α0 to α0 − εc is

Eα0−εc
(0,0) − Eα0 (0,0) = [12G(0) + F (0)(30α0 − εc)]

−[12G(0) + 30F (0)α0]

= −F (0)εc = −5F (0)(α0 − αc).

Hence, the energetic cost of decreasing a single bond until
destabilization is lower than the cost of decreasing all bonds
until destabilization:

Eα0−εc
(0,0) − Eα0 (0,0) < Eαc

(0,0) − Eα0 (0,0).

Therefore, from an energetic point of view, Case 2 is the more
likely scenario.

IV. CAPSID TRANSITION AS A CASCADE OF LOCAL
EXPANSION EVENTS

We next determine explicitly a possible scenario for capsid
expansion. We focus in this section on the initial stages
of the expansion, where contributions from Wconstr can be
neglected, because the maximum allowable length of the links
between pentamers is much larger than their distance in the
initial stages. In this case, by (4)2 and (7), we may take
ϑi(t) ≡ 0 for t < T , where T is the maximal time at which
no link is stretched, i.e., T = sup{t > 0 : %(λi(t),λj (t),0,0) <
%0 for all (i,j ) ∈ A}.

In that case, we can limit considerations to the following
reduced system (where the dependence on ϑi is omitted):

λ̇i =
{

− ∂Ẽ
∂λi

(λ) if λi > 0,

max
(
0,− ∂Ẽ

∂λi
(λ)

)
if λi = 0,

(11)

with

Ẽ = Ẽ(λ) = Wblk(λ) + Wint(λ,0).

Letting H (λ,λ′) = F ′(d(λ,λ′,0,0)) ∂d
∂λ

(λ,λ′,0,0) > 0, we can
write

∂Ẽ

∂λi

= G′(λi)
∑

j∈N(i)

αijH (λi ,λj ).

We consider explicitly the case in which one of the bond
strengths is smaller than the others, i.e., the scenario described
by (10) in Case 2 above. Assume that α12 = α − ε, αij = α
otherwise, and that the conditions (10) for detachment are
satisfied. Since the distribution of bond strengths αij is trivially
twofold symmetric about the axis going through the center
of the edge F1 ∩ F2 and the center of the particle, the 12
variables λi describing the individual expansions along axes
perpendicular to the pentamers reduce to five independent
variables, and we introduce the following notation:

µ(t) := λ1(t) = λ2(t),

ν(t) := λ6(t) = λ10(t),

σ (t) := λ3(t) = λ5(t) = λ9(t) = λ11(t),

τ (t) := λ4(t) = λ12(t),

ξ (t) := λ7(t) = λ8(t).

The dynamics of (11) with initial conditions λ(t0) = 0 is
as follows. Since, by (10), − ∂Ẽ

∂λ1
(0) = − ∂Ẽ

∂λ2
(0) > 0 at t =

t0, pentamers 1 and 2 detach from the capsid and then
expand radially, but none of the other pentamers are mobile
yet, since their stability conditions − ∂Ẽ

∂λj
(0) < 0, j += 1,2,

are still satisfied. However, as a consequence of this local
radial expansion, the bonds between pentamers 1 and 2 and
the adjacent pentamers are weakened, and this affects their
stability conditions. The corresponding equation of motion
and stability conditions are

[t0,t1) :






µ evolution equation : µ̇ = −G′(µ) − (α − ε)H (µ,µ) − 4αH (µ,0),
ν stability condition : −G′(0) − 2αH (0,µ) − 3αH (0,0) " 0,

σ stability condition : −G′(0) − αH (0,µ) − 4αH (0,0) " 0,

τ,ζ stability conditions : −G′(0) − 5αH (0,0) " 0.

Indeed, since |F ′| is much smaller than |G′|, and ∂d/∂λ is bounded, then µ̇ > 0 for t ! t0, which implies that µ(t) is increasing.
Hence, since F ′ is positive and decreasing to zero, the term −2αH (0,µ(t)) in the stability condition for ν (pentamers 6 and 10)
is increasing with time, so that there exists a time t1 > t0 such that the stability condition for pentamers 6 and 10 is not satisfied
anymore [i.e., −G′(0) − 2αH (0,µ(t1)) − 3αH (0,0) = 0], while it is still satisfied for the remaining pentamers (3, 5, 7, 8, 9, and
11). This is true if α " 5

3αc, which is satisfied since α " 5
4αc by (10).

