First direct measurement of the 2H (α,γ)6Li cross section at big bang energies and the primordial lithium problem

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/148673 since 2015-11-25T16:09:33Z

Published version:
DOI:10.1103/PhysRevLett.113.042501

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
In its formulation, the standard big bang nucleosynthesis (in the following, standard big bang nucleosynthesis will be referred just as BBN) occurs during the first minutes of the Universe, with the formation of light isotopes such as ^2H, ^3He, ^4He, ^6Li, and ^7Li. Their abundances only depend on standard model physics, on the baryon-to-photon ratio and on the nuclear cross sections of involved processes. The observed ^2H and ^4He abundances are in good agreement with calculations, confirming the overall validity of BBN theory [1]. By contrast, the amount of ^7Li predicted by BBN is higher than that observed in primitive, metal-poor halo stars (“the lithium problem”) [2]. This puzzling discrepancy was further exacerbated by a recent high-precision determination of the baryon-to-photon ratio (see Refs. [3,4] and references therein): BBN ^7Li predictions are now a factor 2–4 higher than observations [1].

A nuclear physics solution to the ^7Li problem is highly improbable, because of accurate measurements at BBN energies, obtained, e.g., at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility deep underground [5,6]. Conversely, the amount of ^6Li predicted by the BBN is about 3 orders of magnitude lower than the observed one in metal-poor stars (“the second lithium problem”). Asplund et al. surveyed a number of metal-poor stars for ^6Li and reported values of $^6\text{Li}/^7\text{Li} \sim 5 \times 10^{-2}$ in about a dozen cases [7,8]. Recently, many of the claimed ^6Li detections have been debated [9] but for a few metal-poor stars a significant excess of ^6Li has been confirmed [1,10]. In contrast, BBN results provide $^6\text{Li}/^7\text{Li} = 2^{+3}_{-2} \times 10^{-5}$ [11], much below the detected levels. The difference between observed and calculated $^6\text{Li}/^7\text{Li}$ ratios may reflect unknown postprimordial processes or physics beyond the standard model [1]. However, before nonstandard scenarios can be invoked, it is necessary to better constrain the nuclear physics inputs.
BBN production of ^6Li is dominated by just one nuclear reaction, $^2\text{H}(\alpha,\gamma)^6\text{Li}$. At low energies, this reaction has been studied previously: by detection of the ^6Li residual nucleus [12], by in-beam γ spectroscopy at the $E = 0.711$ MeV resonance [13], and in two separate Coulomb dissociation experiments at 26 and 150 MeV/A ^6Li projectile energy, respectively [14,15]. (In this context, E refers to the center-of-mass energy and E_a to the $^4\text{He}^+$ projectile energy in the laboratory system.) However, Ref. [15] reported detecting such a high background from nuclear breakup that no cross section could be extracted, a problem that should get worse at lower projectile energy. Moreover, since $E2$ transitions dominate the Coulomb dissociation, the 26 MeV/A cross section data [14] may be interpreted as upper limits of the $E2$ component. Reference [15] also reported a theoretical excitation function that was to some extent corroborated by the reconstructed angular distribution of the excited ^6Li nuclei. Finally, an attempt to measure the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ cross section at BBN energies resulted in an upper limit [16].

The $^2\text{H}(\alpha,\gamma)^6\text{Li}$ cross section $\sigma_{24}(E)$ can be parameterized by the astrophysical S factor $S_{24}(E)$ given by

$$S_{24}(E) = \sigma_{24}(E)E \exp[72.44/\sqrt{E(\text{keV})}].$$

To precisely determine BBN ^6Li production, $\sigma_{24}(E)$ has to be measured directly at astrophysically relevant energies ($30 \lesssim E(\text{keV}) \lesssim 400$). Because of the low expected counting rate, such an experiment requires a deep underground accelerator laboratory such as LUNA, where the background in a shielded γ-ray detector reaches unmatched low levels [17]. LUNA is operated in the Gran Sasso National Laboratory (LNGS), Italy, shielded from cosmic rays by 1400 m of rock. Several nuclear reactions of astrophysical importance have been studied at very low energies at LUNA in recent years [18,19].

In this Letter, new LUNA cross section data on the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ reaction at BBN energies are presented. At low energies, the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ reaction proceeds either via electric dipole ($E1$) or electric quadrupole ($E2$) direct capture to the ground state of ^6Li, in either case emitting a single γ ray.