Therefore, at t = t1 pentamers 6 and 10 detach and expand for t > t1, while none of the others is mobile yet. Again, the stability
conditions for the adjacent pentamers are modified by the fact that their bonds with pentamers 1, 2, 6, and 10 are weakened:

[t1,t2) :






µ evolution equation : µ̇ = −G′(µ) − (α − ε)H (µ,µ) − 2αH (µ,ν) − 2αH (µ,0),
ν evolution equation : ν̇ = −G′(ν) − 2αH (ν,µ) − 3αH (ν,0),
σ stability condition : −G′(0) − αH (0,µ) − αH (0,ν) − 3αH (0,0) " 0,

τ stability condition : −G′(0) − αH (0,ν) − 4αH (0,0) " 0,

ζ stability condition : −G′(0) − 5αH (0,0) " 0.

Hence, an argument analogous to the above shows that there exists a time t2 at which the stability condition for pentamers
3, 5, 9, and 11 stops being satisfied, while it is still satisfied for pentamers 4, 7, 8, and 12. For t > t2, pentamers 1, 2, 3, 5, 6, 9,
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10, and 11 expand after detaching:

[t2,t3) :






µ evolution equation : µ̇ = −G′(µ) − (α − ε)H (µ,µ) − 2αH (µ,ν) − 2αH (µ,σ ),
ν evolution equation : ν̇ = −G′(ν) − 2αH (ν,µ) − 2αH (ν,σ ) − αH (ν,0),
σ evolution equation : σ̇ = −G′(σ ) − αH (σ,σ ) − αH (σ,µ) − αH (σ,ν) − 2αH (σ,0),
τ stability condition : −αH (0,ν) − 2αH (0,σ ) − 2αH (0,0) " 0,

ζ stability condition : −G′(0) − 2αH (0,σ ) − 3αH (0,0) " 0.

Again, there exists a time t3 such that the stability condition for pentamers 4 and 12 is not satisfied, while it is still satisfied
for pentamers 7 and 8. For t > t3, all pentamers except 7 and 8 expand after detaching, and there exists a time t4 such that the
stability condition for pentamers 7 and 8 is not satisfied:

[t3,t4) :






µ evolution equation : µ̇ = −G′(µ) − (α − ε)H (µ,µ) − 2αH (µ,ν) − 2αH (µ,σ ),
ν evolution equation : ν̇ = −G′(ν) − 2αH (ν,µ) − 2αH (ν,σ ) − αH (ν,τ ),
σ evolution equation : σ̇ = −G′(σ ) − αH (σ,σ ) − αH (σ,µ) − αH (σ,ν) − αH (σ,τ ) − αH (σ,0),
τ evolution equation : τ̇ = −G′(τ ) − Hα(τ,ν) − 2Hα(τ,σ ) − 2Hα(τ,0),
ζ stability condition : −G′(0) − 2αH (0,σ ) − 2αH (0,τ ) − αH (0,0) " 0.

Finally, for t4 < t " T , all pentamers are detached and expanding:

[t4,T ) :






µ evolution equation : µ̇ = −G′(µ) − (α − ε)H (µ,µ) − 2αH (µ,ν) − 2αH (µ,σ ),
ν evolution equation : ν̇ = −G′(ν) − 2αH (ν,µ) − 2αH (ν,σ ) − αH (ν,τ ),
σ evolution equation : σ̇ = −G′(σ ) − αH (σ,σ ) − αH (σ,µ) − αH (σ,ν) − αH (σ,τ ) − αH (σ,ζ ),
τ evolution equation : τ̇ = −G′(τ ) − Hα(τ,ν) − 2Hα(τ,σ ) − 2Hα(τ,ζ ),

ζ evolution equation : ζ̇ = −G′(ζ ) − 2Hα(ζ,σ ) − 2Hα(ζ,τ ) − Hα(ζ,ζ ).

(12)

The resulting dynamics is therefore a cascade of expansion
events across the capsid surface, as illustrated in Figs. 4 and 5.