The measurement is based on the use of the 400 kV accelerator [20] that provides an α beam of high intensity. Figure 1 shows the experimental setup (see Ref. [21] for details). Briefly, it consists of a windowless gas target filled with 0.3 mbar deuterium gas and a large (137% relative efficiency) high-purity germanium (HPGe) detector placed at a 90° angle with respect to the ion beam direction, in very close geometry. The $^4\text{He}^+$ beam (typical intensity 0.3 mA) passes a series of long, narrow apertures before entering the target chamber and is stopped on a copper beam dump that forms part of a beam calorimeter with constant temperature gradient. The natural background of LNGS is further reduced by means of a 4π lead shield around the reaction chamber and the HPGe detector. The setup is enclosed in an antiradon box flushed with high purity N_2, to reduce and stabilize the γ activity from the radon decay chain. The main source of remaining background is of beam-induced nature and is due to energetic deuterons from elastic scattering of the $^4\text{He}^+$ beam on the deuterium. These deuterons produce neutrons via the $^4\text{He}(d, n)^3\text{He}$ reaction ($Q = 3.267$ MeV). Subsequent inelastic neutron scattering reactions in the structural and shielding materials and (mainly) in the germanium detector give rise to a large Compton background in the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ region of interest (ROI). A detailed study of the neutron induced background, and the experimental steps taken to reduce it, has already been reported [21]. Its value is one order of magnitude lower than room (or natural) background at Earth’s surface [22], but remains a factor of 10 higher than the expected signal. Since the shape and rate of the beam-induced background depend only weakly on the $^4\text{He}^+$ beam energy [21], an irradiation at one given beam energy can be used as a background monitor for an irradiation at a different beam energy, provided that the two γ-ray ROIs do not overlap. For the adopted energies of $E_a = 280$ and 400 keV, the no-overlap criterion is fulfilled.

As discussed above, the HPGe spectral rate $R(E_{\gamma})_i$ at a given beam energy $E_{\alpha,i}$ is composed by the neutron induced background $BG_{\text{neutron}}(E_{\gamma})_i$, the natural background $BG_{\text{room}}(E_{\gamma})_i$, and the γ-ray contribution $N(E_{\gamma})_i$ from the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ reaction. Therefore, the $BG_{\text{neutron}}(E_{\gamma})_i$ rate can be written as follows:

$$BG_{\text{neutron}}(E_{\gamma})_i = R(E_{\gamma})_i - BG_{\text{room}}(E_{\gamma})_i - k_i N(E_{\gamma})_i,$$

where the parameter k_i is proportional to the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ reaction cross section. Assuming that the rate of neutron induced background $BG_{\text{neutron}}(E_{\gamma})_{280}$ has the same structure as the $BG_{\text{neutron}}(E_{\gamma})_{400}$, we have

$$BG_{\text{neutron}}(E_{\gamma})_{400} = \beta BG_{\text{neutron}}(E_{\gamma})_{280}.$$

More rigorously, the structure of the neutron induced background weakly depends on the beam energy [21]. Consequently, the β parameter weakly depends on $E_{\gamma}[21],}$
remarked, the BG neutron two runs (Fig. 2) show an excess in the 400 keV ROI. The yields at $E_{\alpha} = 400$ keV and $E_{\alpha} = 280$ keV give astrophysical S factors ($\chi^2/N_{\text{DOF}} = 0.76$, where N_{DOF} is the number of degrees of freedom),

$$S_{24}(134 \text{ keV}) = (4.0^{+0.8}_{-0.9} \text{ (stat)} \pm 0.5 \text{ (syst)}) \times 10^{-6} \text{ keV b}, \quad (4)$$

$$S_{24}(94 \text{ keV}) = (2.7^{+1.5}_{-1.6} \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-6} \text{ keV b}. \quad (5)$$

The minimization has been performed considering the counting excesses inside the ROIs without any a priori assumption on the gamma-ray angular distribution. The statistical error is obtained in the minimization procedure, where the correlation between β, k_{900}, and k_{280} is computed by means of the covariance matrix. The total systematic uncertainty (target density, beam heating, beam intensity, gamma detection efficiency) amounts to 13% [23].
consistent with those presented here. They are in good agreement with the theoretical
literature (data: blue triangles [12], green circles [13]; upper limits: black arrows [14], blue dashed arrow [16]; theory:
red long dashed = E1 [24], red short dashed = E2 [24], red full = E1 + E2 [24], black dot dashed = E1 + E2 [15]).

germanium detector, and the Doppler effect have been considered. The S factors obtained in this way are
$(\chi^2/N_{DOF} = 0.84)$

\[
S_{24}(134 \text{ keV}) = (3.5^{+0.6}_{-0.7}(\text{stat}) \pm 0.5(\text{syst}) \pm 0.5(\text{model})) \\
\times 10^{-6} \text{ keV b},
\]
\[
S_{24}(94 \text{ keV}) = (2.6^{+1.2}_{-1.3}(\text{stat}) \pm 0.3(\text{syst}) \pm 0.5(\text{model})) \\
\times 10^{-6} \text{ keV b},
\]

where the error due to the angular distribution of the emitted photons is indicated with (model). This last uncertainty is
conservatively calculated as the difference between the S factors obtained without any assumption on the angular
distribution and assuming the Mukhamedzhanov angular distribution. These results are consistent with Eqs. (4) and (5)
within errors.