FIG. 4. (Color online) The wavelike cascade of local opening
events. Panel (a) illustrates the labeling of pentamers in the capsid,
seen in a planar representation along the twofold axis that corresponds
to the weaker bond strength. Panel (b) illustrates the time course of the
cascade, indicating the pentamers moving at any given time, together
with links to the pentamers whose stability properties are affected by
this motion.

Note that we did not specify the functions F and G
explicitly and that this result hence holds in general. However,
we have worked out an example explicitly in the Supplemental
Material [28] and have created a movie that illustrates the
expansion behavior.

V. THE END POINT OF THE EXPANSION

Even if the expansion intermediates have reduced symme-
try, as in the case discussed above, the end state will again be
icosahedral. In fact, assume that the interaction energy between
the pentamers is short-range and can hence be neglected
for t > T . In this regime, the dynamics of the system is

FIG. 5. (Color online) Five snapshots of the expansion event of a
viral capsid.
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FIG. 6. A planar representation of three pentamers. Panel (a) is
the symmetric equilibrium configuration: the anchor points (black
dots) are aligned with the pentamer axes. Panel (b) is a generic con-
figuration, with ϑ̃ measured from the reference configuration in (a).

described by

λ̇i = −G′(λi) − nC
∑

j∈N(i)

S
[(

%2
ij − %2

0

)n−1]∂%2
ij

∂λi

,

(13)

ϑ̇i = −nC
∑

j∈N(i)

S
[(

%2
ij − %2

0

)n−1]∂%2
ij

∂ϑi

,

where S(x) = x if x ! 0, and S(x) = 0 otherwise.
We prove in an Appendix that there exists a unique

symmetric equilibrium (λ∗
i ,ϑ

∗
i ) of the dynamical system (13)

of the form

λ∗
i = λ∗, ϑ∗

i = ϑ∗, i = 1, . . . ,12,

where ϑ∗ is the rotation angle of the pentamers which
corresponds to having all anchor points aligned with the
pentamer axes ni and nj [cf. Fig. 6]. Numerical simulations
show that this equilibrium is attractive.

VI. DISCUSSION

Intermediates of capsid transitions are transient and hence
highly difficult to capture experimentally. Theoretical input is
therefore required to better understand transition events. Since
the start and end state of a transition are often icosahedral,
simulations usually assume icosahedral symmetry also during
the transition. However, earlier work on the virus CCMV
([29–31], [15]) has shown that this is not necessarily the case,
which has prompted the present analysis of a coarse-grained
model system. Indeed, the analysis developed here shows that
in the presence of asymmetric components or local fluctuations
of the environment affecting the strengths of the interpentamer
bonds, capsid expansion follows a lower symmetry path, with

the symmetry of the path implied by the distribution of the
weaker bonds.

We have shown here that in this situation the expansion is
not, as often assumed in the literature, icosahedral, but follows
a cascade of local opening events, and we explicitly determine
the nature of this cascade for our model system. We moreover
have shown that, irrespective of the number of weaker bonds
and the explicit path taken, the end result of the expansion is
again icosahedral. It is hence not surprising that imaging results
regarding the start and end states of a capsid transition display
icosahedral symmetry. However, the present paper shows that
the inference that all intermediate states must also have this
high degree of symmetry is likely to be incorrect, as suggested
by [32].

More than this, we show that it is enough, and indeed
energetically favorable, that a single bond is weakened below
a certain threshold in order to trigger the transition and
eventually drive the whole capsid to its expanded state. Hence,
when the chemical environment of the capsid changes, either
the presence of asymmetric components, or random local
fluctuations of the bond strength, are enough to reach the
destabilization threshold.

Our considerations have been based on a model system
motivated by viruses such as the ERAV, in which the capsid
proteins form pentagonal clusters of 20 proteins each, that
play the role of disassembly units and behave as rigid
domains when the capsid expands to release the genomic
material [19,26]. Predictions regarding the expanded form are
in good agreement with recent experimental results for this
virus [26] and our results provide insights into the mechanisms
underlying the expansion event. Viruses with capsids made
by 12 pentamers and 10(T -1) hexamers could be treated
analogously to our procedure, with state variables λi pointing
along midpoints of all capsomeres (pentamers and hexamers),
each endowed in addition with a rotational degree of freedom.
In principle, hexamers do undergo changes, e.g., become flatter
in the expanded state as in the case of CCMV, but as a first-order
effect, their radial expansion and rotation are the dominant
contributions to the dynamics, and our procedure therefore
could provide insights also in the expansions of these capsids.

For capsids with asymmetric components, our results
demonstrate how these components can impact on the way in
which the capsid becomes unstable as a prerequisite for releas-
ing its cargo. We have discussed explicitly the case of an energy
function in which a single bond has a lower bond strength,
with all others being equal. This has resulted in a wavelike
expansion around an axis pointing through the midpoint of the
bond and the center of the capsid. Similarly, for a larger number
of bonds becoming unstable simultaneously, one would expect
a wavelike expansion along an axis about which this configura-
tion is invariant. For example, if five bonds are simultaneously
weakened around a fivefold axis, the wave propagates along
this axis and the expansion has fivefold symmetry.

Many viruses have a portal vertex through which the
viral genome is packaged. One of the open questions in
structural virology is why there is canonically a mismatch
in the symmetry of the portal and the pentameric capsid vertex
on which it is mounted. Our analysis suggests that such a
mismatch created by a packaging motor in the capsid lattice
could serve as a nucleus for an expansion event of the type
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described in this paper, and expansion might hence be one of
the functional consequences of the portal.

This paper hence helps to understand the mechanism
of capsid transition and urges caution in the interpretation
of imaging results beyond the start and end states of the
expansion event. It provides insights into the nature of likely
transition paths that could be used in simulation studies in
combination with additional information on the exact energetic
contributions. For example, explicit paths such that the one
in Fig. 5 (see also the Supplemental Material [28]), could
serve as input for simulations based on realistic potentials for
viruses of interest. Transition paths are notoriously difficult to
simulate without further input regarding the nature of the path
as provided by this analysis here, and this paper could therefore
open up opportunities for the simulation of transitions in viral
capsids. These insights can potentially be exploited in the
design of antiviral strategies that act by blocking the transition
mechanism.
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APPENDIX A: THE FINAL STATE OF THE EXPANSION

We prove here that there exists a unique symmetric
equilibrium of the dynamical system (13). Consider first the
equilibrium condition for ϑi :

−
∑

j∈N(i)

S
[(

%2
ij − %2

0

)n−1]∂%2
ij

∂ϑi

= 0, i = 1, . . . ,12; (A1)

this can be satisfied only if each summand vanishes, i.e., if

S
[(

%2
ij − %2

0

)n−1]∂%2
ij

∂ϑi

= 0, i,j = 1, . . . ,12.

To see this, let fij = −S[(%2
ij − %2

0)n−1]
∂%2

ij

∂ϑi
, so that the equi-

librium conditions take the form
∑

j∈N(i) fij = 0, and assume
that, by contradiction, for some i, there exists j such that, say,
fij < 0. Then, since

∂%2
ij

∂ϑi

=
∂| Qij − Qji |2

∂ϑi

= −2ni · Qij × Qji ,

it follows that ni · Qij × Qji < 0, i.e., the axis of pentamer i
lies on one specific side of the plane generated by the anchor
points and the center of the dodecahedron [Fig. 6(b)]. By
consequence, the adjacent pentamer j must be rotated by
an angle |ϑ̃j | > |ϑ̃i |, where ϑ̃i = ϑi − ϑ∗, with ϑ∗ the angle
corresponding to the symmetric equilibrium of Fig. 6(a), and
defined below.

However, since fji < 0 [cf. Fig. 6(b) and (A1)], there exists
k such that fjk > 0, and an argument similar to that above
shows that the pentamer k must be rotated by an angle |ϑ̃k| >
|ϑ̃j |. Iterating this argument we arrive at a contradiction since
the index set is finite.