Finally, the analysis has been performed using wider and wider portions of the spectra, up to 500 < E_y < 2500 keV
considering the whole spectra or only regions of them, to exclude possible local bias inside the energy interval
considered in this Letter. All the obtained results are fully consistent with those presented here.

The present results provide the first direct measurement of the $^3\text{H}(\alpha, \gamma)^7\text{Li}$ cross section inside the BBN energy
range. They are in good agreement with the theoretical values of Mukhamedzhanov [24] and about 20% lower than the
theoretical predictions of Hammache [15]. Figure 3 shows the presently obtained astrophysical S factor compared
with literature data and theoretical curves.

The reaction rate calculated from our new S factor values by rescaling the $E1$ component of the Mukhamedzhanov
theoretical curve so that $E1 + E2$ match our data, is significantly lower than the widely adopted Caughlan and
Fowler (CF88) [25] rate. Our new rate has then been used to compute the amount of ^6Li produced in BBN, with the
widely adopted Smith, Kawano, and Malaney (SKM) code [26]. A value of 880.1 s has been used for the
neutron lifetime, and 6.047 × 10^{-10} for the final baryon-to-photon ratio [4]. The resulting abundance is $^6\text{Li}/H = (0.74 \pm 0.16) \times 10^{-14}$, 34% lower than the value obtained
when using CF88. In order to compute the $^6\text{Li}^7\text{Li}$ isotopic ratio from BBN, up to date information on ^7Li production
is also needed. A recent reevaluation of the $^3\text{H}(\alpha, \gamma)^7\text{Be}$ reaction rate [27] uses an excitation function that is
consistent within 2% with the only recent experimental data on this reaction [5,6] at energies below 0.3 MeV, most relevant
for BBN. Using this rate [27], $^7\text{Li}/H = (5.1 \pm 0.4) \times 10^{-10}$ is found, 15% higher than when using CF88. The resulting
lithium isotopic ratio is $^6\text{Li}/^7\text{Li} = (1.5 \pm 0.3) \times 10^{-5}$. The error for $^6\text{Li}/^7\text{Li}$ is mainly due to the 22% uncertainty on ^6Li,
because the ^7Li abundance is known at the 8% level [28]. The calculations have then been repeated using the PARTHENOPHE
(Naples) code [29] instead of SKM, with consistent results. The $^6\text{Li}/^7\text{Li}$ isotopic abundance ratio inferred from our
experimental results is lower than the previous values of $2^{+1}_{-2} \times 10^{-5}$ [11] and 2.3 × 10^{-5} [30]. Also, it is much lower
than the one obtained from the reported ^6Li detections in metal-poor stars and in the Small Magellanic Cloud [31].

In summary, the cross section of the $^3\text{H}(\alpha, \gamma)^7\text{Li}$ nuclear reaction controlling BBN production of ^6Li has been measured,
providing the first data points at BBN energies. Using the new $^3\text{H}(\alpha, \gamma)^7\text{Li}$ cross section and the previous LUNA
data on BBN production of ^7Li, a BBN lithium abundance ratio of $^6\text{Li}/^7\text{Li} = (1.5 \pm 0.3) \times 10^{-5}$ is obtained, firmly
ruling out standard BBN production as a possible explanation for the reported ^6Li detections. Pregalactic ^6Li production
mechanisms have also been previously ruled out [32]. As a result, possible remaining scenarios explaining a global
$^6\text{Li}/^7\text{Li}$ level of a few percent as reported [7,8,10,33,34] may be, under very special conditions, a stellar flare in situ
production of ^6Li [32] or nonstandard physics solutions [35–38]. Cosmic ^6Li is clearly a highly interesting probe of
physics beyond the standard model.

The authors are indebted to F. L. Villante (INFN-LNGS) for informative conversations on BBN calculations, and to
the mechanical and electronic workshops of LNGS for technical support. Financial support by INFN, FAI, DFG
(Grant No. BE 4100-2/1), NAVI (Grant No. HGF VH-VI-417), and OTKA (Grant No. K101328) is gratefully
acknowledged.

†Deceased.

*Present address: Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg, Potsdam, Germany.

‡Present address: CPPM, Université d’Aix-Marseille, CNRS/IN2P3, Marseille, France.