Having established that all fij = 0, we exclude configura-
tions such that %2

ij " %2
0 for all i,j , since these, when inserted

in (13), would imply that G′(λ∗
i ) = 0, which is excluded by

our hypotheses (we want the RNA-capsid interaction force
to be still active in the open form of the capsid). Hence, the
equilibrium equation for ϑi reduces to

∂%2
ij

∂ϑi

= 0 for all i,j ∈ 1, . . . ,12 ; (A2)

i.e.,

ni · Qij × Qji = nj · Qij × Qji = 0, for every i,j,

which means that Qij and Qji belong to the plane through ni

and nj , so that

ni × nj · Qij = ni × nj · Qji = 0, for every i,j ;

i.e.,

ni × nj · Ri(ϑi)P ij = ni × nj · Rj (ϑi)Pji = 0,

for every i,j . This expression is independent of λi ,λj , and
its unique solution ϑi = ϑj = ϑ∗ corresponds to having the
anchor points aligned with the plane through n1 and n2,
the pentamers axes. Therefore, the solution of the second
equilibrium equation is ϑi = ϑ∗ for all i.

We now prove that all the solutions of the first equilibrium
equation for ϑi = ϑ∗ are of the form λi = λ∗ for all i, which, in
turn, implies that the final state of the expansion is icosahedral
irrespective of the nature of the transition path. Consider, in
fact, the system

−G′(λi) = nC
∑

j∈N(i)

(
%2

ij − %2
0

)n−1 ∂%2
ij

∂λi

, i = 1, . . . ,12,

for n = 2 and ϑi = ϑj = ϑ∗, where

∂%2
ij

∂λi

=
∂| Qij − Qji |2

∂λi

= 2( Qij − Qji) · ni .

Let λ0 and ψ be defined as in Fig. 7, and 0i = λi − λ0: then

%2(λi ,λj ,ϑ
∗,ϑ∗)

= (λi − λj )2 + 2(λi − λ0)(λj − λ0)(1 − cos ψ)

= (0i − 0j )2 + 20i0j (1 − cos ψ),

FIG. 7. Cross section of the dodecahedral model of the capsid
showing the maximally and minimally expanded pentamers. Thick
lines are side views of the pentamers. The shaded area corresponds
to 0M cos ψ < 0m < 0M .
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and, when ϑi = ϑj = ϑ∗,

( Qij − Qji) · ni = (λi − λ0) − (λj − λ0) cos ψ

= 0i − 0j cos ψ.

Assume now that there exist 0m < 0M such that 0m "
0k " 0M for every k = 1, . . . ,12. Since −G′ is monotone
decreasing,

−G′(λm) > −G′(λM ),

which implies
∑

j∈N(m)

(
%2

mj − %2
0

)
(0m − 0j cos ψ)

>
∑

k∈N(M)

(
%2

Mk − %2
0

)
(0M − 0k cos ψ);

i.e.,
∑

k∈N(M)

(
%2

Mk−%2
0

)
0M−

∑

j∈N(m)

(
%2

mj−%2
0

)
0m

< cos ψ

( ∑

k∈N(M)

(
%2

Mk−%2
0

)
0k−

∑

j∈N(m)

(
%2

Mj−%2
0

)
0j

)

" cos ψ

( ∑

k∈N(M)

(
%2

Mk−%2
0

)
0M−

∑

j∈N(m)

(
%2

Mj−%2
0

)
0m

)
.

(A3)

Assume now that 0m > 0M cos ψ : then
∑

k∈N(M)(%
2
Mk −

%2
0)0M ! ∑

j∈N(m)(%
2
mj − %2

0)0m, which implies that the left-

hand side of (A3) is non-negative. In fact,

min
j∈N(M)

%2
Mj = %2

Mm = max
j∈N(m)

%2
mj .

Hence, since cos ψ < 1, (A3) is impossible and λm = λM .

APPENDIX B: A SPECIFIC EXAMPLE

We have worked out a concrete example explicitly in order
to create a movie of a sample transition path. Using the
following functions for F and G in the expression of the total
energy (see also Fig. 3):

F (x) =
{

− a
2b2 (x − b)2, x ∈ [0,b],

0, otherwise,

G(x) =
{

g
2f 2 (x − f )2, x ∈ [0,f ],

0, otherwise,

with b - f , and we have chosen the following form for the
intercapsomere distance

d(λ,λ′,ϑ,ϑ ′) = λ + λ′ + q[ϑ2 + (ϑ ′)2 − pϑϑ ′].

A few snapshots of this dynamics are shown in
Fig. 5.

Note that the transition intermediates have twofold sym-
metry and that the expansion spreads like a cascade of local
events over the capsid surface, starting at the weaker bond
on one of the edges between pentamers and finishing at the
opposite edge.
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